Knowledge

Magnetic particle imaging

Source 📝

302:, and all of the magnetic moments will line up in the direction of an induced magnetic field. These particles can be used because the human body does not contain anything which will create magnetic interference in imaging. As the sole tracer, the properties of SPIONs are of key importance to the signal intensity and resolution of MPI. Iron oxide nanoparticles, due to their magnetic dipoles, exhibit a spontaneous magnetization that can be controlled by an applied magnetic field. Therefore, the performance of SPIONs in MPI is critically dependent on their magnetic properties, such as saturation magnetization, magnetic diameter, and relaxation mechanism. Upon application of an external magnetic field, the relaxation of SPIONs can be governed by two mechanisms, Néel, and Brownian relaxation. When the entire particle rotates with respect to the environment, it is following Brownian relaxation, which is affected by the physical diameter. When only the magnetic dipole rotates within the particles, the mechanism is called Néel relaxation, which is affected by the magnetic diameter. According to the Langevin model of superparamagnetism, the spatial resolution of MPI should improve cubically with the magnetics diameter, which can be obtained by fitting magnetization versus magnetic field curve to a Langevin model. However, more recent calculations suggest that there exists an optimal SPIONs magnetic size range (~26 nm) for MPI. This is because of blurring caused by Brownian relaxation of large magnetics size SPIONs. Although magnetic size critically affects the MPI performance, it is often poorly analyzed in publications reporting applications of MPI using SPIONs. Often, commercially available tracers or home-made tracers are used without thorough magnetic characterization. Importantly, due to spin canting and disorder at the surface, or due to the formation of mixed-phase nanoparticles, the equivalent magnetic diameter can be smaller than the physical diameter. And magnetic diameter is critical because of the response of particles to an applied magnetic field dependent on the magnetic diameter, not physical diameter. The largest equivalent magnetic diameter can be the same as the physical diameter. A recent review paper by Chandrasekharan et al. summarizes properties of various iron oxide contrast agents and their MPI performance measured using their in-house Magnetic Particle Spectrometer, shown in the picture here. It should be pointed out that the core diameter listed in the table is not necessarily the magnetic diameter. The table provides a comparison of all current published SPIONs for MPI contrast agents. As seen in the table, LS017, with a SPION core size of 28.7 nm and synthesized through heating up thermal decomposition with post-synthesis oxidation, has the best resolution compared with others with lower core size. Resovist (Ferucarbotran), consisting of iron oxide made via coprecipitation, is the most commonly used and commercially available tracer. However, as suggested by Gleich et al., only 3% of the total iron mass from Resovist contributes to the MPI signal due to its polydispersity, leading to relatively low MPI sensitivity. The signal intensity of MPI is influenced by both the magnetic core diameter and the size distribution of SPIONs. Comparing the MPI sensitivity listed in the above table, LS017 has the highest signal intensity (54.57 V/g of Fe) as particles are monodisperse and possess a large magnetic diameter compared with others. 306:
environment, and can also be used to tailor SPION performance to particular imaging applications. Different coatings cause changes in cellular uptake, blood circulation, and interactions with the immune system, influencing how the tracer becomes distributed throughout the body over time. For example, SPIONs coated with carboxydextran have been shown to clear to the liver almost immediately after injection, while those with a
305:
The surface coating also plays a key role in determining the behavior of the SPIONs. It minimizes unwanted interactions between the iron oxide cores (for example, counteracting attractive forces between the particles to prevent aggregation), increases stability and compatibility with the biological
238:
arising from neuroactivation. Functional neuroimaging using MPI has been successfully demonstrated in rodents and has a promising sensitivity advantage compared to other imaging modalities. In the long perspective, this could potentially allow to study functional neuroactivation on a single-patient
93:(SPIO) nanoparticles. These fields are specifically designed to produce a single magnetic field free region. A signal is only generated in this region. An image is generated by moving this region across a sample. Since there is no natural SPIO in 310:(PEG) coating remain in circulation for hours before being cleared from the blood. These behaviors make the carboxydextran-coated SPION tracer better optimized for liver imaging and the PEG-coated SPION tracer more suitable for vascular imaging. 70:. The first system was established and reported in 2005. Since then, the technology has been advanced by academic researchers at several universities around the world. The first commercial MPI scanners have recently become available from 1153:
Ferguson RM, Khandhar AP, Kemp SJ, Arami H, Saritas EU, Croft LR, Konkle J, Goodwill PW, Halkola A, Rahmer J, Borgert J, Conolly SM, Krishnan KM. IEEE Trans Med Imaging. 2015 May;34(5):1077-84. doi: 10.1109/TMI.2014.2375065.
722:
Keselman, Paul; Yu, Elaine Y.; Zhou, Xinyi Y.; Goodwill, Patrick W.; Chandrasekharan, Prashant; Ferguson, R. Matthew; Khandhar, Amit P.; Kemp, Scott J.; Krishnan, Kannan M.; Zheng, Bo; Conolly, Steven M. (2017-05-07).
628:
Herb, Konstantin; Mason, Erica; Mattingly, Eli; Mandeville, Joseph; Mandeville, Emiri; Cooley, Clarissa; Wald, Lawrence (2020). "Functional MPI (fMPI) of hypercapnia in rodent brain with MPI time-series imaging".
1242: 661:
Chandrasekharan, Prashant; Tay, Zhi Wei; Zhou, Xinyi Yedda; Yu, Elaine; Orendorff, Ryan; Hensley, Daniel; Huynh, Quincy; Fung, K. L. Barry; VanHook, Caylin Colson; Goodwill, Patrick; Zheng, Bo (November 2018).
1016:
Pantke, Dennis; Mueller, Florian; Reinartz, Sebastian; Philipps, Jonas; Mohammadali Dadfar, Seyed; Peters, Maximilian; Franke, Jochen; Schrank, Franziska; Kiessling, Fabian; Schulz, Volkmar (2022-05-17).
353:(pDCR) is a purely passive receive coil insert for a preclinical MPI system. The pDCR aims to enhance the frequency components associated with high mixing orders, which are critical to achieve a high 97:, a signal is only detected from the administered tracer. This provides images without background. MPI is often used in combination with anatomical imaging techniques (such as 449:
Yu, Elaine Y.; Bishop, Mindy; Zheng, Bo; Ferguson, R. Matthew; Khandhar, Amit P.; Kemp, Scott J.; Krishnan, Kannan M.; Goodwill, Patrick W.; Conolly, Steven M. (2017-03-08).
1147:. Arami H, Khandhar AP, Tomitaka A, Yu E, Goodwill PW, Conolly SM, Krishnan KM. Biomaterials. 2015 Jun;52:251-61. doi: 10.1016/j.biomaterials.2015.02.040. 563:
Zheng, Bo; Vazin, Tandis; Goodwill, Patrick W.; Conway, Anthony; Verma, Aradhana; Saritas, Emine Ulku; Schaffer, David; Conolly, Steven M. (2015-09-11).
234:
that requires highly sensitive imaging as well as short scan times for sufficient temporal resolution. For this, MPI is used to detect the increase of
1177:. Saritas EU, Goodwill PW, Croft LR, Konkle JJ, Lu K, Zheng B, Conolly SM. J Magn Reson. 2013 Apr;229:116-26. doi: 10.1016/j.jmr.2012.11.029. Review. 1093:. Keselman P, Yu E, Zhou X, Goodwill P, Chandrasekharan P, Ferguson RM, Khandhar A, Kemp S, Krishnan K, Zheng B, Conolly S. Phys Med Biol. 2017 Feb 8 514:
Zheng, Bo; See, Marc P. von; Yu, Elaine; Gunel, Beliz; Lu, Kuan; Vazin, Tandis; Schaffer, David V.; Goodwill, Patrick W.; Conolly, Steven M. (2016).
182:. This has been successfully used to detect tumor sites within rats. The high sensitivity of the technique means it may also be possible to image 1135:. Konkle JJ, Goodwill PW, Hensley DW, Orendorff RD, Lustig M, Conolly SM. PLoS One. 2015 Oct 23;10(10):e0140137. doi: 10.1371/journal.pone.0140137. 390:
Weizenecker, J.; Gleich, B.; Rahmer, J.; Dahnke, H.; Borgert, J. (2009-01-01). "Three-dimensional real-time in vivo magnetic particle imaging".
222:
therapy by following the movement of these cells in the body. The tracer is stable while tagged to a cell and remains detectable past 87 days.
1115:
A High-Throughput, Arbitrary-Waveform, MPI Spectrometer and Relaxometer for Comprehensive Magnetic Particle Optimization and Characterization
1129:. Croft LR, Goodwill PW, Konkle JJ, Arami H, Price DA, Li AX, Saritas EU, Conolly SM. Med Phys. 2016 Jan;43(1):424. doi: 10.1118/1.4938097. 1111:
Dhavalikar R, Hensley D, Maldonado-Camargo L, Croft LR, Ceron S, Goodwill PW, Conolly SM, Rinaldi C. J Phys D Appl Phys. 2016 Aug 3;49(30)
1183:. Konkle JJ, Goodwill PW, Carrasco-Zevallos OM, Conolly SM. IEEE Trans Med Imaging. 2013 Feb;32(2):338-47. doi: 10.1109/TMI.2012.2227121. 1159:. Konkle JJ, Goodwill PW, Saritas EU, Zheng B, Lu K, Conolly SM. Biomed Tech (Berl). 2013 Dec;58(6):565-76. doi: 10.1515/bmt-2012-0062. 664:"A perspective on a rapid and radiation-free tracer imaging modality, magnetic particle imaging, with promise for clinical translation" 179: 90: 39: 788:
Makela, Ashley V.; Gaudet, Jeffrey M.; Murrell, Donna H.; Mansfield, James R.; Wintermark, Max; Contag, Christopher H. (2021-10-15).
1171:. Lu K, Goodwill PW, Saritas EU, Zheng B, Conolly SM. IEEE Trans Med Imaging. 2013 Sep;32(9):1565-75. doi: 10.1109/TMI.2013.2257177. 1165:. Saritas EU, Goodwill PW, Zhang GZ, Conolly SM. IEEE Trans Med Imaging. 2013 Sep;32(9):1600-10. doi: 10.1109/TMI.2013.2260764.. 1194:
Magnetic Insight, Inc. - Commercializing MPI technology originally developed at the University of California, Berkeley 11/2014
1099:. Khandhar AP, Keselman P, Kemp SJ, Ferguson RM, Goodwill PW, Conolly SM, Krishnan KM. Nanoscale. 2017 Jan 19;9(3):1299-1306. 516:"Quantitative Magnetic Particle Imaging Monitors the Transplantation, Biodistribution, and Clearance of Stem Cells In Vivo" 366: 62:
and can produce a signal at any depth within the body. MPI was first conceived in 2001 by scientists working at the Royal
1109:
Finite magnetic relaxation in x-space magnetic particle imaging: Comparison of measurements and ferrohydrodynamic models.
967:"Magnetic Particle Imaging: Current and Future Applications, Magnetic Nanoparticle Synthesis Methods and Safety Measures" 186:
through the development of nanoparticles targeted to cancer cells. MPI is being investigated as a clinical alternative
1252: 1123:. Bauer LM, Hensley DW, Zheng B, Tay ZW, Goodwill PW, Griswold MA, Conolly SM. Rev Sci Instrum. 2016 May;87(5):055109. 965:
Billings, Caroline; Langley, Mitchell; Warrington, Gavin; Mashali, Farzin; Johnson, Jacqueline Anne (January 2021).
17: 1097:
Evaluation of PEG-coated iron oxide nanoparticles as blood pool tracers for preclinical magnetic particle imaging
790:"Mind Over Magnets - How Magnetic Particle Imaging is Changing the Way We Think About the Future of Neuroscience" 1208: 565:"Magnetic Particle Imaging tracks the long-term fate of in vivo neural cell implants with high image contrast" 210:
with iron oxide nanoparticles, MPI allows them to be tracked throughout the body. This has applications in
1132: 126: 1105:. Hensley DW, Tay ZW, Dhavalikar R, Zheng B, Goodwill P, Rinaldi C, Conolly S. Phys Med Biol. 2016 Dec 29. 725:"Tracking short-term biodistribution and long-term clearance of SPIO tracers in magnetic particle imaging" 133:, where the iron is stored and used to produce hemoglobin. SPIOs have previously been used in humans for 350: 114: 1091:
Tracking short-term biodistribution and long-term clearance of SPIO tracers in magnetic particle imaging
1019:"Frequency-selective signal enhancement by a passive dual coil resonator for magnetic particle imaging" 102: 82: 75: 1222: 1174: 1120: 1211:
Characterization of the Magnetic Particle Imaging Signal Based on Theory, Simulation, and Experiment
1108: 1096: 291: 252: 231: 174:
MPI has numerous applications to the field of oncology research. Accumulation of a tracer within
1145:
In vivo multimodal magnetic particle imaging (MPI) with tailored magneto/optical contrast agents
1117:. Tay ZW, Goodwill PW, Hensley DW, Taylor LA, Zheng B, Conolly SM. Sci Rep. 2016 Sep 30;6:34180. 1087:. Zhou XY, Jeffris K, Yu E, Zheng B, Goodwill P, Nahid P, Conolly S. Phys Med Biol. 2017 Feb 20. 1141:.Saritas EU, Goodwill PW, Conolly SM. Med Phys. 2015 Jun;42(6):3005-12. doi: 10.1118/1.4921209. 346: 1121:
Eddy current-shielded x-space relaxometer for sensitive magnetic nanoparticle characterization
1018: 1103:
Combining magnetic particle imaging and magnetic fluid hyperthermia in a theranostic platform
1102: 1090: 1084: 847: 235: 211: 1162: 1030: 910: 736: 576: 462: 399: 215: 187: 901:
Goodwill, Patrick (2012). "X-Space MPI: Magnetic Nanoparticles for Safe Medical Imaging".
8: 1217: 307: 284: 1257: 1237: 1180: 1168: 1156: 1150: 1144: 1138: 1126: 1034: 914: 740: 580: 466: 403: 345:
A device that provides frequency-selective signal enhancement was recently developed at
1203: 1198: 1064: 993: 966: 944: 883: 825: 805: 765: 724: 696: 663: 605: 564: 540: 515: 491: 450: 431: 354: 248: 195: 59: 43: 1114: 1068: 1056: 1048: 998: 936: 887: 875: 867: 829: 817: 809: 770: 752: 701: 683: 610: 592: 545: 496: 478: 423: 415: 411: 47: 1127:
Low drive field amplitude for improved image resolution in magnetic particle imaging
1272: 1038: 988: 978: 926: 918: 859: 801: 760: 744: 691: 675: 638: 600: 584: 535: 527: 486: 470: 435: 407: 191: 118: 94: 63: 51: 948: 451:"Magnetic Particle Imaging: A Novel in Vivo Imaging Platform for Cancer Detection" 474: 183: 163: 134: 642: 1043: 748: 299: 86: 1266: 1227: 1052: 871: 813: 756: 687: 596: 482: 419: 789: 162:
in 2009. With further research, this could eventually be used for real-time
1218:
Magnetic particle imaging: moving ahead, medicalphysicsweb.org Apr 12, 2011
1060: 1002: 940: 922: 879: 821: 774: 705: 614: 549: 500: 427: 207: 55: 1169:
Linearity and shift invariance for quantitative magnetic particle imaging
1133:
A Convex Formulation for Magnetic Particle Imaging X-Space Reconstruction
983: 679: 1151:
Magnetic particle imaging with tailored iron oxide nanoparticle tracers.
848:"Magnetic Particle Imaging: Current Applications in Biomedical Research" 931: 863: 531: 295: 122: 35: 1247: 588: 239:
level and thus bring functional neuroimaging to clinical diagnostics.
846:
Talebloo, Nazanin; Gudi, Mithil; Robertson, Neil; Wang, Ping (2020).
268: 256: 219: 175: 125:
tracer used with MPI are cleared naturally by the body through the
121:. Imaging is performed in a range of milliseconds to seconds. The 71: 1085:
First in vivo magnetic particle imaging of lung perfusion in rats
298:, such as the blood. This fluid is very responsive to even weak 280: 98: 67: 964: 1232: 1243:"Philips announces breakthrough in medical imaging technology" 1193: 1015: 389: 159: 138: 130: 1157:
Twenty-fold acceleration of 3D projection reconstruction MPI
787: 627: 1228:"Magnetic Particle Imaging (MPI) at RWTH Aachen University" 1175:
Magnetic particle imaging (MPI) for NMR and MRI researchers
1139:
Effects of pulse duration on magnetostimulation thresholds
845: 660: 562: 371: 247:
The tracers used in magnetic particle imaging (MPI) are
129:. The iron oxide nanoparticles are broken down in the 105:) providing information on the location of the tracer. 1163:
Magnetostimulation limits in magnetic particle imaging
721: 42:
tracers. The technology has potential applications in
448: 372:
Homepage of the Annual International Workshop on MPI
1181:
Projection reconstruction magnetic particle imaging
631:International Journal on Magnetic Particle Imaging 230:MPI has been proposed as a promising platform for 279:) core surrounded by a surface coating (commonly 218:. Imaging can be used to improve the success of 81:The hardware used for MPI is very different from 54:to measure the 3-D location and concentration of 1264: 1233:"MPI work at University of California, Berkeley" 1258:Flipping Good Imaging. Radiology Today May 2017 513: 158:MPI results provided images of a beating mouse 113:Magnetic particle imaging combines high tracer 1223:"Traveling Wave MPI at University of Würzburg" 1213:. M. Sc. thesis, University of Würzburg, 2010. 340: 1204:The MOMENTUM Magnetic Particle Imaging System 971:International Journal of Molecular Sciences 242: 225: 180:enhanced permeability and retention effect 1042: 992: 982: 930: 764: 695: 604: 539: 490: 1253:Breaking New Ground in Molecular Imaging 900: 360: 1199:Understanding Magnetic Particle Imaging 14: 1265: 1238:"MPI research at University of Lübeck" 960: 958: 852:Journal of Magnetic Resonance Imaging 841: 839: 717: 715: 656: 654: 652: 335: 144: 331:No background noise (high contrast) 24: 1078: 955: 836: 806:10.1016/j.neuroscience.2020.10.036 712: 649: 25: 1284: 1187: 1023:Physics in Medicine & Biology 149: 668:The British Journal of Radiology 201: 38:technique that directly detects 1248:What you see is what you've got 1009: 894: 729:Physics in Medicine and Biology 392:Physics in Medicine and Biology 367:WMIS MPI Interest Group Meeting 108: 781: 621: 556: 507: 442: 383: 319:High resolution (~0.4 mm) 40:superparamagnetic nanoparticle 34:) is an emerging non-invasive 13: 1: 377: 313: 475:10.1021/acs.nanolett.6b04865 294:tracer is detectable within 127:mononuclear phagocyte system 91:superparamagnetic iron oxide 50:. Currently, it is used in 7: 643:10.18416/IJMPI.2020.2009009 351:passive dual coil resonator 341:Passive dual coil resonator 322:Fast image results (~20 ms) 236:cerebral blood volume (CBV) 169: 85:. MPI systems use changing 10: 1289: 412:10.1088/0031-9155/54/5/L01 255:). They are composed of a 251:iron oxide nanoparticles ( 89:to generate a signal from 28:Magnetic particle imaging 1044:10.1088/1361-6560/ac6a9f 749:10.1088/1361-6560/aa5f48 243:Superparamagnetic tracer 232:functional brain imaging 226:Functional brain imaging 198:in at-risk populations. 58:. Imaging does not use 923:10.1002/adma.201200221 347:RWTH Aachen University 178:can occur through the 361:Congresses, workshops 283:, carboxydextran, or 212:regenerative medicine 984:10.3390/ijms22147651 680:10.1259/bjr.20180326 216:cancer immunotherapy 135:iron supplementation 1035:2022PMB....67k5004P 915:2012AdM....24.3870G 741:2017PMB....62.3440K 581:2015NatSR...514055Z 467:2017NanoL..17.1648Y 404:2009PMB....54L...1W 308:polyethylene glycol 285:polyethylene glycol 194:in order to reduce 188:screening technique 117:with submillimeter 903:Advanced Materials 864:10.1002/jmri.26875 674:(1091): 20180326. 569:Scientific Reports 532:10.7150/thno.13728 355:spatial resolution 336:Signal enhancement 196:radiation exposure 145:Blood pool imaging 60:ionizing radiation 44:diagnostic imaging 589:10.1038/srep14055 296:biological fluids 249:superparamagnetic 208:therapeutic cells 16:(Redirected from 1280: 1073: 1072: 1046: 1013: 1007: 1006: 996: 986: 962: 953: 952: 934: 898: 892: 891: 858:(6): 1659–1668. 843: 834: 833: 785: 779: 778: 768: 735:(9): 3440–3453. 719: 710: 709: 699: 658: 647: 646: 625: 619: 618: 608: 560: 554: 553: 543: 511: 505: 504: 494: 461:(3): 1648–1654. 446: 440: 439: 387: 192:nuclear medicine 184:micro-metastasis 72:Magnetic Insight 64:Philips Research 52:medical research 48:material science 21: 18:Particle imaging 1288: 1287: 1283: 1282: 1281: 1279: 1278: 1277: 1263: 1262: 1209:J.-P. Gehrcke. 1190: 1081: 1079:Further reading 1076: 1014: 1010: 963: 956: 899: 895: 844: 837: 786: 782: 720: 713: 659: 650: 626: 622: 561: 557: 512: 508: 447: 443: 388: 384: 380: 363: 343: 338: 316: 300:magnetic fields 278: 274: 266: 262: 245: 228: 204: 172: 164:cardiac imaging 152: 147: 111: 87:magnetic fields 23: 22: 15: 12: 11: 5: 1286: 1276: 1275: 1261: 1260: 1255: 1250: 1245: 1240: 1235: 1230: 1225: 1220: 1215: 1206: 1201: 1196: 1189: 1188:External links 1186: 1185: 1184: 1178: 1172: 1166: 1160: 1154: 1148: 1142: 1136: 1130: 1124: 1118: 1112: 1106: 1100: 1094: 1088: 1080: 1077: 1075: 1074: 1029:(11): 115004. 1008: 954: 909:(28): 3870–7. 893: 835: 780: 711: 648: 620: 555: 526:(3): 291–301. 506: 441: 381: 379: 376: 375: 374: 369: 362: 359: 342: 339: 337: 334: 333: 332: 329: 326: 323: 320: 315: 312: 276: 272: 264: 260: 244: 241: 227: 224: 203: 200: 171: 168: 151: 150:Cardiovascular 148: 146: 143: 110: 107: 76:Bruker Biospin 9: 6: 4: 3: 2: 1285: 1274: 1271: 1270: 1268: 1259: 1256: 1254: 1251: 1249: 1246: 1244: 1241: 1239: 1236: 1234: 1231: 1229: 1226: 1224: 1221: 1219: 1216: 1214: 1212: 1207: 1205: 1202: 1200: 1197: 1195: 1192: 1191: 1182: 1179: 1176: 1173: 1170: 1167: 1164: 1161: 1158: 1155: 1152: 1149: 1146: 1143: 1140: 1137: 1134: 1131: 1128: 1125: 1122: 1119: 1116: 1113: 1110: 1107: 1104: 1101: 1098: 1095: 1092: 1089: 1086: 1083: 1082: 1070: 1066: 1062: 1058: 1054: 1050: 1045: 1040: 1036: 1032: 1028: 1024: 1020: 1012: 1004: 1000: 995: 990: 985: 980: 976: 972: 968: 961: 959: 950: 946: 942: 938: 933: 928: 924: 920: 916: 912: 908: 904: 897: 889: 885: 881: 877: 873: 869: 865: 861: 857: 853: 849: 842: 840: 831: 827: 823: 819: 815: 811: 807: 803: 799: 795: 791: 784: 776: 772: 767: 762: 758: 754: 750: 746: 742: 738: 734: 730: 726: 718: 716: 707: 703: 698: 693: 689: 685: 681: 677: 673: 669: 665: 657: 655: 653: 644: 640: 636: 632: 624: 616: 612: 607: 602: 598: 594: 590: 586: 582: 578: 574: 570: 566: 559: 551: 547: 542: 537: 533: 529: 525: 521: 517: 510: 502: 498: 493: 488: 484: 480: 476: 472: 468: 464: 460: 456: 452: 445: 437: 433: 429: 425: 421: 417: 413: 409: 405: 401: 398:(5): L1–L10. 397: 393: 386: 382: 373: 370: 368: 365: 364: 358: 356: 352: 348: 330: 327: 324: 321: 318: 317: 311: 309: 303: 301: 297: 293: 288: 286: 282: 270: 258: 254: 250: 240: 237: 233: 223: 221: 217: 213: 209: 202:Cell tracking 199: 197: 193: 189: 185: 181: 177: 167: 165: 161: 157: 142: 140: 136: 132: 128: 124: 120: 116: 106: 104: 100: 96: 92: 88: 84: 79: 77: 73: 69: 65: 61: 57: 56:nanoparticles 53: 49: 45: 41: 37: 33: 29: 19: 1210: 1026: 1022: 1011: 977:(14): 7651. 974: 970: 906: 902: 896: 855: 851: 797: 794:Neuroscience 793: 783: 732: 728: 671: 667: 634: 630: 623: 575:(1): 14055. 572: 568: 558: 523: 520:Theranostics 519: 509: 458: 455:Nano Letters 454: 444: 395: 391: 385: 344: 325:No radiation 304: 289: 246: 229: 205: 176:solid tumors 173: 155: 153: 112: 109:Applications 80: 31: 27: 26: 932:11693/53587 800:: 100–109. 206:By tagging 115:sensitivity 36:tomographic 378:References 314:Advantages 154:The first 123:iron oxide 119:resolution 1069:248404124 1053:0031-9155 888:198169801 872:1522-2586 830:226842684 814:1873-7544 757:1361-6560 688:1748-880X 597:2045-2322 483:1530-6984 420:0031-9155 328:No iodine 269:maghemite 257:magnetite 220:stem cell 141:imaging. 1267:Category 1061:35472698 1003:34299271 941:22988557 880:31332868 822:33197498 775:28177301 706:29888968 615:26358296 550:26909106 501:28206771 428:19204385 170:Oncology 1273:Imaging 1031:Bibcode 994:8306580 911:Bibcode 766:5739049 737:Bibcode 697:6475963 637:(2/1). 606:4566119 577:Bibcode 541:4737718 492:5724561 463:Bibcode 436:2635545 400:Bibcode 281:dextran 156:in vivo 68:Hamburg 66:lab in 1067:  1059:  1051:  1001:  991:  949:554405 947:  939:  886:  878:  870:  828:  820:  812:  773:  763:  755:  704:  694:  686:  613:  603:  595:  548:  538:  499:  489:  481:  434:  426:  418:  349:. The 253:SPIONs 95:tissue 1065:S2CID 945:S2CID 884:S2CID 826:S2CID 432:S2CID 292:SPION 267:) or 160:heart 139:liver 131:liver 1057:PMID 1049:ISSN 999:PMID 937:PMID 876:PMID 868:ISSN 818:PMID 810:ISSN 771:PMID 753:ISSN 702:PMID 684:ISSN 611:PMID 593:ISSN 546:PMID 497:PMID 479:ISSN 424:PMID 416:ISSN 290:The 214:and 137:and 74:and 46:and 1039:doi 989:PMC 979:doi 927:hdl 919:doi 860:doi 802:doi 798:474 761:PMC 745:doi 692:PMC 676:doi 639:doi 601:PMC 585:doi 536:PMC 528:doi 487:PMC 471:doi 408:doi 287:). 271:(Fe 259:(Fe 190:to 103:MRI 101:or 83:MRI 32:MPI 1269:: 1063:. 1055:. 1047:. 1037:. 1027:67 1025:. 1021:. 997:. 987:. 975:22 973:. 969:. 957:^ 943:. 935:. 925:. 917:. 907:24 905:. 882:. 874:. 866:. 856:51 854:. 850:. 838:^ 824:. 816:. 808:. 796:. 792:. 769:. 759:. 751:. 743:. 733:62 731:. 727:. 714:^ 700:. 690:. 682:. 672:91 670:. 666:. 651:^ 633:. 609:. 599:. 591:. 583:. 571:. 567:. 544:. 534:. 522:. 518:. 495:. 485:. 477:. 469:. 459:17 457:. 453:. 430:. 422:. 414:. 406:. 396:54 394:. 357:. 166:. 99:CT 78:. 1071:. 1041:: 1033:: 1005:. 981:: 951:. 929:: 921:: 913:: 890:. 862:: 832:. 804:: 777:. 747:: 739:: 708:. 678:: 645:. 641:: 635:6 617:. 587:: 579:: 573:5 552:. 530:: 524:6 503:. 473:: 465:: 438:. 410:: 402:: 277:3 275:O 273:2 265:4 263:O 261:3 30:( 20:)

Index

Particle imaging
tomographic
superparamagnetic nanoparticle
diagnostic imaging
material science
medical research
nanoparticles
ionizing radiation
Philips Research
Hamburg
Magnetic Insight
Bruker Biospin
MRI
magnetic fields
superparamagnetic iron oxide
tissue
CT
MRI
sensitivity
resolution
iron oxide
mononuclear phagocyte system
liver
iron supplementation
liver
heart
cardiac imaging
solid tumors
enhanced permeability and retention effect
micro-metastasis

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.