Knowledge

Optokinetic response

Source đź“ť

121:
responses, with stimuli moving in the nasal-to-temporal direction resulting in larger responses than stimuli moving in the temporal-to-nasal direction. In humans, this asymmetry is seen only in infants, and monocular OKR becomes symmetric by six months of age because of cortical development. In several species, OKR is also more reliably evoked by upward motion than by downward motion. Both vertical and horizontal asymmetries are often attributed to functional adaptations that reflect common natural scene statistics associated with forward terrestrial locomotion.
107:
instructed to track the moving stimuli). Fast nystagmus is the second constituent eye movement in OKR. It consists of a rapid, resetting saccade in the opposite direction of the slow nystagmus (i.e., opposite to the stimulus motion). The purpose of the fast nystagmus is to keep the eye centered in the orbit, while the purpose of the slow nystagmus is to stabilize the moving visual scene on the retina.
180:
nuclei of the AOS: the nucleus of the optic tract (NOT), the lateral terminal nucleus (LTN), and the medial terminal nucleus (MTN). These nuclei are targeted by oDSGCs that prefer nasal, downward, and upward image motion, respectively. Recurrent inhibitory connections exist between these AOS nuclei,
120:
move in response to image motion, whereas in mammals and several other species the entire eye moves together. In addition, OKR patterns vary across species according to whether stimuli are presented monocularly or binocularly: in most species monocular presentation of stimuli results in asymmetric
106:
eye movements, it is distinct; several species that do not exhibit smooth pursuit nonetheless have slow nystagmus during OKR (though in humans, it is possible to substitute slow nystagmus for smooth pursuit during a version of OKR referred to as "look nystagmus", in which subjects are specifically
92:
is a common clinic tool used for this purpose. The drum most commonly contains sinusoidal or square-wave stripes that move across the subject's field of view to elicit strong optokinetic eye movements. However, nearly any moving texture evokes OKR in mammals. Outside of laboratory settings, OKR is
70:
that would otherwise occur when an animal moves its head or navigates through its environment. This is achieved by the reflexive movement of the eyes in the same direction as image motion, so as to minimize the relative motion of the visual scene on the eye. OKR is best evoked by slow, rotational
240:
In neurobiology, the isolation of the AOS from other visual pathways, its clear connection to a behavioral readout in the form of OKR, and its conservation across species make it an attractive model system to study. The AOS has been used to understand molecular mechanisms of synapse formation,
115:
OKR is one of the best preserved behaviors in the animal kingdom. It has been identified in insects, invertebrates, reptiles, amphibians, birds, fish, and all mammals. There are subtle differences in how OKR plays out across species. For instance, in fruit flies, individual segments of the
145:
known as ON direction selective retinal ganglion cells (oDSGCs). These cells respond selectively to motion in one of three cardinal directions (upward, downward, or nasal motion), and inherit their direction selectivity at least partially from asymmetric inhibition from
101:
When viewing constant, unidirectional motion, OKR consists of a stereotyped "sawtooth" waveform that represents two types of eye movements. During slow nystagmus, the eyes smoothly follow the direction of the stimulus. Though slow nystagmus closely resembles
181:
further suggesting a subtraction of signals between different oDSGC types. There are only modest connections between these nuclei and the cortex. The activity of neurons in the AOS nuclei are well-correlated with the velocity of the OKR slow phase.
154:
inhibition produces a speed tuning preference for slow stimulus motion in oDSGCs, which has been used to explain the analogous slow tuning of OKR. In some species, oDSGCs constitute the displaced ganglion cells, whose cell bodies reside in the
159:
of the retina. oDSGCs that respond to different directions of motion have slightly different response properties that are also reflected in OKR behavior, and it is thought that a linear subtraction of oDSGC
241:
feature tuning and direction selectivity in the retina, neural circuit development, axon targeting, plasticity mechanisms, and computational strategies for integrating primary sensory information.
189:
The projection neurons of the NOT, LTN, and MTN converge on the oculomotor plant in the brainstem, where their activity is integrated to drive the eye movements. This occurs through Cranial Nerves
761:
Wang, Anna Y. M.; Kulkarni, Manoj M.; McLaughlin, Amanda J.; Gayet, Jacqueline; Smith, Benjamin E.; Hauptschein, Max; McHugh, Cyrus F.; Yao, Yvette Y.; Puthussery, Teresa (2023-10-25).
31: 1372:
Al-Khindi, Timour; Sherman, Michael B.; Kodama, Takashi; Gopal, Preethi; Pan, Zhiwei; Kiraly, James K.; Zhang, Hao; Goff, Loyal A.; du Lac, Sascha; Kolodkin, Alex L. (October 2022).
1315:
Lilley, Brendan N.; Sabbah, Shai; Hunyara, John L.; Gribble, Katherine D.; Al-Khindi, Timour; Xiong, Jiali; Wu, Zhuhao; Berson, David M.; Kolodkin, Alex L. (January 2019).
662:
Giolli, Roland A.; Blanks, Robert H.I.; Lui, Fausta (2006), "The accessory optic system: Basic organization with an update on connectivity, neurochemistry, and function",
221:
The reflexive nature of OKR has made it a popular method for objectively measuring vision in many contexts. OKR-based tests have been developed to objectively assess
233:
and more. Changes to the stereotypical OKR waveform can also be a biomarker of disease, including stroke, concussion, drug or alcohol intoxication, and
436:
Fenk, Lisa M.; Avritzer, Sofia C.; Weisman, Jazz L.; Nair, Aditya; Randt, Lucas D.; Mohren, Thomas L.; Siwanowicz, Igor; Maimon, Gaby (2022-12-01).
1248:
Yonehara, Keisuke; Shintani, Takafumi; Suzuki, Ryoko; Sakuta, Hiraki; Takeuchi, Yasushi; Nakamura-Yonehara, Kayo; Noda, Masaharu (2008-02-06).
1317:"Genetic access to neurons in the accessory optic system reveals a role for Sema6A in midbrain circuitry mediating motion perception" 1250:"Expression of SPIG1 Reveals Development of a Retinal Ganglion Cell Subtype Projecting to the Medial Terminal Nucleus in the Mouse" 71:
motion, and operates in coordination with several complementary reflexes that also support image stabilization, including the
1232: 681: 17: 176:
do not target common visual structures. Instead, they are likely the only retinal ganglion cell type to innervate the three
600:
Harris, Scott C; Dunn, Felice A (2023-03-17). Meister, Markus; Moore, Tirin; Meister, Markus; Yonehara, Keisuke (eds.).
209:
Potentiation of the OKR slow phase is known to occur after long periods of continuous stimulation. These mechanisms are
1374:"The transcription factor Tbx5 regulates direction-selective retinal ganglion cell development and image stabilization" 1524: 877:"Simulated Saccadic Stimuli Suppress ON-Type Direction-Selective Retinal Ganglion Cells via Glycinergic Inhibition" 377:
Masseck, Olivia Andrea; Hoffmann, Klaus-Peter (May 2009). "Comparative Neurobiology of the Optokinetic Reflex".
1688: 1840: 503:"Directional effect of inactivation of the nucleus of the optic tract on optokinetic nystagmus in the cat" 237:. OKR is also commonly used in basic science as an objective measure of acuity in animal disease models. 93:
strongly evoked by natural image motion, including when looking out the side window of a moving vehicle.
281: 1780: 1735: 328: 602:"Asymmetric retinal direction tuning predicts optokinetic eye movements across stimulus conditions" 329:"Horizontal and Vertical Look and Stare Optokinetic Nystagmus Symmetry in Healthy Adult Volunteers" 1833: 1573: 147: 72: 998: 1861: 1608: 1549: 999:"Direction-selective retinal ganglion cells and control of optokinetic nystagmus in the rabbit" 250: 327:
Knapp, Christopher M.; Gottlob, Irene; McLean, Rebecca J.; Proudlock, Frank A. (2008-02-01).
255: 142: 1577: 1554: 1517: 1442: 1385: 1261: 1171: 1049: 945: 774: 449: 386: 1431:"Distinct inhibitory pathways control velocity and directional tuning in the mouse retina" 934:"Distinct inhibitory pathways control velocity and directional tuning in the mouse retina" 8: 1813: 1755: 1663: 1569: 844: 827: 156: 59: 1446: 1389: 1265: 1175: 1053: 949: 803: 778: 636: 601: 478: 453: 437: 390: 297: 1770: 1765: 1714: 1658: 1645: 1471: 1430: 1406: 1373: 1349: 1316: 1292: 1249: 1200: 1159: 1135: 1102: 1078: 974: 933: 909: 738: 705: 418: 673: 519: 502: 1828: 1730: 1628: 1582: 1476: 1458: 1411: 1354: 1336: 1297: 1279: 1228: 1205: 1187: 1140: 1122: 1083: 1065: 1018: 1014: 979: 961: 914: 896: 857: 849: 808: 790: 743: 725: 687: 677: 641: 623: 579: 571: 532: 524: 483: 465: 410: 402: 398: 356: 348: 309: 301: 129:
OKR is driven by a dedicated visual pathway called the accessory optic system (AOS).
1497: 552:"Comparison of Vertical and Horizontal Optokinetic Nystagmus in the Squirrel Monkey" 422: 1823: 1798: 1709: 1693: 1466: 1450: 1401: 1393: 1344: 1328: 1287: 1269: 1195: 1179: 1158:
Taore, Aryaman; Lobo, Gabriel; Turnbull, Philip R.; Dakin, Steven C. (2022-05-11).
1130: 1114: 1073: 1057: 1010: 969: 953: 904: 892: 888: 839: 798: 782: 733: 721: 717: 669: 631: 613: 563: 514: 473: 457: 394: 340: 293: 190: 161: 89: 1866: 1803: 1740: 1678: 1623: 1559: 1510: 1274: 1227:. Contemporary neurology series (5th ed.). Oxford: Oxford university press. 551: 194: 88:
OKR is typically evoked by presenting full field visual motion to a subject. The
1745: 1683: 1673: 1633: 1613: 1592: 1564: 1541: 1183: 1061: 876: 786: 461: 198: 103: 1454: 1397: 1101:
Doustkouhi, Soheil M.; Turnbull, Philip R. K.; Dakin, Steven C. (2020-02-21).
1036:
Doustkouhi, Soheil M.; Turnbull, Philip R. K.; Dakin, Steven C. (2020-11-18).
957: 1855: 1750: 1653: 1603: 1462: 1340: 1283: 1191: 1126: 1069: 965: 900: 853: 794: 729: 627: 575: 528: 469: 406: 352: 305: 222: 663: 1480: 1415: 1358: 1301: 1209: 1144: 1087: 983: 918: 861: 812: 691: 645: 536: 487: 414: 360: 234: 226: 117: 27:
Reflexive movement of eyes in the direction of motion to reduce motion blur
1022: 747: 313: 1668: 875:
Sivyer, Benjamin; Tomlinson, Alexander; Taylor, W. Rowland (2019-05-29).
668:, Progress in Brain Research, vol. 151, Elsevier, pp. 407–440, 344: 213:-dependent, and may be associated with corresponding changes to the VOR. 63: 1118: 618: 583: 438:"Muscles that move the retina augment compound eye vision in Drosophila" 30: 1760: 230: 210: 1332: 567: 1103:"The Effect of Simulated Visual Field Loss on Optokinetic Nystagmus" 997:
Oyster, Clyde W.; Takahashi, Ellen; Collewijn, Han (February 1972).
1808: 177: 151: 828:"Neural Mechanisms of Motion Processing in the Mammalian Retina" 763:"An ON-type direction-selective ganglion cell in primate retina" 1533: 260: 138: 67: 1247: 1502: 1371: 760: 326: 173: 1314: 1160:"Diagnosis of colour vision deficits using eye movements" 1038:"The effect of refractive error on optokinetic nystagmus" 501:
Hoffmann, Klaus-Peter; Fischer, Wolfgang H (2001-11-01).
1037: 996: 762: 1100: 1035: 435: 1157: 874: 706:"The analysis of image motion by the rabbit retina" 216: 1429:Summers, Mathew T.; Feller, Marla B. (May 2022). 932:Summers, Mathew T.; Feller, Marla B. (May 2022). 549: 164:may predict the magnitude of the OKR slow phase. 58:), is a compensatory reflex that supports visual 1853: 333:Investigative Ophthalmology & Visual Science 661: 500: 376: 550:Takahashi, Masahiro; Igarashi, Makoto (1977). 1518: 1428: 1107:Translational Vision Science & Technology 931: 1525: 1511: 599: 379:Annals of the New York Academy of Sciences 1470: 1405: 1348: 1291: 1273: 1199: 1134: 1077: 973: 908: 843: 802: 737: 635: 617: 518: 477: 201:, and their associated brainstem nuclei. 78: 1222: 96: 29: 279: 14: 1854: 1223:Leigh, R. John; Zee, David S. (2015). 703: 110: 1506: 665:Neuroanatomy of the Oculomotor System 845:10.1146/annurev-vision-091517-034048 657: 655: 595: 593: 372: 370: 124: 825: 298:10.1146/annurev.ne.07.030184.000305 184: 62:. The purpose of OKR is to prevent 24: 25: 1878: 1491: 652: 590: 367: 34:Horizontal optokinetic nystagmus. 1321:Journal of Comparative Neurology 399:10.1111/j.1749-6632.2009.03854.x 83: 1422: 1365: 1308: 1241: 1216: 1151: 1094: 1029: 990: 925: 868: 832:Annual Review of Vision Science 819: 754: 704:Oyster, C. W. (December 1968). 217:Scientific and medical interest 1225:The neurology of eye movements 893:10.1523/JNEUROSCI.3066-18.2019 722:10.1113/jphysiol.1968.sp008671 697: 543: 494: 429: 320: 273: 13: 1: 1841:Symmetrical tonic neck reflex 1498:Optokinetic nystagmus testing 674:10.1016/s0079-6123(05)51013-6 520:10.1016/S0042-6989(01)00184-5 286:Annual Review of Neuroscience 266: 204: 1532: 1275:10.1371/journal.pone.0001533 1015:10.1016/0042-6989(72)90110-1 282:"The Accessory Optic System" 141:with a specialized class of 7: 280:Simpson, J I (March 1984). 244: 167: 46:), also referred to as the 10: 1883: 1184:10.1038/s41598-022-11152-5 1062:10.1038/s41598-020-76865-x 787:10.1038/s41586-023-06659-4 462:10.1038/s41586-022-05317-5 1791: 1723: 1702: 1644: 1591: 1540: 1455:10.1016/j.cub.2022.03.054 1398:10.1016/j.cub.2022.07.064 958:10.1016/j.cub.2022.03.054 710:The Journal of Physiology 132: 148:starburst amacrine cells 1834:Crossed extensor reflex 1583:Pharyngeal (gag) reflex 1574:Vestibulo-ocular reflex 881:Journal of Neuroscience 826:Wei, Wei (2018-09-15). 73:vestibulo-ocular reflex 1609:Brachioradialis reflex 1550:Pupillary light reflex 137:The AOS begins in the 79:Characteristics of OKR 35: 1781:Churchill–Cope reflex 1736:Bezold–Jarisch reflex 143:retinal ganglion cell 97:Eye movement patterns 52:optokinetic nystagmus 33: 18:Optokinetic nystagmus 1703:Superficial reflexes 1578:Oculocephalic reflex 1555:Accommodation reflex 1441:(10): 2130–2143.e3. 1384:(19): 4286–4298.e5. 944:(10): 2130–2143.e3. 345:10.1167/iovs.07-0773 48:optokinetic response 1814:Golgi tendon reflex 1756:Oculocardiac reflex 1570:Caloric reflex test 1447:2022CBio...32E2130S 1390:2022CBio...32E4286A 1266:2008PLoSO...3.1533Y 1176:2022NatSR..12.7734T 1119:10.1167/tvst.9.3.25 1054:2020NatSR..1020062D 950:2022CBio...32E2130S 779:2023Natur.623..381W 619:10.7554/eLife.81780 454:2022Natur.612..116F 391:2009NYASA1164..430M 157:inner nuclear layer 111:Comparative biology 60:image stabilization 1771:Reflex tachycardia 1766:Reflex bradycardia 1715:Cremasteric reflex 1646:Primitive reflexes 1164:Scientific Reports 1042:Scientific Reports 40:optokinetic reflex 36: 1849: 1848: 1829:Withdrawal reflex 1731:Bainbridge reflex 1629:Ankle jerk reflex 1333:10.1002/cne.24507 1234:978-0-19-996928-9 887:(22): 4312–4322. 773:(7986): 381–386. 683:978-0-444-51696-1 568:10.1159/000275374 513:(25): 3389–3398. 448:(7938): 116–122. 125:Neural mechanisms 16:(Redirected from 1874: 1824:Startle response 1799:List of reflexes 1710:Abdominal reflex 1593:Stretch reflexes 1527: 1520: 1513: 1504: 1503: 1485: 1484: 1474: 1426: 1420: 1419: 1409: 1369: 1363: 1362: 1352: 1312: 1306: 1305: 1295: 1277: 1245: 1239: 1238: 1220: 1214: 1213: 1203: 1155: 1149: 1148: 1138: 1098: 1092: 1091: 1081: 1033: 1027: 1026: 994: 988: 987: 977: 929: 923: 922: 912: 872: 866: 865: 847: 823: 817: 816: 806: 758: 752: 751: 741: 701: 695: 694: 659: 650: 649: 639: 621: 597: 588: 587: 547: 541: 540: 522: 498: 492: 491: 481: 433: 427: 426: 374: 365: 364: 324: 318: 317: 277: 185:Oculomotor plant 90:optokinetic drum 21: 1882: 1881: 1877: 1876: 1875: 1873: 1872: 1871: 1852: 1851: 1850: 1845: 1804:Acoustic reflex 1787: 1741:Coronary reflex 1719: 1698: 1640: 1624:Patellar reflex 1587: 1560:Jaw jerk reflex 1536: 1531: 1494: 1489: 1488: 1435:Current Biology 1427: 1423: 1378:Current Biology 1370: 1366: 1313: 1309: 1246: 1242: 1235: 1221: 1217: 1156: 1152: 1099: 1095: 1034: 1030: 1003:Vision Research 995: 991: 938:Current Biology 930: 926: 873: 869: 824: 820: 759: 755: 702: 698: 684: 660: 653: 598: 591: 548: 544: 507:Vision Research 499: 495: 434: 430: 375: 368: 325: 321: 278: 274: 269: 247: 219: 207: 187: 170: 135: 127: 113: 99: 86: 81: 28: 23: 22: 15: 12: 11: 5: 1880: 1870: 1869: 1864: 1847: 1846: 1844: 1843: 1838: 1837: 1836: 1826: 1821: 1816: 1811: 1806: 1801: 1795: 1793: 1789: 1788: 1786: 1785: 1784: 1783: 1775: 1774: 1773: 1768: 1758: 1753: 1748: 1746:Cushing reflex 1743: 1738: 1733: 1727: 1725: 1724:Cardiovascular 1721: 1720: 1718: 1717: 1712: 1706: 1704: 1700: 1699: 1697: 1696: 1691: 1686: 1681: 1676: 1671: 1666: 1661: 1656: 1650: 1648: 1642: 1641: 1639: 1638: 1637: 1636: 1634:Plantar reflex 1631: 1626: 1618: 1617: 1616: 1614:Triceps reflex 1611: 1606: 1597: 1595: 1589: 1588: 1586: 1585: 1580: 1567: 1565:Corneal reflex 1562: 1557: 1552: 1546: 1544: 1538: 1537: 1530: 1529: 1522: 1515: 1507: 1501: 1500: 1493: 1492:External links 1490: 1487: 1486: 1421: 1364: 1327:(1): 282–296. 1307: 1240: 1233: 1215: 1150: 1093: 1028: 1009:(2): 183–193. 989: 924: 867: 838:(1): 165–192. 818: 753: 716:(3): 613–635. 696: 682: 651: 589: 562:(6): 321–329. 542: 493: 428: 385:(1): 430–439. 366: 339:(2): 581–588. 319: 271: 270: 268: 265: 264: 263: 258: 253: 246: 243: 218: 215: 206: 203: 186: 183: 169: 166: 134: 131: 126: 123: 112: 109: 104:smooth pursuit 98: 95: 85: 82: 80: 77: 26: 9: 6: 4: 3: 2: 1879: 1868: 1865: 1863: 1862:Visual system 1860: 1859: 1857: 1842: 1839: 1835: 1832: 1831: 1830: 1827: 1825: 1822: 1820: 1817: 1815: 1812: 1810: 1807: 1805: 1802: 1800: 1797: 1796: 1794: 1790: 1782: 1779: 1778: 1776: 1772: 1769: 1767: 1764: 1763: 1762: 1759: 1757: 1754: 1752: 1751:Diving reflex 1749: 1747: 1744: 1742: 1739: 1737: 1734: 1732: 1729: 1728: 1726: 1722: 1716: 1713: 1711: 1708: 1707: 1705: 1701: 1695: 1692: 1690: 1687: 1685: 1682: 1680: 1677: 1675: 1672: 1670: 1667: 1665: 1662: 1660: 1657: 1655: 1652: 1651: 1649: 1647: 1643: 1635: 1632: 1630: 1627: 1625: 1622: 1621: 1619: 1615: 1612: 1610: 1607: 1605: 1604:Biceps reflex 1602: 1601: 1599: 1598: 1596: 1594: 1590: 1584: 1581: 1579: 1575: 1571: 1568: 1566: 1563: 1561: 1558: 1556: 1553: 1551: 1548: 1547: 1545: 1543: 1542:Cranial nerve 1539: 1535: 1528: 1523: 1521: 1516: 1514: 1509: 1508: 1505: 1499: 1496: 1495: 1482: 1478: 1473: 1468: 1464: 1460: 1456: 1452: 1448: 1444: 1440: 1436: 1432: 1425: 1417: 1413: 1408: 1403: 1399: 1395: 1391: 1387: 1383: 1379: 1375: 1368: 1360: 1356: 1351: 1346: 1342: 1338: 1334: 1330: 1326: 1322: 1318: 1311: 1303: 1299: 1294: 1289: 1285: 1281: 1276: 1271: 1267: 1263: 1259: 1255: 1251: 1244: 1236: 1230: 1226: 1219: 1211: 1207: 1202: 1197: 1193: 1189: 1185: 1181: 1177: 1173: 1169: 1165: 1161: 1154: 1146: 1142: 1137: 1132: 1128: 1124: 1120: 1116: 1112: 1108: 1104: 1097: 1089: 1085: 1080: 1075: 1071: 1067: 1063: 1059: 1055: 1051: 1047: 1043: 1039: 1032: 1024: 1020: 1016: 1012: 1008: 1004: 1000: 993: 985: 981: 976: 971: 967: 963: 959: 955: 951: 947: 943: 939: 935: 928: 920: 916: 911: 906: 902: 898: 894: 890: 886: 882: 878: 871: 863: 859: 855: 851: 846: 841: 837: 833: 829: 822: 814: 810: 805: 800: 796: 792: 788: 784: 780: 776: 772: 768: 764: 757: 749: 745: 740: 735: 731: 727: 723: 719: 715: 711: 707: 700: 693: 689: 685: 679: 675: 671: 667: 666: 658: 656: 647: 643: 638: 633: 629: 625: 620: 615: 611: 607: 603: 596: 594: 585: 581: 577: 573: 569: 565: 561: 557: 553: 546: 538: 534: 530: 526: 521: 516: 512: 508: 504: 497: 489: 485: 480: 475: 471: 467: 463: 459: 455: 451: 447: 443: 439: 432: 424: 420: 416: 412: 408: 404: 400: 396: 392: 388: 384: 380: 373: 371: 362: 358: 354: 350: 346: 342: 338: 334: 330: 323: 315: 311: 307: 303: 299: 295: 291: 287: 283: 276: 272: 262: 259: 257: 254: 252: 249: 248: 242: 238: 236: 232: 228: 224: 223:visual acuity 214: 212: 202: 200: 196: 192: 182: 179: 175: 165: 163: 158: 153: 149: 144: 140: 130: 122: 119: 108: 105: 94: 91: 84:Eliciting OKR 76: 74: 69: 65: 61: 57: 53: 49: 45: 41: 32: 19: 1818: 1777:Respiratory 1438: 1434: 1424: 1381: 1377: 1367: 1324: 1320: 1310: 1260:(2): e1533. 1257: 1253: 1243: 1224: 1218: 1167: 1163: 1153: 1110: 1106: 1096: 1048:(1): 20062. 1045: 1041: 1031: 1006: 1002: 992: 941: 937: 927: 884: 880: 870: 835: 831: 821: 770: 766: 756: 713: 709: 699: 664: 609: 605: 559: 555: 545: 510: 506: 496: 445: 441: 431: 382: 378: 336: 332: 322: 292:(1): 13–41. 289: 285: 275: 251:Eye movement 239: 235:parkinsonism 227:color vision 220: 208: 188: 171: 136: 128: 118:compound eye 114: 100: 87: 55: 51: 47: 43: 39: 37: 1819:Optokinetic 1659:Gastrocolic 1170:(1): 7734. 152:Glycinergic 64:motion blur 1856:Categories 1761:Baroreflex 1689:Tonic neck 612:: e81780. 267:References 231:stereopsis 211:cerebellar 205:Plasticity 1694:Parachute 1463:0960-9822 1341:0021-9967 1284:1932-6203 1192:2045-2322 1127:2164-2591 1113:(3): 25. 1070:2045-2322 966:0960-9822 901:0270-6474 854:2374-4642 795:0028-0836 730:0022-3751 628:2050-084X 576:1423-0275 529:0042-6989 470:0028-0836 407:0077-8923 353:1552-5783 306:0147-006X 256:Nystagmus 1809:H-reflex 1679:Stepping 1534:Reflexes 1481:35395192 1416:35998637 1359:30076594 1302:18253481 1254:PLOS ONE 1210:35562176 1145:32742755 1088:33208790 984:35395192 919:30926751 862:30095374 813:37880369 804:10632142 692:16221596 646:36930180 637:10023158 537:11718781 488:36289333 479:10103069 423:34185107 415:19645943 361:18235002 245:See also 178:midbrain 168:Midbrain 1684:Sucking 1674:Rooting 1472:9133153 1443:Bibcode 1407:9560999 1386:Bibcode 1350:6312510 1293:2217595 1262:Bibcode 1201:9095692 1172:Bibcode 1136:7354858 1079:7676235 1050:Bibcode 1023:5033683 975:9133153 946:Bibcode 910:6538852 775:Bibcode 748:5710424 739:1365363 450:Bibcode 387:Bibcode 314:6370078 75:(VOR). 66:on the 1867:Vision 1654:Galant 1479:  1469:  1461:  1414:  1404:  1357:  1347:  1339:  1300:  1290:  1282:  1231:  1208:  1198:  1190:  1143:  1133:  1125:  1086:  1076:  1068:  1021:  982:  972:  964:  917:  907:  899:  860:  852:  811:  801:  793:  767:Nature 746:  736:  728:  690:  680:  644:  634:  626:  582:  574:  535:  527:  486:  476:  468:  442:Nature 421:  413:  405:  359:  351:  312:  304:  261:Reflex 197:, and 172:oDSGC 162:spikes 139:retina 133:Retina 68:retina 1792:Other 1664:Grasp 606:eLife 584:97609 419:S2CID 174:axons 50:, or 1669:Moro 1620:Leg 1600:Arm 1477:PMID 1459:ISSN 1412:PMID 1355:PMID 1337:ISSN 1298:PMID 1280:ISSN 1229:ISBN 1206:PMID 1188:ISSN 1141:PMID 1123:ISSN 1084:PMID 1066:ISSN 1019:PMID 980:PMID 962:ISSN 915:PMID 897:ISSN 858:PMID 850:ISSN 809:PMID 791:ISSN 744:PMID 726:ISSN 688:PMID 678:ISBN 642:PMID 624:ISSN 580:PMID 572:ISSN 533:PMID 525:ISSN 484:PMID 466:ISSN 411:PMID 403:ISSN 383:1164 357:PMID 349:ISSN 310:PMID 302:ISSN 38:The 1467:PMC 1451:doi 1402:PMC 1394:doi 1345:PMC 1329:doi 1325:527 1288:PMC 1270:doi 1196:PMC 1180:doi 1131:PMC 1115:doi 1074:PMC 1058:doi 1011:doi 970:PMC 954:doi 905:PMC 889:doi 840:doi 799:PMC 783:doi 771:623 734:PMC 718:doi 714:199 670:doi 632:PMC 614:doi 564:doi 556:ORL 515:doi 474:PMC 458:doi 446:612 395:doi 341:doi 294:doi 191:III 56:OKN 44:OKR 1858:: 1475:. 1465:. 1457:. 1449:. 1439:32 1437:. 1433:. 1410:. 1400:. 1392:. 1382:32 1380:. 1376:. 1353:. 1343:. 1335:. 1323:. 1319:. 1296:. 1286:. 1278:. 1268:. 1256:. 1252:. 1204:. 1194:. 1186:. 1178:. 1168:12 1166:. 1162:. 1139:. 1129:. 1121:. 1109:. 1105:. 1082:. 1072:. 1064:. 1056:. 1046:10 1044:. 1040:. 1017:. 1007:12 1005:. 1001:. 978:. 968:. 960:. 952:. 942:32 940:. 936:. 913:. 903:. 895:. 885:39 883:. 879:. 856:. 848:. 834:. 830:. 807:. 797:. 789:. 781:. 769:. 765:. 742:. 732:. 724:. 712:. 708:. 686:, 676:, 654:^ 640:. 630:. 622:. 610:12 608:. 604:. 592:^ 578:. 570:. 560:39 558:. 554:. 531:. 523:. 511:41 509:. 505:. 482:. 472:. 464:. 456:. 444:. 440:. 417:. 409:. 401:. 393:. 381:. 369:^ 355:. 347:. 337:49 335:. 331:. 308:. 300:. 288:. 284:. 229:, 225:, 199:VI 195:IV 193:, 150:. 1576:/ 1572:/ 1526:e 1519:t 1512:v 1483:. 1453:: 1445:: 1418:. 1396:: 1388:: 1361:. 1331:: 1304:. 1272:: 1264:: 1258:3 1237:. 1212:. 1182:: 1174:: 1147:. 1117:: 1111:9 1090:. 1060:: 1052:: 1025:. 1013:: 986:. 956:: 948:: 921:. 891:: 864:. 842:: 836:4 815:. 785:: 777:: 750:. 720:: 672:: 648:. 616:: 586:. 566:: 539:. 517:: 490:. 460:: 452:: 425:. 397:: 389:: 363:. 343:: 316:. 296:: 290:7 54:( 42:( 20:)

Index

Optokinetic nystagmus

image stabilization
motion blur
retina
vestibulo-ocular reflex
optokinetic drum
smooth pursuit
compound eye
retina
retinal ganglion cell
starburst amacrine cells
Glycinergic
inner nuclear layer
spikes
axons
midbrain
III
IV
VI
cerebellar
visual acuity
color vision
stereopsis
parkinsonism
Eye movement
Nystagmus
Reflex
"The Accessory Optic System"
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑