Knowledge

Photoacoustic spectroscopy

Source 📝

125: 1104: 1116: 314: 238:. This is particularly useful for biological samples that can be evaluated without crushing to powder or subjecting to chemical treatments. Seashells, bone and such samples have been investigated. Using photoacoustic spectroscopy has helped evaluate molecular interactions in bone with osteogenesis imperfecta. 264:
Photoacoustic spectroscopy also has many military applications. One such application is the detection toxic chemical agents. The sensitivity of photoacoustic spectroscopy makes it an ideal analysis technique for detecting trace chemicals associated with chemical attacks.
241:
While most academic research has concentrated on high resolution instruments, some work has gone in the opposite direction. In the last twenty years, very low cost instruments for applications such as leakage detection and for the control of
394:
C. Gu, D. R. Katti, K. S. Katti Microstructural and Photoacoustic Infrared Spectroscopic Studies of Human Cortical Bone with Osteogenesis Imperfecta', Journal of Minerals, Metals and Materials Society, 68, 1116-1127,
385:
C. Gu, D. R. Katti, K. S. Katti Photoacoustic FTIR spectroscopic study of undisturbed human cortical bone', Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 103, 25-37, (2013)
254:
have brought down the costs of these systems. The future of low-cost applications of photoacoustic spectroscopy may be the realization of fully integrated micromachined photoacoustic instruments.
550:
Sigrist, M. W. (1994), "Air Monitoring by Laser Photoacoustic Spectroscopy," in: Sigrist, M. W. (editor), "Air Monitoring by Spectroscopic Techniques," Wiley, New York, pp. 163–238.
257:
The photoacoustic approach has been utilized to quantitatively measure macromolecules, such as proteins. The photoacoustic immunoassay labels and detects target proteins using
571: 376:
D. Verma, K. S. Katti, D. R. Katti 'Nature Photoacoustic FTIR Spectroscopic Study of Undisturbed Nacre from Red Abalone', Spectrochimica Acta, 64, 1051-1057, (2006)
935: 608: 340:
C.K.N. Patel, E.G. Burkhardt, C.A. Lambert, ‘Spectroscopic Measurements of Stratospheric Nitric Oxide and Water Vapor’, Science, 184, 1173–1176 (1974)
580: 294: 576: 183: 206:
at an altitude of 28 km with a balloon-borne photoacoustic detector. These measurements provided crucial data bearing on the problem of
826: 759: 704: 673: 440:
Zhao Y, Huang Y, Zhao X, McClelland JF, Lu M (2016). "Nanoparticle-based photoacoustic analysis for highly sensitive lateral flow assays".
367:
D. Verma, K. S. Katti, D. R. Katti Nature of water in Nacre: a 2D FTIR spectroscopic study', Spectrochimica Acta part A, 67, 784–788(2007)
104:
of the light. This spectrum can be used to identify the absorbing components of the sample. The photoacoustic effect can be used to study
163:
to the light intensity; this technique is referred to as laser photoacoustic spectroscopy (LPAS). The ear has been replaced by sensitive
668: 261:
that can generate strong acoustic signals. The photoacoustics-based protein analysis has also been applied for point-of-care testings.
246:
concentration have been developed and commercialized. Typically, low cost thermal sources are used which are modulated electronically.
194:
The following example illustrates the potential of the photoacoustic technique: In the early 1970s, Patel and co-workers measured the
1041: 859: 721: 990: 809: 475: 930: 732: 653: 633: 219: 876: 854: 601: 561: 63: 250:
through semi-permeable disks instead of valves for gas exchange, low-cost microphones, and proprietary signal processing with
942: 864: 799: 744: 694: 210:
by man-made nitric oxide emission. Some of the early work relied on development of the RG theory by Rosencwaig and Gersho.
1026: 778: 594: 349:
A. Rosencwaig, 'Theoretical aspects of photoacoustic Spectroscopy', Journal of Applied Physics, 49, 2905-2910 (1978)
1031: 849: 358:
A. Rosencwaig,A. Gersho 'Theory of photoacoustic effect with solids', Journal of Applied Physics, 47, 64-69 (1976)
1046: 1016: 947: 881: 975: 766: 663: 1120: 773: 678: 160: 907: 754: 643: 1063: 902: 871: 804: 171:. By enclosing the gaseous sample in a cylindrical chamber, the sound signal is amplified by tuning the 995: 844: 716: 570:
Photoacoustic spectrometer for trace gas detection based on a Helmholtz Resonant Cell (www.aerovia.fr)
500:
R. Prasad, Coorg; Lei, Jie; Shi, Wenhui; Li, Guangkun; Dunayevskiy, Ilya; Patel, Chandra (2012-05-01).
1079: 1058: 699: 289: 145: 821: 251: 405:
Zhao Y, Cao M, McClelland JF, Lu M (2016). "A photoacoustic immunoassay for biomarker detection".
952: 648: 81:
wave or sound. Later Bell showed that materials exposed to the non-visible portions of the solar
739: 27: 186:
sensitivity can still be further improved enabling reliable monitoring of gases on ppb-level.
1142: 1108: 980: 711: 625: 227: 47: 513: 43: 17: 8: 1036: 749: 658: 517: 140:
of gases at the part per billion or even part per trillion levels. Modern photoacoustic
1084: 1021: 1000: 816: 794: 727: 638: 529: 235: 176: 985: 912: 886: 533: 501: 457: 422: 168: 74: 566: 521: 449: 414: 269: 231: 319: 298: 207: 156: 144:
still rely on the same principles as Bell's apparatus; however, to increase the
418: 243: 1136: 222:
photoacoustic spectroscopy has been the ability to evaluate samples in their
137: 124: 508:. Advanced Environmental, Chemical, and Biological Sensing Technologies IX. 617: 461: 426: 258: 203: 199: 133: 90: 476:"Photoacoustic technique 'hears' the sound of dangerous chemical agents" 315:"Photoacoustic technique 'hears' the sound of dangerous chemical agents" 453: 172: 164: 101: 55: 525: 247: 39: 128:
Exemplary assembly of a photoacoustic spectroscope for gas analysis
86: 82: 78: 59: 167:. The microphone signals are further amplified and detected using 575:
Photoacoustic multi-gas monitor for trace gas detection based on
100:
of a sample can be recorded by measuring the sound at different
586: 141: 109: 66: 62:
that was rapidly interrupted with a rotating slotted disk. The
35: 152: 105: 51: 31: 272:
and explosives detection), and medicine (breath analysis).
195: 70: 502:"Laser Photoacoustic Sensor for Air Toxicity Measurements" 113: 439: 560:
General introduction to photoacoustic spectroscopy:
230:, which can be used to detect and quantify chemical 565:Photoacoustic spectroscopy in trace gas monitoring 404: 268:
LPAS sensors may be applied in industry, security (
499: 1134: 309: 307: 577:cantilever enhanced photoacoustic spectroscopy 184:cantilever enhanced photoacoustic spectroscopy 602: 301:Spectroscopy, Volume 21, Issue 9, Sep 1, 2006 26:is the measurement of the effect of absorbed 16:"LPAS" redirects here. For the singular, see 674:Vibrational spectroscopy of linear molecules 304: 155:are used to illuminate the sample since the 218:One of the important capabilities of using 669:Nuclear resonance vibrational spectroscopy 609: 595: 1042:Inelastic electron tunneling spectroscopy 722:Resonance-enhanced multiphoton ionization 136:has become a powerful technique to study 810:Extended X-ray absorption fine structure 148:, several modifications have been made. 123: 1135: 119: 590: 1115: 13: 544: 198:variation of the concentration of 14: 1154: 1027:Deep-level transient spectroscopy 779:Saturated absorption spectroscopy 554: 1114: 1103: 1102: 1032:Dual-polarization interferometry 616: 42:detection. The discovery of the 1047:Scanning tunneling spectroscopy 1022:Circular dichroism spectroscopy 1017:Acoustic resonance spectroscopy 493: 468: 433: 398: 213: 50:showed that thin discs emitted 976:Fourier-transform spectroscopy 664:Vibrational circular dichroism 388: 379: 370: 361: 352: 343: 334: 282: 1: 774:Cavity ring-down spectroscopy 679:Thermal infrared spectroscopy 407:Biosensors and Bioelectronics 275: 151:Instead of sunlight, intense 908:Inelastic neutron scattering 323:, rdmag.com, August 14, 2012 69:from the light causes local 7: 969:Data collection, processing 845:Photoelectron/photoemission 93:) can also produce sounds. 10: 1159: 1054:Photoacoustic spectroscopy 996:Time-resolved spectroscopy 480:Research & Development 419:10.1016/j.bios.2016.05.028 291:Photoacoustic Spectroscopy 189: 159:of the generated sound is 24:Photoacoustic spectroscopy 15: 1098: 1080:Astronomical spectroscopy 1072: 1059:Photothermal spectroscopy 1009: 968: 961: 923: 895: 837: 787: 687: 624: 252:digital signal processors 1064:Pump–probe spectroscopy 953:Ferromagnetic resonance 745:Laser-induced breakdown 760:Glow-discharge optical 740:Raman optical activity 654:Rotational–vibrational 129: 98:photoacoustic spectrum 28:electromagnetic energy 981:Hyperspectral imaging 228:infrared spectroscopy 127: 48:Alexander Graham Bell 733:Coherent anti-Stokes 688:UV–Vis–NIR "Optical" 179:of the sample cell. 44:photoacoustic effect 18:LPA (disambiguation) 1037:Hadron spectroscopy 827:Conversion electron 788:X-ray and Gamma ray 695:Ultraviolet–visible 518:2012SPIE.8366E..08P 506:Proceedings of SPIE 448:(46): 19204–19210. 236:chemical substances 120:Uses and techniques 46:dates to 1880 when 1085:Force spectroscopy 1010:Measured phenomena 1001:Video spectroscopy 705:Cold vapour atomic 454:10.1039/C6NR05312B 297:2024-07-13 at the 177:acoustic resonance 169:lock-in amplifiers 130: 54:when exposed to a 1130: 1129: 1094: 1093: 986:Spectrophotometry 913:Neutron spin echo 887:Beta spectroscopy 800:Energy-dispersive 526:10.1117/12.919241 232:functional groups 75:thermal expansion 30:(particularly of 1150: 1118: 1117: 1106: 1105: 966: 965: 877:phenomenological 626:Vibrational (IR) 611: 604: 597: 588: 587: 538: 537: 497: 491: 490: 488: 487: 472: 466: 465: 437: 431: 430: 402: 396: 392: 386: 383: 377: 374: 368: 365: 359: 356: 350: 347: 341: 338: 332: 331: 330: 328: 320:R&D Magazine 311: 302: 286: 175:frequency to an 77:which creates a 1158: 1157: 1153: 1152: 1151: 1149: 1148: 1147: 1133: 1132: 1131: 1126: 1090: 1068: 1005: 957: 919: 891: 833: 783: 683: 644:Resonance Raman 620: 615: 557: 547: 545:Further reading 542: 541: 498: 494: 485: 483: 474: 473: 469: 438: 434: 403: 399: 393: 389: 384: 380: 375: 371: 366: 362: 357: 353: 348: 344: 339: 335: 326: 324: 313: 312: 305: 299:Wayback Machine 287: 283: 278: 216: 208:ozone depletion 192: 122: 73:, generating a 21: 12: 11: 5: 1156: 1146: 1145: 1128: 1127: 1125: 1124: 1112: 1099: 1096: 1095: 1092: 1091: 1089: 1088: 1082: 1076: 1074: 1070: 1069: 1067: 1066: 1061: 1056: 1051: 1050: 1049: 1039: 1034: 1029: 1024: 1019: 1013: 1011: 1007: 1006: 1004: 1003: 998: 993: 988: 983: 978: 972: 970: 963: 959: 958: 956: 955: 950: 945: 940: 939: 938: 927: 925: 921: 920: 918: 917: 916: 915: 905: 899: 897: 893: 892: 890: 889: 884: 879: 874: 869: 868: 867: 862: 860:Angle-resolved 857: 852: 841: 839: 835: 834: 832: 831: 830: 829: 819: 814: 813: 812: 807: 802: 791: 789: 785: 784: 782: 781: 776: 771: 770: 769: 764: 763: 762: 747: 742: 737: 736: 735: 725: 719: 714: 709: 708: 707: 697: 691: 689: 685: 684: 682: 681: 676: 671: 666: 661: 656: 651: 646: 641: 636: 630: 628: 622: 621: 614: 613: 606: 599: 591: 585: 584: 573: 568: 563: 556: 555:External links 553: 552: 551: 546: 543: 540: 539: 492: 467: 432: 397: 387: 378: 369: 360: 351: 342: 333: 303: 288:David W. Ball 280: 279: 277: 274: 244:carbon dioxide 215: 212: 191: 188: 138:concentrations 132:Photoacoustic 121: 118: 9: 6: 4: 3: 2: 1155: 1144: 1141: 1140: 1138: 1123: 1122: 1113: 1111: 1110: 1101: 1100: 1097: 1086: 1083: 1081: 1078: 1077: 1075: 1071: 1065: 1062: 1060: 1057: 1055: 1052: 1048: 1045: 1044: 1043: 1040: 1038: 1035: 1033: 1030: 1028: 1025: 1023: 1020: 1018: 1015: 1014: 1012: 1008: 1002: 999: 997: 994: 992: 989: 987: 984: 982: 979: 977: 974: 973: 971: 967: 964: 960: 954: 951: 949: 946: 944: 941: 937: 934: 933: 932: 929: 928: 926: 922: 914: 911: 910: 909: 906: 904: 901: 900: 898: 894: 888: 885: 883: 880: 878: 875: 873: 870: 866: 863: 861: 858: 856: 853: 851: 848: 847: 846: 843: 842: 840: 836: 828: 825: 824: 823: 820: 818: 815: 811: 808: 806: 803: 801: 798: 797: 796: 793: 792: 790: 786: 780: 777: 775: 772: 768: 765: 761: 758: 757: 756: 753: 752: 751: 748: 746: 743: 741: 738: 734: 731: 730: 729: 726: 723: 720: 718: 717:Near-infrared 715: 713: 710: 706: 703: 702: 701: 698: 696: 693: 692: 690: 686: 680: 677: 675: 672: 670: 667: 665: 662: 660: 657: 655: 652: 650: 647: 645: 642: 640: 637: 635: 632: 631: 629: 627: 623: 619: 612: 607: 605: 600: 598: 593: 592: 589: 582: 581:www.gasera.fi 578: 574: 572: 569: 567: 564: 562: 559: 558: 549: 548: 535: 531: 527: 523: 519: 515: 511: 507: 503: 496: 481: 477: 471: 463: 459: 455: 451: 447: 443: 436: 428: 424: 420: 416: 412: 408: 401: 391: 382: 373: 364: 355: 346: 337: 322: 321: 316: 310: 308: 300: 296: 293: 292: 285: 281: 273: 271: 266: 262: 260: 259:nanoparticles 255: 253: 249: 245: 239: 237: 233: 229: 225: 221: 211: 209: 205: 201: 197: 187: 185: 180: 178: 174: 170: 166: 162: 158: 154: 149: 147: 143: 139: 135: 126: 117: 115: 111: 107: 103: 99: 94: 92: 88: 84: 80: 76: 72: 68: 65: 61: 57: 53: 49: 45: 41: 37: 33: 29: 25: 19: 1143:Spectroscopy 1119: 1107: 1087:(a misnomer) 1073:Applications 1053: 991:Time-stretch 882:paramagnetic 700:Fluorescence 618:Spectroscopy 509: 505: 495: 484:. Retrieved 482:. 2012-08-14 479: 470: 445: 441: 435: 410: 406: 400: 390: 381: 372: 363: 354: 345: 336: 327:September 8, 325:, retrieved 318: 290: 284: 267: 263: 256: 240: 223: 217: 214:Applications 204:stratosphere 200:nitric oxide 193: 181: 161:proportional 150: 134:spectroscopy 131: 97: 95: 38:by means of 23: 22: 659:Vibrational 270:nerve agent 165:microphones 146:sensitivity 102:wavelengths 91:ultraviolet 85:(i.e., the 865:Two-photon 767:absorption 649:Rotational 486:2017-05-10 413:: 261–66. 276:References 173:modulation 943:Terahertz 924:Radiowave 822:Mössbauer 534:120310656 442:Nanoscale 248:Diffusion 234:and thus 226:state by 182:By using 157:intensity 142:detectors 1137:Category 1109:Category 838:Electron 805:Emission 755:emission 712:Vibronic 462:27834971 427:27183276 295:Archived 196:temporal 89:and the 87:infrared 83:spectrum 79:pressure 64:absorbed 60:sunlight 40:acoustic 1121:Commons 948:ESR/EPR 896:Nucleon 724:(REMPI) 514:Bibcode 224:in situ 202:in the 190:Example 110:liquids 71:heating 962:Others 750:Atomic 532:  460:  425:  395:(2016) 153:lasers 106:solids 67:energy 36:matter 903:Alpha 872:Auger 850:X-ray 817:Gamma 795:X-ray 728:Raman 639:Raman 634:FT-IR 530:S2CID 512:: 7. 114:gases 52:sound 34:) on 32:light 510:8366 458:PMID 423:PMID 329:2012 220:FTIR 112:and 56:beam 931:NMR 522:doi 450:doi 415:doi 58:of 1139:: 936:2D 855:UV 528:. 520:. 504:. 478:. 456:. 444:. 421:. 411:85 409:. 317:, 306:^ 116:. 108:, 96:A 610:e 603:t 596:v 583:) 579:( 536:. 524:: 516:: 489:. 464:. 452:: 446:8 429:. 417:: 20:.

Index

LPA (disambiguation)
electromagnetic energy
light
matter
acoustic
photoacoustic effect
Alexander Graham Bell
sound
beam
sunlight
absorbed
energy
heating
thermal expansion
pressure
spectrum
infrared
ultraviolet
wavelengths
solids
liquids
gases

spectroscopy
concentrations
detectors
sensitivity
lasers
intensity
proportional

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑