Knowledge

p–n junction

Source 📝

434:
combine with free electrons, and cancel each other out. The positively charged ("donor") dopant atoms in the n-type are part of the crystal, and cannot move. Thus, in the n-type, a region near the junction has a fixed amount of positive charge. The negatively charged ("acceptor") dopant atoms in the p-type are part of the crystal, and cannot move. Thus, in the p-type, a region near the junction becomes negatively charged. The result is a region near the junction that acts to repel the mobile charges away from the junction through the electric field that these charged regions create. The regions near the p–n interface lose their neutrality and most of their mobile carriers, forming the space charge region or
540:. Both p and n junctions are doped at a 1e15 cm (160 μC/cm) doping level, leading to built-in potential of ~0.59 V. Reducing depletion width can be inferred from the shrinking carrier motion across the p–n junction, which as a consequence reduces electrical resistance. Electrons that cross the p–n junction into the p-type material (or holes that cross into the n-type material) diffuse into the nearby neutral region. The amount of minority diffusion in the near-neutral zones determines the amount of current that can flow through the diode. 626:' in the p-type material are pulled away from the junction, leaving behind charged ions and causing the width of the depletion region to increase. Likewise, because the n-type region is connected to the positive terminal, the electrons are pulled away from the junction, with similar effect. This increases the voltage barrier causing a high resistance to the flow of charge carriers, thus allowing minimal electric current to cross the p–n junction. The increase in resistance of the p–n junction results in the junction behaving as an insulator. 30: 470: 446: 199: 158: 325: 257: 521: 547:(electrons in n-type material or holes in p-type) can flow through a semiconductor for a macroscopic length. With this in mind, consider the flow of electrons across the junction. The forward bias causes a force on the electrons pushing them from the N side toward the P side. With forward bias, the depletion region is narrow enough that electrons can cross the junction and 650:. A standard value for breakdown voltage is for instance 5.6 V. This means that the voltage at the cathode cannot be more than about 5.6 V higher than the voltage at the anode (though there is a slight rise with current), because the diode breaks down, and therefore conducts, if the voltage gets any higher. This effect limits the voltage over the diode. 383:
not from p to n, and the reverse is true for positive charge carriers (holes). When the p–n junction is forward-biased, charge carriers flow freely due to the reduction in energy barriers seen by electrons and holes. When the p–n junction is reverse-biased, however, the junction barrier (and therefore resistance) becomes greater and charge flow is minimal.
588: 1576: 2081:
characterizes the current across a p–n junction as a function of external voltage and ambient conditions (temperature, choice of semiconductor, etc.). To see how it can be derived, we must examine the various reasons for current. The convention is that the forward (+) direction be pointed against the
563:
Although the electrons penetrate only a short distance into the p-type material, the electric current continues uninterrupted, because holes (the majority carriers) begin to flow in the opposite direction. The total current (the sum of the electron and hole currents) is constant in space, because any
382:
The forward-bias and the reverse-bias properties of the p–n junction imply that it can be used as a diode. A p–n junction diode allows charge carriers to flow in one direction, but not in the opposite direction; negative charge carriers (electrons) can easily flow through the junction from n to p but
2053: 501:
diffusion. When equilibrium is reached, the charge density is approximated by the displayed step function. In fact, since the y-axis of figure A is log-scale, the region is almost completely depleted of majority carriers (leaving a charge density equal to the net doping level), and the edge between
461:
created by the space charge region opposes the diffusion process for both electrons and holes. There are two concurrent phenomena: the diffusion process that tends to generate more space charge, and the electric field generated by the space charge that tends to counteract the diffusion. The carrier
452:
A p–n junction in thermal equilibrium with zero-bias voltage applied. Electron and hole concentration are reported with blue and red lines, respectively. Gray regions are charge-neutral. Light-red zone is positively charged. Light-blue zone is negatively charged. The electric field is shown on the
433:
At the junction, some of the free electrons in the n-type wander into the p-type due to random thermal migration ("diffusion"). As they diffuse into the p-type they combine with holes, and cancel each other out. In a similar way some of the positive holes in the p-type diffuse into the n-type and
571:
Therefore, the macroscopic picture of the current flow through the diode involves electrons flowing through the n-type region toward the junction, holes flowing through the p-type region in the opposite direction toward the junction, and the two species of carriers constantly recombining in the
551:
into the p-type material. However, they do not continue to flow through the p-type material indefinitely, because it is energetically favorable for them to recombine with holes. The average length an electron travels through the p-type material before recombining is called the
975: 1338: 629:
The strength of the depletion zone electric field increases as the reverse-bias voltage increases. Once the electric field intensity increases beyond a critical level, the p–n junction depletion zone breaks down and current begins to flow, usually by either the
1875: 1697: 476:
A p–n junction in thermal equilibrium with zero-bias voltage applied. Under the junction, plots for the charge density, the electric field, and the voltage are reported. (The log concentration curves should actually be smoother, like the
453:
bottom, the electrostatic force on electrons and holes and the direction in which the diffusion tends to move electrons and holes. (The log concentration curves should actually be smoother with slope varying with field strength.)
638:
processes. Both of these breakdown processes are non-destructive and are reversible, as long as the amount of current flowing does not reach levels that cause the semiconductor material to overheat and cause thermal damage.
568:). The flow of holes from the p-type region into the n-type region is exactly analogous to the flow of electrons from N to P (electrons and holes swap roles and the signs of all currents and voltages are reversed). 140: 825: 572:
vicinity of the junction. The electrons and holes travel in opposite directions, but they also have opposite charges, so the overall current is in the same direction on both sides of the diode, as required.
506:, Q(x) graph). The space charge region has the same magnitude of charge on both sides of the p–n interfaces, thus it extends farther on the less doped side in this example (the n side in figures A and B). 2180: 1767: 102:(LEDs) are essentially p-n junctions where the semiconductor materials are chosen, and the component's geometry designed, to maximise the desired effect (light absorption or emission). A 1866: 1603: 1288: 1769:, where we have broken up the voltage difference into the equilibrium plus external components. The equilibrium potential results from diffusion forces, and thus we can calculate 1571:{\displaystyle \Delta V=\int _{D}\int {\frac {q}{\varepsilon }}\left\,\mathrm {d} x\,\mathrm {d} x={\frac {C_{A}C_{D}}{C_{A}+C_{D}}}{\frac {q}{2\varepsilon }}(d_{p}+d_{n})^{2}} 2213: 2113: 347:, depending on the relative voltages of the two semiconductor regions. By manipulating flow of charge carriers across this depleted layer, p–n junctions are commonly used as 1226: 1797: 1045: 428: 1721: 1333: 818: 782: 746: 710: 1180: 1153: 1126: 1099: 1021: 2136: 1598: 1310: 1069: 997: 2048:{\displaystyle \Delta V_{0}={\frac {kT}{q}}\ln \left({\frac {C_{A}C_{D}}{P_{0}N_{0}}}\right)={\frac {kT}{q}}\ln \left({\frac {C_{A}C_{D}}{n_{i}^{2}}}\right)} 73:
near the boundary, as the free electrons fill the available holes, which in turn allows electric current to pass through the junction only in one direction.
275: 106:
is a similar case to a p–n junction, where instead of an n-type semiconductor, a metal directly serves the role of the "negative" charge provider.
528:
In forward bias, the p-type is connected with the positive terminal and the n-type is connected with the negative terminal. The panels show
88:(BJT) is a semiconductor in the form n–p–n or p–n–p. Combinations of such semiconductor devices on a single chip allow for the creation of 2343: 1074:
For a general case, the dopants have a concentration profile that varies with depth x, but for a simple case of an abrupt junction,
503: 579:
models the forward-bias operational characteristics of a p–n junction outside the avalanche (reverse-biased conducting) region.
657:
diodes, where the width of the depletion zone (controlled with the reverse bias voltage) changes the capacitance of the diode.
84:. More complex circuit components can be created by further combinations of p-type and n-type semiconductors; for example, the 2457: 2430: 2405: 2323: 619:. Therefore, very little current flows until the diode breaks down. The connections are illustrated in the adjacent diagram. 970:{\displaystyle -{\frac {\mathrm {d} ^{2}V}{\mathrm {d} x^{2}}}={\frac {\rho }{\varepsilon }}={\frac {q}{\varepsilon }}\left} 1233: 335:
The p–n junction possesses a useful property for modern semiconductor electronics. A p-doped semiconductor is relatively
2141: 1726: 1800: 2526: 2244: 2239: 311: 293: 238: 216: 185: 171: 463: 439: 2284: 1810: 220: 2077: 1292:
because the total charge on the p and the n side of the depletion region sums to zero. Therefore, letting
2305: 85: 2477:
Shockley, William (1949). "The Theory of p-n Junctions in Semiconductors and p-n Junction Transistors".
565: 466:
with blue and red lines. Also shown are the two counterbalancing phenomena that establish equilibrium.
391:
In a p–n junction, without an external applied voltage, an equilibrium condition is reached in which a
2189: 2089: 2234: 490: 820:
be the equilibrium concentrations of electrons and holes respectively. Thus, by Poisson's equation:
2269: 2264: 1185: 1772: 1030: 401: 2259: 576: 336: 209: 622:
Because the p-type material is now connected to the negative terminal of the power supply, the '
2274: 1692:{\displaystyle d={\sqrt {{\frac {2\varepsilon }{q}}{\frac {C_{A}+C_{D}}{C_{A}C_{D}}}\Delta V}}} 486: 46: 1703: 1315: 787: 751: 715: 679: 271: 2313: 177: 2366: 2279: 2249: 1158: 1131: 1104: 1077: 1006: 392: 99: 77: 54: 50: 515: 8: 635: 482: 339:. The same is true of an n-doped semiconductor, but the junction between them can become 1128:
can be assumed to be constant on the n side of the junction and zero on the p side. Let
1101:
can be assumed to be constant on the p side of the junction and zero on the n side, and
2490: 2121: 2064: 1583: 1295: 1054: 1000: 982: 611:
terminal corresponds to reverse bias. If a diode is reverse-biased, the voltage at the
89: 2453: 2426: 2401: 2358: 2319: 647: 544: 103: 2510: 2486: 2384:
Electrons and Holes in Semiconductors: With Applications to Transistor Electronics,
2339: 2309: 498: 340: 135: 123: 70: 2315:
Crystal Fire: The Invention of the Transistor and the Birth of the Information Age
29: 24: 2447: 2254: 631: 469: 435: 2386:
Bell Telephone Laboratories series, Van Nostrand. ISBN 0882753827, 780882753829.
331:
atoms (Si) enlarged about 45,000,000x (Image size approximately 955 pm × 955 pm)
1024: 458: 344: 2504: 1335:
represent the entire depletion region and the potential difference across it,
587: 134:
and selenium rectifiers. The modern theory of p-n junctions was elucidated by
114:
The invention of the p–n junction is usually attributed to American physicist
2520: 2362: 623: 524:
PN junction operation in forward-bias mode, showing reducing depletion width.
66: 20: 2118:
Diffusion current: current due to local imbalances in carrier concentration
80:; a p-n junction by itself, when connected on both sides to a circuit, is a 1869: 1048: 671: 374: 366: 445: 643: 557: 352: 115: 223: in this section. Unsourced material may be challenged and removed. 95: 131: 119: 198: 654: 502:
the space charge region and the neutral region is quite sharp (see
361:
is the application of a voltage relative to a p–n junction region:
62: 324: 612: 328: 58: 395:
forms across the junction. This potential difference is called
712:
be the concentration of negatively-charged acceptor atoms and
1182:
the width of the depletion region on the n-side. Then, since
748:
be the concentrations of positively-charged donor atoms. Let
616: 348: 81: 34: 2344:"Investigation of a Barrier Layer by the Thermoprobe Method" 355:
in one direction but not in the other (opposite) direction.
520: 564:
variation would cause charge buildup over time (this is
485:
is a zone with a net charge provided by the fixed ions (
1155:
be the width of the depletion region on the p-side and
65:, while the "p" (positive) side contains freely-moving 2192: 2144: 2124: 2092: 1878: 1813: 1775: 1729: 1706: 1606: 1586: 1341: 1318: 1298: 1236: 1188: 1161: 1134: 1107: 1080: 1057: 1033: 1009: 985: 828: 790: 754: 718: 682: 404: 2082:
diode's built-in potential gradient at equilibrium.
69:. Connecting the two materials causes creation of a 2505:
The PN Junction. How Diodes Work? (English version)
1600:be the total width of the depletion region, we get 266:
may be too technical for most readers to understand
2207: 2175:{\displaystyle \mathbf {J} _{D}\propto -q\nabla n} 2174: 2130: 2107: 2070: 2047: 1860: 1791: 1762:{\displaystyle \Delta V_{0}+\Delta V_{\text{ext}}} 1761: 1715: 1691: 1592: 1570: 1327: 1304: 1282: 1220: 1174: 1147: 1120: 1093: 1063: 1039: 1015: 991: 969: 812: 776: 740: 704: 422: 2446:Luque, Antonio; Hegedus, Steven (29 March 2011). 1803:and assuming the semiconductor is nondegenerate ( 462:concentration profile at equilibrium is shown in 378:is in the direction of little or no current flow. 61:. The "n" (negative) side contains freely-moving 2518: 2449:Handbook of Photovoltaic Science and Engineering 2439: 2304: 76:p–n junctions represent the simplest case of a 2420: 2318:. W. W. Norton & Company. pp. 88–97. 1228:within the depletion region, it must be that 2445: 2059:is the temperature of the semiconductor and 646:regulator circuits. Zener diodes have a low 665: 186:Learn how and when to remove these messages 2338: 1861:{\displaystyle {P}_{0}{N}_{0}={n}_{i}^{2}} 653:Another application of reverse biasing is 386: 1454: 1445: 1071:is the magnitude of the electron charge. 312:Learn how and when to remove this message 294:Learn how and when to remove this message 278:, without removing the technical details. 239:Learn how and when to remove this message 126:reported discovery of p–n junctions in Cu 2476: 586: 519: 468: 444: 370:is in the direction of easy current flow 351:: circuit elements that allow a flow of 323: 28: 2398:Semiconductor Device Physics and Design 603:terminal of the voltage supply and the 2519: 2507:Educational video on the P-N junction. 2395: 660: 591:A silicon p–n junction in reverse bias 556:, and it is typically on the order of 1283:{\displaystyle d_{p}C_{A}=d_{n}C_{D}} 276:make it understandable to non-experts 141:Electrons and Holes in Semiconductors 642:This effect is used to advantage in 615:is comparatively higher than at the 250: 221:adding citations to reliable sources 192: 151: 16:Semiconductor–semiconductor junction 37:. The circuit symbol is also shown. 13: 2491:10.1002/j.1538-7305.1949.tb03645.x 2470: 2166: 1879: 1776: 1746: 1730: 1707: 1681: 1456: 1447: 1342: 1319: 853: 837: 414: 411: 14: 2538: 2498: 2245:Deep-level transient spectroscopy 167:This article has multiple issues. 122:in 1939. Two years later (1941), 45:is a combination of two types of 25:Diode § Semiconductor diodes 2421:Hook, J. R.; H. E. Hall (2001). 2208:{\displaystyle \mathbf {J} _{R}} 2195: 2147: 2108:{\displaystyle \mathbf {J} _{F}} 2095: 255: 197: 156: 2071:Current across depletion region 582: 509: 208:needs additional citations for 175:or discuss these issues on the 78:semiconductor electronic device 2414: 2389: 2376: 2332: 2298: 1559: 1532: 1437: 1411: 1405: 1379: 959: 933: 927: 901: 807: 801: 771: 765: 735: 729: 699: 693: 1: 2479:Bell System Technical Journal 2291: 2240:Capacitance–voltage profiling 2078:Shockley ideal diode equation 1221:{\displaystyle P_{0}=N_{0}=0} 516:p–n diode § Forward bias 147: 1792:{\displaystyle \Delta V_{0}} 1040:{\displaystyle \varepsilon } 423:{\displaystyle V_{\rm {bi}}} 7: 2400:. Springer. pp. P155. 2285:Transistor–transistor logic 2227: 86:bipolar junction transistor 10: 2543: 2513:– PowerGuru, August, 2012. 2382:Shockley, William (1950). 2357:(special edition): 53–56. 669: 513: 109: 18: 2452:. John Wiley & Sons. 2425:. John Wiley & Sons. 2235:Alloy-junction transistor 2527:Semiconductor structures 1716:{\displaystyle \Delta V} 1328:{\displaystyle \Delta V} 813:{\displaystyle P_{0}(x)} 777:{\displaystyle N_{0}(x)} 741:{\displaystyle C_{D}(x)} 705:{\displaystyle C_{A}(x)} 676:For a p–n junction, let 666:Size of depletion region 2260:Field-effect transistor 577:Shockley diode equation 566:Kirchhoff's current law 387:Equilibrium (zero bias) 47:semiconductor materials 2396:Mishra, Umesh (2008). 2275:Semiconductor detector 2209: 2176: 2132: 2109: 2049: 1868:is independent of the 1862: 1793: 1763: 1717: 1693: 1594: 1572: 1329: 1306: 1284: 1222: 1176: 1149: 1122: 1095: 1065: 1041: 1017: 993: 971: 814: 778: 742: 706: 592: 525: 493:) that have been left 478: 454: 424: 332: 130:O and silver sulphide 38: 2210: 2177: 2133: 2110: 2050: 1863: 1794: 1764: 1718: 1694: 1595: 1573: 1330: 1307: 1285: 1223: 1177: 1175:{\displaystyle d_{n}} 1150: 1148:{\displaystyle d_{p}} 1123: 1121:{\displaystyle C_{D}} 1096: 1094:{\displaystyle C_{A}} 1066: 1042: 1018: 1016:{\displaystyle \rho } 994: 972: 815: 779: 743: 707: 590: 523: 472: 448: 425: 327: 100:light-emitting diodes 32: 2280:Semiconductor device 2250:Delocalized electron 2190: 2142: 2122: 2090: 1876: 1811: 1799:by implementing the 1773: 1727: 1704: 1604: 1584: 1339: 1316: 1296: 1234: 1186: 1159: 1132: 1105: 1078: 1055: 1031: 1007: 983: 826: 788: 752: 716: 680: 402: 393:potential difference 217:improve this article 138:in his classic work 2423:Solid State Physics 2138:, via the equation 2038: 1857: 661:Governing equations 636:avalanche breakdown 530:energy band diagram 483:space charge region 90:integrated circuits 2221:Generation current 2205: 2172: 2128: 2105: 2065:Boltzmann constant 2045: 2024: 1858: 1841: 1789: 1759: 1723:can be written as 1713: 1689: 1590: 1580:And thus, letting 1568: 1325: 1302: 1280: 1218: 1172: 1145: 1118: 1091: 1061: 1037: 1013: 1001:electric potential 989: 967: 810: 774: 738: 702: 593: 538:net charge density 526: 479: 455: 420: 397:built-in potential 333: 39: 2459:978-0-470-97612-8 2432:978-0-471-92805-8 2407:978-1-4020-6480-7 2340:Lashkaryov, V. E. 2325:978-0-393-31851-7 2310:Hoddeson, Lillian 2186:Reverse current ( 2131:{\displaystyle n} 2086:Forward current ( 2039: 1988: 1966: 1908: 1801:Einstein relation 1756: 1687: 1679: 1628: 1593:{\displaystyle d} 1530: 1515: 1372: 1305:{\displaystyle D} 1064:{\displaystyle q} 992:{\displaystyle V} 894: 881: 868: 648:breakdown voltage 545:majority carriers 322: 321: 314: 304: 303: 296: 249: 248: 241: 190: 120:Bell Laboratories 104:Schottky junction 2534: 2494: 2464: 2463: 2443: 2437: 2436: 2418: 2412: 2411: 2393: 2387: 2380: 2374: 2373: 2371: 2365:. Archived from 2348: 2336: 2330: 2329: 2306:Riordan, Michael 2302: 2270:p–n–p transistor 2265:n–p–n transistor 2214: 2212: 2211: 2206: 2204: 2203: 2198: 2181: 2179: 2178: 2173: 2156: 2155: 2150: 2137: 2135: 2134: 2129: 2114: 2112: 2111: 2106: 2104: 2103: 2098: 2054: 2052: 2051: 2046: 2044: 2040: 2037: 2032: 2023: 2022: 2021: 2012: 2011: 2001: 1989: 1984: 1976: 1971: 1967: 1965: 1964: 1963: 1954: 1953: 1943: 1942: 1941: 1932: 1931: 1921: 1909: 1904: 1896: 1891: 1890: 1867: 1865: 1864: 1859: 1856: 1851: 1846: 1837: 1836: 1831: 1825: 1824: 1819: 1798: 1796: 1795: 1790: 1788: 1787: 1768: 1766: 1765: 1760: 1758: 1757: 1754: 1742: 1741: 1722: 1720: 1719: 1714: 1698: 1696: 1695: 1690: 1688: 1680: 1678: 1677: 1676: 1667: 1666: 1656: 1655: 1654: 1642: 1641: 1631: 1629: 1624: 1616: 1614: 1599: 1597: 1596: 1591: 1577: 1575: 1574: 1569: 1567: 1566: 1557: 1556: 1544: 1543: 1531: 1529: 1518: 1516: 1514: 1513: 1512: 1500: 1499: 1489: 1488: 1487: 1478: 1477: 1467: 1459: 1450: 1444: 1440: 1436: 1435: 1423: 1422: 1404: 1403: 1391: 1390: 1373: 1365: 1360: 1359: 1334: 1332: 1331: 1326: 1311: 1309: 1308: 1303: 1289: 1287: 1286: 1281: 1279: 1278: 1269: 1268: 1256: 1255: 1246: 1245: 1227: 1225: 1224: 1219: 1211: 1210: 1198: 1197: 1181: 1179: 1178: 1173: 1171: 1170: 1154: 1152: 1151: 1146: 1144: 1143: 1127: 1125: 1124: 1119: 1117: 1116: 1100: 1098: 1097: 1092: 1090: 1089: 1070: 1068: 1067: 1062: 1046: 1044: 1043: 1038: 1022: 1020: 1019: 1014: 998: 996: 995: 990: 976: 974: 973: 968: 966: 962: 958: 957: 945: 944: 926: 925: 913: 912: 895: 887: 882: 874: 869: 867: 866: 865: 856: 850: 846: 845: 840: 833: 819: 817: 816: 811: 800: 799: 783: 781: 780: 775: 764: 763: 747: 745: 744: 739: 728: 727: 711: 709: 708: 703: 692: 691: 554:diffusion length 499:majority carrier 429: 427: 426: 421: 419: 418: 417: 317: 310: 299: 292: 288: 285: 279: 259: 258: 251: 244: 237: 233: 230: 224: 201: 193: 182: 160: 159: 152: 136:William Shockley 124:Vadim Lashkaryov 71:depletion region 2542: 2541: 2537: 2536: 2535: 2533: 2532: 2531: 2517: 2516: 2501: 2473: 2471:Further reading 2468: 2467: 2460: 2444: 2440: 2433: 2419: 2415: 2408: 2394: 2390: 2381: 2377: 2369: 2346: 2337: 2333: 2326: 2303: 2299: 2294: 2289: 2255:Diode modelling 2230: 2199: 2194: 2193: 2191: 2188: 2187: 2151: 2146: 2145: 2143: 2140: 2139: 2123: 2120: 2119: 2099: 2094: 2093: 2091: 2088: 2087: 2073: 2033: 2028: 2017: 2013: 2007: 2003: 2002: 2000: 1996: 1977: 1975: 1959: 1955: 1949: 1945: 1944: 1937: 1933: 1927: 1923: 1922: 1920: 1916: 1897: 1895: 1886: 1882: 1877: 1874: 1873: 1852: 1847: 1842: 1832: 1827: 1826: 1820: 1815: 1814: 1812: 1809: 1808: 1783: 1779: 1774: 1771: 1770: 1753: 1749: 1737: 1733: 1728: 1725: 1724: 1705: 1702: 1701: 1672: 1668: 1662: 1658: 1657: 1650: 1646: 1637: 1633: 1632: 1630: 1617: 1615: 1613: 1605: 1602: 1601: 1585: 1582: 1581: 1562: 1558: 1552: 1548: 1539: 1535: 1522: 1517: 1508: 1504: 1495: 1491: 1490: 1483: 1479: 1473: 1469: 1468: 1466: 1455: 1446: 1431: 1427: 1418: 1414: 1399: 1395: 1386: 1382: 1378: 1374: 1364: 1355: 1351: 1340: 1337: 1336: 1317: 1314: 1313: 1297: 1294: 1293: 1274: 1270: 1264: 1260: 1251: 1247: 1241: 1237: 1235: 1232: 1231: 1206: 1202: 1193: 1189: 1187: 1184: 1183: 1166: 1162: 1160: 1157: 1156: 1139: 1135: 1133: 1130: 1129: 1112: 1108: 1106: 1103: 1102: 1085: 1081: 1079: 1076: 1075: 1056: 1053: 1052: 1032: 1029: 1028: 1008: 1005: 1004: 984: 981: 980: 953: 949: 940: 936: 921: 917: 908: 904: 900: 896: 886: 873: 861: 857: 852: 851: 841: 836: 835: 834: 832: 827: 824: 823: 795: 791: 789: 786: 785: 759: 755: 753: 750: 749: 723: 719: 717: 714: 713: 687: 683: 681: 678: 677: 674: 668: 663: 595:Connecting the 585: 518: 512: 436:depletion layer 410: 409: 405: 403: 400: 399: 389: 345:charge carriers 318: 307: 306: 305: 300: 289: 283: 280: 272:help improve it 269: 260: 256: 245: 234: 228: 225: 214: 202: 161: 157: 150: 129: 112: 33:A p–n junction 27: 17: 12: 11: 5: 2540: 2530: 2529: 2515: 2514: 2511:"P-N Junction" 2508: 2500: 2499:External links 2497: 2496: 2495: 2485:(3): 435–489. 2472: 2469: 2466: 2465: 2458: 2438: 2431: 2413: 2406: 2388: 2375: 2372:on 2015-09-28. 2331: 2324: 2296: 2295: 2293: 2290: 2288: 2287: 2282: 2277: 2272: 2267: 2262: 2257: 2252: 2247: 2242: 2237: 2231: 2229: 2226: 2225: 2224: 2223: 2222: 2219: 2202: 2197: 2184: 2183: 2182: 2171: 2168: 2165: 2162: 2159: 2154: 2149: 2127: 2102: 2097: 2072: 2069: 2043: 2036: 2031: 2027: 2020: 2016: 2010: 2006: 1999: 1995: 1992: 1987: 1983: 1980: 1974: 1970: 1962: 1958: 1952: 1948: 1940: 1936: 1930: 1926: 1919: 1915: 1912: 1907: 1903: 1900: 1894: 1889: 1885: 1881: 1855: 1850: 1845: 1840: 1835: 1830: 1823: 1818: 1807:, the product 1786: 1782: 1778: 1752: 1748: 1745: 1740: 1736: 1732: 1712: 1709: 1686: 1683: 1675: 1671: 1665: 1661: 1653: 1649: 1645: 1640: 1636: 1627: 1623: 1620: 1612: 1609: 1589: 1565: 1561: 1555: 1551: 1547: 1542: 1538: 1534: 1528: 1525: 1521: 1511: 1507: 1503: 1498: 1494: 1486: 1482: 1476: 1472: 1465: 1462: 1458: 1453: 1449: 1443: 1439: 1434: 1430: 1426: 1421: 1417: 1413: 1410: 1407: 1402: 1398: 1394: 1389: 1385: 1381: 1377: 1371: 1368: 1363: 1358: 1354: 1350: 1347: 1344: 1324: 1321: 1301: 1277: 1273: 1267: 1263: 1259: 1254: 1250: 1244: 1240: 1217: 1214: 1209: 1205: 1201: 1196: 1192: 1169: 1165: 1142: 1138: 1115: 1111: 1088: 1084: 1060: 1036: 1025:charge density 1012: 988: 965: 961: 956: 952: 948: 943: 939: 935: 932: 929: 924: 920: 916: 911: 907: 903: 899: 893: 890: 885: 880: 877: 872: 864: 860: 855: 849: 844: 839: 831: 809: 806: 803: 798: 794: 773: 770: 767: 762: 758: 737: 734: 731: 726: 722: 701: 698: 695: 690: 686: 667: 664: 662: 659: 607:region to the 599:region to the 584: 581: 534:electric field 511: 508: 459:electric field 416: 413: 408: 388: 385: 380: 379: 371: 320: 319: 302: 301: 263: 261: 254: 247: 246: 205: 203: 196: 191: 165: 164: 162: 155: 149: 146: 127: 111: 108: 67:electron holes 57:, in a single 15: 9: 6: 4: 3: 2: 2539: 2528: 2525: 2524: 2522: 2512: 2509: 2506: 2503: 2502: 2492: 2488: 2484: 2480: 2475: 2474: 2461: 2455: 2451: 2450: 2442: 2434: 2428: 2424: 2417: 2409: 2403: 2399: 2392: 2385: 2379: 2368: 2364: 2360: 2356: 2352: 2345: 2341: 2335: 2327: 2321: 2317: 2316: 2311: 2307: 2301: 2297: 2286: 2283: 2281: 2278: 2276: 2273: 2271: 2268: 2266: 2263: 2261: 2258: 2256: 2253: 2251: 2248: 2246: 2243: 2241: 2238: 2236: 2233: 2232: 2220: 2218:Field current 2217: 2216: 2200: 2185: 2169: 2163: 2160: 2157: 2152: 2125: 2117: 2116: 2100: 2085: 2084: 2083: 2080: 2079: 2068: 2066: 2062: 2058: 2041: 2034: 2029: 2025: 2018: 2014: 2008: 2004: 1997: 1993: 1990: 1985: 1981: 1978: 1972: 1968: 1960: 1956: 1950: 1946: 1938: 1934: 1928: 1924: 1917: 1913: 1910: 1905: 1901: 1898: 1892: 1887: 1883: 1871: 1853: 1848: 1843: 1838: 1833: 1828: 1821: 1816: 1806: 1802: 1784: 1780: 1750: 1743: 1738: 1734: 1710: 1699: 1684: 1673: 1669: 1663: 1659: 1651: 1647: 1643: 1638: 1634: 1625: 1621: 1618: 1610: 1607: 1587: 1578: 1563: 1553: 1549: 1545: 1540: 1536: 1526: 1523: 1519: 1509: 1505: 1501: 1496: 1492: 1484: 1480: 1474: 1470: 1463: 1460: 1451: 1441: 1432: 1428: 1424: 1419: 1415: 1408: 1400: 1396: 1392: 1387: 1383: 1375: 1369: 1366: 1361: 1356: 1352: 1348: 1345: 1322: 1299: 1290: 1275: 1271: 1265: 1261: 1257: 1252: 1248: 1242: 1238: 1229: 1215: 1212: 1207: 1203: 1199: 1194: 1190: 1167: 1163: 1140: 1136: 1113: 1109: 1086: 1082: 1072: 1058: 1050: 1034: 1026: 1010: 1002: 986: 977: 963: 954: 950: 946: 941: 937: 930: 922: 918: 914: 909: 905: 897: 891: 888: 883: 878: 875: 870: 862: 858: 847: 842: 829: 821: 804: 796: 792: 768: 760: 756: 732: 724: 720: 696: 688: 684: 673: 658: 656: 651: 649: 645: 640: 637: 633: 627: 625: 620: 618: 614: 610: 606: 602: 598: 589: 580: 578: 573: 569: 567: 561: 559: 555: 550: 546: 541: 539: 535: 531: 522: 517: 507: 505: 500: 496: 492: 488: 484: 475: 471: 467: 465: 460: 451: 447: 443: 441: 437: 431: 406: 398: 394: 384: 377: 376: 372: 369: 368: 364: 363: 362: 360: 356: 354: 350: 346: 342: 338: 330: 326: 316: 313: 298: 295: 287: 277: 273: 267: 264:This section 262: 253: 252: 243: 240: 232: 222: 218: 212: 211: 206:This section 204: 200: 195: 194: 189: 187: 180: 179: 174: 173: 168: 163: 154: 153: 145: 143: 142: 137: 133: 125: 121: 117: 107: 105: 101: 97: 93: 91: 87: 83: 79: 74: 72: 68: 64: 60: 56: 52: 48: 44: 36: 31: 26: 22: 2482: 2478: 2448: 2441: 2422: 2416: 2397: 2391: 2383: 2378: 2367:the original 2354: 2351:Ukr. J. Phys 2350: 2334: 2314: 2300: 2076: 2074: 2060: 2056: 1870:Fermi energy 1804: 1700: 1579: 1291: 1230: 1073: 1049:permittivity 978: 822: 675: 672:Band bending 652: 641: 628: 621: 608: 604: 600: 596: 594: 583:Reverse bias 574: 570: 562: 553: 548: 542: 537: 533: 529: 527: 510:Forward bias 494: 480: 473: 456: 449: 432: 396: 390: 381: 375:Reverse bias 373: 367:Forward bias 365: 358: 357: 334: 308: 290: 281: 265: 235: 226: 215:Please help 210:verification 207: 183: 176: 170: 169:Please help 166: 139: 113: 94: 75: 43:p–n junction 42: 40: 644:Zener diode 558:micrometers 353:electricity 116:Russell Ohl 96:Solar cells 2292:References 670:See also: 514:See also: 337:conductive 172:improve it 148:Properties 132:photocells 19:See also: 2363:2071-0194 2342:(2008) . 2167:∇ 2161:− 2158:∝ 1994:⁡ 1914:⁡ 1880:Δ 1777:Δ 1747:Δ 1731:Δ 1708:Δ 1682:Δ 1622:ε 1527:ε 1425:− 1393:− 1370:ε 1362:∫ 1353:∫ 1343:Δ 1320:Δ 1035:ε 1011:ρ 947:− 915:− 892:ε 879:ε 876:ρ 830:− 495:uncovered 491:acceptors 477:voltage.) 474:Figure B. 450:Figure A. 178:talk page 63:electrons 21:p–n diode 2521:Category 2312:(1988). 2228:See also 655:Varactor 609:positive 601:negative 504:figure B 464:figure A 440:figure A 341:depleted 284:May 2022 229:May 2022 144:(1950). 1023:is the 999:is the 634:or the 613:cathode 329:Silicon 270:Please 110:History 59:crystal 2456:  2429:  2404:  2361:  2322:  2055:where 979:where 605:n-type 597:p-type 549:inject 536:, and 487:donors 349:diodes 55:n-type 51:p-type 2370:(PDF) 2347:(PDF) 632:Zener 624:holes 617:anode 543:Only 438:(see 82:diode 35:diode 2454:ISBN 2427:ISBN 2402:ISBN 2359:ISSN 2320:ISBN 2075:The 1805:i.e. 1312:and 1051:and 784:and 575:The 481:The 457:The 359:Bias 98:and 53:and 23:and 2487:doi 2063:is 1872:): 1755:ext 1047:is 497:by 489:or 442:). 343:of 274:to 219:by 118:of 2523:: 2483:28 2481:. 2355:53 2353:. 2349:. 2308:; 2215:) 2115:) 2067:. 1991:ln 1911:ln 1027:, 1003:, 560:. 532:, 430:. 181:. 92:. 49:, 41:A 2493:. 2489:: 2462:. 2435:. 2410:. 2328:. 2201:R 2196:J 2170:n 2164:q 2153:D 2148:J 2126:n 2101:F 2096:J 2061:k 2057:T 2042:) 2035:2 2030:i 2026:n 2019:D 2015:C 2009:A 2005:C 1998:( 1986:q 1982:T 1979:k 1973:= 1969:) 1961:0 1957:N 1951:0 1947:P 1939:D 1935:C 1929:A 1925:C 1918:( 1906:q 1902:T 1899:k 1893:= 1888:0 1884:V 1854:2 1849:i 1844:n 1839:= 1834:0 1829:N 1822:0 1817:P 1785:0 1781:V 1751:V 1744:+ 1739:0 1735:V 1711:V 1685:V 1674:D 1670:C 1664:A 1660:C 1652:D 1648:C 1644:+ 1639:A 1635:C 1626:q 1619:2 1611:= 1608:d 1588:d 1564:2 1560:) 1554:n 1550:d 1546:+ 1541:p 1537:d 1533:( 1524:2 1520:q 1510:D 1506:C 1502:+ 1497:A 1493:C 1485:D 1481:C 1475:A 1471:C 1464:= 1461:x 1457:d 1452:x 1448:d 1442:] 1438:) 1433:A 1429:C 1420:D 1416:C 1412:( 1409:+ 1406:) 1401:0 1397:N 1388:0 1384:P 1380:( 1376:[ 1367:q 1357:D 1349:= 1346:V 1323:V 1300:D 1276:D 1272:C 1266:n 1262:d 1258:= 1253:A 1249:C 1243:p 1239:d 1216:0 1213:= 1208:0 1204:N 1200:= 1195:0 1191:P 1168:n 1164:d 1141:p 1137:d 1114:D 1110:C 1087:A 1083:C 1059:q 987:V 964:] 960:) 955:A 951:C 942:D 938:C 934:( 931:+ 928:) 923:0 919:N 910:0 906:P 902:( 898:[ 889:q 884:= 871:= 863:2 859:x 854:d 848:V 843:2 838:d 808:) 805:x 802:( 797:0 793:P 772:) 769:x 766:( 761:0 757:N 736:) 733:x 730:( 725:D 721:C 700:) 697:x 694:( 689:A 685:C 415:i 412:b 407:V 315:) 309:( 297:) 291:( 286:) 282:( 268:. 242:) 236:( 231:) 227:( 213:. 188:) 184:( 128:2

Index

p–n diode
Diode § Semiconductor diodes

diode
semiconductor materials
p-type
n-type
crystal
electrons
electron holes
depletion region
semiconductor electronic device
diode
bipolar junction transistor
integrated circuits
Solar cells
light-emitting diodes
Schottky junction
Russell Ohl
Bell Laboratories
Vadim Lashkaryov
photocells
William Shockley
Electrons and Holes in Semiconductors
improve it
talk page
Learn how and when to remove these messages

verification
improve this article

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.