Knowledge

Luminescence dating

Source 📝

136:, and some water-laid deposits. Single Quartz OSL ages can be determined typically from 100 to 350,000 years BP, and can be reliable when suitable methods are used and proper checks are done. Feldspar IRSL techniques have the potential to extend the datable range out to a million years as feldspars typically have significantly higher dose saturation levels than quartz, though issues regarding anomalous fading will need to be dealt with first. Ages can be obtained outside these ranges, but they should be regarded with caution. The uncertainty of an OSL date is typically 5-10% of the age of the sample. 140:
operator does not know the individual figures that are being averaged, and so if there are partially prebleached grains in the sample it can give an exaggerated age. In contrast to the multiple-aliquot method, the SAR method tests the burial ages of individual grains of sand which are then plotted. Mixed deposits can be identified and taken into consideration when determining the age.
157:
transfer of electrons from one trap, to holes located elsewhere in the lattice – necessarily requiring two defects to be in nearby proximity, and hence it is a destructive technique. The problem is that nearby electron/hole trapping centres suffer from localized tunneling, eradicating their signal over time; it is this issue that currently defines the upper age-limit for OSL dating
237:, luminescence dating methods do not require a contemporary organic component of the sediment to be dated; just quartz, potassium feldspar, or certain other mineral grains that have been fully bleached during the event being dated. These methods also do not suffer from overestimation of dates when the sediment in question has been mixed with “old carbon”, or 119:. The radiation causes charge to remain within the grains in structurally unstable "electron traps". The trapped charge accumulates over time at a rate determined by the amount of background radiation at the location where the sample was buried. Stimulating these mineral grains using either light (blue or green for OSL; 212:. A sample in which the mineral grains have all been exposed to sufficient daylight (seconds for quartz; hundreds of seconds for potassium feldspar) can be said to be of zero age; when excited it will not emit any such photons. The older the sample is, the more light it emits, up to a saturation limit. 278:
carbonate rocks, a process that is also active today. This reworked carbon changed the measured isotopic ratios, giving a false older age. However, the wind-blown origin of these sediments were ideal for OSL dating, as most of the grains would have been completely bleached by sunlight exposure during
152:
In 1963, Aitken et al. noted that TL traps in calcite could be bleached by sunlight as well as heat, and in 1965 Shelkoplyas and Morozov were the first to use TL to date unheated sediments. Throughout the 70s and early 80s TL dating of light-sensitive traps in geological sediments of both terrestrial
148:
The concept of using luminescence dating in archaeological contexts was first suggested in 1953 by Farrington Daniels, Charles A. Boyd, and Donald F. Saunders, who thought the thermoluminescence response of pottery shards could date the last incidence of heating. Experimental tests on archaeological
127:
Most luminescence dating methods rely on the assumption that the mineral grains were sufficiently "bleached" at the time of the event being dated. For example, in quartz a short daylight exposure in the range of 1–100 seconds before burial is sufficient to effectively “reset” the OSL dating clock.
156:
Optical dating using optically stimulated luminescence (OSL) was developed in 1984 by David J. Huntley and colleagues. HĂŒtt et al. laid the groundwork for the infrared stimulated luminescence (IRSL) dating of potassium feldspars in 1988. The traditional OSL method relies on optical stimulation and
139:
There are two different methods of OSL dating: multiple-aliquot-dose and single-aliquot-regenerative-dose (SAR). In multiple-aliquot testing, a number of grains of sand are stimulated at the same time and the resulting luminescence signature is averaged. The problem with this technique is that the
970:
Liritzis, Ioannis; Singhvi, Ashok Kumar; Feathers, James K.; Wagner, Gunther A.; Kadereit, Annette; Zacharias, Nikolaos; Li, Sheng-Hua (2013), Liritzis, Ioannis; Singhvi, Ashok Kumar; Feathers, James K.; Wagner, Gunther A. (eds.), "Luminescence-Based Authenticity Testing",
220:
The minerals that are measured are usually either quartz or potassium feldspar sand-sized grains, or unseparated silt-sized grains. There are advantages and disadvantages to using each. For quartz, blue or green excitation frequencies are normally used and the near
279:
transport and burial. Lee et al. concluded that when aeolian sediment transport is suspected, especially in lakes of arid environments, the OSL dating method is superior to the radiocarbon dating method, as it eliminates a common ‘old-carbon’ error problem.
149:
ceramics followed a few years later in 1960 by Grögler et al. Over the next few decades, thermoluminescence research was focused on heated pottery and ceramics, burnt flints, baked hearth sediments, oven stones from burnt mounds and other heated objects.
123:
for IRSL) or heat (for TL) causes a luminescence signal to be emitted as the stored unstable electron energy is released, the intensity of which varies depending on the amount of radiation absorbed during burial and specific properties of the mineral.
913:
Lee, M.K., Lee, Y.I., Lim, H.S., Lee, J.I., Choi, J.H., & Yoon, H.I. (2011). "Comparison of radiocarbon and OSL dating methods for a Late Quaternary sediment core from Lake Ulaan, Mongolia".
287:
One of the benefits of luminescence dating is that it can be used to confirm the authenticity of an artifact. Under proper low light conditions a sample in the tens of milligrams can be used.
883:
Liritzis, I. (2010). "Strofilas (Andros Island, Greece): new evidence for the cycladic final neolithic period through novel dating methods using luminescence and obsidian hydration".
1340:
Wintle A. G., Murray A. S. (2006). "A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols".
1167:
Liritzis I., Sideris C., Vafiadou A., Mitsis J. (2008). "Mineralogical, petrological and radioactivity aspects of some building material from Egyptian Old Kingdom monuments".
64:(TL). "Optical dating" typically refers to OSL and IRSL, but not TL. The age range of luminescence dating methods extends from a few years to over one million years. 17: 1146:
Liritzis I (2010). "Strofilas (Andros Island, Greece): New evidence of Cycladic Final Neolithic dated by novel luminescence and Obsidian Hydration methods".
225:
emission is measured. For potassium feldspar or silt-sized grains, near infrared excitation (IRSL) is normally used and violet emissions are measured.
842:
Liritzis, I., Polymeris, S.G., and Zacharias, N. (2010). "Surface Luminescence Dating of 'Dragon Houses' and Armena Gate at Styra (Euboea, Greece)".
458:
Jacobs, Z and Roberts, R (2007). "Advances in Optically Stimulated Luminescence Dating of Individual Grains of Quartz from Archaeological Deposits".
1395: 1332: 1297: 1229: 1194: 1138: 1090: 1047: 956: 869: 792: 743: 636: 595: 550: 493: 439: 260:, Lee et al. discovered that OSL and radiocarbon dates agreed in some samples, but the radiocarbon dates were up to 5800 years older in others. 2295: 1998: 1674: 1111:
Liritzis I., Guibert P., Foti F., Schvoerer M. (1997). "The temple of Apollo (Delphi) strengthens novel thermoluminescence dating method".
650:
Shelkoplyas, V.N. & Morozov, G.V. (1965). "Some results of an investigation of Quaternary deposits by the thermoluminescence method".
1305:
Theocaris P. S., Liritzis I., Galloway R. B. (1997). "Dating of two Hellenic pyramids by a novel application of thermoluminescence".
1124: 164:
were extended to include surfaces made of granite, basalt and sandstone, such as carved rock from ancient monuments and artifacts.
2290: 263:
The sediments with disagreeing ages were determined to be deposited by aeolian processes. Westerly winds delivered an influx of
1202:
Morgenstein M. E., Luo S., Ku T. L., Feathers J. (2003). "Uranium-series and luminescence dating of volcanic lithic artefacts".
988: 1445: 407: 1403:
Fattahi M., Stokes S. (2001). "Extending the time range of luminescence dating using red TL (RTL) from volcanic quartz".
1792: 1993: 1589: 1014: 208:
of the emitted light must have higher energies than the excitation photons in order to avoid measurement of ordinary
57: 1629: 1265: 1055:
Habermann J., Schilles T., Kalchgruber R., Wagner G. A. (2000). "Steps towards surface dating using luminescence".
248:-deficient carbon that is not the same isotopic ratio as the atmosphere. In a study of the chronology of arid-zone 1007:
An introduction to optical dating: the dating of Quaternary sediments by the use of photon-stimulated luminescence
253: 757:
HĂŒtt, G., Jaek, I. & Tchonka, J. (1988). "Optical dating: K-feldspars optical response stimulation spectra".
196:/1000 years. The total absorbed radiation dose is determined by exciting, with light, specific minerals (usually 168:, the initiator of ancient buildings luminescence dating, has shown this in several cases of various monuments. 1267: 409: 373:"Precision and accuracy in the optically stimulated luminescence dating of sedimentary quartz: a status review" 2039: 1787: 1782: 336:
Rhodes, E. J. (2011). "Optically stimulated luminescence dating of sediments over the past 250,000 years".
1237:
Rhodes E. J. (2011). "Optically stimulated luminescence dating of sediments over the past 200,000 years".
975:, SpringerBriefs in Earth System Sciences, Heidelberg: Springer International Publishing, pp. 41–43, 1972: 1842: 912: 2182: 2162: 2172: 2144: 1977: 1756: 700:
Huntley, D. J., Godfrey-Smith, D. I., & Thewalt, M. L. W. (1985). "Optical dating of sediments".
161: 61: 1098:
Liritzis I (1994). "A new dating method by thermoluminescence of carved megalithic stone building".
408:
Roberts, R.G., Jacobs, Z., Li, B., Jankowski, N.R., Cunningham, A.C., & Rosenfeld, A.B. (2015).
2239: 1438: 188:
elements (K, U, Th and Rb) within the sample and its surroundings and the radiation dose rate from
2177: 2127: 1914: 1761: 1370: 1020:
Greilich S., Glasmacher U. A., Wagner G. A. (2005). "Optical dating of granitic stone surfaces".
2077: 1878: 1624: 1523: 1268:"Optical dating in archaeology: thirty years in retrospect and grand challenges for the future" 507:
Daniels, F., Boyd, C.A., & Saunders, D.F. (1953). "Thermoluminescence as a research tool".
410:"Optical dating in archaeology: thirty years in retrospect and grand challenges for the future" 49:
who want to know when such an event occurred. It uses various methods to stimulate and measure
565: 1679: 1389: 1326: 1291: 1223: 1188: 1132: 1084: 1041: 950: 863: 786: 737: 699: 630: 609:
Aitken, M.J., Tite, M.S. & Reid, J. (1963). "Thermoluminescent dating: progress report".
589: 544: 487: 433: 1266:
Roberts R. G., Jacobs Z., Li B., Jankowski N. R., Cunningham A. C., Rosenfeld A. B. (2015).
2112: 2053: 2029: 2024: 1349: 1246: 1064: 922: 851: 766: 709: 674: 516: 345: 176:
Luminescence dating is one of several techniques in which an age is calculated as follows:
34: 8: 1952: 1942: 1717: 1634: 1614: 1604: 1431: 1353: 1258: 1250: 1068: 926: 855: 770: 713: 678: 520: 372: 357: 349: 204:) extracted from the sample, and measuring the amount of light emitted as a result. The 2264: 2244: 2122: 2107: 2092: 2014: 1813: 1777: 1579: 1054: 938: 725: 622: 475: 296: 234: 201: 116: 108: 27:
Form of dating how long ago mineral grains had been last exposed to sunlight or heating
1416: 1076: 2072: 1868: 1863: 1707: 1543: 1033: 1010: 984: 942: 778: 686: 532: 209: 129: 104: 479: 2269: 2218: 2134: 2082: 1858: 1836: 1702: 1599: 1412: 1357: 1314: 1279: 1254: 1211: 1176: 1155: 1120: 1072: 1029: 976: 930: 892: 822: 774: 729: 717: 682: 665:
Wintle, A.G. & Huntley, D.J. (1982). "Thermoluminescence dating of sediments".
618: 524: 467: 421: 353: 165: 1361: 2202: 2167: 2154: 2117: 2064: 1922: 1817: 1751: 1712: 1549: 1180: 973:
Luminescence Dating in Archaeology, Anthropology, and Geoarchaeology: An Overview
563: 528: 1201: 980: 841: 2300: 2102: 1900: 1888: 1832: 1827: 1821: 1746: 1669: 1594: 1166: 1283: 1159: 1110: 934: 896: 827: 810: 425: 2284: 2019: 1937: 1932: 1883: 1873: 1513: 506: 46: 1304: 1215: 41:
grains were last exposed to sunlight or sufficient heating. It is useful to
2097: 1895: 1609: 1584: 1569: 1535: 1495: 1318: 1019: 536: 222: 50: 1797: 1694: 1656: 1639: 1574: 1555: 1488: 1468: 193: 185: 81: 1125:
10.1002/(sici)1520-6548(199708)12:5<479::aid-gea3>3.0.co;2-x
1564: 1559: 1454: 608: 471: 189: 2254: 2234: 1967: 1927: 1664: 1473: 721: 275: 88: 42: 756: 111:
they produce is absorbed by mineral grains in the sediments such as
2249: 2087: 1731: 1644: 1368: 566:"Über die datierung von keramik und ziegel durch thermolumineszenz" 257: 120: 100: 73: 2259: 1483: 1478: 654:. 7th International Quaternary Association Congress, Kiev: 83–90. 96: 92: 84: 38: 205: 197: 184:
The radiation dose rate is calculated from measurements of the
112: 649: 180:
age = (total absorbed radiation dose) / (radiation dose rate)
1684: 1423: 969: 133: 1618: 1500: 249: 77: 1339: 564:
Grögler, N., Houtermans, F.G., & Stauffer, H. (1960).
1518: 664: 370: 457: 1402: 1371:"TL dating in the Holocene using red TL from quartz" 60:(OSL), infrared stimulated luminescence (IRSL), and 1999:
Global Boundary Stratotype Section and Point (GSSP)
1100:
Comptes Rendus de l'Académie des Sciences, Série II
228: 652:Materials on the Quaternary Period of the Ukraine 2282: 192:. The dose rate is usually in the range 0.5 - 5 128:This is usually, but not always, the case with 403: 401: 1439: 1239:Annual Review of Earth and Planetary Sciences 811:"Surface Dating by Luminescence: An Overview" 338:Annual Review of Earth and Planetary Sciences 335: 331: 329: 1394:: CS1 maint: multiple names: authors list ( 1369:Montret, M., Fain, J., Miallier, D. (1992). 1331:: CS1 maint: multiple names: authors list ( 1296:: CS1 maint: multiple names: authors list ( 1236: 1228:: CS1 maint: multiple names: authors list ( 1193:: CS1 maint: multiple names: authors list ( 1137:: CS1 maint: multiple names: authors list ( 1089:: CS1 maint: multiple names: authors list ( 1046:: CS1 maint: multiple names: authors list ( 955:: CS1 maint: multiple names: authors list ( 882: 868:: CS1 maint: multiple names: authors list ( 808: 791:: CS1 maint: multiple names: authors list ( 742:: CS1 maint: multiple names: authors list ( 635:: CS1 maint: multiple names: authors list ( 594:: CS1 maint: multiple names: authors list ( 549:: CS1 maint: multiple names: authors list ( 492:: CS1 maint: multiple names: authors list ( 438:: CS1 maint: multiple names: authors list ( 908: 906: 398: 160:In 1994, the principles behind optical and 1446: 1432: 1145: 1097: 844:Mediterranean Archaeology and Archaeometry 602: 326: 274:-deficient carbon from adjacent soils and 153:and marine origin became more widespread. 67: 826: 371:Murray, A. S. & Olley, J. M. (2002). 1994:Global Standard Stratigraphic Age (GSSA) 903: 18:Optically stimulated luminescence dating 14: 2283: 1427: 804: 802: 453: 451: 449: 37:methods of determining how long ago 2296:Dating methodologies in archaeology 1259:10.1146/annurev-earth-040610-133425 358:10.1146/annurev-earth-040610-133425 24: 1793:Adoption of the Gregorian calendar 799: 623:10.1111/j.1475-4754.1963.tb00581.x 25: 2312: 1307:Journal of Archaeological Science 1272:Journal of Archaeological Science 1148:Journal of Archaeological Science 885:Journal of Archaeological Science 446: 414:Journal of Archaeological Science 132:deposits, such as sand dunes and 58:optically stimulated luminescence 1034:10.1111/j.1475-4754.2005.00224.x 229:Comparison to radiocarbon dating 2291:Geochronological dating methods 1675:English and British regnal year 963: 876: 835: 750: 693: 658: 643: 56:It includes techniques such as 1453: 557: 500: 364: 317: 308: 13: 1: 1788:Old Style and New Style dates 1417:10.1016/S1350-4487(00)00105-0 1362:10.1016/j.radmeas.2005.11.001 1077:10.1016/s1350-4487(00)00066-4 999: 282: 1740:Pre-Julian / Julian 1181:10.1016/j.culher.2007.03.009 1169:Journal of Cultural Heritage 779:10.1016/0277-3791(88)90033-9 687:10.1016/0277-3791(82)90018-X 529:10.1126/science.117.3040.343 7: 1973:Geological history of Earth 1843:Astronomical year numbering 1009:. Oxford University Press. 981:10.1007/978-3-319-00170-8_5 323:Fattahi M., Stokes S., 2001 290: 215: 10: 2317: 759:Quaternary Science Reviews 667:Quaternary Science Reviews 171: 143: 2227: 2211: 2195: 2153: 2145:Thermoluminescence dating 2063: 2052: 2040:Samarium–neodymium dating 2007: 1986: 1960: 1951: 1913: 1851: 1806: 1770: 1739: 1730: 1693: 1655: 1534: 1509: 1461: 1284:10.1016/j.jas.2015.02.028 1160:10.1016/j.jas.2009.12.041 935:10.1007/s10933-010-9484-7 915:Journal of Paleolimnology 897:10.1016/j.jas.2009.12.041 828:10.2478/s13386-011-0032-7 460:Evolutionary Anthropology 426:10.1016/j.jas.2015.02.028 162:thermoluminescence dating 80:contain trace amounts of 62:thermoluminescence dating 1859:Chinese sexagenary cycle 302: 2073:Amino acid racemisation 1216:10.1111/1475-4754.00124 68:Conditions and accuracy 2078:Archaeomagnetic dating 1590:Era of Caesar (Iberia) 1405:Radiation Measurements 1342:Radiation Measurements 1319:10.1006/jasc.1996.0124 1057:Radiation Measurements 1005:Aitken, M. J. (1998). 570:Helvetica Physica Acta 182: 1978:Geological time units 809:Liritzis, I. (2011). 178: 33:refers to a group of 2030:Law of superposition 2025:Isotope geochemistry 314:Montret et al., 1992 87:of elements such as 35:chronological dating 2163:Fluorine absorption 2140:Luminescence dating 2035:Luminescence dating 1943:Milankovitch cycles 1783:Proleptic Gregorian 1615:Hindu units of time 1354:2006RadM...41..369W 1251:2011AREPS..39..461R 1069:2000RadM...32..847H 927:2011JPall..45..127L 856:2010MAA....10...65L 771:1988QSRv....7..381H 714:1985Natur.313..105H 679:1982QSRv....1...31W 521:1953Sci...117..343D 350:2011AREPS..39..461R 31:Luminescence dating 2265:Terminus post quem 2245:Synchronoptic view 2212:Linguistic methods 2173:Obsidian hydration 2108:Radiometric dating 2093:Incremental dating 2015:Chronostratigraphy 472:10.1002/evan.20150 297:Radiometric dating 202:potassium feldspar 117:potassium feldspar 109:ionizing radiation 107:over time and the 2278: 2277: 2191: 2190: 2048: 2047: 1909: 1908: 1864:Geologic Calendar 1726: 1725: 990:978-3-319-00170-8 708:(5998): 105–107. 515:(3040): 343–349. 210:photoluminescence 16:(Redirected from 2308: 2270:ASPRO chronology 2219:Glottochronology 2135:Tephrochronology 2083:Dendrochronology 2061: 2060: 1958: 1957: 1757:Proleptic Julian 1747:Pre-Julian Roman 1737: 1736: 1532: 1531: 1448: 1441: 1434: 1425: 1424: 1420: 1411:(5–6): 479–485. 1399: 1393: 1385: 1375: 1365: 1336: 1330: 1322: 1301: 1295: 1287: 1262: 1233: 1227: 1219: 1198: 1192: 1184: 1163: 1142: 1136: 1128: 1107: 1094: 1088: 1080: 1051: 1045: 1037: 994: 993: 967: 961: 960: 954: 946: 910: 901: 900: 891:(6): 1367–1377. 880: 874: 873: 867: 859: 839: 833: 832: 830: 806: 797: 796: 790: 782: 765:(3–4): 381–385. 754: 748: 747: 741: 733: 722:10.1038/313105a0 697: 691: 690: 662: 656: 655: 647: 641: 640: 634: 626: 606: 600: 599: 593: 585: 583: 581: 561: 555: 554: 548: 540: 504: 498: 497: 491: 483: 455: 444: 443: 437: 429: 405: 396: 395: 393: 391: 377: 368: 362: 361: 333: 324: 321: 315: 312: 273: 271: 270: 247: 245: 244: 235:carbon-14 dating 166:Ioannis Liritzis 21: 2316: 2315: 2311: 2310: 2309: 2307: 2306: 2305: 2281: 2280: 2279: 2274: 2223: 2207: 2203:Molecular clock 2196:Genetic methods 2187: 2168:Nitrogen dating 2155:Relative dating 2149: 2118:Potassium–argon 2065:Absolute dating 2055: 2044: 2003: 1982: 1947: 1923:Cosmic Calendar 1915:Astronomic time 1905: 1847: 1802: 1766: 1752:Original Julian 1722: 1689: 1651: 1550:Ab urbe condita 1528: 1505: 1457: 1452: 1387: 1386: 1373: 1324: 1323: 1289: 1288: 1221: 1220: 1186: 1185: 1130: 1129: 1082: 1081: 1039: 1038: 1002: 997: 991: 968: 964: 948: 947: 911: 904: 881: 877: 861: 860: 840: 836: 815:Geochronometria 807: 800: 784: 783: 755: 751: 735: 734: 698: 694: 663: 659: 648: 644: 628: 627: 607: 603: 587: 586: 579: 577: 562: 558: 542: 541: 505: 501: 485: 484: 456: 447: 431: 430: 406: 399: 389: 387: 380:Geochronometria 375: 369: 365: 334: 327: 322: 318: 313: 309: 305: 293: 285: 269: 267: 266: 265: 264: 252:sediments from 243: 241: 240: 239: 238: 231: 218: 174: 146: 103:. These slowly 70: 28: 23: 22: 15: 12: 11: 5: 2314: 2304: 2303: 2298: 2293: 2276: 2275: 2273: 2272: 2267: 2262: 2257: 2252: 2247: 2242: 2240:New Chronology 2237: 2231: 2229: 2228:Related topics 2225: 2224: 2222: 2221: 2215: 2213: 2209: 2208: 2206: 2205: 2199: 2197: 2193: 2192: 2189: 2188: 2186: 2185: 2180: 2175: 2170: 2165: 2159: 2157: 2151: 2150: 2148: 2147: 2142: 2137: 2132: 2131: 2130: 2125: 2120: 2115: 2105: 2103:Paleomagnetism 2100: 2095: 2090: 2085: 2080: 2075: 2069: 2067: 2058: 2050: 2049: 2046: 2045: 2043: 2042: 2037: 2032: 2027: 2022: 2017: 2011: 2009: 2005: 2004: 2002: 2001: 1996: 1990: 1988: 1984: 1983: 1981: 1980: 1975: 1970: 1964: 1962: 1955: 1949: 1948: 1946: 1945: 1940: 1935: 1930: 1925: 1919: 1917: 1911: 1910: 1907: 1906: 1904: 1903: 1901:New Earth Time 1898: 1893: 1892: 1891: 1886: 1876: 1871: 1866: 1861: 1855: 1853: 1849: 1848: 1846: 1845: 1840: 1830: 1825: 1810: 1808: 1804: 1803: 1801: 1800: 1795: 1790: 1785: 1780: 1774: 1772: 1768: 1767: 1765: 1764: 1762:Revised Julian 1759: 1754: 1749: 1743: 1741: 1734: 1728: 1727: 1724: 1723: 1721: 1720: 1715: 1710: 1705: 1699: 1697: 1691: 1690: 1688: 1687: 1682: 1680:Lists of kings 1677: 1672: 1670:Canon of Kings 1667: 1661: 1659: 1653: 1652: 1650: 1649: 1648: 1647: 1642: 1637: 1632: 1622: 1612: 1607: 1602: 1597: 1595:Before present 1592: 1587: 1582: 1577: 1572: 1567: 1562: 1553: 1546: 1540: 1538: 1529: 1527: 1526: 1521: 1516: 1510: 1507: 1506: 1504: 1503: 1498: 1493: 1492: 1491: 1481: 1476: 1471: 1465: 1463: 1459: 1458: 1451: 1450: 1443: 1436: 1428: 1422: 1421: 1400: 1366: 1348:(4): 369–391. 1337: 1313:(5): 399–405. 1302: 1263: 1234: 1210:(3): 503–518. 1199: 1164: 1143: 1119:(5): 479–496. 1113:Geoarchaeology 1108: 1095: 1063:(5): 847–851. 1052: 1028:(3): 645–665. 1017: 1001: 998: 996: 995: 989: 962: 921:(2): 127–135. 902: 875: 834: 821:(3): 292–302. 798: 749: 692: 657: 642: 601: 556: 499: 445: 397: 363: 325: 316: 306: 304: 301: 300: 299: 292: 289: 284: 281: 268: 242: 230: 227: 217: 214: 173: 170: 145: 142: 69: 66: 47:archaeologists 26: 9: 6: 4: 3: 2: 2313: 2302: 2299: 2297: 2294: 2292: 2289: 2288: 2286: 2271: 2268: 2266: 2263: 2261: 2258: 2256: 2253: 2251: 2248: 2246: 2243: 2241: 2238: 2236: 2233: 2232: 2230: 2226: 2220: 2217: 2216: 2214: 2210: 2204: 2201: 2200: 2198: 2194: 2184: 2181: 2179: 2176: 2174: 2171: 2169: 2166: 2164: 2161: 2160: 2158: 2156: 2152: 2146: 2143: 2141: 2138: 2136: 2133: 2129: 2126: 2124: 2121: 2119: 2116: 2114: 2111: 2110: 2109: 2106: 2104: 2101: 2099: 2096: 2094: 2091: 2089: 2086: 2084: 2081: 2079: 2076: 2074: 2071: 2070: 2068: 2066: 2062: 2059: 2057: 2054:Chronological 2051: 2041: 2038: 2036: 2033: 2031: 2028: 2026: 2023: 2021: 2020:Geochronology 2018: 2016: 2013: 2012: 2010: 2006: 2000: 1997: 1995: 1992: 1991: 1989: 1985: 1979: 1976: 1974: 1971: 1969: 1966: 1965: 1963: 1959: 1956: 1954: 1953:Geologic time 1950: 1944: 1941: 1939: 1938:Metonic cycle 1936: 1934: 1933:Galactic year 1931: 1929: 1926: 1924: 1921: 1920: 1918: 1916: 1912: 1902: 1899: 1897: 1894: 1890: 1887: 1885: 1882: 1881: 1880: 1877: 1875: 1874:ISO week date 1872: 1870: 1867: 1865: 1862: 1860: 1857: 1856: 1854: 1850: 1844: 1841: 1838: 1834: 1831: 1829: 1826: 1823: 1819: 1815: 1812: 1811: 1809: 1805: 1799: 1796: 1794: 1791: 1789: 1786: 1784: 1781: 1779: 1776: 1775: 1773: 1769: 1763: 1760: 1758: 1755: 1753: 1750: 1748: 1745: 1744: 1742: 1738: 1735: 1733: 1729: 1719: 1716: 1714: 1711: 1709: 1706: 1704: 1701: 1700: 1698: 1696: 1692: 1686: 1683: 1681: 1678: 1676: 1673: 1671: 1668: 1666: 1663: 1662: 1660: 1658: 1654: 1646: 1643: 1641: 1638: 1636: 1633: 1631: 1628: 1627: 1626: 1623: 1620: 1616: 1613: 1611: 1608: 1606: 1603: 1601: 1598: 1596: 1593: 1591: 1588: 1586: 1583: 1581: 1580:Byzantine era 1578: 1576: 1573: 1571: 1568: 1566: 1563: 1561: 1557: 1554: 1552: 1551: 1547: 1545: 1542: 1541: 1539: 1537: 1536:Calendar eras 1533: 1530: 1525: 1522: 1520: 1517: 1515: 1512: 1511: 1508: 1502: 1499: 1497: 1494: 1490: 1487: 1486: 1485: 1482: 1480: 1477: 1475: 1472: 1470: 1467: 1466: 1464: 1460: 1456: 1449: 1444: 1442: 1437: 1435: 1430: 1429: 1426: 1418: 1414: 1410: 1406: 1401: 1397: 1391: 1383: 1379: 1378:Ancient TL 10 1372: 1367: 1363: 1359: 1355: 1351: 1347: 1343: 1338: 1334: 1328: 1320: 1316: 1312: 1308: 1303: 1299: 1293: 1285: 1281: 1277: 1273: 1269: 1264: 1260: 1256: 1252: 1248: 1244: 1240: 1235: 1231: 1225: 1217: 1213: 1209: 1205: 1200: 1196: 1190: 1182: 1178: 1174: 1170: 1165: 1161: 1157: 1154:: 1367–1377. 1153: 1149: 1144: 1140: 1134: 1126: 1122: 1118: 1114: 1109: 1106:(5): 603–610. 1105: 1101: 1096: 1092: 1086: 1078: 1074: 1070: 1066: 1062: 1058: 1053: 1049: 1043: 1035: 1031: 1027: 1023: 1018: 1016: 1015:0-19-854092-2 1012: 1008: 1004: 1003: 992: 986: 982: 978: 974: 966: 958: 952: 944: 940: 936: 932: 928: 924: 920: 916: 909: 907: 898: 894: 890: 886: 879: 871: 865: 857: 853: 849: 845: 838: 829: 824: 820: 816: 812: 805: 803: 794: 788: 780: 776: 772: 768: 764: 760: 753: 745: 739: 731: 727: 723: 719: 715: 711: 707: 703: 696: 688: 684: 680: 676: 672: 668: 661: 653: 646: 638: 632: 624: 620: 616: 612: 605: 597: 591: 575: 571: 567: 560: 552: 546: 538: 534: 530: 526: 522: 518: 514: 510: 503: 495: 489: 481: 477: 473: 469: 465: 461: 454: 452: 450: 441: 435: 427: 423: 419: 415: 411: 404: 402: 385: 381: 374: 367: 359: 355: 351: 347: 343: 339: 332: 330: 320: 311: 307: 298: 295: 294: 288: 280: 277: 261: 259: 255: 251: 236: 226: 224: 213: 211: 207: 203: 199: 195: 191: 187: 181: 177: 169: 167: 163: 158: 154: 150: 141: 137: 135: 131: 125: 122: 118: 114: 110: 106: 102: 98: 94: 90: 86: 83: 79: 75: 65: 63: 59: 54: 52: 48: 44: 40: 36: 32: 19: 2183:Stratigraphy 2139: 2128:Uranium–lead 2098:Lichenometry 2034: 1896:Winter count 1879:Mesoamerican 1807:Astronomical 1625:Mesoamerican 1610:Sothic cycle 1585:Seleucid era 1570:Bosporan era 1558: / 1548: 1496:Paleontology 1408: 1404: 1390:cite journal 1381: 1377: 1345: 1341: 1327:cite journal 1310: 1306: 1292:cite journal 1275: 1271: 1242: 1238: 1224:cite journal 1207: 1204:Archaeometry 1203: 1189:cite journal 1172: 1168: 1151: 1147: 1133:cite journal 1116: 1112: 1103: 1099: 1085:cite journal 1060: 1056: 1042:cite journal 1025: 1022:Archaeometry 1021: 1006: 972: 965: 951:cite journal 918: 914: 888: 884: 878: 864:cite journal 850:(3): 65–81. 847: 843: 837: 818: 814: 787:cite journal 762: 758: 752: 738:cite journal 705: 701: 695: 673:(1): 31–53. 670: 666: 660: 651: 645: 631:cite journal 614: 611:Archaeometry 610: 604: 590:cite journal 580:February 16, 578:. Retrieved 573: 569: 559: 545:cite journal 512: 508: 502: 488:cite journal 463: 459: 434:cite journal 417: 413: 388:. Retrieved 383: 379: 366: 341: 337: 319: 310: 286: 262: 256:in southern 232: 223:ultra-violet 219: 183: 179: 175: 159: 155: 151: 147: 138: 126: 71: 55: 51:luminescence 30: 29: 2123:Radiocarbon 1798:Dual dating 1657:Regnal year 1635:Short Count 1575:Bostran era 1556:Anno Domini 1489:Big History 1469:Archaeology 1245:: 461–488. 1175:(1): 1–13. 390:February 8, 344:: 461–488. 190:cosmic rays 186:radioactive 82:radioactive 2285:Categories 1718:Vietnamese 1630:Long Count 1565:Anno Mundi 1560:Common Era 1462:Key topics 1455:Chronology 1000:References 466:(6): 218. 283:Other uses 254:Lake Ulaan 250:lacustrine 43:geologists 2255:Year zero 2235:Chronicle 2178:Seriation 2113:Lead–lead 1987:Standards 1968:Deep time 1928:Ephemeris 1814:Lunisolar 1778:Gregorian 1771:Gregorian 1732:Calendars 1695:Era names 1665:Anka year 1544:Human Era 1474:Astronomy 1278:: 41–60. 943:128511753 617:: 65–75. 576:: 595–596 420:: 41–60. 276:Paleozoic 89:potassium 74:sediments 2250:Timeline 2088:Ice core 1961:Concepts 1708:Japanese 1640:Tzolk'in 1605:Egyptian 1384:: 33–36. 537:17756578 480:84231863 291:See also 258:Mongolia 216:Minerals 121:infrared 101:rubidium 85:isotopes 2260:Floruit 2008:Methods 1869:Iranian 1837:Islamic 1703:Chinese 1514:Periods 1484:History 1479:Geology 1350:Bibcode 1247:Bibcode 1065:Bibcode 923:Bibcode 852:Bibcode 767:Bibcode 730:4258671 710:Bibcode 675:Bibcode 517:Bibcode 509:Science 346:Bibcode 233:Unlike 206:photons 172:Physics 144:History 130:aeolian 97:thorium 93:uranium 39:mineral 2056:dating 1852:Others 1818:Hebrew 1713:Korean 1524:Epochs 1013:  987:  941:  728:  702:Nature 535:  478:  386:: 1–16 198:quartz 113:quartz 99:, and 2301:Light 1889:Aztec 1833:Lunar 1828:Solar 1822:Hindu 1685:Limmu 1645:Haab' 1600:Hijri 1374:(PDF) 939:S2CID 726:S2CID 476:S2CID 376:(PDF) 303:Notes 194:grays 134:loess 105:decay 78:soils 1884:Maya 1619:Yuga 1519:Eras 1501:Time 1396:link 1333:link 1298:link 1230:link 1195:link 1139:link 1091:link 1048:link 1011:ISBN 985:ISBN 957:link 870:link 793:link 744:link 637:link 596:link 582:2016 551:link 533:PMID 494:link 440:link 392:2016 115:and 76:and 72:All 45:and 1413:doi 1358:doi 1315:doi 1280:doi 1255:doi 1212:doi 1177:doi 1156:doi 1121:doi 1104:319 1073:doi 1030:doi 977:doi 931:doi 893:doi 823:doi 775:doi 718:doi 706:313 683:doi 619:doi 525:doi 513:117 468:doi 422:doi 354:doi 200:or 2287:: 1820:, 1409:32 1407:. 1392:}} 1388:{{ 1382:10 1380:. 1376:. 1356:. 1346:41 1344:. 1329:}} 1325:{{ 1311:24 1309:. 1294:}} 1290:{{ 1276:56 1274:. 1270:. 1253:. 1243:39 1241:. 1226:}} 1222:{{ 1208:45 1206:. 1191:}} 1187:{{ 1171:. 1152:37 1150:. 1135:}} 1131:{{ 1117:12 1115:. 1102:. 1087:}} 1083:{{ 1071:. 1061:32 1059:. 1044:}} 1040:{{ 1026:47 1024:. 983:, 953:}} 949:{{ 937:. 929:. 919:45 917:. 905:^ 889:37 887:. 866:}} 862:{{ 848:10 846:. 819:38 817:. 813:. 801:^ 789:}} 785:{{ 773:. 761:. 740:}} 736:{{ 724:. 716:. 704:. 681:. 669:. 633:}} 629:{{ 613:. 592:}} 588:{{ 574:33 572:. 568:. 547:}} 543:{{ 531:. 523:. 511:. 490:}} 486:{{ 474:. 464:16 462:. 448:^ 436:}} 432:{{ 418:56 416:. 412:. 400:^ 384:21 382:. 378:. 352:. 342:39 340:. 328:^ 95:, 91:, 53:. 1839:) 1835:( 1824:) 1816:( 1621:) 1617:( 1447:e 1440:t 1433:v 1419:. 1415:: 1398:) 1364:. 1360:: 1352:: 1335:) 1321:. 1317:: 1300:) 1286:. 1282:: 1261:. 1257:: 1249:: 1232:) 1218:. 1214:: 1197:) 1183:. 1179:: 1173:9 1162:. 1158:: 1141:) 1127:. 1123:: 1093:) 1079:. 1075:: 1067:: 1050:) 1036:. 1032:: 979:: 959:) 945:. 933:: 925:: 899:. 895:: 872:) 858:. 854:: 831:. 825:: 795:) 781:. 777:: 769:: 763:7 746:) 732:. 720:: 712:: 689:. 685:: 677:: 671:1 639:) 625:. 621:: 615:6 598:) 584:. 553:) 539:. 527:: 519:: 496:) 482:. 470:: 442:) 428:. 424:: 394:. 360:. 356:: 348:: 272:C 246:C 20:)

Index

Optically stimulated luminescence dating
chronological dating
mineral
geologists
archaeologists
luminescence
optically stimulated luminescence
thermoluminescence dating
sediments
soils
radioactive
isotopes
potassium
uranium
thorium
rubidium
decay
ionizing radiation
quartz
potassium feldspar
infrared
aeolian
loess
thermoluminescence dating
Ioannis Liritzis
radioactive
cosmic rays
grays
quartz
potassium feldspar

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑