Knowledge

Ostwald ripening

Source 📝

39: 20: 1917: 2761: 101: 836:, the particles will move from big concentrations, corresponding to areas surrounding small particles, to small concentrations, corresponding to areas surrounding large nanoparticles. Thus, the small particles will tend to shrink while the big particles will grow. As a result, the average size of the nanoparticles in the solution will grow, and the dispersion of sizes will decrease. Therefore, if a solution is left for a long time, in the extreme case of 42: 41: 46: 45: 40: 47: 657: 44: 1683:(i.e. individual molecules or atoms) from smaller droplets to larger droplets due to greater solubility of the single monomer molecules in the larger monomer droplets. The rate of this diffusion process is linked to the solubility of the monomer in the continuous (water) phase of the emulsion. This can lead to the destabilization of emulsions (for example, by creaming and sedimentation). 1701: 1513: 446: 109:
example, more atoms are bonded to 6 neighbors and fewer atoms are at the unfavorable surface. As the system tries to lower its overall energy, molecules on the surface of a small particle (energetically unfavorable, with only 3 or 4 or 5 bonded neighbors) will tend to detach from the particle and diffuse into the solution.
1691:
Inhibition of sulfathiazole crystal growth by polyvinylpyrrolidone. The polymer forms a noncondensed netlike film over the sulfathiazole crystal, allowing the crystal to grow out only through the openings of the net. The growth is thus controlled by the pore size of the polymer network at the crystal
870:
of material is the slowest process. They began by stating how a single particle grows in a solution. This equation describes where the boundary is between small, shrinking particles and large, growing particles. They finally conclude that the average radius of the particles ⟹R⟩, grows as follows:
1526:
was slow and also where attachment and detachment at the particle surface was slow. Although his calculations and approach were different, Wagner came to the same conclusions as Lifshitz and Slyozov for slow-diffusion systems. This duplicate derivation went unnoticed for years because the two
1667:
of length per time. Since the average radius is usually something that can be measured in experiments, it is fairly easy to tell if a system is obeying the slow-diffusion equation or the slow-attachment equation. If the experimental data obeys neither equation, then it is likely that another
108:
Consider a cubic crystal of atoms: all the atoms inside are bonded to 6 neighbours and are quite stable, but atoms on the surface are only bonded to 5 neighbors or fewer, which makes these surface atoms less stable. Large particles are more energetically favorable since, continuing with this
1335: 43: 652:{\displaystyle k_{\mathrm {B} }T\log \left({\frac {C_{\mathrm {eq} }}{C_{\infty }}}\right)={\frac {2\sigma \nu _{\mathrm {at} }}{r}}\rightarrow C_{\mathrm {eq} }(r)=C_{\mathrm {eq} }(\infty )\mathrm {e} ^{\frac {2\sigma \nu _{\mathrm {at} }}{rk_{\mathrm {B} }T}}} 988: 97:-driven spontaneous process occurs because larger particles are more energetically favored than smaller particles. This stems from the fact that molecules on the surface of a particle are energetically less stable than the ones in the interior. 1647: 2461:
McClements, David Julian; Henson, Lulu; Popplewell, L. Michael; Decker, Eric Andrew; Choi, Seung Jun (2012). "Inhibition of Ostwald Ripening in Model Beverage Emulsions by Addition of Poorly Water Soluble Triglyceride Oils".
865:
The history of research progress in quantitatively modeling Ostwald ripening is long, with many derivations. In 1958, Lifshitz and Slyozov performed a mathematical investigation of Ostwald ripening in the case where
172: 1531:
in 1961. It was not until 1975 that Kahlweit addressed the fact that the theories were identical and combined them into the Lifshitz-Slyozov-Wagner or LSW theory of Ostwald ripening. Many experiments and
347: 1508:{\displaystyle f(R,t)={\frac {4}{9}}\rho ^{2}\left({\frac {3}{3+\rho }}\right)^{\frac {7}{3}}\left({\frac {1.5}{1.5-\rho }}\right)^{\frac {11}{3}}\exp \left(-{\frac {1.5}{1.5-\rho }}\right),\rho <1.5} 761: 1768:
ageing, the term refers to the growth of larger crystals from those of smaller size which have a higher solubility than the larger ones. In the process, many small crystals formed initially (
281:
to the radius of the particle. The chemical potential of an ideal solution can also be expressed as a function of the solute’s concentration if liquid and solid phases are in equilibrium.
1671:
Although LSW theory and Ostwald ripening were intended for solids ripening in a fluid, Ostwald ripening is also observed in liquid-liquid systems, for example, in an oil-in-water
877: 860: 255: 66:
that involves the change of an inhomogeneous structure over time, in that small crystals or sol particles first dissolve and then redeposit onto larger crystals or sol particles.
1022: 435: 379: 1088: 69:
Dissolution of small crystals or sol particles and the redeposition of the dissolved species on the surfaces of larger crystals or sol particles was first described by
1048: 219: 830: 690: 1182: 1776:). The smaller crystals act as fuel for the growth of bigger crystals. Limiting Ostwald ripening is fundamental in modern technology for the solution synthesis of 195: 2379:"Using Quantitative Textural Analysis to Understand the Emplacement of Shallow-Level Rhyolitic Laccoliths—a Case Study from the Halle Volcanic Complex, Germany" 1239: 1210: 1146: 1117: 804: 784: 403: 279: 1716:
which gives old ice cream a gritty, crunchy texture. Larger ice crystals grow at the expense of smaller ones within the ice cream, creating a coarser texture.
1553: 2119:
Baldan, A. (2002). "Review Progress in Ostwald ripening theories and their applications to nickel-base superalloys Part I: Ostwald ripening theories".
1986: 2577: 2299: 2060: 2030: 2930: 121: 1781: 287: 698: 862:, its particles would evolve until they would finally form a single huge spherical particle to minimize the total surface area. 115:
describes the relationship between the radius of curvature and the chemical potential between the surface and the inner volume:
1286:
is irrelevant, an approach that respects the meanings of all terms is to take the time derivative of the equation to eliminate
2507:"How important is the spectral ripening effect in stratiform boundary layer clouds? Studies using simple trajectory analysis" 2361: 2309: 2103: 2070: 34:
at 6 (a), 24 (b), 48 (c) and 72 hours (d). The small palladium particles are being consumed as the larger ones grow bigger.
1930:
Huang, Zhandong; Su, Meng; Yang, Qiang; Li, Zheng; Chen, Shuoran; Li, Yifan; Zhou, Xue; Li, Fengyu; Song, Yanlin (2017).
1692:
surface. The smaller the pore size, the higher is the supersaturation of the solution required for the crystals to grow.
2570: 1547:
Wagner derived that when attachment and detachment of molecules is slower than diffusion, then the growth rate becomes
2940: 2418:
Vengrenovich, R.D.; Gudyma, Yu. V.; Yarema, S. V. (December 2001). "Ostwald ripening of quantum-dot nanostructures".
2351: 1325:
of particles. For convenience, the radius of particles is divided by the average radius to form a new variable, ρ =
1849: 2263:
Vladimirova, N.; Malagoli, A.; Mauri, R. (1998). "Diffusion-driven phase separation of deeply quenched mixtures".
2735: 1319: 2531: 2506: 2745: 2725: 2563: 983:{\displaystyle \langle R\rangle ^{3}-\langle R\rangle _{0}^{3}={\frac {8\gamma c_{\infty }v^{2}D}{9R_{g}T}}t} 2935: 2700: 2162:
Lifshitz, I.M.; Slyozov, V.V. (1961). "The Kinetics of Precipitation from Supersaturated Solid Solutions".
1257:, and only the former one can be used to calculate average volume, and that the statement that ⟹R⟩ goes as 2760: 839: 228: 2925: 2775: 1795:
systems, with molecules diffusing from small droplets to large ones through the continuous phase. When a
833: 2093: 2795: 2198: 1001: 408: 437:
to the solute concentration in a solution in which the solid and the liquid phase are in equilibrium.
355: 2835: 2720: 1765: 1214: 1916: 2878: 2605: 2645: 2201:[Theory of the aging of precipitates by dissolution-reprecipitation (Ostwald ripening)]. 1824: 1672: 1066: 1876:"Redox reaction induced Ostwald ripening for size- and shape-focusing of palladium nanocrystals" 2945: 2740: 2670: 1660: 1537: 1522:
performed his own mathematical investigation of Ostwald ripening, examining both systems where
1874:
Zhang, Zhaorui; Wang, Zhenni; He, Shengnan; Wang, Chaoqi; Jin, Mingshang; Yin, Yadong (2015).
19: 2860: 2855: 2660: 2620: 1932:"A general patterning approach by manipulating the evolution of two-dimensional liquid foams" 1829: 1810:
in the atmosphere at the expense of smaller drops is also characterized as Ostwald ripening.
1772:) slowly disappear, except for a few that grow larger, at the expense of the small crystals ( 1033: 204: 809: 665: 2810: 2695: 2640: 2518: 2427: 2390: 2272: 2171: 2128: 1943: 1819: 1785: 1664: 1160: 180: 8: 2630: 1844: 1735: 1642:{\displaystyle \langle R\rangle ^{2}={\frac {64\gamma c_{\infty }v^{2}k_{s}}{81R_{g}T}}t} 1518:
Three years after that Lifshitz and Slyozov published their findings (in Russian, 1958),
2522: 2431: 2394: 2276: 2175: 2132: 1947: 2690: 2586: 2443: 2218: 2144: 1964: 1931: 1900: 1875: 1224: 1195: 1131: 1102: 789: 769: 388: 382: 264: 198: 16:
Process by which small crystals dissolve in solution for the benefit of larger crystals
1279:
outside the bounds of validity of the equation. In contexts where the actual value of
2830: 2705: 2665: 2487: 2479: 2475: 2357: 2305: 2249: 2222: 2183: 2099: 2066: 1969: 1905: 1839: 2447: 2148: 1996: 2526: 2471: 2435: 2398: 2280: 2245: 2210: 2179: 2136: 2000: 1991: 1959: 1951: 1895: 1887: 1761: 1150: 1318:
Also contained in the Lifshitz and Slyozov derivation is an equation for the size
2888: 2825: 2750: 2730: 2710: 2685: 2625: 2403: 2378: 1854: 1834: 1754: 1536:
have shown LSW theory to be robust and accurate. Even some systems that undergo
1053: 222: 112: 70: 2904: 2615: 1746: 1541: 1057: 94: 59: 2326: 2140: 1788:. The digested precipitate is generally purer, and easier to wash and filter. 2919: 2845: 2820: 2483: 2284: 2214: 1995:, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) " 63: 2004: 2805: 2790: 2680: 2650: 2491: 1973: 1909: 1796: 1723:, where the droplets in the cloudy microemulsion grow by Ostwald ripening. 1528: 1186: 1121: 258: 100: 82: 31: 27: 1712:
One example of Ostwald ripening is the re-crystallization of water within
2780: 2635: 2549: 2199:"Theorie der Alterung von NiederschlÀgen durch Umlösen (Ostwald-Reifung)" 1800: 1777: 1731: 1720: 1533: 1519: 1955: 692:, is lower around bigger particles than it is around smaller particles. 2800: 2785: 2675: 2610: 2555: 1891: 1750: 1739: 1269: 1092: 2439: 2033:[Studies on the formation and transformation of solid bodies] 2883: 1742: 1713: 1676: 1523: 867: 167:{\displaystyle \Delta \mu ={\frac {2\sigma \nu _{\mathrm {at} }}{r}}} 24: 2262: 2840: 2815: 2600: 1792: 1738:
temperature. It is often ascribed as a process in the formation of
78: 2715: 1727: 1680: 1668:
mechanism is taking place and Ostwald ripening is not occurring.
74: 2460: 2655: 1705: 440:
Combining both expressions the following equation is obtained:
2095:
Growth and Coarsening: Ostwald Ripening in Material Processing
2850: 1807: 342:{\displaystyle \mu =k_{\mathrm {B} }T\log(C_{\mathrm {eq} })} 756:{\displaystyle C_{\mathrm {eq} }(r)>C_{\mathrm {eq} }(R)} 2532:
10.1175/1520-0469(2002)059<2681:HIITSR>2.0.CO;2
2161: 1803:
compound is added to stop this process from taking place.
1700: 1527:
scientific papers were published on opposite sides of the
2236:
Kahlweit, M. (1975). "Ostwald Ripening of Precipitates".
2417: 1745:, as an alternative to the physical processes governing 77:
systems, Ostwald ripening is also found in water-in-oil
51:
Growth of bubbles in a liquid foam via Ostwald ripening.
2091: 2031:"Studien ĂŒber die Bildung und Umwandlung fester Körper" 1556: 1338: 1227: 1198: 1163: 1134: 1105: 1069: 1036: 1004: 880: 842: 812: 792: 772: 701: 668: 449: 411: 391: 358: 290: 267: 231: 207: 183: 124: 1730:, it is the textural coarsening, aging or growth of 2054: 2052: 1806:Diffusional growth of larger drops in liquid water 1850:Solubility equilibrium § Particle size effect 1780:. Ostwald ripening is also the key process in the 1641: 1507: 1233: 1204: 1176: 1140: 1111: 1082: 1042: 1016: 982: 854: 824: 798: 778: 755: 684: 651: 429: 397: 373: 341: 273: 249: 213: 189: 166: 2917: 2049: 1784:and aging of precipitates, an important step in 1544:obey LSW theory after initial stages of growth. 1272:is a separate process from growth, this places 1873: 2504: 2356:. Royal Society of Chemistry. pp. 78–79. 1734:and crystals in solid rock which is below the 1686: 2571: 2324: 1929: 2235: 1675:. In this case, Ostwald ripening causes the 1564: 1557: 1011: 1005: 907: 900: 888: 881: 2062:Encyclopedia of Surface and Colloid Science 2028: 2578: 2564: 2505:Wood, R.; Irons, S.; Jonas, P. R. (2002). 2196: 2164:Journal of Physics and Chemistry of Solids 2118: 2092:Ratke, Lorenz; Voorhees, Peter W. (2002). 1708:mixed with water grow by Ostwald ripening. 2530: 2402: 2238:Advances in Colloid and Interface Science 1963: 1899: 1297:. Another such approach is to change the 104:Cubic crystal structure (sodium chloride) 2585: 1699: 99: 37: 18: 2058: 2918: 2297: 2559: 2349: 1719:Another gastronomical example is the 662:Thus, the equilibrium concentration, 2376: 2085: 2039:Zeitschrift fĂŒr Physikalische Chemie 1695: 1026:average radius of all the particles 855:{\displaystyle t\rightarrow \infty } 250:{\displaystyle \nu _{\mathrm {at} }} 85:is found in oil-in-water emulsions. 2931:Chemical engineering thermodynamics 2552:a 3D Kinetic Monte Carlo simulation 2511:Journal of the Atmospheric Sciences 2019:, vol. 2, part 1. Leipzig, Germany. 1791:Ostwald ripening can also occur in 13: 1992:Compendium of Chemical Terminology 1590: 1075: 938: 849: 738: 735: 711: 708: 636: 619: 616: 597: 589: 580: 577: 553: 550: 529: 526: 497: 486: 483: 456: 421: 418: 365: 330: 327: 303: 241: 238: 152: 149: 125: 14: 2957: 2543: 1017:{\displaystyle \langle R\rangle } 430:{\displaystyle C_{\mathrm {eq} }} 2759: 2476:10.1111/j.1750-3841.2011.02484.x 1915: 374:{\displaystyle k_{\mathrm {B} }} 2498: 2454: 2411: 2370: 2343: 2318: 2291: 2256: 2229: 2190: 2017:Lehrbuch der Allgemeinen Chemie 2155: 2112: 2098:. Springer. pp. 117–118. 2022: 2009: 1980: 1923: 1867: 1354: 1342: 846: 806:are the particles radius, and 750: 744: 723: 717: 592: 586: 565: 559: 541: 336: 318: 1: 2298:Branen, Alfred Larry (2002). 2203:Zeitschrift fĂŒr Elektrochemie 1860: 834:Fick’s first law of diffusion 2325:Pharmatech-rx (2024-08-10). 2250:10.1016/0001-8686(75)85001-9 2184:10.1016/0022-3697(61)90054-3 2121:Journal of Materials Science 88: 58:is a phenomenon observed in 7: 2065:. CRC Press. p. 4230. 2059:Hubbard, Arthur T. (2004). 1813: 1687:Controlled Ostwald Ripening 1221: 1192: 1157: 1128: 1099: 1083:{\displaystyle c_{\infty }} 1063: 1030: 998: 10: 2962: 2796:Electrostatic precipitator 2404:10.1093/petrology/44.5.833 2304:. CRC Press. p. 724. 2897: 2869: 2836:Rotary vacuum-drum filter 2768: 2757: 2593: 1799:is desired, an extremely 1315:having a positive value. 1153:of the particle material 1124:of the particle material 1095:of the particle material 2941:Crystallographic defects 2879:Aqueous two-phase system 2701:Liquid–liquid extraction 2353:The Science of Ice Cream 2285:10.1103/PhysRevE.58.7691 2215:10.1002/bbpc.19610650704 1268:being zero; but because 2776:API oil–water separator 2646:Dissolved air flotation 2464:Journal of Food Science 2141:10.1023/A:1015388912729 2005:10.1351/goldbook.O04348 1825:Coalescence (chemistry) 1673:emulsion polymerization 1249:Note that the quantity 1043:{\displaystyle \gamma } 405:to the temperature and 214:{\displaystyle \sigma } 2741:Solid-phase extraction 1709: 1661:reaction rate constant 1643: 1538:spinodal decomposition 1509: 1311:with the initial time 1235: 1206: 1178: 1142: 1113: 1084: 1044: 1018: 984: 856: 826: 825:{\displaystyle r<R} 800: 780: 757: 686: 685:{\displaystyle C_{eq}} 653: 431: 399: 375: 343: 275: 251: 215: 191: 168: 105: 52: 35: 2861:Vacuum ceramic filter 2856:Sublimation apparatus 2661:Electrochromatography 2621:Cross-flow filtration 2350:Clark, Chris (2004). 1936:Nature Communications 1830:Coalescence (physics) 1703: 1644: 1510: 1320:distribution function 1236: 1207: 1179: 1177:{\displaystyle R_{g}} 1151:diffusion coefficient 1143: 1114: 1085: 1045: 1019: 985: 857: 827: 801: 781: 758: 687: 654: 432: 400: 376: 344: 276: 252: 216: 192: 169: 103: 50: 22: 2811:Fractionating column 2606:Acid–base extraction 2587:Separation processes 2383:Journal of Petrology 2029:Ostwald, W. (1897). 2015:Ostwald, W. (1896). 1786:gravimetric analysis 1554: 1336: 1225: 1215:absolute temperature 1196: 1161: 1132: 1103: 1067: 1034: 1002: 878: 840: 810: 790: 770: 699: 666: 447: 409: 389: 356: 288: 265: 229: 205: 190:{\displaystyle \mu } 181: 122: 23:Ostwald ripening in 2936:Colloidal chemistry 2631:Cyclonic separation 2523:2002JAtS...59.2681W 2432:2001Semic..35.1378V 2395:2003JPet...44..833M 2277:1998PhRvE..58.7691V 2197:Wagner, C. (1961). 2176:1961JPCS...19...35L 2133:2002JMatS..37.2171B 1956:10.1038/ncomms14110 1948:2017NatCo...814110H 1845:Rock microstructure 1663:of attachment with 1540:have been shown to 920: 381:corresponds to the 197:corresponds to the 2926:Physical chemistry 2691:Gravity separation 2327:"Ostwald Ripening" 1892:10.1039/C5SC01787D 1710: 1639: 1505: 1253:is different from 1231: 1202: 1187:ideal gas constant 1174: 1138: 1109: 1080: 1040: 1014: 980: 906: 852: 822: 796: 776: 753: 682: 649: 427: 395: 383:Boltzmann constant 371: 339: 271: 247: 211: 199:chemical potential 187: 164: 106: 53: 36: 2913: 2912: 2831:Rapid sand filter 2726:Recrystallization 2706:Electroextraction 2666:Electrofiltration 2517:(18): 2681–2693. 2440:10.1134/1.1427975 2426:(12): 1378–1382. 2377:Mock, A. (2003). 2363:978-0-85404-629-4 2311:978-0-8247-9343-2 2265:Physical Review E 2127:(11): 2171–2202. 2105:978-3-540-42563-2 2072:978-0-8247-0759-0 1840:Kirkendall effect 1696:Specific examples 1634: 1486: 1453: 1439: 1415: 1401: 1368: 1247: 1246: 1234:{\displaystyle t} 1205:{\displaystyle T} 1141:{\displaystyle D} 1112:{\displaystyle v} 975: 832:. Inferring from 799:{\displaystyle R} 779:{\displaystyle r} 646: 539: 502: 398:{\displaystyle T} 274:{\displaystyle r} 162: 113:Kelvin's equation 95:thermodynamically 48: 2953: 2763: 2580: 2573: 2566: 2557: 2556: 2550:Ostwald Ripening 2537: 2536: 2534: 2502: 2496: 2495: 2458: 2452: 2451: 2415: 2409: 2408: 2406: 2374: 2368: 2367: 2347: 2341: 2340: 2338: 2337: 2322: 2316: 2315: 2295: 2289: 2288: 2271:(6): 7691–7699. 2260: 2254: 2253: 2233: 2227: 2226: 2194: 2188: 2187: 2159: 2153: 2152: 2116: 2110: 2109: 2089: 2083: 2082: 2080: 2079: 2056: 2047: 2046: 2036: 2026: 2020: 2013: 2007: 1997:Ostwald ripening 1984: 1978: 1977: 1967: 1927: 1921: 1920: 1919: 1913: 1903: 1886:(9): 5197–5203. 1871: 1762:aqueous solution 1753:and growth rate 1704:Oil droplets in 1658: 1648: 1646: 1645: 1640: 1635: 1633: 1629: 1628: 1615: 1614: 1613: 1604: 1603: 1594: 1593: 1577: 1572: 1571: 1514: 1512: 1511: 1506: 1492: 1488: 1487: 1485: 1471: 1455: 1454: 1446: 1444: 1440: 1438: 1424: 1417: 1416: 1408: 1406: 1402: 1400: 1386: 1379: 1378: 1369: 1361: 1328: 1324: 1314: 1310: 1303: 1296: 1292: 1285: 1278: 1267: 1260: 1256: 1252: 1240: 1238: 1237: 1232: 1211: 1209: 1208: 1203: 1183: 1181: 1180: 1175: 1173: 1172: 1147: 1145: 1144: 1139: 1118: 1116: 1115: 1110: 1089: 1087: 1086: 1081: 1079: 1078: 1049: 1047: 1046: 1041: 1023: 1021: 1020: 1015: 996: 995: 989: 987: 986: 981: 976: 974: 970: 969: 956: 952: 951: 942: 941: 925: 919: 914: 896: 895: 861: 859: 858: 853: 831: 829: 828: 823: 805: 803: 802: 797: 785: 783: 782: 777: 762: 760: 759: 754: 743: 742: 741: 716: 715: 714: 691: 689: 688: 683: 681: 680: 658: 656: 655: 650: 648: 647: 645: 641: 640: 639: 625: 624: 623: 622: 602: 600: 585: 584: 583: 558: 557: 556: 540: 535: 534: 533: 532: 512: 507: 503: 501: 500: 491: 490: 489: 476: 461: 460: 459: 436: 434: 433: 428: 426: 425: 424: 404: 402: 401: 396: 380: 378: 377: 372: 370: 369: 368: 348: 346: 345: 340: 335: 334: 333: 308: 307: 306: 280: 278: 277: 272: 256: 254: 253: 248: 246: 245: 244: 220: 218: 217: 212: 196: 194: 193: 188: 173: 171: 170: 165: 163: 158: 157: 156: 155: 135: 56:Ostwald ripening 49: 2961: 2960: 2956: 2955: 2954: 2952: 2951: 2950: 2916: 2915: 2914: 2909: 2893: 2871: 2865: 2826:Protein skimmer 2764: 2755: 2751:Ultrafiltration 2731:Reverse osmosis 2711:Microfiltration 2686:Froth flotation 2626:Crystallization 2589: 2584: 2546: 2541: 2540: 2503: 2499: 2459: 2455: 2416: 2412: 2375: 2371: 2364: 2348: 2344: 2335: 2333: 2323: 2319: 2312: 2296: 2292: 2261: 2257: 2234: 2230: 2195: 2191: 2160: 2156: 2117: 2113: 2106: 2090: 2086: 2077: 2075: 2073: 2057: 2050: 2034: 2027: 2023: 2014: 2010: 1985: 1981: 1928: 1924: 1914: 1872: 1868: 1863: 1855:Viedma ripening 1835:Critical radius 1816: 1698: 1689: 1657: 1653: 1624: 1620: 1616: 1609: 1605: 1599: 1595: 1589: 1585: 1578: 1576: 1567: 1563: 1555: 1552: 1551: 1475: 1470: 1466: 1462: 1445: 1428: 1423: 1419: 1418: 1407: 1390: 1385: 1381: 1380: 1374: 1370: 1360: 1337: 1334: 1333: 1326: 1322: 1312: 1309: 1305: 1302: 1298: 1294: 1291: 1287: 1284: 1280: 1277: 1273: 1266: 1262: 1258: 1254: 1250: 1226: 1223: 1222: 1197: 1194: 1193: 1168: 1164: 1162: 1159: 1158: 1133: 1130: 1129: 1104: 1101: 1100: 1074: 1070: 1068: 1065: 1064: 1054:surface tension 1035: 1032: 1031: 1003: 1000: 999: 965: 961: 957: 947: 943: 937: 933: 926: 924: 915: 910: 891: 887: 879: 876: 875: 841: 838: 837: 811: 808: 807: 791: 788: 787: 771: 768: 767: 734: 733: 729: 707: 706: 702: 700: 697: 696: 673: 669: 667: 664: 663: 635: 634: 630: 626: 615: 614: 610: 603: 601: 596: 595: 576: 575: 571: 549: 548: 544: 525: 524: 520: 513: 511: 496: 492: 482: 481: 477: 475: 471: 455: 454: 450: 448: 445: 444: 417: 416: 412: 410: 407: 406: 390: 387: 386: 364: 363: 359: 357: 354: 353: 326: 325: 321: 302: 301: 297: 289: 286: 285: 266: 263: 262: 237: 236: 232: 230: 227: 226: 223:surface tension 206: 203: 202: 182: 179: 178: 148: 147: 143: 136: 134: 123: 120: 119: 91: 71:Wilhelm Ostwald 60:solid solutions 38: 17: 12: 11: 5: 2959: 2949: 2948: 2943: 2938: 2933: 2928: 2911: 2910: 2908: 2907: 2905:Unit operation 2901: 2899: 2895: 2894: 2892: 2891: 2886: 2881: 2875: 2873: 2867: 2866: 2864: 2863: 2858: 2853: 2848: 2843: 2838: 2833: 2828: 2823: 2818: 2813: 2808: 2803: 2798: 2793: 2788: 2783: 2778: 2772: 2770: 2766: 2765: 2758: 2756: 2754: 2753: 2748: 2743: 2738: 2733: 2728: 2723: 2718: 2713: 2708: 2703: 2698: 2693: 2688: 2683: 2678: 2673: 2668: 2663: 2658: 2653: 2648: 2643: 2638: 2633: 2628: 2623: 2618: 2616:Chromatography 2613: 2608: 2603: 2597: 2595: 2591: 2590: 2583: 2582: 2575: 2568: 2560: 2554: 2553: 2545: 2544:External links 2542: 2539: 2538: 2497: 2470:(1): C33–C38. 2453: 2420:Semiconductors 2410: 2389:(5): 833–849. 2369: 2362: 2342: 2317: 2310: 2301:Food Additives 2290: 2255: 2228: 2209:(7): 581–591. 2189: 2170:(1–2): 35–50. 2154: 2111: 2104: 2084: 2071: 2048: 2021: 2008: 1979: 1922: 1865: 1864: 1862: 1859: 1858: 1857: 1852: 1847: 1842: 1837: 1832: 1827: 1822: 1815: 1812: 1774:crystal growth 1764:chemistry and 1755:thermochemical 1747:crystal growth 1697: 1694: 1688: 1685: 1655: 1650: 1649: 1638: 1632: 1627: 1623: 1619: 1612: 1608: 1602: 1598: 1592: 1588: 1584: 1581: 1575: 1570: 1566: 1562: 1559: 1542:quantitatively 1516: 1515: 1504: 1501: 1498: 1495: 1491: 1484: 1481: 1478: 1474: 1469: 1465: 1461: 1458: 1452: 1449: 1443: 1437: 1434: 1431: 1427: 1422: 1414: 1411: 1405: 1399: 1396: 1393: 1389: 1384: 1377: 1373: 1367: 1364: 1359: 1356: 1353: 1350: 1347: 1344: 1341: 1307: 1300: 1289: 1282: 1275: 1264: 1245: 1244: 1241: 1230: 1219: 1218: 1212: 1201: 1190: 1189: 1184: 1171: 1167: 1155: 1154: 1148: 1137: 1126: 1125: 1119: 1108: 1097: 1096: 1090: 1077: 1073: 1061: 1060: 1058:surface energy 1050: 1039: 1028: 1027: 1024: 1013: 1010: 1007: 991: 990: 979: 973: 968: 964: 960: 955: 950: 946: 940: 936: 932: 929: 923: 918: 913: 909: 905: 902: 899: 894: 890: 886: 883: 851: 848: 845: 821: 818: 815: 795: 775: 764: 763: 752: 749: 746: 740: 737: 732: 728: 725: 722: 719: 713: 710: 705: 679: 676: 672: 660: 659: 644: 638: 633: 629: 621: 618: 613: 609: 606: 599: 594: 591: 588: 582: 579: 574: 570: 567: 564: 561: 555: 552: 547: 543: 538: 531: 528: 523: 519: 516: 510: 506: 499: 495: 488: 485: 480: 474: 470: 467: 464: 458: 453: 423: 420: 415: 394: 367: 362: 350: 349: 338: 332: 329: 324: 320: 317: 314: 311: 305: 300: 296: 293: 270: 243: 240: 235: 210: 186: 175: 174: 161: 154: 151: 146: 142: 139: 133: 130: 127: 90: 87: 15: 9: 6: 4: 3: 2: 2958: 2947: 2946:Precipitation 2944: 2942: 2939: 2937: 2934: 2932: 2929: 2927: 2924: 2923: 2921: 2906: 2903: 2902: 2900: 2896: 2890: 2887: 2885: 2882: 2880: 2877: 2876: 2874: 2868: 2862: 2859: 2857: 2854: 2852: 2849: 2847: 2846:Spinning cone 2844: 2842: 2839: 2837: 2834: 2832: 2829: 2827: 2824: 2822: 2821:Mixer-settler 2819: 2817: 2814: 2812: 2809: 2807: 2804: 2802: 2799: 2797: 2794: 2792: 2789: 2787: 2784: 2782: 2779: 2777: 2774: 2773: 2771: 2767: 2762: 2752: 2749: 2747: 2744: 2742: 2739: 2737: 2736:Sedimentation 2734: 2732: 2729: 2727: 2724: 2722: 2721:Precipitation 2719: 2717: 2714: 2712: 2709: 2707: 2704: 2702: 2699: 2697: 2694: 2692: 2689: 2687: 2684: 2682: 2679: 2677: 2674: 2672: 2669: 2667: 2664: 2662: 2659: 2657: 2654: 2652: 2649: 2647: 2644: 2642: 2639: 2637: 2634: 2632: 2629: 2627: 2624: 2622: 2619: 2617: 2614: 2612: 2609: 2607: 2604: 2602: 2599: 2598: 2596: 2592: 2588: 2581: 2576: 2574: 2569: 2567: 2562: 2561: 2558: 2551: 2548: 2547: 2533: 2528: 2524: 2520: 2516: 2512: 2508: 2501: 2493: 2489: 2485: 2481: 2477: 2473: 2469: 2465: 2457: 2449: 2445: 2441: 2437: 2433: 2429: 2425: 2421: 2414: 2405: 2400: 2396: 2392: 2388: 2384: 2380: 2373: 2365: 2359: 2355: 2354: 2346: 2332: 2328: 2321: 2313: 2307: 2303: 2302: 2294: 2286: 2282: 2278: 2274: 2270: 2266: 2259: 2251: 2247: 2243: 2239: 2232: 2224: 2220: 2216: 2212: 2208: 2204: 2200: 2193: 2185: 2181: 2177: 2173: 2169: 2165: 2158: 2150: 2146: 2142: 2138: 2134: 2130: 2126: 2122: 2115: 2107: 2101: 2097: 2096: 2088: 2074: 2068: 2064: 2063: 2055: 2053: 2044: 2040: 2032: 2025: 2018: 2012: 2006: 2002: 1998: 1994: 1993: 1988: 1983: 1975: 1971: 1966: 1961: 1957: 1953: 1949: 1945: 1941: 1937: 1933: 1926: 1918: 1911: 1907: 1902: 1897: 1893: 1889: 1885: 1881: 1877: 1870: 1866: 1856: 1853: 1851: 1848: 1846: 1843: 1841: 1838: 1836: 1833: 1831: 1828: 1826: 1823: 1821: 1818: 1817: 1811: 1809: 1804: 1802: 1798: 1794: 1789: 1787: 1783: 1779: 1775: 1771: 1767: 1763: 1758: 1757:limitations. 1756: 1752: 1748: 1744: 1741: 1737: 1733: 1729: 1724: 1722: 1717: 1715: 1707: 1702: 1693: 1684: 1682: 1678: 1674: 1669: 1666: 1662: 1636: 1630: 1625: 1621: 1617: 1610: 1606: 1600: 1596: 1586: 1582: 1579: 1573: 1568: 1560: 1550: 1549: 1548: 1545: 1543: 1539: 1535: 1530: 1525: 1521: 1502: 1499: 1496: 1493: 1489: 1482: 1479: 1476: 1472: 1467: 1463: 1459: 1456: 1450: 1447: 1441: 1435: 1432: 1429: 1425: 1420: 1412: 1409: 1403: 1397: 1394: 1391: 1387: 1382: 1375: 1371: 1365: 1362: 1357: 1351: 1348: 1345: 1339: 1332: 1331: 1330: 1321: 1316: 1271: 1242: 1228: 1220: 1216: 1213: 1199: 1191: 1188: 1185: 1169: 1165: 1156: 1152: 1149: 1135: 1127: 1123: 1120: 1106: 1098: 1094: 1091: 1071: 1062: 1059: 1055: 1051: 1037: 1029: 1025: 1008: 997: 994: 977: 971: 966: 962: 958: 953: 948: 944: 934: 930: 927: 921: 916: 911: 903: 897: 892: 884: 874: 873: 872: 869: 863: 843: 835: 819: 816: 813: 793: 773: 747: 730: 726: 720: 703: 695: 694: 693: 677: 674: 670: 642: 631: 627: 611: 607: 604: 572: 568: 562: 545: 536: 521: 517: 514: 508: 504: 493: 478: 472: 468: 465: 462: 451: 443: 442: 441: 438: 413: 392: 384: 360: 322: 315: 312: 309: 298: 294: 291: 284: 283: 282: 268: 260: 259:atomic volume 233: 224: 208: 200: 184: 159: 144: 140: 137: 131: 128: 118: 117: 116: 114: 110: 102: 98: 96: 86: 84: 80: 76: 73:in 1896. For 72: 67: 65: 61: 57: 33: 30:dissolved in 29: 28:nanoparticles 26: 21: 2806:Filter press 2791:Depth filter 2681:Flocculation 2651:Distillation 2514: 2510: 2500: 2467: 2463: 2456: 2423: 2419: 2413: 2386: 2382: 2372: 2352: 2345: 2334:. Retrieved 2330: 2320: 2300: 2293: 2268: 2264: 2258: 2241: 2237: 2231: 2206: 2202: 2192: 2167: 2163: 2157: 2124: 2120: 2114: 2094: 2087: 2076:. Retrieved 2061: 2042: 2038: 2024: 2016: 2011: 1990: 1982: 1939: 1935: 1925: 1883: 1879: 1869: 1805: 1797:miniemulsion 1790: 1778:quantum dots 1773: 1769: 1766:precipitates 1759: 1725: 1718: 1711: 1690: 1670: 1651: 1546: 1529:Iron Curtain 1517: 1317: 1248: 1122:molar volume 992: 864: 765: 661: 439: 351: 176: 111: 107: 92: 83:flocculation 68: 55: 54: 32:formaldehyde 2781:Belt filter 2746:Sublimation 2636:Decantation 2244:(1): 1–35. 1820:Aggregation 1801:hydrophobic 1732:phenocrysts 1721:ouzo effect 1534:simulations 1520:Carl Wagner 64:liquid sols 2920:Categories 2870:Multiphase 2801:Evaporator 2786:Centrifuge 2676:Filtration 2671:Extraction 2611:Adsorption 2601:Absorption 2336:2024-09-20 2331:Pharmatech 2078:2007-11-13 2045:: 289–330. 1861:References 1751:nucleation 1743:megacrysts 1740:orthoclase 1270:nucleation 1261:relies on 1093:solubility 2884:Azeotrope 2594:Processes 2484:1750-3841 2223:178975941 1942:: 14110. 1880:Chem. Sci 1782:digestion 1714:ice cream 1677:diffusion 1591:∞ 1583:γ 1565:⟩ 1558:⟨ 1524:diffusion 1497:ρ 1483:ρ 1480:− 1468:− 1460:⁡ 1436:ρ 1433:− 1398:ρ 1372:ρ 1076:∞ 1052:particle 1038:γ 1012:⟩ 1006:⟨ 939:∞ 931:γ 908:⟩ 901:⟨ 898:− 889:⟩ 882:⟨ 868:diffusion 850:∞ 847:→ 612:ν 608:σ 590:∞ 542:→ 522:ν 518:σ 498:∞ 469:⁡ 316:⁡ 292:μ 234:ν 209:σ 185:μ 145:ν 141:σ 129:μ 126:Δ 89:Mechanism 79:emulsions 75:colloidal 25:palladium 2898:Concepts 2889:Eutectic 2841:Scrubber 2816:Leachate 2696:Leaching 2641:Dialysis 2492:22133014 2448:93899315 2149:12733546 1974:28134337 1910:29449925 1814:See also 1793:emulsion 1681:monomers 81:, while 2872:systems 2769:Devices 2716:Osmosis 2519:Bibcode 2428:Bibcode 2391:Bibcode 2273:Bibcode 2172:Bibcode 2129:Bibcode 1965:5290267 1944:Bibcode 1901:5669216 1736:solidus 1728:geology 1659:is the 1323:f(R, t) 257:to the 221:to the 2656:Drying 2490:  2482:  2446:  2360:  2308:  2221:  2147:  2102:  2069:  1972:  1962:  1908:  1898:  1808:clouds 1770:nuclei 1706:pastis 1652:where 1327:R(⟹R⟩) 1243:time. 993:where 766:where 352:where 177:where 2851:Still 2444:S2CID 2219:S2CID 2145:S2CID 2035:(PDF) 1987:IUPAC 1749:from 1665:units 93:This 2488:PMID 2480:ISSN 2358:ISBN 2306:ISBN 2100:ISBN 2067:ISBN 1970:PMID 1906:PMID 1500:< 1293:and 1217:and 817:< 786:and 727:> 261:and 62:and 2527:doi 2472:doi 2436:doi 2399:doi 2281:doi 2246:doi 2211:doi 2180:doi 2137:doi 2001:doi 1999:". 1960:PMC 1952:doi 1896:PMC 1888:doi 1760:In 1726:In 1679:of 1503:1.5 1477:1.5 1473:1.5 1457:exp 1430:1.5 1426:1.5 1306:⟹R⟩ 1304:to 1299:⟹R⟩ 1288:⟹R⟩ 1281:⟹R⟩ 1274:⟹R⟩ 1263:⟹R⟩ 1255:⟹R⟩ 1251:⟹R⟩ 1056:or 466:log 313:log 2922:: 2525:. 2515:59 2513:. 2509:. 2486:. 2478:. 2468:77 2466:. 2442:. 2434:. 2424:35 2422:. 2397:. 2387:44 2385:. 2381:. 2329:. 2279:. 2269:58 2267:. 2240:. 2217:. 2207:65 2205:. 2178:. 2168:19 2166:. 2143:. 2135:. 2125:37 2123:. 2051:^ 2043:22 2041:. 2037:. 1989:, 1968:. 1958:. 1950:. 1938:. 1934:. 1904:. 1894:. 1882:. 1878:. 1618:81 1580:64 1448:11 1329:. 385:, 225:, 201:, 2579:e 2572:t 2565:v 2535:. 2529:: 2521:: 2494:. 2474:: 2450:. 2438:: 2430:: 2407:. 2401:: 2393:: 2366:. 2339:. 2314:. 2287:. 2283:: 2275:: 2252:. 2248:: 2242:5 2225:. 2213:: 2186:. 2182:: 2174:: 2151:. 2139:: 2131:: 2108:. 2081:. 2003:: 1976:. 1954:: 1946:: 1940:8 1912:. 1890:: 1884:6 1656:s 1654:k 1637:t 1631:T 1626:g 1622:R 1611:s 1607:k 1601:2 1597:v 1587:c 1574:= 1569:2 1561:R 1494:, 1490:) 1464:( 1451:3 1442:) 1421:( 1413:3 1410:7 1404:) 1395:+ 1392:3 1388:3 1383:( 1376:2 1366:9 1363:4 1358:= 1355:) 1352:t 1349:, 1346:R 1343:( 1340:f 1313:i 1308:i 1301:0 1295:t 1290:0 1283:0 1276:0 1265:0 1259:t 1229:t 1200:T 1170:g 1166:R 1136:D 1107:v 1072:c 1009:R 978:t 972:T 967:g 963:R 959:9 954:D 949:2 945:v 935:c 928:8 922:= 917:3 912:0 904:R 893:3 885:R 844:t 820:R 814:r 794:R 774:r 751:) 748:R 745:( 739:q 736:e 731:C 724:) 721:r 718:( 712:q 709:e 704:C 678:q 675:e 671:C 643:T 637:B 632:k 628:r 620:t 617:a 605:2 598:e 593:) 587:( 581:q 578:e 573:C 569:= 566:) 563:r 560:( 554:q 551:e 546:C 537:r 530:t 527:a 515:2 509:= 505:) 494:C 487:q 484:e 479:C 473:( 463:T 457:B 452:k 422:q 419:e 414:C 393:T 366:B 361:k 337:) 331:q 328:e 323:C 319:( 310:T 304:B 299:k 295:= 269:r 242:t 239:a 160:r 153:t 150:a 138:2 132:=

Index


palladium
nanoparticles
formaldehyde
solid solutions
liquid sols
Wilhelm Ostwald
colloidal
emulsions
flocculation
thermodynamically

Kelvin's equation
chemical potential
surface tension
atomic volume
Boltzmann constant
Fick’s first law of diffusion
diffusion
surface tension
surface energy
solubility
molar volume
diffusion coefficient
ideal gas constant
absolute temperature
nucleation
distribution function
Carl Wagner
diffusion

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑