Knowledge

Enriched uranium

Source đź“ť

625:(SILEX) is well developed and is licensed for commercial operation as of 2012. Separation of isotopes by laser excitation is a very effective and cheap method of uranium separation, able to be done in small facilities requiring much less energy and space than previous separation techniques. The cost of uranium enrichment using laser enrichment technologies is approximately $ 30 per SWU which is less than a third of the price of gas centrifuges, the current standard of enrichment. Separation of isotopes by laser excitation could be done in facilities virtually undetectable by satellites. More than 20 countries have worked with laser separation over the past two decades, the most notable of these countries being Iran and North Korea, though all countries have had very limited success up to this point. 961: 494: 395:. This multi-stage design enhances the efficiency and effectiveness of nuclear weapons, allowing for greater control over the release of energy during detonation. For the secondary of a large nuclear weapon, the higher critical mass of less-enriched uranium can be an advantage as it allows the core at explosion time to contain a larger amount of fuel. This design strategy optimizes the explosive yield and performance of advanced nuclear weapons systems. The U is not said to be fissile but still is fissionable by fast neutrons (>2 MeV) such as the ones produced during 696:(GEH) signed a commercialization agreement with Silex Systems in 2006. GEH has since built a demonstration test loop and announced plans to build an initial commercial facility. Details of the process are classified and restricted by intergovernmental agreements between United States, Australia, and the commercial entities. SILEX has been projected to be an order of magnitude more efficient than existing production techniques but again, the exact figure is classified. In August, 2011 Global Laser Enrichment, a subsidiary of GEH, applied to the U.S. 941:
and 4.5 SWU if the DU stream was allowed to have 0.3% U. On the other hand, if the depleted stream had only 0.2% U, then it would require just 6.7 kilograms of NU, but nearly 5.7 SWU of enrichment. Because the amount of NU required and the number of SWUs required during enrichment change in opposite directions, if NU is cheap and enrichment services are more expensive, then the operators will typically choose to allow more U to be left in the DU stream whereas if NU is more expensive and enrichment is less so, then they would choose the opposite.
68: 723: 797: 597: 1256:), which it intends to pursue through financial investment in a U.S. commercial venture by General Electric, Although SILEX has been granted a license to build a plant, the development is still in its early stages as laser enrichment has yet to be proven to be economically viable, and there is a petition being filed to review the license given to SILEX over nuclear proliferation concerns. It has also been claimed that Israel has a uranium enrichment program housed at the 731: 562: 4539: 4527: 4551: 1211:
nuclear warheads accounted for about 13% of total world requirement for enriched uranium leading up to 2008.This ambitious initiative not only addresses nuclear disarmament goals but also serves as a significant contributor to global energy security and environmental sustainability, effectively repurposing material once intended for destructive purposes into a resource for peaceful energy production.
704:. The fear of nuclear proliferation arose in part due to laser separation technology requiring less than 25% of the space of typical separation techniques, as well as requiring only the energy that would power 12 typical houses, putting a laser separation plant that works by means of laser excitation well below the detection threshold of existing surveillance technologies. Due to these concerns the 306: 901:"Separative work"—the amount of separation done by an enrichment process—is a function of the concentrations of the feedstock, the enriched output, and the depleted tailings; and is expressed in units that are so calculated as to be proportional to the total input (energy / machine operation time) and to the mass processed. Separative work is 774:(UCOR) developed and deployed the continuous Helikon vortex separation cascade for high production rate low-enrichment and the substantially different semi-batch Pelsakon low production rate high enrichment cascade both using a particular vortex tube separator design, and both embodied in industrial plant. A demonstration plant was built in 700:(NRC) for a permit to build a commercial plant. In September 2012, the NRC issued a license for GEH to build and operate a commercial SILEX enrichment plant, although the company had not yet decided whether the project would be profitable enough to begin construction, and despite concerns that the technology could contribute to 517:, gaseous diffusion played a major role as a uranium enrichment technique, and as of 2008 accounted for about 33% of enriched uranium production, but in 2011 was deemed an obsolete technology that is steadily being replaced by the later generations of technology as the diffusion plants reach their ends of life. In 2013, the 937:
on the level of enrichment desired and upon the amount of U that ends up in the depleted uranium. However, unlike the number of SWUs required during enrichment, which increases with decreasing levels of U in the depleted stream, the amount of NU needed will decrease with decreasing levels of U that end up in the DU.
936:
In addition to the separative work units provided by an enrichment facility, the other important parameter to be considered is the mass of natural uranium (NU) that is needed to yield a desired mass of enriched uranium. As with the number of SWUs, the amount of feed material required will also depend
573:
so that the heavier gas molecules containing U move tangentially toward the outside of the cylinder and the lighter gas molecules rich in U collect closer to the center. It requires much less energy to achieve the same separation than the older gaseous diffusion process, which it has largely replaced
1223:
to generate electricity.This innovative program not only facilitated the safe and secure elimination of excess weapons-grade uranium but also contributed to the sustainable operation of civilian nuclear power plants, reducing reliance on newly enriched uranium and promoting non-proliferation efforts
1198:
specifications for nuclear fuel if NU or DU were used. So, the HEU downblending generally cannot contribute to the waste management problem posed by the existing large stockpiles of depleted uranium. Effective management and disposition strategies for depleted uranium are crucial to ensure long-term
956:
The opposite of enriching is downblending; surplus HEU can be downblended to LEU to make it suitable for use in commercial nuclear fuel. Downblending is a key process in nuclear non-proliferation efforts, as it reduces the amount of highly enriched uranium available for potential weaponization while
754:
separation processes depend upon diffusion driven by pressure gradients, as does the gas centrifuge. They in general have the disadvantage of requiring complex systems of cascading of individual separating elements to minimize energy consumption. In effect, aerodynamic processes can be considered as
604:
The Zippe-type centrifuge is an improvement on the standard gas centrifuge, the primary difference being the use of heat. The bottom of the rotating cylinder is heated, producing convection currents that move the U up the cylinder, where it can be collected by scoops. This improved centrifuge design
578:. It has a separation factor per stage of 1.3 relative to gaseous diffusion of 1.005, which translates to about one-fiftieth of the energy requirements. Gas centrifuge techniques produce close to 100% of the world's enriched uranium. The cost per separative work unit is approximately 100 dollars per 940:
For example, in the enrichment of LEU for use in a light water reactor it is typical for the enriched stream to contain 3.6% U (as compared to 0.7% in NU) while the depleted stream contains 0.2% to 0.3% U. In order to produce one kilogram of this LEU it would require approximately 8 kilograms of NU
1210:
converts ex-Soviet weapons-grade HEU to fuel for U.S. commercial power reactors. From 1995 through mid-2005, 250 tonnes of high-enriched uranium (enough for 10,000 warheads) was recycled into low-enriched uranium. The goal is to recycle 500 tonnes by 2013. The decommissioning programme of Russian
1190:) in special reactors. Understanding and managing the isotopic composition of uranium during downblending processes is essential to ensure the quality and safety of the resulting nuclear fuel, as well as to mitigate potential radiological and proliferation risks associated with unwanted isotopes. 437:
is difficult because two isotopes of the same element have nearly identical chemical properties, and can only be separated gradually using small mass differences. (U is only 1.26% lighter than U.) This problem is compounded because uranium is rarely separated in its atomic form, but instead as a
1238:
The following countries are known to operate enrichment facilities: Argentina, Brazil, China, France, Germany, India, Iran, Japan, the Netherlands, North Korea, Pakistan, Russia, the United Kingdom, and the United States. Belgium, Iran, Italy, and Spain hold an investment interest in the French
1218:
has been involved in the disposition of a portion of the 174.3 tonnes of highly enriched uranium (HEU) that the U.S. government declared as surplus military material in 1996. Through the U.S. HEU Downblending Program, this HEU material, taken primarily from dismantled U.S. nuclear warheads, was
1289:
is still occasionally used to refer to enriched uranium. Its continued usage serves as a historical reminder of the pivotal role of enriched uranium in shaping the course of modern history and its ongoing significance in various nuclear applications, including energy production, medicine, and
1284:
alloy, after the location of the plants where the uranium was enriched. This covert terminology underscores the secrecy and sensitivity surrounding the production of highly enriched uranium during World War II, highlighting the strategic importance of the Manhattan Project and its role in the
708:
filed a petition with the NRC, asking that before any laser excitation plants are built that they undergo a formal review of proliferation risks. The APS even went as far as calling the technology a "game changer" due to the ability for it to be hidden from any type of detection.
1193:
The blendstock can be NU or DU; however, depending on feedstock quality, SEU at typically 1.5 wt% U may be used as a blendstock to dilute the unwanted byproducts that may be contained in the HEU feed. Concentrations of these isotopes in the LEU product in some cases could exceed
529:
Thermal diffusion uses the transfer of heat across a thin liquid or gas to accomplish isotope separation. The process exploits the fact that the lighter U gas molecules will diffuse toward a hot surface, and the heavier U gas molecules will diffuse toward a cold surface. The
199: 367:(which is standard on all nuclear explosives) can dramatically reduce the critical mass. Because the core was surrounded by a good neutron reflector, at explosion it comprised almost 2.5 critical masses. Neutron reflectors, compressing the fissile core via implosion, 410:, where it often contains at least 50% U, but typically does not exceed 90%. These specialized reactor systems rely on highly enriched uranium for their unique operational requirements, including high neutron flux and precise control over reactor dynamics. The 332:, a minimum of 20% could be sufficient (called weapon-usable) although it would require hundreds of kilograms of material and "would not be practical to design"; even lower enrichment is hypothetically possible, but as the enrichment percentage decreases the 2248:
Becker, E. W.; Ehrfeld, W.; MĂĽnchmeyer, D.; Betz, H.; Heuberger, A.; Pongratz, S.; Glashauser, W.; Michel, H. J.; Siemens, R. (1982). "Production of Separation-Nozzle Systems for Uranium Enrichment by a Combination of X-Ray Lithography and Galvanoplastics".
167:
while the remainder is U, but in nature, more than 99% of the extracted ore is U. Most nuclear reactors require enriched uranium, which is uranium with higher concentrations of U ranging between 3.5% and 4.5% (although a few reactor designs using a
813:
process (EMIS), metallic uranium is first vaporized, and then ionized to positively charged ions. The cations are then accelerated and subsequently deflected by magnetic fields onto their respective collection targets. A production-scale
1247:
entitling it to 10% of the enriched uranium output. Countries that had enrichment programs in the past include Libya and South Africa, although Libya's facility was never operational. The Australian company Silex Systems has developed a
1096:
fuel. HEU reprocessed from nuclear weapons material production reactors (with an U assay of approximately 50%) may contain U concentrations as high as 25%, resulting in concentrations of approximately 1.5% in the blended LEU product.
1199:
safety and environmental protection. Innovative approaches such as reprocessing and recycling of depleted uranium could offer sustainable solutions to minimize waste and optimize resource utilization in the nuclear fuel cycle.
830:
in 1945. Properly the term 'Calutron' applies to a multistage device arranged in a large oval around a powerful electromagnet. Electromagnetic isotope separation has been largely abandoned in favour of more effective methods.
379:
that is responsible for the weapon's power. The critical mass for 85% highly enriched uranium is about 50 kilograms (110 lb), which at normal density would be a sphere about 17 centimetres (6.7 in) in diameter.
261:
disposal of nuclear waste. Reprocessed uranium often carries traces of other transuranic elements and fission products, necessitating careful monitoring and management during fuel fabrication and reactor operation.
450:
of identical stages produces successively higher concentrations of U. Each stage passes a slightly more concentrated product to the next stage and returns a slightly less concentrated residue to the previous stage.
887:. France developed its own version of PSP, which it called RCI. Funding for RCI was drastically reduced in 1986, and the program was suspended around 1990, although RCI is still used for stable isotope separation. 426:.The medical industry benefits from the unique properties of highly enriched uranium, which enable the efficient production of critical isotopes essential for diagnostic imaging and therapeutic applications 804:
shows how a strong magnetic field is used to redirect a stream of uranium ions to a target, resulting in a higher concentration of uranium-235 (represented here in dark blue) in the inner fringes of the
621:
Laser processes promise lower energy inputs, lower capital costs and lower tails assays, hence significant economic advantages. Several laser processes have been investigated or are under development.
1952: 839:
One chemical process has been demonstrated to pilot plant stage but not used for production. The French CHEMEX process exploited a very slight difference in the two isotopes' propensity to change
1564: 1894: 2176: 3302: 387:
in the primary stage, but the jacket or tamper secondary stage, which is compressed by the primary nuclear explosion often uses HEU with enrichment between 40% and 80% along with the
782:
that used the separation nozzle process. However, all methods have high energy consumption and substantial requirements for removal of waste heat; none is currently still in use.
779: 3888: 905:
energy. The same amount of separative work will require different amounts of energy depending on the efficiency of the separation technology. Separative work is measured in
320:(HEU) has a 20% or higher concentration of U. This high enrichment level is essential for nuclear weapons and certain specialized reactor designs. The fissile uranium in 4082: 542:
to prepare feed material for the Electromagnetic isotope separation (EMIS) process, explained later in this article. It was abandoned in favor of gaseous diffusion.
1851:
Von Hippel, Frank N.; Kahn, Laura H. (December 2006). "Feasibility of Eliminating the Use of Highly Enriched Uranium in the Production of Medical Radioisotopes".
273:(LEU) has a lower than 20% concentration of U; for instance, in commercial LWR, the most prevalent power reactors in the world, uranium is enriched to 3 to 5% U. 3490: 2445: 2230: 221:
Reprocessed uranium (RepU) undergoes a series of chemical and physical treatments to extract usable uranium from spent nuclear fuel. (RepU) is a product of
2315: 3017: 1724: 1553: 1173:, which is not usable in thermal neutron reactors but can be chemically separated from spent fuel to be disposed of as waste or to be transmutated into 3312: 1999:
Lei, Jia; Liu, Huanhuan; Zhou, Li; Wang, Yazhou; Yu, Kaifu; Zhu, Hui; Wang, Bo; Zang, Mengxuan; Zhou, Jian; He, Rong; Zhu, Wenkun (1 September 2023).
1812:
Lei, Jia; Liu, Huanhuan; Zhou, Li; Wang, Yazhou; Yu, Kaifu; Zhu, Hui; Wang, Bo; Zang, Mengxuan; Zhou, Jian; He, Rong; Zhu, Wenkun (1 September 2023).
644:
tuned to frequencies that ionize U atoms and no others. The positively charged U ions are then attracted to a negatively charged plate and collected.
159:, which can be enriched to produce fuel for the majority of types of reactors". Naturally occurring uranium is made of a mixture of U and U. The U is 129:
Uranium as it is taken directly from the Earth is not suitable as fuel for most nuclear reactors and requires additional processes to make it usable (
2496: 1956: 4193: 2613: 917:). Efficient utilization of separative work is crucial for optimizing the economic and operational performance of uranium enrichment facilities. 569:
The gas centrifuge process uses a large number of rotating cylinders in series and parallel formations. Each cylinder's rotation creates a strong
375:
that use less than what would be one bare-sphere critical mass at normal density. The presence of too much of the U isotope inhibits the runaway
4338: 1898: 1433: 2997: 133:
design is a notable exception). Uranium is mined either underground or in an open pit depending on the depth at which it is found. After the
2158: 3319: 2750: 1613: 1048:
over long enough timescales); during the enrichment process, its concentration increases but remains well below 1%. High concentrations of
1934: 3085: 1253: 678: 622: 2363: 1410: 738:
manufacturing process was originally developed at the Forschungszentrum Karlsruhe, Germany, to produce nozzles for isotope enrichment.
140:
This is accomplished by a combination of chemical processes with the end product being concentrated uranium oxide, which is known as "
3588: 2668:, by Allan S. Krass, Peter Boskma, Boelie Elzen and Wim A. Smit, 296 pp., published for SIPRI by Taylor and Francis Ltd, London, 1983 1642: 3827: 2658: 2582: 2664: 1740:
The enrichment of the pin and of one of the hemispheres was 97.67 w/o, while the enrichment of the other hemisphere was 97.68 w/o.
4038: 3878: 3817: 3958: 1105:; therefore the actual U concentration in the LEU product must be raised accordingly to compensate for the presence of U. While 600:
Diagram of the principles of a Zippe-type gas centrifuge with U-238 represented in dark blue and U-235 represented in light blue
3783: 2409: 1015:, it is be produced and destroyed at the same rate in a constant steady state equilibrium, bringing any sample with sufficient 770:
as a carrier gas achieving a much higher flow velocity for the gas than could be obtained using pure uranium hexafluoride. The
3012: 1249: 742:
Aerodynamic enrichment processes include the Becker jet nozzle techniques developed by E. W. Becker and associates using the
633: 1978: 1244: 297:
is usually enriched between 12% and 19.75% U; the latter concentration is used to replace HEU fuels when converting to LEU.
3834: 2701: 1215: 2641: 4555: 3751: 3297: 3262: 2649: 726:
Schematic diagram of an aerodynamic nozzle. Many thousands of these small foils would be combined in an enrichment unit.
470:
generation), which consumes only 2% to 2.5% as much energy as gaseous diffusion. Some work is being done that would use
4449: 4033: 1052:
are a byproduct from irradiation in a reactor and may be contained in the HEU, depending on its manufacturing history.
810: 652: 2626: 3113: 2992: 2341: 1406: 1389: 414:
commercial fast reactor prototype used HEU with 26.5% U. Significant quantities of HEU are used in the production of
151:
production. After the milling process is complete, the uranium must next undergo a process of conversion, "to either
1612:. The 27th International Meeting on Reduced Enrichment for Research and Test Reactors (RERTR. Princeton University. 4343: 4208: 2743: 2434: 1581: 960: 4286: 4120: 3722: 3600: 3257: 3118: 2308: 2177:"GE Hitachi Nuclear Energy Selects Wilmington, N.C. as Site for Potential Commercial Uranium Enrichment Facility" 518: 474:; however, there is no reliable evidence that any nuclear resonance processes have been scaled up to production. 1705: 4592: 4276: 4125: 3583: 2001:"Progress and perspective in enrichment and separation of radionuclide uranium by biomass functional materials" 1814:"Progress and perspective in enrichment and separation of radionuclide uranium by biomass functional materials" 447: 4050: 3883: 3307: 3235: 2697:"The Military Significance of Small Uranium Enrichment Facilities Fed with Low-Enrichment Uranium (Redacted)" 1257: 1207: 697: 964:
Enriched uranium produced at LLNL plant was collected as nuggets the size and thickness of several quarters.
4393: 4130: 3839: 3593: 3090: 2682: 396: 2381: 521:
facility in the U.S. ceased operating, it was the last commercial U gaseous diffusion plant in the world.
363:
in 1945, used 64 kilograms (141 lb) of 80% enriched uranium. Wrapping the weapon's fissile core in a
155:, which can be used as the fuel for those types of reactors that do not require enriched uranium, or into 4577: 4543: 4456: 4428: 4385: 4350: 4188: 4015: 3953: 3778: 3682: 3568: 3036: 2736: 187:, are capable of operating with natural uranium as fuel). There are two commercial enrichment processes: 195:. Both enrichment processes involve the use of uranium hexafluoride and produce enriched uranium oxide. 4587: 4377: 4236: 3915: 3433: 3390: 3242: 471: 258: 144:", contains roughly 80% uranium whereas the original ore typically contains as little as 0.1% uranium. 118: 2677: 2000: 1813: 4531: 4213: 3822: 3605: 1753: 1679: 1473: 705: 693: 407: 241:, and therefore could be used to fuel reactors that customarily use natural uranium as fuel, such as 95: 4461: 4303: 4203: 4115: 3324: 3210: 3170: 2982: 2687: 531: 423: 4366: 4333: 4308: 3922: 3699: 3505: 3428: 3385: 3368: 3329: 3252: 2162: 1706:"Detailed Reanalysis of a Benchmark Critical Experiment: Water-Reflected Enriched-Uranium Sphere" 1604: 876: 510: 333: 4291: 2202: 1680:"Nuclear Weapons FAQ, Section 4.1.7.1: Nuclear Design Principles â€“ Highly Enriched Uranium" 4582: 4198: 3485: 3029: 1927: 1299: 868: 848: 376: 71:
Proportions of uranium-238 (blue) and uranium-235 (red) found naturally versus enriched grades
4492: 4228: 4183: 3645: 3573: 3500: 3495: 3460: 3247: 3215: 3002: 2929: 2159:"GE Signs Agreement With Silex Systems of Australia To Develop Uranium Enrichment Technology" 2124: 1379: 896: 701: 667: 637: 636:
employs specially tuned lasers to separate isotopes of uranium using selective ionization of
591: 579: 513:. This produces a slight separation between the molecules containing U and U. Throughout the 372: 329: 290: 2614:
Annotated bibliography on enriched uranium from the Alsos Digital Library for Nuclear Issues
1864: 847:, using immiscible aqueous and organic phases. An ion-exchange process was developed by the 493: 454:
There are currently two generic commercial methods employed internationally for enrichment:
4403: 4178: 4163: 3480: 3438: 3274: 3180: 3108: 2470: 2367: 2258: 2092: 1860: 1791: 1417: 1281: 1220: 756: 755:
non-rotating centrifuges. Enhancement of the centrifugal forces is achieved by dilution of
682: 656: 535: 502: 403: 345: 226: 156: 16:
Uranium in which isotope separation has been used to increase its proportion of uranium-235
1653: 8: 4502: 4313: 4098: 3692: 3560: 3538: 3363: 3220: 2987: 2949: 2782: 1233: 840: 234: 216: 114: 2262: 2096: 147:
This yellowcake is further processed to obtain the desired form of uranium suitable for
4482: 4218: 4055: 3982: 3793: 3443: 3413: 3397: 3380: 3024: 2914: 2862: 2812: 2759: 2541: 2444:(Report). The Parliament of the Commonwealth of Australia. November 2006. p. 730. 2274: 2207: 2116: 2062: 1876: 1534: 1345: 1132: 434: 310: 222: 192: 53: 33: 1513:"Integral molten salt reactor neutron physics study using Monte Carlo N-particle code" 1453:. U.S. Army Center for Health Promotion and Preventive Medicine. June 1999. p. 27 501:
Gaseous diffusion is a technology used to produce enriched uranium by forcing gaseous
371:, and "tamping", which slows the expansion of the fissioning core with inertia, allow 3550: 3343: 3230: 3205: 3143: 3100: 2944: 2939: 2934: 2777: 2718: 2710: 2545: 2533: 2400: 2120: 2108: 2066: 2020: 1880: 1833: 1773: 1769: 1538: 1493: 1489: 1385: 1309: 1273: 815: 570: 488: 455: 392: 364: 188: 176: 137:
is mined, it must go through a milling process to extract the uranium from the ore.
41: 2515: 2278: 1529: 1512: 4597: 4398: 3453: 3418: 3175: 3165: 3053: 3041: 2882: 2867: 2857: 2852: 2706: 2673: 2523: 2266: 2100: 2052: 2012: 1868: 1825: 1765: 1716: 1524: 1485: 1360: 1117: 880: 415: 294: 106: 99: 2636: 113:
than even natural uranium, though still very dense. Depleted uranium is used as a
4296: 4256: 3710: 3524: 3448: 3423: 3269: 3062: 2964: 2954: 2919: 2797: 2787: 2653: 2630: 1187: 368: 250: 238: 152: 67: 61: 3788: 2721: 2696: 2128: 2083:
Slakey, Francis; Cohen, Linda R. (March 2010). "Stop laser uranium enrichment".
722: 289:
High-assay LEU (HALEU) is enriched between 5% and 20% and is called for in many
4251: 4246: 4241: 3991: 3898: 3867: 3849: 3373: 3279: 3225: 3190: 3123: 3070: 2924: 2817: 2802: 2792: 1416:. Proceedings of international forum on illegal nuclear traffic. Archived from 1364: 1324: 1319: 1102: 872: 582:(SWU), making it about 40% cheaper than standard gaseous diffusion techniques. 556: 463: 388: 321: 80: 4271: 2528: 2057: 2044: 2016: 1872: 1829: 4571: 4436: 3727: 3133: 2974: 2714: 2646: 2537: 2198: 2024: 1837: 1777: 1641:
Forsberg, C. W.; Hopper, C. M.; Richter, J. L.; Vantine, H. C. (March 1998).
1497: 1175: 1162: 855:
that applies similar chemistry but effects separation on a proprietary resin
796: 692:
acquiring and then relinquishing commercialization rights to the technology,
497:
Gaseous diffusion uses semi-permeable membranes to separate enriched uranium.
419: 384: 356: 325: 254: 242: 91: 76: 2659:
A busy year for SWU (a 2008 review of the commercial enrichment marketplace)
1953:"McConnell asks DOE to keep using 60-year-old enrichment plant to save jobs" 1450: 596: 4002: 3138: 3080: 3007: 2959: 2829: 2623: 2344:. Washington DC: Office of Technical Services, Dept of Commerce. p. 29 2314:. Bombay, India: Government of India, Atomic Energy Commission. p. 6. 2285: 2141: 2112: 1404: 1203: 972:
is a minor isotope contained in natural uranium (primarily as a product of
945: 856: 822:
was developed during World War II that provided some of the U used for the
688:. After a protracted development process involving U.S. enrichment company 606: 539: 406:, whose cores require about 20% or more of fissile material, as well as in 337: 148: 2559: 1606:
About the Enrichment Limit for Research Reactor Conversion : Why 20%?
730: 4413: 4060: 3650: 3157: 3128: 2435:
Australia's uranium - Greenhouse friendly fuel for an energy hungry world
1098: 1049: 978: 973: 969: 751: 747: 561: 257:, which would be one of the more mobile and troublesome radionuclides in 246: 173: 134: 110: 49: 45: 37: 29: 867:
Plasma separation process (PSP) describes a technique that makes use of
3766: 2270: 1157: 823: 352: 230: 203: 141: 348:
experiments, enrichment of uranium to over 97% has been accomplished.
4408: 3771: 3761: 2889: 2842: 2807: 2728: 1720: 990: 827: 673: 360: 4266: 2104: 253:, wasting neutrons (and requiring higher U enrichment) and creating 36:. Naturally occurring uranium is composed of three major isotopes: 4497: 4140: 4135: 4075: 3744: 3672: 3655: 3640: 3615: 3358: 2847: 2583:"Strategic Air Command Declassifies Nuclear Target List from 1950s" 1344:
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021).
1304: 819: 801: 791: 763: 663: 662:, exciting molecules that contain a U atom. A second laser frees a 610: 514: 341: 169: 2399:
Makhijani, Arjun; Chalmers, Lois; Smith, Brice (15 October 2004).
4466: 4418: 4281: 4261: 3660: 3635: 3075: 2906: 2894: 2872: 2837: 2294:
South African Institution of Chemical Engineers – Conference 2000
1451:"Radiological Sources of Potential Exposure and/or Contamination" 1240: 411: 164: 160: 57: 25: 628: 4070: 4065: 4045: 4025: 4010: 3893: 3630: 3610: 3578: 1276:, weapons-grade highly enriched uranium was given the codename 1261: 775: 767: 948:, hex for short) to metal, 0.3% is lost during manufacturing. 4487: 4444: 4107: 3963: 3756: 3620: 1314: 852: 844: 771: 641: 305: 184: 130: 90:
of highly enriched uranium in the world, produced mostly for
87: 1979:"Paducah enrichment plant to be closed - World Nuclear News" 1640: 647: 198: 3968: 3857: 3667: 3625: 2339: 2247: 1195: 743: 735: 689: 180: 2618: 2078: 2076: 1377: 1074:
absorbs a neutron and does not fission. The production of
3941: 3805: 2231:"Uranium Plant Using Laser Technology Wins U.S. Approval" 968:
The HEU feedstock can contain unwanted uranium isotopes:
884: 237:(LWR) spent fuel typically contains slightly more U than 1754:"The theory of uranium enrichment by the gas centrifuge" 1474:"The theory of uranium enrichment by the gas centrifuge" 1411:"Safeguarding Nuclear Weapon-Usable Materials in Russia" 1085:
is thus unavoidable in any thermal neutron reactor with
75:
Enriched uranium is a critical component for both civil
2598:
Oralloy was a term of art for highly enriched uranium.
2364:"Status Report: USEC-DOE Megatons to Megawatts Program" 2161:(Press release). GE Energy. 22 May 2006. Archived from 2073: 1219:
recycled into low-enriched uranium (LEU) fuel, used by
565:
A cascade of gas centrifuges at a U.S. enrichment plant
2398: 1928:"Lodge Partners Mid-Cap Conference 11 April 2008" 32:(written U) has been increased through the process of 2661:, Nuclear Engineering International, 1 September 2008 1994: 1992: 800:
Schematic diagram of uranium isotope separation in a
785: 574:
and so is the current method of choice and is termed
324:
primaries usually contains 85% or more of U known as
1343: 2666:
Uranium Enrichment and Nuclear Weapon Proliferation
2408:. Institute for Energy and Environmental Research. 879:is used to selectively energize the U isotope in a 3491:Blue Ribbon Commission on America's Nuclear Future 2497:"Laser enrichment could cut cost of nuclear power" 2291: 1989: 674:Separation of isotopes by laser excitation (SILEX) 2203:"Laser Advances in Nuclear Fuel Stir Terror Fear" 2038: 2036: 2034: 1652:. Oak Ridge National Laboratories. Archived from 1584:. Nuclear Engineering International. 30 June 2024 1346:"The NUBASE2020 evaluation of nuclear properties" 4569: 2516:"US grants licence for uranium laser enrichment" 2228: 2045:"US grants licence for uranium laser enrichment" 1636: 1634: 300: 1511:Carter, John P.; Borrelli, R.A. (August 2020). 1227: 2031: 1998: 1850: 1811: 1510: 1440:. World Nuclear Association, update April 2021 772:Uranium Enrichment Corporation of South Africa 4194:Small sealed transportable autonomous (SSTAR) 2744: 2694: 1631: 1146:absorbs a neutron, the resulting short-lived 629:Atomic vapor laser isotope separation (AVLIS) 265: 210: 105:The U remaining after enrichment is known as 2552: 2442:Standing Committee on Industry and Resources 2340:US Atomic Energy Commission (January 1961). 2306: 2292:Smith, Michael; Jackson A G M (2000). "Dr". 681:is an Australian development that also uses 2637:Overview and history of U.S. HEU production 2241: 2082: 1574: 245:. It also contains the undesirable isotope 2751: 2737: 2562:. Nuclear Weapon Archive. 10 December 1997 2513: 2042: 1643:"Definition of Weapons-Usable Uranium-233" 1254:separation of isotopes by laser excitation 679:Separation of isotopes by laser excitation 670:, which then precipitates out of the gas. 623:Separation of isotopes by laser excitation 2695:Gilinsky, V.; Hoehn, W. (December 1969). 2672: 2527: 2392: 2056: 1703: 1528: 1337: 1285:development of nuclear weapons. The term 648:Molecular laser isotope separation (MLIS) 284: 4106: 2514:Weinberger, Sharon (28 September 2012). 2043:Weinberger, Sharon (28 September 2012). 1922: 1920: 1918: 1916: 1677: 959: 795: 729: 721: 717: 609:to produce nuclear fuel and was used by 595: 560: 545: 492: 340:rapidly increases, with for example, an 304: 197: 66: 1751: 1551: 1471: 909:SWU, kg SW, or kg UTA (from the German 890: 477: 383:Later U.S. nuclear weapons usually use 4570: 4121:Liquid-fluoride thorium reactor (LFTR) 2758: 2366:. USEC.com. 1 May 2000. Archived from 2229:Associated Press (27 September 2012). 1602: 957:repurposing it for peaceful purposes. 4363: 4126:Molten-Salt Reactor Experiment (MSRE) 3535: 3522: 2732: 2309:"Economics of blending, a case study" 2197: 2148:(Academic, New York, 1990) Chapter 9. 1950: 1913: 1752:Olander, Donald R. (1 January 1981). 1671: 1603:Glaser, Alexander (6 November 2005). 1472:Olander, Donald R. (1 January 1981). 826:nuclear bomb, which was dropped over 634:Atomic vapor laser isotope separation 429: 281:) has a concentration of under 2% U. 4550: 3523: 2702:Defense Technical Information Center 2647:Nuclear Chemistry-Uranium Enrichment 2580: 1940:from the original on 9 October 2022. 1582:"HALEU UF6 and SMR fuel fabrication" 1570:from the original on 9 October 2022. 1216:United States Enrichment Corporation 921:1 SWU = 1 kg SW = 1 kg UTA 875:. In this process, the principle of 862: 524: 482: 56:(in any appreciable amount) that is 28:in which the percent composition of 4131:Integral Molten Salt Reactor (IMSR) 2642:News Resource on Uranium Enrichment 2451:from the original on 9 October 2022 2415:from the original on 9 October 2022 2321:from the original on 9 October 2022 1897:. world-nuclear.org. Archived from 1730:from the original on 9 October 2022 1619:from the original on 9 October 2022 1378:OECD Nuclear Energy Agency (2003). 834: 712: 655:uses an infrared laser directed at 616: 585: 344:mass of 5.4% U being required. For 206:(a mixture of uranium precipitates) 52:(U, 0.0049–0.0059%). U is the only 13: 3940: 3091:Positron-emission tomography (PET) 2581:Burr, William (22 December 2015). 2560:"Israel's Nuclear Weapons Program" 2507: 1678:Sublette, Carey (4 October 1996). 1552:Herczeg, John W. (28 March 2019). 811:electromagnetic isotope separation 786:Electromagnetic isotope separation 653:Molecular laser isotope separation 613:in their nuclear weapons program. 163:, meaning it is easily split with 14: 4609: 3114:Neutron capture therapy of cancer 3013:Radioisotope thermoelectric (RTG) 2607: 1955:. Atomic Insights. Archived from 1554:"High-assay low enriched uranium" 1407:Natural Resources Defense Council 550: 293:(SMR) designs. Fresh LEU used in 4549: 4538: 4537: 4525: 4214:Fast Breeder Test Reactor (FBTR) 313:of highly enriched uranium metal 3303:Historical stockpiles and tests 2574: 2489: 2463: 2427: 2374: 2356: 2333: 2300: 2222: 2191: 2169: 2151: 2135: 1971: 1944: 1887: 1844: 1805: 1784: 1745: 1697: 1596: 1530:10.1016/j.nucengdes.2020.110718 1384:. OECD Publishing. p. 25. 1116:also absorbs neutrons, it is a 951: 778:by NUCLEI, a consortium led by 109:(DU), and is considerably less 4204:Energy Multiplier Module (EM2) 3086:Single-photon emission (SPECT) 2179:. Business Wire. 30 April 2008 1545: 1517:Nuclear Engineering and Design 1504: 1465: 1443: 1427: 1398: 1371: 931: 780:Industrias Nucleares do Brasil 442:is only 0.852% lighter than UF 328:, though theoretically for an 1: 4532:Nuclear technology portal 2471:"Q&A: Uranium enrichment" 1853:Science & Global Security 1409:), Thomas B. (12 June 1997). 1330: 1258:Negev Nuclear Research Center 1208:Megatons to Megawatts Program 1026:content to a stable ratio of 698:Nuclear Regulatory Commission 301:Highly enriched uranium (HEU) 98:, and smaller quantities for 4394:Field-reversed configuration 4004:Uranium Naturel Graphite Gaz 2683:The Periodic Table of Videos 2678:"How do you enrich Uranium?" 2307:Balakrishnan, M. R. (1971). 2005:Chemical Engineering Journal 1933:. Silex Ltd. 11 April 2008. 1818:Chemical Engineering Journal 1770:10.1016/0149-1970(81)90026-3 1490:10.1016/0149-1970(81)90026-3 1228:Global enrichment facilities 1120:that is turned into fissile 1004:is much larger than that of 7: 4351:Aircraft Reactor Experiment 3536: 3298:States with nuclear weapons 2633:, World Nuclear Association 1434:Nuclear Fuel Cycle Overview 1293: 1267: 1063:is produced primarily when 86:There are about 2,000  10: 4614: 4364: 4189:Liquid-metal-cooled (LMFR) 3313:Tests in the United States 2144:and L. W. Hillman (Eds.), 1983:www.world-nuclear-news.org 1951:Adams, Rod (24 May 2011). 1758:Progress in Nuclear Energy 1713:Los Alamos Technical Paper 1478:Progress in Nuclear Energy 1231: 927:1 MSWU = 1 ktSW = 1 kt UTA 894: 789: 750:separation process. These 589: 554: 486: 266:Low-enriched uranium (LEU) 259:deep geological repository 214: 211:Reprocessed uranium (RepU) 54:nuclide existing in nature 4519: 4475: 4427: 4384: 4374: 4326: 4314:Stable Salt Reactor (SSR) 4227: 4209:Reduced-moderation (RMWR) 4174: 4157: 4097: 4024: 4016:Advanced gas-cooled (AGR) 3990: 3981: 3933: 3913: 3866: 3848: 3804: 3709: 3691: 3559: 3546: 3531: 3518: 3473: 3406: 3351: 3342: 3290: 3198: 3189: 3156: 3099: 3061: 3052: 2973: 2905: 2828: 2770: 2766: 2529:10.1038/nature.2012.11502 2501:The Sydney Morning Herald 2058:10.1038/nature.2012.11502 2017:10.1016/j.cej.2023.144586 1873:10.1080/08929880600993071 1830:10.1016/j.cej.2023.144586 1280:, a shortened version of 944:When converting uranium ( 706:American Physical Society 694:GE Hitachi Nuclear Energy 424:technetium-99m generators 275:Slightly enriched uranium 124: 119:armor-penetrating weapons 48:(U, 0.7198–0.7210%), and 40:(U with 99.2732–99.2752% 4219:Dual fluid reactor (DFR) 3835:Steam-generating (SGHWR) 3171:Electron-beam processing 2688:University of Nottingham 2342:"Costs of nuclear power" 1704:Mosteller, R.D. (1994). 1365:10.1088/1674-1137/abddae 1252:process known as SILEX ( 924:1 kSWU = 1 tSW = 1 t UTA 605:is used commercially by 511:semi-permeable membranes 351:The first uranium bomb, 79:generation and military 4334:Organic nuclear reactor 3506:Nuclear power phase-out 3429:Nuclear decommissioning 3369:Reactor-grade plutonium 3119:Targeted alpha-particle 2998:Accidents and incidents 2652:15 October 2008 at the 2629:2 December 2010 at the 2477:. BBC. 1 September 2006 2382:"Megatons to Megawatts" 1865:2006S&GS...14..151V 1243:enrichment plant, with 1206:undertaking called the 915:uranium separation work 877:ion cyclotron resonance 869:superconducting magnets 318:Highly enriched uranium 1859:(2 & 3): 151–162. 1300:List of laser articles 965: 849:Asahi Chemical Company 806: 739: 727: 601: 566: 498: 377:nuclear chain reaction 373:nuclear weapon designs 314: 285:High-assay LEU (HALEU) 233:. RepU recovered from 207: 72: 4593:Nuclear weapon design 3496:Anti-nuclear movement 2051:: nature.2012.11502. 1792:"Nuclear Weapons FAQ" 1290:scientific research. 963: 907:Separative work units 897:Separative work units 895:Further information: 799: 733: 725: 718:Aerodynamic processes 702:nuclear proliferation 668:uranium pentafluoride 640:. The technique uses 638:hyperfine transitions 599: 592:Zippe-type centrifuge 580:Separative Work Units 564: 546:Centrifuge techniques 496: 404:fast neutron reactors 308: 291:small modular reactor 201: 70: 4404:Reversed field pinch 4199:Traveling-wave (TWR) 3683:Supercritical (SCWR) 3181:Gemstone irradiation 2146:Dye Laser Principles 1895:"Uranium Enrichment" 1715:(LA–UR–93–4097): 2. 1381:Nuclear Energy Today 1221:nuclear power plants 891:Separative work unit 883:containing a mix of 536:Oak Ridge, Tennessee 503:uranium hexafluoride 478:Diffusion techniques 402:HEU is also used in 271:Low-enriched uranium 227:nuclear reprocessing 157:uranium hexafluoride 3569:Aqueous homogeneous 3364:Reprocessed uranium 3037:Safety and security 2263:1982NW.....69..520B 2251:Naturwissenschaften 2097:2010Natur.464...32S 1684:Nuclear Weapons FAQ 1234:Georges-Besse plant 845:oxidation/reduction 235:light water reactor 223:nuclear fuel cycles 217:Reprocessed uranium 115:radiation shielding 94:, nuclear weapons, 4578:Isotope separation 4483:Dense plasma focus 3398:Actinide chemistry 2863:Isotope separation 2760:Nuclear technology 2624:Uranium Enrichment 2587:nsarchive2.gwu.edu 2402:Uranium enrichment 2271:10.1007/BF00463495 2235:The New York Times 2208:The New York Times 2201:(20 August 2011). 1959:on 28 January 2013 1659:on 2 November 2013 1133:neutron absorption 966: 807: 740: 728: 602: 567: 538:, was used during 499: 435:Isotope separation 430:Enrichment methods 315: 249:, which undergoes 208: 193:gas centrifugation 73: 34:isotope separation 4588:Nuclear materials 4565: 4564: 4515: 4514: 4511: 4510: 4462:Magnetized-target 4359: 4358: 4322: 4321: 4153: 4152: 4149: 4148: 4093: 4092: 3977: 3976: 3909: 3908: 3514: 3513: 3469: 3468: 3338: 3337: 3325:Weapon-free zones 3152: 3151: 3144:Radiopharmacology 2674:Poliakoff, Martyn 2619:Silex Systems Ltd 2386:centrusenergy.com 2199:Broad, William J. 1353:Chinese Physics C 1310:Nuclear fuel bank 1274:Manhattan Project 1188:nuclear batteries 863:Plasma separation 816:mass spectrometer 576:second generation 571:centripetal force 525:Thermal diffusion 489:Gaseous diffusion 483:Gaseous diffusion 472:nuclear resonance 456:gaseous diffusion 393:lithium deuteride 365:neutron reflector 355:, dropped by the 295:research reactors 189:gaseous diffusion 117:material and for 100:research reactors 42:natural abundance 4605: 4553: 4552: 4541: 4540: 4530: 4529: 4528: 4440: 4399:Levitated dipole 4369: 4361: 4360: 4309:Helium gas (GFR) 4172: 4171: 4167: 4104: 4103: 3988: 3987: 3938: 3937: 3931: 3930: 3926: 3925: 3707: 3706: 3703: 3702: 3541: 3533: 3532: 3525:Nuclear reactors 3520: 3519: 3419:High-level (HLW) 3349: 3348: 3196: 3195: 3176:Food irradiation 3166:Atomic gardening 3059: 3058: 3042:Nuclear meltdown 2868:Nuclear material 2858:Fissile material 2853:Fertile material 2768: 2767: 2753: 2746: 2739: 2730: 2729: 2725: 2707:RAND Corporation 2691: 2601: 2600: 2595: 2593: 2578: 2572: 2571: 2569: 2567: 2556: 2550: 2549: 2531: 2511: 2505: 2504: 2493: 2487: 2486: 2484: 2482: 2467: 2461: 2460: 2458: 2456: 2450: 2439: 2431: 2425: 2424: 2422: 2420: 2414: 2407: 2396: 2390: 2389: 2388:. December 2013. 2378: 2372: 2371: 2370:on 6 April 2001. 2360: 2354: 2353: 2351: 2349: 2337: 2331: 2330: 2328: 2326: 2320: 2313: 2304: 2298: 2297: 2289: 2283: 2282: 2245: 2239: 2238: 2226: 2220: 2219: 2217: 2215: 2195: 2189: 2188: 2186: 2184: 2173: 2167: 2166: 2165:on 14 June 2006. 2155: 2149: 2139: 2133: 2132: 2080: 2071: 2070: 2060: 2040: 2029: 2028: 1996: 1987: 1986: 1975: 1969: 1968: 1966: 1964: 1948: 1942: 1941: 1939: 1932: 1924: 1911: 1910: 1908: 1906: 1891: 1885: 1884: 1848: 1842: 1841: 1809: 1803: 1802: 1800: 1798: 1788: 1782: 1781: 1749: 1743: 1742: 1737: 1735: 1729: 1721:10.2172/10120434 1710: 1701: 1695: 1694: 1692: 1690: 1675: 1669: 1668: 1666: 1664: 1658: 1647: 1638: 1629: 1628: 1626: 1624: 1618: 1611: 1600: 1594: 1593: 1591: 1589: 1578: 1572: 1571: 1569: 1558: 1549: 1543: 1542: 1532: 1508: 1502: 1501: 1469: 1463: 1462: 1460: 1458: 1447: 1441: 1431: 1425: 1424: 1423:on 22 July 2012. 1422: 1415: 1402: 1396: 1395: 1375: 1369: 1368: 1350: 1341: 1250:laser enrichment 1185: 1182: 1181: 1172: 1169: 1168: 1156: 1154: 1153: 1145: 1143: 1142: 1130: 1128: 1127: 1118:fertile material 1115: 1113: 1112: 1095: 1093: 1092: 1084: 1082: 1081: 1073: 1071: 1070: 1062: 1060: 1059: 1047: 1045: 1044: 1036: 1034: 1033: 1025: 1023: 1022: 1014: 1012: 1011: 1003: 1001: 1000: 988: 985: 984: 835:Chemical methods 746:process and the 734:The X-ray-based 713:Other techniques 617:Laser techniques 586:Zippe centrifuge 462:generation) and 458:(referred to as 416:medical isotopes 336:for unmoderated 330:implosion design 107:depleted uranium 96:naval propulsion 62:thermal neutrons 22:Enriched uranium 4613: 4612: 4608: 4607: 4606: 4604: 4603: 4602: 4568: 4567: 4566: 4561: 4526: 4524: 4507: 4471: 4438: 4423: 4380: 4370: 4365: 4355: 4318: 4223: 4168: 4161: 4160: 4145: 4089: 4020: 3995: 3973: 3945: 3927: 3920: 3919: 3918: 3905: 3871: 3862: 3844: 3809: 3800: 3714: 3697: 3696: 3695: 3687: 3601:Natural fission 3555: 3554: 3542: 3537: 3527: 3510: 3486:Nuclear weapons 3465: 3424:Low-level (LLW) 3402: 3334: 3286: 3185: 3148: 3095: 3048: 2969: 2901: 2824: 2762: 2757: 2654:Wayback Machine 2631:Wayback Machine 2610: 2605: 2604: 2591: 2589: 2579: 2575: 2565: 2563: 2558: 2557: 2553: 2512: 2508: 2495: 2494: 2490: 2480: 2478: 2469: 2468: 2464: 2454: 2452: 2448: 2437: 2433: 2432: 2428: 2418: 2416: 2412: 2405: 2397: 2393: 2380: 2379: 2375: 2362: 2361: 2357: 2347: 2345: 2338: 2334: 2324: 2322: 2318: 2311: 2305: 2301: 2290: 2286: 2257:(11): 520–523. 2246: 2242: 2227: 2223: 2213: 2211: 2196: 2192: 2182: 2180: 2175: 2174: 2170: 2157: 2156: 2152: 2140: 2136: 2105:10.1038/464032a 2091:(7285): 32–33. 2081: 2074: 2041: 2032: 1997: 1990: 1977: 1976: 1972: 1962: 1960: 1949: 1945: 1937: 1930: 1926: 1925: 1914: 1904: 1902: 1893: 1892: 1888: 1849: 1845: 1810: 1806: 1796: 1794: 1790: 1789: 1785: 1750: 1746: 1733: 1731: 1727: 1708: 1702: 1698: 1688: 1686: 1676: 1672: 1662: 1660: 1656: 1645: 1639: 1632: 1622: 1620: 1616: 1609: 1601: 1597: 1587: 1585: 1580: 1579: 1575: 1567: 1556: 1550: 1546: 1509: 1505: 1470: 1466: 1456: 1454: 1449: 1448: 1444: 1438:Uranium milling 1432: 1428: 1420: 1413: 1403: 1399: 1392: 1376: 1372: 1348: 1342: 1338: 1333: 1296: 1270: 1236: 1230: 1180: 1178: 1177: 1176: 1174: 1167: 1165: 1164: 1163: 1161: 1152: 1150: 1149: 1148: 1147: 1141: 1139: 1138: 1137: 1136: 1126: 1124: 1123: 1122: 1121: 1111: 1109: 1108: 1107: 1106: 1091: 1089: 1088: 1087: 1086: 1080: 1078: 1077: 1076: 1075: 1069: 1067: 1066: 1065: 1064: 1058: 1056: 1055: 1054: 1053: 1043: 1041: 1040: 1039: 1038: 1032: 1030: 1029: 1028: 1027: 1021: 1019: 1018: 1017: 1016: 1010: 1008: 1007: 1006: 1005: 999: 997: 996: 995: 994: 983: 981: 980: 979: 977: 954: 934: 911:Urantrennarbeit 899: 893: 865: 837: 794: 788: 760: 720: 715: 686: 676: 660: 650: 631: 619: 594: 588: 559: 553: 548: 527: 491: 485: 480: 445: 441: 432: 369:fusion boosting 303: 287: 268: 251:neutron capture 239:natural uranium 219: 213: 153:uranium dioxide 127: 81:nuclear weapons 17: 12: 11: 5: 4611: 4601: 4600: 4595: 4590: 4585: 4580: 4563: 4562: 4560: 4559: 4547: 4535: 4520: 4517: 4516: 4513: 4512: 4509: 4508: 4506: 4505: 4500: 4495: 4493:Muon-catalyzed 4490: 4485: 4479: 4477: 4473: 4472: 4470: 4469: 4464: 4459: 4454: 4453: 4452: 4442: 4433: 4431: 4425: 4424: 4422: 4421: 4416: 4411: 4406: 4401: 4396: 4390: 4388: 4382: 4381: 4375: 4372: 4371: 4357: 4356: 4354: 4353: 4348: 4347: 4346: 4341: 4330: 4328: 4324: 4323: 4320: 4319: 4317: 4316: 4311: 4306: 4301: 4300: 4299: 4294: 4289: 4284: 4279: 4274: 4269: 4264: 4259: 4254: 4249: 4244: 4233: 4231: 4225: 4224: 4222: 4221: 4216: 4211: 4206: 4201: 4196: 4191: 4186: 4184:Integral (IFR) 4181: 4175: 4169: 4158: 4155: 4154: 4151: 4150: 4147: 4146: 4144: 4143: 4138: 4133: 4128: 4123: 4118: 4112: 4110: 4101: 4095: 4094: 4091: 4090: 4088: 4087: 4086: 4085: 4080: 4079: 4078: 4073: 4068: 4063: 4048: 4043: 4042: 4041: 4030: 4028: 4022: 4021: 4019: 4018: 4013: 4008: 3999: 3997: 3993: 3985: 3979: 3978: 3975: 3974: 3972: 3971: 3966: 3961: 3956: 3950: 3948: 3943: 3935: 3928: 3914: 3911: 3910: 3907: 3906: 3904: 3903: 3902: 3901: 3896: 3891: 3886: 3875: 3873: 3869: 3864: 3863: 3861: 3860: 3854: 3852: 3846: 3845: 3843: 3842: 3837: 3832: 3831: 3830: 3825: 3814: 3812: 3807: 3802: 3801: 3799: 3798: 3797: 3796: 3791: 3786: 3781: 3776: 3775: 3774: 3769: 3764: 3754: 3749: 3748: 3747: 3742: 3739: 3736: 3733: 3719: 3717: 3712: 3704: 3689: 3688: 3686: 3685: 3680: 3679: 3678: 3675: 3670: 3665: 3664: 3663: 3658: 3648: 3643: 3638: 3633: 3628: 3623: 3618: 3613: 3603: 3598: 3597: 3596: 3591: 3586: 3581: 3571: 3565: 3563: 3557: 3556: 3548: 3547: 3544: 3543: 3529: 3528: 3516: 3515: 3512: 3511: 3509: 3508: 3503: 3501:Uranium mining 3498: 3493: 3488: 3483: 3477: 3475: 3471: 3470: 3467: 3466: 3464: 3463: 3458: 3457: 3456: 3451: 3441: 3436: 3431: 3426: 3421: 3416: 3410: 3408: 3404: 3403: 3401: 3400: 3395: 3394: 3393: 3383: 3378: 3377: 3376: 3374:Minor actinide 3371: 3366: 3355: 3353: 3346: 3340: 3339: 3336: 3335: 3333: 3332: 3327: 3322: 3317: 3316: 3315: 3310: 3300: 3294: 3292: 3288: 3287: 3285: 3284: 3283: 3282: 3272: 3267: 3266: 3265: 3260: 3250: 3245: 3240: 3239: 3238: 3228: 3223: 3218: 3213: 3208: 3202: 3200: 3193: 3187: 3186: 3184: 3183: 3178: 3173: 3168: 3162: 3160: 3154: 3153: 3150: 3149: 3147: 3146: 3141: 3136: 3131: 3126: 3121: 3116: 3111: 3105: 3103: 3097: 3096: 3094: 3093: 3088: 3083: 3078: 3073: 3071:Autoradiograph 3067: 3065: 3056: 3050: 3049: 3047: 3046: 3045: 3044: 3034: 3033: 3032: 3022: 3021: 3020: 3010: 3005: 3000: 2995: 2990: 2985: 2979: 2977: 2971: 2970: 2968: 2967: 2962: 2957: 2952: 2947: 2942: 2937: 2932: 2927: 2922: 2917: 2911: 2909: 2903: 2902: 2900: 2899: 2898: 2897: 2892: 2887: 2886: 2885: 2880: 2865: 2860: 2855: 2850: 2845: 2840: 2834: 2832: 2826: 2825: 2823: 2822: 2821: 2820: 2815: 2805: 2800: 2795: 2793:Atomic nucleus 2790: 2785: 2780: 2774: 2772: 2764: 2763: 2756: 2755: 2748: 2741: 2733: 2727: 2726: 2692: 2670: 2662: 2656: 2644: 2639: 2634: 2621: 2616: 2609: 2608:External links 2606: 2603: 2602: 2573: 2551: 2506: 2503:. 26 May 2006. 2488: 2462: 2426: 2391: 2373: 2355: 2332: 2299: 2284: 2240: 2221: 2190: 2168: 2150: 2134: 2072: 2030: 1988: 1970: 1943: 1912: 1901:on 1 July 2013 1886: 1843: 1804: 1783: 1744: 1696: 1670: 1630: 1595: 1573: 1544: 1503: 1464: 1442: 1426: 1397: 1390: 1370: 1335: 1334: 1332: 1329: 1328: 1327: 1325:Uranium mining 1322: 1320:Uranium market 1317: 1312: 1307: 1302: 1295: 1292: 1269: 1266: 1245:Iran's holding 1229: 1226: 1179: 1166: 1151: 1140: 1125: 1110: 1103:neutron poison 1090: 1079: 1068: 1057: 1042: 1031: 1020: 1009: 998: 982: 953: 950: 933: 930: 929: 928: 925: 922: 892: 889: 873:plasma physics 864: 861: 836: 833: 790:Main article: 787: 784: 758: 719: 716: 714: 711: 684: 675: 672: 666:atom, leaving 658: 649: 646: 630: 627: 618: 615: 590:Main article: 587: 584: 557:Gas centrifuge 555:Main article: 552: 551:Gas centrifuge 549: 547: 544: 526: 523: 487:Main article: 484: 481: 479: 476: 464:gas centrifuge 443: 439: 431: 428: 418:, for example 408:naval reactors 322:nuclear weapon 302: 299: 286: 283: 267: 264: 243:CANDU reactors 215:Main article: 212: 209: 179:, such as the 126: 123: 15: 9: 6: 4: 3: 2: 4610: 4599: 4596: 4594: 4591: 4589: 4586: 4584: 4583:Nuclear fuels 4581: 4579: 4576: 4575: 4573: 4558: 4557: 4548: 4546: 4545: 4536: 4534: 4533: 4522: 4521: 4518: 4504: 4501: 4499: 4496: 4494: 4491: 4489: 4486: 4484: 4481: 4480: 4478: 4474: 4468: 4465: 4463: 4460: 4458: 4455: 4451: 4450:electrostatic 4448: 4447: 4446: 4443: 4441: 4435: 4434: 4432: 4430: 4426: 4420: 4417: 4415: 4412: 4410: 4407: 4405: 4402: 4400: 4397: 4395: 4392: 4391: 4389: 4387: 4383: 4379: 4373: 4368: 4362: 4352: 4349: 4345: 4342: 4340: 4337: 4336: 4335: 4332: 4331: 4329: 4325: 4315: 4312: 4310: 4307: 4305: 4302: 4298: 4295: 4293: 4290: 4288: 4285: 4283: 4280: 4278: 4275: 4273: 4270: 4268: 4265: 4263: 4260: 4258: 4255: 4253: 4250: 4248: 4245: 4243: 4240: 4239: 4238: 4235: 4234: 4232: 4230: 4229:Generation IV 4226: 4220: 4217: 4215: 4212: 4210: 4207: 4205: 4202: 4200: 4197: 4195: 4192: 4190: 4187: 4185: 4182: 4180: 4179:Breeder (FBR) 4177: 4176: 4173: 4170: 4165: 4156: 4142: 4139: 4137: 4134: 4132: 4129: 4127: 4124: 4122: 4119: 4117: 4114: 4113: 4111: 4109: 4105: 4102: 4100: 4096: 4084: 4081: 4077: 4074: 4072: 4069: 4067: 4064: 4062: 4059: 4058: 4057: 4054: 4053: 4052: 4049: 4047: 4044: 4040: 4037: 4036: 4035: 4032: 4031: 4029: 4027: 4023: 4017: 4014: 4012: 4009: 4007: 4005: 4001: 4000: 3998: 3996: 3989: 3986: 3984: 3980: 3970: 3967: 3965: 3962: 3960: 3957: 3955: 3952: 3951: 3949: 3947: 3939: 3936: 3932: 3929: 3924: 3917: 3912: 3900: 3897: 3895: 3892: 3890: 3887: 3885: 3882: 3881: 3880: 3877: 3876: 3874: 3872: 3865: 3859: 3856: 3855: 3853: 3851: 3847: 3841: 3838: 3836: 3833: 3829: 3826: 3824: 3821: 3820: 3819: 3816: 3815: 3813: 3811: 3803: 3795: 3792: 3790: 3787: 3785: 3782: 3780: 3777: 3773: 3770: 3768: 3765: 3763: 3760: 3759: 3758: 3755: 3753: 3750: 3746: 3743: 3740: 3737: 3734: 3731: 3730: 3729: 3726: 3725: 3724: 3721: 3720: 3718: 3716: 3708: 3705: 3701: 3694: 3690: 3684: 3681: 3676: 3674: 3671: 3669: 3666: 3662: 3659: 3657: 3654: 3653: 3652: 3649: 3647: 3644: 3642: 3639: 3637: 3634: 3632: 3629: 3627: 3624: 3622: 3619: 3617: 3614: 3612: 3609: 3608: 3607: 3604: 3602: 3599: 3595: 3592: 3590: 3587: 3585: 3582: 3580: 3577: 3576: 3575: 3572: 3570: 3567: 3566: 3564: 3562: 3558: 3553: 3552: 3545: 3540: 3534: 3530: 3526: 3521: 3517: 3507: 3504: 3502: 3499: 3497: 3494: 3492: 3489: 3487: 3484: 3482: 3481:Nuclear power 3479: 3478: 3476: 3472: 3462: 3461:Transmutation 3459: 3455: 3452: 3450: 3447: 3446: 3445: 3442: 3440: 3437: 3435: 3432: 3430: 3427: 3425: 3422: 3420: 3417: 3415: 3412: 3411: 3409: 3405: 3399: 3396: 3392: 3389: 3388: 3387: 3384: 3382: 3379: 3375: 3372: 3370: 3367: 3365: 3362: 3361: 3360: 3357: 3356: 3354: 3350: 3347: 3345: 3341: 3331: 3328: 3326: 3323: 3321: 3318: 3314: 3311: 3309: 3306: 3305: 3304: 3301: 3299: 3296: 3295: 3293: 3289: 3281: 3278: 3277: 3276: 3273: 3271: 3268: 3264: 3261: 3259: 3258:high-altitude 3256: 3255: 3254: 3251: 3249: 3248:Proliferation 3246: 3244: 3241: 3237: 3234: 3233: 3232: 3229: 3227: 3224: 3222: 3219: 3217: 3214: 3212: 3209: 3207: 3204: 3203: 3201: 3197: 3194: 3192: 3188: 3182: 3179: 3177: 3174: 3172: 3169: 3167: 3164: 3163: 3161: 3159: 3155: 3145: 3142: 3140: 3137: 3135: 3134:Brachytherapy 3132: 3130: 3127: 3125: 3122: 3120: 3117: 3115: 3112: 3110: 3107: 3106: 3104: 3102: 3098: 3092: 3089: 3087: 3084: 3082: 3079: 3077: 3074: 3072: 3069: 3068: 3066: 3064: 3060: 3057: 3055: 3051: 3043: 3040: 3039: 3038: 3035: 3031: 3028: 3027: 3026: 3023: 3019: 3016: 3015: 3014: 3011: 3009: 3006: 3004: 3001: 2999: 2996: 2994: 2991: 2989: 2986: 2984: 2981: 2980: 2978: 2976: 2972: 2966: 2963: 2961: 2958: 2956: 2953: 2951: 2948: 2946: 2943: 2941: 2938: 2936: 2933: 2931: 2930:Cross section 2928: 2926: 2923: 2921: 2918: 2916: 2913: 2912: 2910: 2908: 2904: 2896: 2893: 2891: 2888: 2884: 2881: 2879: 2876: 2875: 2874: 2871: 2870: 2869: 2866: 2864: 2861: 2859: 2856: 2854: 2851: 2849: 2846: 2844: 2841: 2839: 2836: 2835: 2833: 2831: 2827: 2819: 2816: 2814: 2811: 2810: 2809: 2806: 2804: 2801: 2799: 2796: 2794: 2791: 2789: 2786: 2784: 2781: 2779: 2776: 2775: 2773: 2769: 2765: 2761: 2754: 2749: 2747: 2742: 2740: 2735: 2734: 2731: 2723: 2720: 2716: 2712: 2708: 2704: 2703: 2698: 2693: 2689: 2685: 2684: 2679: 2675: 2671: 2669: 2667: 2663: 2660: 2657: 2655: 2651: 2648: 2645: 2643: 2640: 2638: 2635: 2632: 2628: 2625: 2622: 2620: 2617: 2615: 2612: 2611: 2599: 2588: 2584: 2577: 2561: 2555: 2547: 2543: 2539: 2535: 2530: 2525: 2521: 2517: 2510: 2502: 2498: 2492: 2476: 2472: 2466: 2447: 2443: 2436: 2430: 2411: 2404: 2403: 2395: 2387: 2383: 2377: 2369: 2365: 2359: 2343: 2336: 2317: 2310: 2303: 2295: 2288: 2280: 2276: 2272: 2268: 2264: 2260: 2256: 2252: 2244: 2236: 2232: 2225: 2210: 2209: 2204: 2200: 2194: 2178: 2172: 2164: 2160: 2154: 2147: 2143: 2138: 2130: 2126: 2122: 2118: 2114: 2110: 2106: 2102: 2098: 2094: 2090: 2086: 2079: 2077: 2068: 2064: 2059: 2054: 2050: 2046: 2039: 2037: 2035: 2026: 2022: 2018: 2014: 2010: 2006: 2002: 1995: 1993: 1984: 1980: 1974: 1958: 1954: 1947: 1936: 1929: 1923: 1921: 1919: 1917: 1900: 1896: 1890: 1882: 1878: 1874: 1870: 1866: 1862: 1858: 1854: 1847: 1839: 1835: 1831: 1827: 1823: 1819: 1815: 1808: 1793: 1787: 1779: 1775: 1771: 1767: 1763: 1759: 1755: 1748: 1741: 1726: 1722: 1718: 1714: 1707: 1700: 1685: 1681: 1674: 1655: 1651: 1650:ORNL/TM-13517 1644: 1637: 1635: 1615: 1608: 1607: 1599: 1583: 1577: 1566: 1562: 1555: 1548: 1540: 1536: 1531: 1526: 1522: 1518: 1514: 1507: 1499: 1495: 1491: 1487: 1483: 1479: 1475: 1468: 1452: 1446: 1439: 1435: 1430: 1419: 1412: 1408: 1401: 1393: 1391:9789264103283 1387: 1383: 1382: 1374: 1366: 1362: 1359:(3): 030001. 1358: 1354: 1347: 1340: 1336: 1326: 1323: 1321: 1318: 1316: 1313: 1311: 1308: 1306: 1303: 1301: 1298: 1297: 1291: 1288: 1283: 1279: 1275: 1265: 1263: 1259: 1255: 1251: 1246: 1242: 1235: 1225: 1222: 1217: 1212: 1209: 1205: 1200: 1197: 1191: 1189: 1184: 1171: 1159: 1134: 1119: 1104: 1100: 1051: 992: 989:—because the 987: 975: 971: 962: 958: 949: 947: 942: 938: 926: 923: 920: 919: 918: 916: 912: 908: 904: 898: 888: 886: 882: 878: 874: 870: 860: 858: 854: 850: 846: 842: 832: 829: 825: 821: 817: 812: 803: 798: 793: 783: 781: 777: 773: 769: 765: 761: 753: 749: 745: 737: 732: 724: 710: 707: 703: 699: 695: 691: 687: 680: 671: 669: 665: 661: 654: 645: 643: 639: 635: 626: 624: 614: 612: 608: 598: 593: 583: 581: 577: 572: 563: 558: 543: 541: 537: 533: 522: 520: 516: 512: 508: 504: 495: 490: 475: 473: 469: 465: 461: 457: 452: 449: 436: 427: 425: 421: 420:molybdenum-99 417: 413: 409: 405: 400: 398: 394: 390: 386: 385:plutonium-239 381: 378: 374: 370: 366: 362: 358: 357:United States 354: 349: 347: 343: 339: 338:fast neutrons 335: 334:critical mass 331: 327: 326:weapons grade 323: 319: 312: 307: 298: 296: 292: 282: 280: 276: 272: 263: 260: 256: 255:neptunium-237 252: 248: 244: 240: 236: 232: 228: 224: 218: 205: 200: 196: 194: 190: 186: 182: 178: 175: 171: 166: 162: 158: 154: 150: 145: 143: 138: 136: 132: 122: 120: 116: 112: 108: 103: 101: 97: 93: 92:nuclear power 89: 84: 82: 78: 77:nuclear power 69: 65: 63: 59: 55: 51: 47: 43: 39: 35: 31: 27: 24:is a type of 23: 19: 4554: 4542: 4523: 4503:Pyroelectric 4457:Laser-driven 4237:Sodium (SFR) 4164:fast-neutron 4003: 3549: 3439:Reprocessing 3320:WMD treaties 3139:Radiosurgery 3109:Fast-neutron 3081:Scintigraphy 2877: 2700: 2681: 2665: 2597: 2590:. Retrieved 2586: 2576: 2564:. Retrieved 2554: 2519: 2509: 2500: 2491: 2479:. Retrieved 2474: 2465: 2453:. Retrieved 2441: 2429: 2417:. Retrieved 2401: 2394: 2385: 2376: 2368:the original 2358: 2346:. Retrieved 2335: 2323:. Retrieved 2302: 2293: 2287: 2254: 2250: 2243: 2234: 2224: 2212:. Retrieved 2206: 2193: 2183:30 September 2181:. Retrieved 2171: 2163:the original 2153: 2145: 2142:F. J. Duarte 2137: 2088: 2084: 2048: 2008: 2004: 1982: 1973: 1961:. Retrieved 1957:the original 1946: 1903:. Retrieved 1899:the original 1889: 1856: 1852: 1846: 1821: 1817: 1807: 1795:. Retrieved 1786: 1761: 1757: 1747: 1739: 1732:. Retrieved 1712: 1699: 1687:. Retrieved 1683: 1673: 1661:. Retrieved 1654:the original 1649: 1621:. Retrieved 1605: 1598: 1586:. Retrieved 1576: 1560: 1547: 1520: 1516: 1506: 1481: 1477: 1467: 1455:. Retrieved 1445: 1437: 1429: 1418:the original 1400: 1380: 1373: 1356: 1352: 1339: 1286: 1277: 1271: 1237: 1213: 1204:downblending 1201: 1192: 1186:(for use in 967: 955: 952:Downblending 946:hexafluoride 943: 939: 935: 914: 913:– literally 910: 906: 902: 900: 866: 857:ion-exchange 838: 808: 741: 677: 651: 632: 620: 603: 575: 568: 540:World War II 528: 506: 500: 467: 459: 453: 438:compound (UF 433: 401: 382: 350: 317: 316: 288: 278: 274: 270: 269: 220: 149:nuclear fuel 146: 139: 128: 104: 85: 74: 21: 20: 18: 4414:Stellarator 4378:confinement 4272:SuperphĂ©nix 4099:Molten-salt 4051:VHTR (HTGR) 3828:HW BLWR 250 3794:R4 Marviken 3723:Pressurized 3693:Heavy water 3677:many others 3606:Pressurized 3561:Light water 3263:underground 3221:Disarmament 3129:Tomotherapy 3124:Proton-beam 2988:Power plant 2950:Temperature 2783:Engineering 2592:27 November 2419:21 November 1764:(1): 1–33. 1734:19 December 1484:(1): 1–33. 1272:During the 1158:beta decays 974:alpha decay 932:Cost issues 752:aerodynamic 748:vortex tube 346:criticality 247:uranium-236 174:heavy water 135:uranium ore 111:radioactive 50:uranium-234 46:uranium-235 38:uranium-238 30:uranium-235 4572:Categories 4439:(acoustic) 4056:PBR (PBMR) 3444:Spent fuel 3434:Repository 3414:Fuel cycle 3381:Activation 3158:Processing 3025:Propulsion 2983:by country 2915:Activation 2348:7 November 2325:7 November 2296:: 280–289. 2011:: 144586. 1963:26 January 1824:: 144586. 1797:26 January 1663:30 October 1561:energy.gov 1523:: 110718. 1331:References 1260:site near 1232:See also: 824:Little Boy 818:named the 509:) through 397:D–T fusion 353:Little Boy 231:spent fuel 225:involving 204:yellowcake 202:A drum of 142:yellowcake 4409:Spheromak 4108:Fluorides 3772:IPHWR-700 3767:IPHWR-540 3762:IPHWR-220 3551:Moderator 3231:Explosion 3206:Arms race 2993:Economics 2945:Reflector 2940:Radiation 2935:Generator 2890:Plutonium 2843:Deuterium 2808:Radiation 2778:Chemistry 2722:ADA613260 2715:913595660 2566:7 October 2546:100862135 2538:1476-4687 2481:3 January 2214:21 August 2129:204555310 2121:205053626 2067:100862135 2025:1385-8947 1881:122507063 1838:1385-8947 1778:0149-1970 1689:2 October 1539:225435681 1498:0149-1970 1405:Cochran ( 1282:Oak Ridge 1224:globally 991:half-life 828:Hiroshima 534:plant at 361:Hiroshima 177:moderator 4544:Category 4498:Polywell 4429:Inertial 4386:Magnetic 4141:TMSR-LF1 4136:TMSR-500 4116:Fuji MSR 4076:THTR-300 3916:Graphite 3779:PHWR KWU 3745:ACR-1000 3673:IPWR-900 3656:ACPR1000 3651:HPR-1000 3641:CPR-1000 3616:APR-1400 3407:Disposal 3359:Actinide 3352:Products 3211:Delivery 3054:Medicine 2883:depleted 2878:enriched 2848:Helium-3 2813:ionizing 2676:(2009). 2650:Archived 2627:Archived 2475:BBC News 2446:Archived 2410:Archived 2316:Archived 2279:44245091 2125:ProQuest 2113:20203589 1935:Archived 1905:14 April 1725:Archived 1623:18 April 1614:Archived 1565:Archived 1305:MOX fuel 1294:See also 1268:Codename 1202:A major 859:column. 820:Calutron 802:calutron 792:Calutron 764:hydrogen 664:fluorine 611:Pakistan 515:Cold War 342:infinite 170:graphite 165:neutrons 4598:Uranium 4556:Commons 4467:Z-pinch 4437:Bubble 4419:Tokamak 4282:FBR-600 4262:CFR-600 4257:BN-1200 3923:coolant 3850:Organic 3735:CANDU 9 3732:CANDU 6 3700:coolant 3661:ACP1000 3636:CAP1400 3574:Boiling 3539:Fission 3386:Fission 3330:Weapons 3270:Warfare 3253:Testing 3243:History 3236:effects 3191:Weapons 3101:Therapy 3076:RadBall 3063:Imaging 2955:Thermal 2920:Capture 2907:Neutron 2895:Thorium 2873:Uranium 2838:Tritium 2818:braking 2798:Fission 2788:Physics 2771:Science 2455:3 April 2259:Bibcode 2093:Bibcode 1861:Bibcode 1588:16 July 1287:oralloy 1278:oralloy 1241:Eurodif 841:valency 809:In the 805:stream. 519:Paducah 448:cascade 412:Fermi-1 161:fissile 58:fissile 26:uranium 4367:Fusion 4327:Others 4267:PhĂ©nix 4252:BN-800 4247:BN-600 4242:BN-350 4071:HTR-PM 4066:HTR-10 4046:UHTREX 4011:Magnox 4006:(UNGG) 3899:Lucens 3894:KS 150 3631:ATMEA1 3611:AP1000 3594:Kerena 3474:Debate 3226:Ethics 3216:Design 3199:Topics 3030:rocket 3008:Fusion 3003:Policy 2965:Fusion 2925:Poison 2803:Fusion 2713:  2544:  2536:  2520:Nature 2277:  2127:  2119:  2111:  2085:Nature 2065:  2049:Nature 2023:  1879:  1836:  1776:  1537:  1496:  1457:1 July 1388:  1262:Dimona 881:plasma 776:Brazil 768:helium 642:lasers 607:Urenco 468:second 389:fusion 311:billet 125:Grades 88:tonnes 4488:Migma 4476:Other 4445:Fusor 4344:Piqua 4339:Arbus 4297:PRISM 4039:MHR-T 4034:GTMHR 3964:EGP-6 3959:AMB-X 3934:Water 3879:HWGCR 3818:HWLWR 3757:IPHWR 3728:CANDU 3589:ESBWR 3344:Waste 3308:Tests 3291:Lists 3275:Yield 3018:MMRTG 2975:Power 2542:S2CID 2449:(PDF) 2438:(PDF) 2413:(PDF) 2406:(PDF) 2319:(PDF) 2312:(PDF) 2275:S2CID 2117:S2CID 2063:S2CID 1938:(PDF) 1931:(PDF) 1877:S2CID 1728:(PDF) 1709:(PDF) 1657:(PDF) 1646:(PDF) 1617:(PDF) 1610:(PDF) 1568:(PDF) 1557:(PDF) 1535:S2CID 1421:(PDF) 1414:(PDF) 1349:(PDF) 1315:Orano 1135:. If 1131:upon 1101:is a 853:Japan 762:with 460:first 446:). A 391:fuel 185:CANDU 131:CANDU 60:with 4304:Lead 4287:CEFR 4277:PFBR 4159:None 3969:RBMK 3954:AM-1 3884:EL-4 3858:WR-1 3840:AHWR 3784:MZFR 3752:CVTR 3741:AFCR 3668:VVER 3626:APWR 3621:APR+ 3584:ABWR 3454:cask 3449:pool 3391:LLFP 3280:TNTe 2960:Fast 2830:Fuel 2719:DTIC 2711:OCLC 2594:2020 2568:2007 2534:ISSN 2483:2010 2457:2015 2421:2009 2350:2021 2327:2021 2216:2011 2185:2012 2109:PMID 2021:ISSN 1965:2013 1907:2013 1834:ISSN 1799:2013 1774:ISSN 1736:2007 1691:2010 1665:2013 1625:2014 1590:2024 1494:ISSN 1459:2019 1386:ISBN 1214:The 1196:ASTM 885:ions 871:and 744:LIGA 736:LIGA 690:USEC 532:S-50 422:for 191:and 183:and 181:RBMK 4376:by 4292:PFR 4083:PMR 4061:AVR 3983:Gas 3921:by 3889:KKN 3823:ATR 3738:EC6 3698:by 3646:EPR 3579:BWR 2524:doi 2267:doi 2101:doi 2089:464 2053:doi 2013:doi 2009:471 1869:doi 1826:doi 1822:471 1766:doi 1717:doi 1525:doi 1521:365 1486:doi 1361:doi 1160:to 1037:to 993:of 976:of 903:not 851:in 843:in 766:or 507:hex 359:on 279:SEU 229:of 172:or 44:), 4574:: 4026:He 3992:CO 3868:CO 3789:R3 2717:. 2709:. 2705:. 2699:. 2686:. 2680:. 2596:. 2585:. 2540:. 2532:. 2522:. 2518:. 2499:. 2473:. 2440:. 2384:. 2273:. 2265:. 2255:69 2253:. 2233:. 2205:. 2123:. 2115:. 2107:. 2099:. 2087:. 2075:^ 2061:. 2047:. 2033:^ 2019:. 2007:. 2003:. 1991:^ 1981:. 1915:^ 1875:. 1867:. 1857:14 1855:. 1832:. 1820:. 1816:. 1772:. 1760:. 1756:. 1738:. 1723:. 1711:. 1682:. 1648:. 1633:^ 1563:. 1559:. 1533:. 1519:. 1515:. 1492:. 1480:. 1476:. 1436:, 1357:45 1355:. 1351:. 1264:. 1183:Pu 1170:Np 757:UF 683:UF 657:UF 399:. 309:A 121:. 102:. 83:. 4166:) 4162:( 3994:2 3946:O 3944:2 3942:H 3870:2 3810:O 3808:2 3806:H 3715:O 3713:2 3711:D 2752:e 2745:t 2738:v 2724:. 2690:. 2570:. 2548:. 2526:: 2485:. 2459:. 2423:. 2352:. 2329:. 2281:. 2269:: 2261:: 2237:. 2218:. 2187:. 2131:. 2103:: 2095:: 2069:. 2055:: 2027:. 2015:: 1985:. 1967:. 1909:. 1883:. 1871:: 1863:: 1840:. 1828:: 1801:. 1780:. 1768:: 1762:8 1719:: 1693:. 1667:. 1627:. 1592:. 1541:. 1527:: 1500:. 1488:: 1482:8 1461:. 1394:. 1367:. 1363:: 1155:U 1144:U 1129:U 1114:U 1099:U 1094:U 1083:U 1072:U 1061:U 1050:U 1046:U 1035:U 1024:U 1013:U 1002:U 986:U 970:U 759:6 685:6 659:6 505:( 466:( 444:6 440:6 277:( 64:.

Index

uranium
uranium-235
isotope separation
uranium-238
natural abundance
uranium-235
uranium-234
nuclide existing in nature
fissile
thermal neutrons

nuclear power
nuclear weapons
tonnes
nuclear power
naval propulsion
research reactors
depleted uranium
radioactive
radiation shielding
armor-penetrating weapons
CANDU
uranium ore
yellowcake
nuclear fuel
uranium dioxide
uranium hexafluoride
fissile
neutrons
graphite

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑