Knowledge

Optical fiber

Source 📝

196: 1095:(186,000 miles) per second. The refractive index of a medium is calculated by dividing the speed of light in a vacuum by the speed of light in that medium. The refractive index of a vacuum is therefore 1, by definition. A typical single-mode fiber used for telecommunications has a cladding made of pure silica, with an index of 1.444 at 1500 nm, and a core of doped silica with an index around 1.4475. The larger the index of refraction, the slower light travels in that medium. From this information, a simple rule of thumb is that a signal using optical fiber for communication will travel at around 200,000 kilometers per second. Thus a phone call carried by fiber between Sydney and New York, a 16,000-kilometer distance, means that there is a minimum delay of 80 milliseconds (about 1396: 3020:(micro-positioning table) is used to move the lens, fiber, or device to allow the coupling efficiency to be optimized. Fibers with a connector on the end make this process much simpler: the connector is simply plugged into a pre-aligned fiber-optic collimator, which contains a lens that is either accurately positioned to the fiber or is adjustable. To achieve the best injection efficiency into a single-mode fiber, the direction, position, size, and divergence of the beam must all be optimized. With good optimization, 70 to 90% coupling efficiency can be achieved. 1367:
confines the incident light beam within. Attenuation is an important factor limiting the transmission of a digital signal across large distances. Thus, much research has gone into both limiting the attenuation and maximizing the amplification of the optical signal. The four orders of magnitude reduction in the attenuation of silica optical fibers over four decades was the result of constant improvement of manufacturing processes, raw material purity, preform, and fiber designs, which allowed for these fibers to approach the theoretical lower limit of attenuation.
812: 1359: 2807: 2082: 1262: 2349:. The torch is then traversed up and down the length of the tube to deposit the material evenly. After the torch has reached the end of the tube, it is then brought back to the beginning of the tube and the deposited particles are then melted to form a solid layer. This process is repeated until a sufficient amount of material has been deposited. For each layer the composition can be modified by varying the gas composition, resulting in precise control of the finished fiber's optical properties. 479: 2895: 41: 974: 8197: 6554: 1350: 6564: 2663: 3085: 2729: 2204: 8207: 1404:
material, having higher refractive index, and about 25% of light is propagating through the cladding, having lower refractive index. The interface between the core and cladding glasses is exceptionally smooth and does not give rise to a significant scattering loss or a waveguide imperfection loss. The scattering loss originates primarily from the Rayleigh scattering in the bulk of the glasses composing the fiber core and cladding.
1175: 8186: 1187: 8217: 804: 33: 2262: 2449:. An outer secondary coating protects the primary coating against mechanical damage and acts as a barrier to lateral forces, and may be colored to differentiate strands in bundled cable constructions. These fiber optic coating layers are applied during the fiber draw, at speeds approaching 100 kilometers per hour (60 mph). Fiber optic coatings are applied using one of two methods: 3803: 2369: 961: 3073:
high modulation speeds, the different frequencies of light can take different times to arrive at the receiver, ultimately making the signal impossible to discern, and requiring extra repeaters. This problem can be overcome in several ways, including the use of a relatively short length of fiber that has the opposite refractive index gradient.
891:, optical fiber bundles transmit light from a spectrometer to a substance that cannot be placed inside the spectrometer itself, in order to analyze its composition. A spectrometer analyzes substances by bouncing light off and through them. By using fibers, a spectrometer can be used to study objects remotely. 1872:(near IR) portion of the spectrum, particularly around 1.5 μm, silica can have extremely low absorption and scattering losses of the order of 0.2 dB/km. Such low losses depend on using ultra-pure silica. A high transparency in the 1.4-μm region is achieved by maintaining a low concentration of 704:, or transit time of light in the fiber. Sensors that vary the intensity of light are the simplest since only a simple source and detector are required. A particularly useful feature of such fiber optic sensors is that they can, if required, provide distributed sensing over distances of up to one meter. 2795:. This type of fiber can be bent with a radius as low as 7.5 mm without adverse impact. Even more bendable fibers have been developed. Bendable fiber may also be resistant to fiber hacking, in which the signal in a fiber is surreptitiously monitored by bending the fiber and detecting the leakage. 3057:
in the event of a broken fiber, can also effectively halt propagation of the fiber fuse. In situations, such as undersea cables, where high power levels might be used without the need for open fiber control, a "fiber fuse" protection device at the transmitter can break the circuit to keep damage to a
2890:
of the glass, fusing the ends permanently. The location and energy of the spark is carefully controlled so that the molten core and cladding do not mix, and this minimizes optical loss. A splice loss estimate is measured by the splicer by directing light through the cladding on one side and measuring
2441:
materials applied to the outside of the fiber during the drawing process. The coatings protect the very delicate strands of glass fiber—about the size of a human hair—and allow it to survive the rigors of manufacturing, proof testing, cabling, and installation. The buffer coating must be stripped off
1970:
Because of these properties, silica fibers are the material of choice in many optical applications, such as communications (except for very short distances with plastic optical fiber), fiber lasers, fiber amplifiers, and fiber-optic sensors. Large efforts put forth in the development of various types
1740:
At the atomic or molecular level, it depends on the frequencies of atomic or molecular vibrations or chemical bonds, how closely packed its atoms or molecules are, and whether or not the atoms or molecules exhibit long-range order. These factors will determine the capacity of the material to transmit
1370:
Single-mode optical fibers can be made with extremely low loss. Corning's Vascade® EX2500 fiber, a low loss single-mode fiber for telecommunications wavelengths, has a nominal attenuation of 0.148 dB/km at 1550 nm. A 10 km length of such fiber transmits nearly 71% of optical energy at
930:
Optical fiber is also widely exploited as a nonlinear medium. The glass medium supports a host of nonlinear optical interactions, and the long interaction lengths possible in fiber facilitate a variety of phenomena, which are harnessed for applications and fundamental investigation. Conversely, fiber
2639:
Fiber optic coatings protect the glass fibers from scratches that could lead to strength degradation. The combination of moisture and scratches accelerates the aging and deterioration of fiber strength. When fiber is subjected to low stresses over a long period, fiber fatigue can occur. Over time or
1654:
is fictive temperature. The only physically significant variable affecting scattering on density fluctuations is the fictive temperature of the glass, lower fictive temperature results in a more homogeneous glass and lower Rayleigh scattering. Fictive temperature may be dramatically reduced by about
251:
In the late 19th century, a team of Viennese doctors guided light through bent glass rods to illuminate body cavities. Practical applications such as close internal illumination during dentistry followed, early in the twentieth century. Image transmission through tubes was demonstrated independently
2959:
In the 1990s, the number of parts per connector, polishing of the fibers, and the need to oven-bake the epoxy in each connector made terminating fiber optic cables difficult. Today, connector types on the market offer easier, less labor-intensive ways of terminating cables. Some of the most popular
1420:
of the light being scattered and on the size of the scattering centers. Angular dependence of the light intensity scattered from an optical fiber matched that of Rayleigh scattering, indicating that the scattering centers are much smaller than the wavelength of propagating light. It originates from
3206:
This feature is offset by the fiber's susceptibility to the gamma radiation from the weapon. The gamma radiation causes the optical attenuation to increase considerably during the gamma-ray burst due to the darkening of the material, followed by the fiber itself emitting a bright light flash as it
2964:
is made at a required length, to get as close to the polished piece already inside the connector. The gel surrounds the point where the two pieces meet inside the connector for very little light loss. For the most demanding installations, factory pre-polished pigtails of sufficient length to reach
2881:
with a precision cleaver to make them perpendicular, and are placed into special holders in the fusion splicer. The splice is usually inspected via a magnified viewing screen to check the cleaves before and fusion after the splice. The splicer uses small motors to align the end faces together, and
1895:
of silica fibers is relatively effective. Silica fiber also has high mechanical strength against both pulling and even bending, provided that the fiber is not too thick and that the surfaces have been well prepared during processing. Even simple cleaving of the ends of the fiber can provide nicely
782:
to convert the light into electricity. While this method of power transmission is not as efficient as conventional ones, it is especially useful in situations where it is desirable not to have a metallic conductor as in the case of use near MRI machines, which produce strong magnetic fields. Other
451:
from a periodic structure, rather than by total internal reflection. The first photonic crystal fibers became commercially available in 2000. Photonic crystal fibers can carry higher power than conventional fibers and their wavelength-dependent properties can be manipulated to improve performance.
3072:
The refractive index of fibers varies slightly with the frequency of light, and light sources are not perfectly monochromatic. Modulation of the light source to transmit a signal also slightly widens the frequency band of the transmitted light. This has the effect that, over long distances and at
2424:
The light is guided down the core of the fiber by an optical cladding with a lower refractive index that traps light in the core through total internal reflection. For some types of fiber, the cladding is made of glass and is drawn along with the core from a preform with radially varying index of
1403:
The propagation of light through the core of an optical fiber is based on the total internal reflection of the lightwave, in terms of geometric optics, or guided modes, in terms of electromagnetic waveguide. In a typical single mode optical fiber about 75% of light is propagating through the core
1242:
In graded-index fiber, the index of refraction in the core decreases continuously between the axis and the cladding. This causes light rays to bend smoothly as they approach the cladding, rather than reflecting abruptly from the core-cladding boundary. The resulting curved paths reduce multi-path
3238:
The behavior of larger-core multi-mode fiber can also be modeled using the wave equation, which shows that such fiber supports more than one mode of propagation (hence the name). The results of such modeling of multi-mode fiber approximately agree with the predictions of geometric optics, if the
1719:
O, fluorine and chlorine are very low. The density fluctuations in the core are moderated by lower fictive temperature resulting from potassium doping, and are further reduced by annealing during the fiber draw process. This differs from the cladding, where higher fluorine dopant levels and the
1366:
Attenuation in fiber optics, also known as transmission loss, is the reduction in the intensity of the light signal as it travels through the transmission medium. Attenuation coefficients in fiber optics are usually expressed in units of dB/km. The medium is usually a fiber of silica glass that
763:. The light is transmitted along a fiber optic sensor cable placed on a fence, pipeline, or communication cabling, and the returned signal is monitored and analyzed for disturbances. This return signal is digitally processed to detect disturbances and trip an alarm if an intrusion has occurred. 2403:
Because of the surface tension, the shape is smoothed during the drawing process, and the shape of the resulting fiber does not reproduce the sharp edges of the preform. Nevertheless, careful polishing of the preform is important, since any defects of the preform surface affect the optical and
1386:
in the glasses through which the light is propagating, and infrared absorption in the same glasses. Absorption in silica increases steeply at wavelengths above 1570 nm. At wavelengths most useful for telecommunications, Rayleigh scattering is the dominant loss mechanism. At 1550 nm
348:
per kilometer (dB/km), making fibers a practical communication medium, in 1965. They proposed that the attenuation in fibers available at the time was caused by impurities that could be removed, rather than by fundamental physical effects such as scattering. They correctly and systematically
2344:
The oxide particles then agglomerate to form large particle chains, which subsequently deposit on the walls of the tube as soot. The deposition is due to the large difference in temperature between the gas core and the wall causing the gas to push the particles outward in a process known as
2457:. In wet-on-dry, the fiber passes through a primary coating application, which is then UV cured, then through the secondary coating application, which is subsequently cured. In wet-on-wet, the fiber passes through both the primary and secondary coating applications, then goes to UV curing. 1243:
dispersion because high-angle rays pass more through the lower-index periphery of the core, rather than the high-index center. The index profile is chosen to minimize the difference in axial propagation speeds of the various rays in the fiber. This ideal index profile is very close to a
1407:
The scattering of light in optical quality glass fiber is caused by molecular level irregularities (compositional fluctuations) in the glass structure. Indeed, one emerging school of thought is that glass is simply the limiting case of a polycrystalline solid. Within this framework,
922:
with a second laser wavelength that is coupled into the line in addition to the signal wave. Both wavelengths of light are transmitted through the doped fiber, which transfers energy from the second pump wavelength to the signal wave. The process that causes the amplification is
2007:(OH) group (3,200–3,600 cm; i.e., 2,777–3,125 nm or 2.78–3.13 μm), which is present in nearly all oxide-based glasses. Such low losses were never realized in practice, and the fragility and high cost of fluoride fibers made them less than ideal as primary candidates. 2002:
fluoride glasses (HMFG) exhibit very low optical attenuation, they are not only difficult to manufacture, but are quite fragile, and have poor resistance to moisture and other environmental attacks. Their best attribute is that they lack the absorption band associated with the
1353:
Experimental attenuation curve of low loss multimode silica and ZBLAN fiber. Black triangle points and gray arrows illustrate a four order of magnitude reduction in the attenuation of silica optical fibers over four decades from ~1000 dB/km in 1965 to ~0.17 dB/km in
1962:
Particularly for active fibers, pure silica is usually not a very suitable host glass, because it exhibits a low solubility for rare-earth ions. This can lead to quenching effects due to the clustering of dopant ions. Aluminosilicates are much more effective in this respect.
1382:. In fibers based on fluoride glasses such as ZBLAN, minimum attenuation is limited by impurity absorption. Vast majority of optical fibers are based on silica glass, where impurity absorption is negligible. In silica fibers attenuation is determined by intrinsic mechanisms: 2647:
jackets and buffer tubes protect glass optical fiber from environmental conditions that can affect the fiber's performance and long-term durability. On the inside, coatings ensure the reliability of the signal being carried and help minimize attenuation due to microbending.
1160:(NA) of the fiber. Fiber with a larger NA requires less precision to splice and work with than fiber with a smaller NA. The size of this acceptance cone is a function of the refractive index difference between the fiber's core and cladding. Single-mode fiber has a small NA. 151:(SMF). Multi-mode fibers generally have a wider core diameter and are used for short-distance communication links and for applications where high power must be transmitted. Single-mode fibers are used for most communication links longer than 1,050 meters (3,440 ft). 1772:
Reflection and transmission of light waves occur because the frequencies of the light waves do not match the natural resonant frequencies of vibration of the objects. When IR light of these frequencies strikes an object, the energy is either reflected or transmitted.
2687:
layer, usually plastic. These layers add strength to the fiber but do not affect its optical properties. Rigid fiber assemblies sometimes put light-absorbing glass between the fibers, to prevent light that leaks out of one fiber from entering another. This reduces
1736:
At the electronic level, it depends on whether the electron orbitals are spaced (or "quantized") such that they can absorb a quantum of light (or photon) of a specific wavelength or frequency in the ultraviolet (UV) or visible ranges. This is what gives rise to
1860:(POF) are commonly step-index multi-mode fibers with a core diameter of 0.5 millimeters or larger. POF typically have higher attenuation coefficients than glass fibers, 1 dB/m or higher, and this high attenuation limits the range of POF-based systems. 1605: 1412:
exhibiting various degrees of short-range order become the building blocks of metals as well as glasses and ceramics. Distributed both between and within these domains are micro-structural defects that provide the most ideal locations for light scattering.
965: 747:
present make other measurement techniques impossible. Extrinsic sensors measure vibration, rotation, displacement, velocity, acceleration, torque, and torsion. A solid-state version of the gyroscope, using the interference of light, has been developed. The
1387:
attenuation components for a record low loss fiber are given as follows: Rayleigh scattering loss: 0.1200 dB/km, infrared absorption loss: 0.0150 dB/km, impurity absorption loss: 0.0047 dB/km, waveguide imperfection loss: 0.0010 dB/km.
3023:
With properly polished single-mode fibers, the emitted beam has an almost perfect Gaussian shape—even in the far field—if a good lens is used. The lens needs to be large enough to support the full numerical aperture of the fiber, and must not introduce
1655:
100 wt. ppm of alkali oxide dopant in the fiber core, as well as slower cooling of the fiber during the fiber draw process. These approaches are used to produce optical fibers with the lowest attenuation, especially those for submarine telecom cables.
726:
light from either a non-fiber optical sensor—or an electronic sensor connected to an optical transmitter. A major benefit of extrinsic sensors is their ability to reach otherwise inaccessible places. An example is the measurement of temperature inside
962: 3048:
can occur. The reflection from the damage vaporizes the fiber immediately before the break, and this new defect remains reflective so that the damage propagates back toward the transmitter at 1–3 meters per second (4–11 km/h, 2–8 mph). The
2902:
Mechanical fiber splices are designed to be quicker and easier to install, but there is still the need for stripping, careful cleaning, and precision cleaving. The fiber ends are aligned and held together by a precision sleeve, often using a clear
2364:
is used, and a porous preform, whose length is not limited by the size of the source rod, is built up on its end. The porous preform is consolidated into a transparent, solid preform by heating to about 1,800 K (1,500 °C, 2,800 °F).
2955:
connection. Such connections have higher loss than PC connections but greatly reduced back reflection because light that reflects from the angled surface leaks out of the fiber core. APC fiber ends have low back reflection even when disconnected.
283:
in London succeeded in making image-transmitting bundles with over 10,000 fibers, and subsequently achieved image transmission through a 75 cm long bundle which combined several thousand fibers. The first practical fiber optic semi-flexible
2336:
particles. When the reaction conditions are chosen to allow this reaction to occur in the gas phase throughout the tube volume, in contrast to earlier techniques where the reaction occurred only on the glass surface, this technique is called
673:. In some applications, the fiber itself is the sensor (the fibers channel optical light to a processing device that analyzes changes in the light's characteristics). In other cases, fiber is used to connect a sensor to a measurement system. 3822: 2460:
The thickness of the coating is taken into account when calculating the stress that the fiber experiences under different bend configurations. When a coated fiber is wrapped around a mandrel, the stress experienced by the fiber is given by
1760:
and molecules of the solid lattice and the incident light wave radiation. Hence, all materials are bounded by limiting regions of absorption caused by atomic and molecular vibrations (bond-stretching) in the far-infrared (>10 μm).
411:
worked with Corning to develop practical optical fiber cables, resulting in the first metropolitan fiber optic cable being deployed in Turin in 1977. CSELT also developed an early technique for splicing optical fibers, called Springroove.
1231:. A high numerical aperture allows light to propagate down the fiber in rays both close to the axis and at various angles, allowing efficient coupling of light into the fiber. However, this high numerical aperture increases the amount of 1147:
Because the light must strike the boundary with an angle greater than the critical angle, only light that enters the fiber within a certain range of angles can travel down the fiber without leaking out. This range of angles is called the
2910:
Fibers are terminated in connectors that hold the fiber end precisely and securely. An optical fiber connector is a rigid cylindrical barrel surrounded by a sleeve that holds the barrel in its mating socket. The mating mechanism can be
1720:
resulting concentration fluctuations add to the loss. In such fibers the light travelling through the core experiences lower scattering and lower attenuation compared to the light propagating through the cladding segment of the fiber.
1301:. The waveguide analysis shows that the light energy in the fiber is not completely confined in the core. Instead, especially in single-mode fibers, a significant fraction of the energy in the bound mode travels in the cladding as an 1144:, meaning that the difference in refractive index between the core and the cladding is very small (typically less than 1%). Light travels through the fiber core, bouncing back and forth off the boundary between the core and cladding. 2699:
Modern cables come in a wide variety of sheathings and armor, designed for applications such as direct burial in trenches, high voltage isolation, dual use as power lines, installation in conduit, lashing to aerial telephone poles,
403:
joined Corning in 1983 and increased the speed of manufacture to over 50 meters per second, making optical fiber cables cheaper than traditional copper ones. These innovations ushered in the era of optical fiber telecommunication.
2567:
In a two-point bend configuration, a coated fiber is bent in a U-shape and placed between the grooves of two faceplates, which are brought together until the fiber breaks. The stress in the fiber in this configuration is given by
1769:) at which the particles of that material vibrate. Since different atoms and molecules have different natural frequencies of vibration, they will selectively absorb different frequencies (or portions of the spectrum) of IR light. 1218:
for this boundary, are completely reflected. The critical angle is determined by the difference in the index of refraction between the core and cladding materials. Rays that meet the boundary at a low angle are refracted from the
1698:
dopant is used to increase the refractive index of the fiber core, it increases the concentration fluctuation component of Rayleigh scattering, and attenuation of the fiber. This is why the lowest attenuation fibers do not use
6281:, Telcordia Technologies, Issue 2, July 2008. Discusses fiber optic splice closures and the associated hardware intended to restore the mechanical and environmental integrity of one or more fiber cables entering the enclosure. 318:
Research Labs in Ulm in 1965, followed by the first patent application for this technology in 1966. In 1968, NASA used fiber optics in the television cameras that were sent to the moon. At the time, the use in the cameras was
964: 1966:
Silica fiber also exhibits a high threshold for optical damage. This property ensures a low tendency for laser-induced breakdown. This is important for fiber amplifiers when utilized for the amplification of short pulses.
5714:. Fiber Optics Reliability and Testing, September 8–9, 1993, Boston, Massachusetts. Critical Reviews of Optical Science and Technology. Vol. CR50. Society of Photo-Optical Instrumentation Engineers. pp. 32–59. 4059: 1813:
where the dB loss per kilometer is a function of the type of fiber and can be found in the manufacturer's specifications. For example, a typical 1550 nm single-mode fiber has a loss of 0.3 dB per kilometer.
2527: 246:
at the surface... The angle which marks the limit where total reflection begins is called the limiting angle of the medium. For water this angle is 48°27′, for flint glass it is 38°41′, while for a diamond it is
296:, in 1956. In the process of developing the gastroscope, Curtiss produced the first glass-clad fibers; previous optical fibers had relied on air or impractical oils and waxes as the low-index cladding material. 2786:
Fiber cable can be very flexible, but traditional fiber's loss increases greatly if the fiber is bent with a radius smaller than around 30 mm. This creates a problem when the cable is bent around corners.
2630: 1787:
Attenuation over a cable run is significantly increased by the inclusion of connectors and splices. When computing the acceptable attenuation (loss budget) between a transmitter and a receiver one includes:
1731:
In addition to light scattering, attenuation or signal loss can also occur due to selective absorption of specific wavelengths. Primary material considerations include both electrons and molecules as follows:
2940:
is secured to the rear. Once the adhesive sets, the fiber's end is polished. Various polish profiles are used, depending on the type of fiber and the application. The resulting signal strength loss is called
1028:
Fiber is immune to electrical interference as there is no cross-talk between signals in different cables and no pickup of environmental noise. Information traveling inside the optical fiber is even immune to
528:(WDM), each fiber can carry many independent channels, each using a different wavelength of light. The net data rate (data rate without overhead bytes) per fiber is the per-channel data rate reduced by the 3216:
The fiber, in this case, will probably travel a longer route, and there will be additional delays due to communication equipment switching and the process of encoding and decoding the voice onto the fiber.
1764:
In other words, the selective absorption of IR light by a particular material occurs because the selected frequency of the light wave matches the frequency (or an integer multiple of the frequency, i.e.
415:
Attenuation in modern optical cables is far less than in electrical copper cables, leading to long-haul fiber connections with repeater distances of 70–150 kilometers (43–93 mi). Two teams, led by
4088: 2138:
Phosphate glasses can be advantageous over silica glasses for optical fibers with a high concentration of doping rare-earth ions. A mix of fluoride glass and phosphate glass is fluorophosphate glass.
1496: 3801:, Börner, Manfred, "Mehrstufiges Übertragungssystem für Pulscodemodulation dargestellte Nachrichten.", issued 1967-11-16, assigned to Telefunken Patentverwertungsgesellschaft m.b.H. 2891:
the light leaking from the cladding on the other side. A splice loss under 0.1 dB is typical. The complexity of this process makes fiber splicing much more difficult than splicing copper wire.
4766: 3473: 2877:
Fusion splicing is done with a specialized instrument. The fiber ends are first stripped of their protective polymer coating (as well as the more sturdy outer jacket, if present). The ends are
1752:
characteristics observed at the lower frequency regions (mid- to far-IR wavelength range) define the long-wavelength transparency limit of the material. They are the result of the interactive
1421:
the density fluctuations driven by fictive temperature of the glass, and from the concentration fluctuations of dopants in both the core and the cladding. Rayleigh scattering coefficient,
3436: 2907:
that enhances the transmission of light across the joint. Mechanical splices typically have a higher optical loss and are less robust than fusion splices, especially if the gel is used.
1469: 918:. Rare-earth-doped optical fibers can be used to provide signal amplification by splicing a short section of doped fiber into a regular (undoped) optical fiber line. The doped fiber is 2936:
A typical connector is installed by preparing the fiber end and inserting it into the rear of the connector body. Quick-set adhesive is usually used to hold the fiber securely, and a
242:
the perpendicular... If the angle which the ray in water encloses with the perpendicular to the surface be greater than 48 degrees, the ray will not quit the water at all: it will be
1850:, are used for longer-wavelength infrared or other specialized applications. Silica and fluoride glasses usually have refractive indices of about 1.5, but some materials such as the 2715:. In commercial terms, usage of the glass yarns are more cost-effective with no loss of mechanical durability. Glass yarns also protect the cable core against rodents and termites. 1335:
effects instead of or in addition to total internal reflection, to confine light to the fiber's core. The properties of the fiber can be tailored to a wide variety of applications.
792: 963: 3982: 3009:
is used to match the fiber mode field distribution to that of the other element. The lens on the end of the fiber can be formed using polishing, laser cutting or fusion splicing.
2445:
Today's glass optical fiber draw processes employ a dual-layer coating approach. An inner primary coating is designed to act as a shock absorber to minimize attenuation caused by
2643:
Three key characteristics of fiber optic waveguides can be affected by environmental conditions: strength, attenuation, and resistance to losses caused by microbending. External
711:
In contrast, highly localized measurements can be provided by integrating miniaturized sensing elements with the tip of the fiber. These can be implemented by various micro- and
624: 4067: 1122: 715:
technologies, such that they do not exceed the microscopic boundary of the fiber tip, allowing for such applications as insertion into blood vessels via hypodermic needle.
3490: 1947:)). Doping is also possible with laser-active ions (for example, rare-earth-doped fibers) in order to obtain active fibers to be used, for example, in fiber amplifiers or 154:
Being able to join optical fibers with low loss is important in fiber optic communication. This is more complex than joining electrical wire or cable and involves careful
1317:
Some special-purpose optical fiber is constructed with a non-cylindrical core or cladding layer, usually with an elliptical or rectangular cross-section. These include
834:, which is used to view objects through a small hole. Medical endoscopes are used for minimally invasive exploratory or surgical procedures. Industrial endoscopes (see 2416:, where the preform tip is heated and the optical fiber is pulled out as a string. The tension on the fiber can be controlled to maintain the desired fiber thickness. 5525:
Karabulut, M.; Melnik, E.; Stefan, R; Marasinghe, G. K.; Ray, C. S.; Kurkjian, C. R.; Day, D. E. (2001). "Mechanical and structural properties of phosphate glasses".
2433:
The cladding is coated by a buffer, (not to be confused with an actual buffer tube), that protects it from moisture and physical damage. These coatings are UV-cured
264:
showed that one could transmit images through a bundle of unclad optical fibers and used it for internal medical examinations, but his work was largely forgotten.
5704: 1152:
of the fiber. There is a maximum angle from the fiber axis at which light may enter the fiber so that it will propagate, or travel, in the core of the fiber. The
2898:
An aerial optical fiber splice enclosure lowered during installation. The individual fibers are fused and stored within the enclosure for protection from damage
1052:. Because there is no electricity in optical cables that could potentially generate sparks, they can be used in environments where explosive fumes are present. 5027: 4671:
Kostovski, G.; Stoddart, P. R.; Mitchell, A (2014). "The optical fiber tip: An inherently light-coupled microscopic platform for micro- and nanotechnologies".
2947:. For single-mode fiber, fiber ends are typically polished with a slight curvature that makes the mated connectors touch only at their cores. This is called a 4613: 2464: 1951:
applications. Both the fiber core and cladding are typically doped, so that the entire assembly (core and cladding) is effectively the same compound (e.g. an
1712:
in pure silica core fiber is proportional to the overlap integral between LP01 mode and fluorine-induced concentration fluctuation component in the cladding.
4428: 4096: 2798:
Another important feature of cable is cable's ability to withstand tension which determines how much force can be applied to the cable during installation.
2360:
flame. In outside vapor deposition, the glass is deposited onto a solid rod, which is removed before further processing. In vapor axial deposition, a short
7461: 5478:
Nee, Soe-Mie F.; Johnson, Linda F.; Moran, Mark B.; Pentony, Joni M.; Daigneault, Steven M.; Tran, Danh C.; Billman, Kenneth W.; Siahatgar, Sadegh (2000).
4549: 2933:). The barrel is typically free to move within the sleeve and may have a key that prevents the barrel and fiber from rotating as the connectors are mated. 5651:
Kouznetsov, D.; Moloney, J.V. (2003). "Highly efficient, high-gain, short-length, and power-scalable incoherent diode slab-pumped fiber amplifier/laser".
4774: 3773: 1210:
of light are guided along the fiber core by total internal reflection. Rays that meet the core-cladding boundary at an angle (measured relative to a line
830:
Optical fiber is also used in imaging optics. A coherent bundle of fibers is used, sometimes along with lenses, for a long, thin imaging device called an
6383: 3248:
For applications requiring spectral wavelengths, especially in the mid-infrared wavelengths (~ 2–7 μm), a better alternative is represented by
2434: 5912: 2571: 1285:
of the propagating light cannot be modeled using geometric optics. Instead, it must be analyzed as an electromagnetic waveguide structure, according to
436:, which reduced the cost of long-distance fiber systems by reducing or eliminating optical-electrical-optical repeaters, in 1986 and 1987 respectively. 5817: 2640:
in extreme conditions, these factors combine to cause microscopic flaws in the glass fiber to propagate, which can ultimately result in fiber failure.
636:), fiber-optic cabling can save space in cable ducts. This is because a single fiber can carry much more data than electrical cables such as standard 2712: 1802:
Connectors typically introduce 0.3 dB per connector on well-polished connectors. Splices typically introduce less than 0.2 dB per splice.
4354: 158:
of the fibers, precise alignment of the fiber cores, and the coupling of these aligned cores. For applications that demand a permanent connection a
5853: 1331:
is made with a regular pattern of index variation (often in the form of cylindrical holes that run along the length of the fiber). Such fiber uses
3956: 3567: 3002: 2300:, the preform starts as a hollow glass tube approximately 40 centimeters (16 in) long, which is placed horizontally and rotated slowly on a 2069:
fluorides. Their main technological application is as optical waveguides in both planar and fiber forms. They are advantageous especially in the
166:, where the ends of the fibers are held in contact by mechanical force. Temporary or semi-permanent connections are made by means of specialized 6345: 4632: 2324:
in the end of the tube. The gases are then heated by means of an external hydrogen burner, bringing the temperature of the gas up to 1,900 
6182:
Nagel, S. R.; MacChesney, J. B.; Walker, K. L. (1982). "An Overview of the Modified Chemical Vapor Deposition (MCVD) Process and Performance".
3452: 3006: 1745:
The design of any optically transparent device requires the selection of materials based upon knowledge of its properties and limitations. The
1362:
Experimentally measured spectral attenuation of silica core optical fiber. Minimum attenuation is 0.1400 dB/km at 1560 nm wavelength.
5053:
Smith, R. G. (1972). "Optical Power Handling Capacity of Low Loss Optical Fibers as Determined by Stimulated Raman and Brillouin Scattering".
7048: 96:
and imaging, and are often wrapped in bundles so they may be used to carry light into, or images out of confined spaces, as in the case of a
783:
examples are for powering electronics in high-powered antenna elements and measurement devices used in high-voltage transmission equipment.
8169: 8141: 8136: 7161: 5277:
Kurkjian, Charles R.; Gebizlioglu, Osman S.; Camlibel, Irfan (1999). "Strength variations in silica fibers". In Matthewson, M. John (ed.).
4899: 1809:
Loss = dB loss per connector × number of connectors + dB loss per splice × number of splices + dB loss per kilometer × kilometers of fiber,
1309:. Multi-mode fiber, by comparison, is manufactured with core diameters as small as 50 micrometers and as large as hundreds of micrometers. 5932: 1715:
In the core of potassium-doped pure silica-core (KPSC) fiber only density fluctuations play a significant role, as the concentrations of K
3986: 320: 6355: 4487: 2178:. These are extremely versatile compounds, in that they can be crystalline or amorphous, metallic or semiconducting, and conductors of 6275: 5591:
Shiryaev, V.S.; Churbanov, M.F. (2013). "Trends and prospects for development of chalcogenide fibers for mid-infrared transmission".
3207:
anneals. How long the annealing takes and the level of the residual attenuation depends on the fiber material and its temperature.
1493:
or fluorine, are used to create the refractive index difference between the core and the cladding, to form a waveguide structure.
6600: 6376: 4402: 1428: 931:
nonlinearity can have deleterious effects on optical signals, and measures are often required to minimize such unwanted effects.
8251: 8163: 5883: 4343: 1749: 1379: 1318: 3672: 8261: 8158: 8148: 8128: 7930: 6261: 6230: 6175: 6105: 6005: 5961:
Atkins, R. M.; Simpkins, P. G.; Yablon, A. D. (2003). "Track of a fiber fuse: a Rayleigh instability in optical waveguides".
5801: 5635: 4874: 4731: 3915: 3863: 3619: 3446: 1817:
The calculated loss budget is used when testing to confirm that the measured loss is within the normal operating parameters.
601: 506:
because it is flexible and can be bundled as cables. It is especially advantageous for long-distance communications, because
162:
is common. In this technique, an electric arc is used to melt the ends of the fibers together. Another common technique is a
5180:
Kurkjian, Charles R.; Simpkins, Peter G.; Inniss, Daryl (1993). "Strength, Degradation, and Coating of Silica Lightguides".
823:
in medical and other applications where bright light needs to be shone on a target without a clear line-of-sight path. Many
3169: 1005:
of the core must be greater than that of the cladding. The boundary between the core and cladding may either be abrupt, in
760: 271:
first demonstrated image transmission through bundles of optical fibers with a transparent cladding. Later that same year,
7295: 2886:
at the gap to burn off dust and moisture. Then the splicer generates a larger spark that raises the temperature above the
2636:
is the distance between the faceplates. The coefficient 1.198 is a geometric constant associated with this configuration.
8220: 8153: 7999: 6421: 5653: 3159: 2866:, that is, joining two fibers together to form a continuous optical waveguide. The generally accepted splicing method is 989:
waveguide) that transmits light along its axis through the process of total internal reflection. The fiber consists of a
5763: 4464: 4371: 195: 7925: 6529: 6369: 5739: 5365: 3293: 8019: 6160: 3785: 3715: 3527: 3500: 2768: 2243: 173:
The field of applied science and engineering concerned with the design and application of optical fibers is known as
5940: 7804: 7352: 7154: 6486: 4617: 2124: 1305:. The most common type of single-mode fiber has a core diameter of 8–10 micrometers and is designed for use in the 952:
for handguns, rifles, and shotguns use pieces of optical fiber to improve the visibility of markings on the sight.
525: 4439: 2356:, a reaction in which silicon tetrachloride and germanium tetrachloride are oxidized by reaction with water in an 1854:
can have indices as high as 3. Typically the index difference between core and cladding is less than one percent.
1600:{\displaystyle R_{\text{d}}={\frac {8\pi ^{3}}{3\lambda ^{4}}}n^{8}p^{2}\beta _{\text{c}}k_{\text{B}}T_{\text{f}}} 7915: 7073: 6869: 6557: 6481: 6339: 1132:
When light traveling in an optically dense medium hits a boundary at a steep angle of incidence (larger than the
4596: 349:
theorized the light-loss properties for optical fiber and pointed out the right material to use for such fibers—
7910: 2989:. This can involve either carefully aligning the fiber and placing it in contact with the device, or can use a 2750: 2746: 2701: 2225: 2221: 561: 337: 17: 4548:
Bozinovic, N.; Yue, Y.; Ren, Y.; Tur, M.; Kristensen, P.; Huang, H.; Willner, A. E.; Ramachandran, S. (2013).
2696:
in fiber bundle imaging applications. Multi-fiber cable usually uses colored buffers to identify each strand.
2425:
refraction. For other types of fiber, the cladding made of plastic and is applied like a coating (see below).
7935: 6985: 6962: 1290: 1036:
Fiber cables do not conduct electricity, which makes fiber useful for protecting communications equipment in
326:, and employees handling the cameras had to be supervised by someone with an appropriate security clearance. 190: 5828: 399:
Initially, high-quality optical fibers could only be manufactured at 2 meters per second. Chemical engineer
8210: 7971: 7868: 7411: 7206: 7178: 6818: 6501: 5285:. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Vol. 3848. p. 77. 5242:
Kurkjian, C. R.; Krause, J. T.; Matthewson, M. J. (1989). "Strength and fatigue of silica optical fibers".
4301: 873: 705: 433: 89: 4205:
Desurvire, E.; Simpson, J.; Becker, P.C. (1987). "High-gain erbium-doped traveling-wave fiber amplifier".
3225:
The electromagnetic analysis may also be required to understand behaviors such as speckle that occur when
210:
first demonstrated the guiding of light by refraction, the principle that makes fiber optics possible, in
8200: 7707: 7147: 6593: 6491: 3378: 3109: 739:
outside the engine. Extrinsic sensors can be used in the same way to measure the internal temperature of
613: 589: 6272:, and has revolutionized communications, business, and even the distribution of capital among countries. 5861: 4923: 307:
that introduced the topic to a wide audience. He subsequently wrote the first book about the new field.
8059: 7981: 7920: 7627: 6539: 3931: 3879: 3592:
Colladon, Jean-Daniel (1842). "On the reflections of a ray of light inside a parabolic liquid stream".
1888: 644: 272: 6889: 3960: 3817: 3798: 3571: 1998:
while processing it through the glass transition (or drawing the fiber from the melt). Thus, although
1098: 1068: 8256: 7831: 7792: 7637: 7537: 7466: 7399: 7226: 6849: 6770: 6660: 6513: 6457: 6350: 3013: 2278: 1256: 1191: 1137: 1049: 487: 472: 421: 223: 132: 73: 5675: 8190: 7432: 7367: 7320: 7280: 7118: 6750: 6567: 5150:
Glaesemann, G. S. (1999). "Advancements in Mechanical Strength and Reliability of Optical Fibers".
4429:"111 Gb/s POLMUX-RZ-DQPSK Transmission over 1140 km of SSMF with 10.7 Gb/s NRZ-OOK Neighbours" 4008: 3012:
In a laboratory environment, a bare fiber end is coupled using a fiber launch system, which uses a
2027: 1723:
At high optical powers, scattering can also be caused by nonlinear optical processes in the fiber.
1179: 1169: 1140:. This effect is used in optical fibers to confine light in the core. Most modern optical fiber is 845:
In some buildings, optical fibers route sunlight from the roof to other parts of the building (see
647:
offer a digital audio optical connection. This allows the streaming of audio over light, using the
529: 491: 400: 4654:"World Record Optical Fiber Transmission Capacity Doubles to 22.9 Petabits per Second | 2023" 3309: 357:
in 2009. The crucial attenuation limit of 20 dB/km was first achieved in 1970 by researchers
8029: 8014: 7858: 7809: 7732: 7632: 7310: 7196: 7191: 7113: 6980: 6854: 6472: 4614:"Petabit per second data transmission speeds from a single chip-scale light source - DTU Electro" 3907: 3855: 3119: 3104: 2827: 2821: 2739: 2313: 2214: 1999: 1322: 1215: 1133: 1067:. In contrast, copper cable systems use large amounts of copper and have been targeted since the 994: 677: 167: 124: 112: 93: 3044:
per square centimeter, when a fiber is subjected to a shock or is otherwise suddenly damaged, a
514:
compared to electricity in electrical cables. This allows long distances to be spanned with few
8241: 7951: 7737: 7552: 7497: 7492: 7305: 7270: 6586: 5670: 2679: 2376:. The preform for this test fiber was not polished well, and cracks are seen with the confocal 2151: 1703:
in the core, and use fluorine in the cladding, to reduce the refractive index of the cladding.
1328: 1286: 986: 740: 444: 374: 354: 293: 3901: 3849: 688:, and other quantities by modifying a fiber so that the property being measured modulates the 8246: 7853: 7657: 7622: 7542: 7522: 7444: 7332: 7253: 6922: 6730: 6392: 5443:
Tran, D.; Sigel, G.; Bendow, B. (1984). "Heavy metal fluoride glasses and fibers: A review".
3194: 3144: 3114: 2974: 2305: 1971:
of silica fibers have further increased the performance of such fibers over other materials.
1857: 1344: 1030: 749: 744: 643:
Fibers are often also used for short-distance connections between devices. For example, most
276: 178: 77: 7186: 2791:, targeted toward easier installation in home environments, have been standardized as ITU-T 1395: 310:
The first working fiber-optic data transmission system was demonstrated by German physicist
7767: 7727: 7697: 7454: 7389: 7211: 7078: 6952: 6864: 6700: 6690: 6534: 6191: 6124: 5970: 5857: 5715: 5662: 5600: 5565: 5534: 5491: 5452: 5417: 5374: 5329: 5286: 5251: 5216: 5159: 5124: 5062: 4991: 4935: 4680: 4564: 4495: 4403:"14 Tbps over a Single Optical Fiber: Successful Demonstration of World's Largest Capacity" 4259: 4216: 4179: 4135: 3740: 3344: 3149: 2978: 2874:
is used. All splicing techniques involve installing an enclosure that protects the splice.
2112: 1782: 1220: 982: 697: 203: 120: 6990: 3776:. Scientific Background on the Nobel Prize in Physics 2009. Nobelprize.org. 6 October 2009 1868:
Silica exhibits fairly good optical transmission over a wide range of wavelengths. In the
865:. Optical fiber is an intrinsic part of the light-transmitting concrete building product 8: 7777: 7717: 7476: 7438: 7236: 7221: 7098: 7025: 7020: 6942: 6917: 6884: 6745: 6416: 6286: 5097: 4978:
Khrapko, R.; Logunov, S. L.; Li, M.; Matthews, H. B.; Tandon, P.; Zhou, C. (2024-04-15).
4797:"In situ real-time monitoring of a fermentation reaction using a fiber-optic FT-IR probe" 4170: 4126: 3676: 3655: 3636: 3226: 3154: 3099: 3067: 2667: 2644: 1383: 1236: 1232: 924: 719: 689: 633: 370: 128: 6195: 6128: 5974: 5719: 5666: 5604: 5569: 5538: 5495: 5456: 5421: 5378: 5333: 5290: 5255: 5220: 5163: 5128: 5066: 4995: 4939: 4684: 4568: 4499: 4465:"Bell Labs breaks optical transmission record, 100 Petabit per second kilometer barrier" 4263: 4220: 4183: 4139: 3744: 3348: 2965:
the first fusion splice enclosure assures good performance and minimizes on-site labor.
2277:
the preform to form the long, thin optical fiber. The preform is commonly made by three
1907:
Silica glass can be doped with various materials. One purpose of doping is to raise the
1358: 827:
use fiber-optic light sources to provide intense illumination of samples being studied.
811: 8004: 7961: 7892: 7762: 7692: 7667: 7602: 7449: 7170: 7005: 6927: 6675: 6665: 6207: 6140: 5731: 5507: 5390: 5345: 5302: 5193: 4704: 4588: 4283: 3756: 3090: 3050: 3025: 2904: 2534: 2377: 2187: 2015: 1956: 1887:
Silica can be drawn into fibers at reasonably high temperatures and has a fairly broad
1843: 1642: 1297:
by which light can propagate along the fiber. Fiber supporting only one mode is called
1228: 1199: 1194:
rod, illustrating the total internal reflection of light in a multi-mode optical fiber.
1157: 1013: 1007: 943: 935: 899: 854: 850: 664: 557: 425: 136: 101: 100:. Specially designed fibers are also used for a variety of other applications, such as 5577: 5546: 4507: 4406: 3731:
Hopkins, H. H.; Kapany, N. S. (1954). "A flexible fiberscope, using static scanning".
3356: 2973:
It is often necessary to align an optical fiber with another optical fiber or with an
2328:(1,600 °C, 3,000 °F), where the tetrachlorides react with oxygen to produce 2026:. Fluoride fibers can be used for guided lightwave transmission in media such as YAG ( 1489:
represents Rayleigh scattering on dopant concentration fluctuations. Dopants, such as
8044: 7966: 7880: 7863: 7826: 7672: 7502: 7471: 7337: 7231: 7083: 7053: 7010: 6947: 6932: 6844: 6735: 6563: 6467: 6426: 6257: 6226: 6171: 6156: 6101: 6046: 6035: 5986: 5797: 5735: 5631: 5612: 5511: 5429: 5394: 5349: 5306: 5228: 5078: 5009: 4951: 4870: 4727: 4696: 4592: 4580: 4287: 4275: 4232: 4031: 3911: 3859: 3711: 3615: 3523: 3496: 3442: 3289: 3017: 2998: 2960:
connectors are pre-polished at the factory and include a gel inside the connector. A
2657: 2385: 2333: 1912: 1746: 1490: 1266: 1198:
Fiber with large core diameter (greater than 10 micrometers) may be analyzed by
949: 915: 846: 779: 766:
Optical fibers are widely used as components of optical chemical sensors and optical
572:
100 Pbit/s·km (15.5 Tbit/s over a single 7000 km fiber) by Bell Labs.
532:(FEC) overhead, multiplied by the number of channels (usually up to 80 in commercial 499: 466: 382: 333: 289: 163: 148: 7712: 6211: 6144: 5891: 5363:
Proctor, B. A.; Whitney, I.; Johnson, J. W. (1967). "The Strength of Fused Silica".
5115:
Skuja, L.; Hirano, M.; Hosono, H.; Kajihara, K. (2005). "Defects in oxide glasses".
4708: 4653: 4060:"15 settembre 1977, Torino, prima stesura al mondo di una fibra ottica in esercizio" 3835: 2806: 2384:
Typical communications fiber uses a circular preform. For some applications such as
311: 8049: 8009: 7989: 7956: 7885: 7843: 7757: 7612: 7597: 7572: 7547: 7507: 7357: 7216: 7201: 6874: 6859: 6629: 6332: 6325: 6199: 6132: 6093: 5978: 5723: 5680: 5608: 5573: 5542: 5499: 5460: 5425: 5382: 5337: 5294: 5259: 5224: 5189: 5132: 5070: 4999: 4943: 4748: 4688: 4572: 4503: 4325: 4267: 4224: 4187: 4143: 4030:
Catania, B.; Michetti, L.; Tosco, F.; Occhini, E.; Silvestri, L. (September 1976).
3760: 3748: 3352: 2814: 1908: 1897: 1616: 1206:, from the electromagnetic analysis (see below). In a step-index multi-mode fiber, 1080: 1041: 1002: 637: 503: 440: 386: 381:. A few years later they produced a fiber with only 4 dB/km attenuation using 366: 358: 280: 257: 253: 144: 6013: 5771: 4329: 3370: 7677: 7532: 7300: 7275: 7263: 7068: 7063: 6912: 6808: 6785: 6780: 6765: 6760: 6755: 6715: 6685: 6220: 4616:(Press release). Technical University of Denmark. 31 October 2022. Archived from 4379: 3820:, Börner, Manfred, "Electro-optical transmission system utilizing lasers" 3517: 3139: 2867: 2167: 2097: 2023: 2011: 1995: 1952: 1920: 1302: 1294: 1149: 919: 712: 207: 159: 140: 6250: 6084: 2081: 842:) are used for inspecting anything hard to reach, such as jet engine interiors. 7875: 7747: 7722: 7682: 7652: 7527: 7362: 7315: 7290: 7248: 7030: 7000: 6995: 4207: 3335:
Lee, Byoungho (2003). "Review of the present status of optical fiber sensors".
3249: 2961: 2878: 2863: 2393: 2346: 1979: 1936: 1892: 1873: 1839: 1835: 1211: 1084: 862: 670: 507: 417: 329: 155: 80:(data transfer rates) than electrical cables. Fibers are used instead of metal 6203: 4162: 4118: 2352:
In outside vapor deposition or vapor axial deposition, the glass is formed by
632:
For short-distance applications, such as a network in an office building (see
8235: 8024: 7787: 7702: 7592: 7587: 7577: 7562: 7384: 7243: 6894: 6800: 6775: 6670: 6269: 6050: 5464: 5013: 5004: 4979: 4550:"Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers" 4472: 3029: 2990: 2937: 2921: 2887: 2413: 2397: 2175: 2101: 2035: 1877: 1869: 1741:
longer wavelengths in the infrared (IR), far IR, radio, and microwave ranges.
1306: 1261: 1057: 753: 693: 478: 268: 261: 235: 6740: 6361: 5684: 4822: 4576: 4271: 7902: 7742: 7687: 7617: 7582: 7517: 7416: 7406: 7258: 7103: 7058: 7015: 6705: 6680: 6634: 6406: 6315: 6069:
G. P. Agrawal, Fiber Optic Communication Systems, Wiley-Interscience, 1997.
5990: 5386: 5136: 5082: 4955: 4894: 4700: 4692: 4584: 4279: 4236: 3054: 2894: 2810: 2070: 1851: 1207: 1037: 939: 888: 483: 350: 215: 6218: 6097: 4191: 4147: 4119:"Low-threshold tunable CW and Q-switched fibre laser operating at 1.55 μm" 3399: 2412:
The preform, regardless of construction, is placed in a device known as a
2123:), which crystallizes in at least four different forms. The most familiar 1223:
into the cladding where they terminate. The critical angle determines the
1091:, such as in outer space. The speed of light in a vacuum is about 300,000 40: 8102: 7752: 7662: 7647: 7607: 7567: 7426: 7128: 7093: 6813: 6695: 6506: 6436: 5982: 5074: 4947: 4844: 4796: 4228: 4161:
Mears, R.J.; Reekie, L.; Jauncey, I.M.; Payne, D.N. (10 September 1987).
4039:
Proceedings of 2nd European Conference on Optical Communication (II ECOC)
3164: 2982: 2859: 2389: 2357: 2019: 1896:
flat surfaces with acceptable optical quality. Silica is also relatively
1881: 1332: 1064: 1053: 911: 907: 824: 681: 580:
101 Tbit/s (370 channels at 273 Gbit/s each) on a single core.
511: 448: 362: 341: 285: 105: 85: 6136: 2951:(PC) polish. The curved surface may be polished at an angle, to make an 2522:{\displaystyle \sigma =E{d_{\text{f}} \over d_{\text{m}}+d_{\text{c}}},} 2269:
Standard optical fibers are made by first constructing a large-diameter
8107: 7814: 7512: 7421: 7377: 7347: 7325: 7123: 7088: 6957: 6725: 6720: 6578: 6441: 6431: 3134: 3124: 2994: 2883: 2753: in this section. Unsourced material may be challenged and removed. 2693: 2265:
Illustration of the modified chemical vapor deposition (inside) process
2228: in this section. Unsourced material may be challenged and removed. 2108: 1901: 1756:
between the motions of thermally induced vibrations of the constituent
1417: 1375: 1282: 1224: 1092: 998: 881: 835: 820: 767: 728: 723: 701: 315: 97: 5727: 5503: 5341: 5298: 4658:
NICT - National Institute of Information and Communications Technology
2662: 1349: 973: 8092: 7557: 7372: 7139: 6153:
The New Communications Technologies: Applications, Policy, and Impact
5263: 4980:"Quasi Single-Mode Fiber With Record-Low Attenuation of 0.1400 dB/km" 4117:
Mears, R.J.; Reekie, L.; Poole, S.B.; Payne, D.N. (30 January 1986).
3752: 2986: 2870:, which melts the fiber ends together. For quicker fastening jobs, a 2689: 2446: 2438: 2163: 2147: 2062: 2058: 2050: 2039: 1991: 1136:
for the boundary), the light is completely reflected. This is called
1045: 839: 831: 736: 732: 533: 429: 230:
When the light passes from air into water, the refracted ray is bent
116: 76:, where they permit transmission over longer distances and at higher 5479: 2728: 2203: 1239:
and therefore take different amounts of time to traverse the fiber.
8087: 8077: 7994: 7819: 7642: 7108: 6879: 6655: 6650: 6219:
Rajiv Ramaswami; Kumar Sivarajan; Galen Sasaki (27 November 2009).
5560:
Kurkjian, C. (2000). "Mechanical properties of phosphate glasses".
5320:
Skontorp, Arne (2000). Gobin, Pierre F; Friend, Clifford M (eds.).
4795:
Al Mosheky, Zaid; Melling, Peter J.; Thomson, Mary A. (June 2001).
3190: 3084: 3041: 2943: 2183: 2159: 2004: 1983: 1932: 1847: 1766: 1753: 1293:. As an optical waveguide, the fiber supports one or more confined 1244: 866: 685: 640:, which typically runs at 100 Mbit/s or 1 Gbit/s speeds. 515: 378: 6351:
Fundamentals of Photonics: Module on Optical Waveguides and Fibers
5960: 5408:
Bartenev, G (1968). "The structure and strength of glass fibers".
4163:"Low-noise erbium-doped fibre amplifier operating at 1.54 μm" 2625:{\displaystyle \sigma =1.198E{d_{\text{f}} \over d-d_{\text{c}}},} 791: 8082: 8067: 7285: 6828: 6239: 2673:
In practical fibers, the cladding is usually coated with a tough
1186: 1124:
of a second) between when one caller speaks and the other hears.
796: 652: 345: 45: 4527: 4305: 2111:
observed in silicate glasses, the building block for this glass
1174: 884:. It is based on the principle of measuring analog attenuation. 853:
are used for illumination in decorative applications, including
292:, C. Wilbur Peters, and Lawrence E. Curtiss, researchers at the 8112: 8072: 7394: 6904: 6710: 6411: 6115:
Gambling, W. A. (2000). "The Rise and Rise of Optical Fibers".
5524: 5324:. Fifth European Conference on Smart Structures and Materials. 4405:(Press release). Nippon Telegraph and Telephone. Archived from 2997:
is much larger than the size of the mode in a laser diode or a
2858:. Optical fibers may be connected by connectors typically on a 2708: 2329: 2325: 2321: 2273:
with a carefully controlled refractive index profile, and then
2171: 2155: 2093:
cagelike structure—the basic building block for phosphate glass
2066: 2054: 1831: 1247:
relationship between the index and the distance from the axis.
1088: 903: 895: 877: 648: 393: 390: 219: 6358:
at the Institute of Telecommunicatons, University of Stuttgart
5322:
Nonlinear mechanical properties of silica-based optical fibers
4724:
Chemical Sensors and Biosensors: Fundamentals and Applications
4089:"Springroove, il giunto per fibre ottiche brevettato nel 1977" 3836:
Lunar Television Camera. Pre-installation Acceptance Test Plan
1048:
strikes. The electrical isolation also prevents problems with
807:
Light reflected from optical fiber illuminates exhibited model
373:. They demonstrated a fiber with 17 dB/km attenuation by 8097: 8034: 7342: 6823: 6790: 6624: 6609: 6496: 5486:. International Symposium on Optical Science and Technology. 5207:
Kurkjian, C (1988). "Mechanical stability of oxide glasses".
4344:"Polarization in Fiber Systems: Squeezing Out More Bandwidth" 3253: 3129: 2993:
to allow coupling over an air gap. Typically the size of the
2792: 2674: 2392:
based on double-clad fiber, an asymmetric shape improves the
2301: 2046: 2031: 1987: 1948: 1018: 803: 408: 396:
that could be drawn into strands 25 miles (40 km) long.
211: 69: 65: 61: 32: 3786:
How India missed another Nobel Prize – Rediff.com India News
3239:
fiber core is large enough to support more than a few modes.
1982:
is a class of non-oxide optical quality glasses composed of
969:
An overview of the operating principles of the optical fiber
8039: 6036:"Evaluation of high-power endurance in optical fiber links" 5650: 5630:(2nd ed.). Hempstead, UK: Prentice-Hall. p. 209. 5276: 4029: 3730: 2368: 2034:
at 2.9 μm, as required for medical applications (e.g.
1994:
of these glasses, it is very difficult to completely avoid
1757: 1480:
represents Rayleigh scattering on density fluctuations and
1321:
used in fiber optic sensors and fiber designed to suppress
1153: 222:, 12 years later. Tyndall also wrote about the property of 115:, while plastic fibers can be made either by drawing or by 81: 4372:"JANET Delivers Europe's First 40 Gbps Wavelength Service" 2830:. These connectors are usually of a standard type such as 2261: 2190:
can be used to make fibers for far infrared transmission.
1001:
materials. To confine the optical signal in the core, the
226:
in an introductory book about the nature of light in 1870:
72:
from one end to the other. Such fibers find wide usage in
6309: 5913:"Optical gels improve fiber-optic connectors and splices" 5854:"Corning announces breakthrough optical fiber technology" 5114: 4670: 2179: 1374:
Attenuation in optical fiber is caused primarily by both
1281:
Fiber with a core diameter less than about ten times the
1022: 858: 218:
included a demonstration of it in his public lectures in
5241: 4977: 4823:"Reaction monitoring in small reactors and tight spaces" 4794: 3788:. News.rediff.com (2009-10-12). Retrieved on 2017-02-08. 1792:
dB loss due to the type and length of fiber optic cable,
1060:) is more difficult compared to electrical connections. 6346:
MIT Video Lecture: Understanding Lasers and Fiberoptics
6268:
The book discusses how fiber optics has contributed to
4160: 3710:(revised ed.). Oxford University. pp. 55–70. 3475:
The Optical Industry & Systems Purchasing Directory
486:
containing optical fiber cables. The yellow cables are
48:
fiber optic audio cable with red light shone in one end
6151:
Mirabito, Michael M. A.; and Morgenstern, Barbara L.,
6117:
IEEE Journal of Selected Topics in Quantum Electronics
5477: 5179: 4528:"NEC and Corning achieve petabit optical transmission" 4204: 4032:"First Italian Experiment with a Buried Optical Cable" 3400:"Manufacture of Perfluorinated Plastic Optical Fibers" 2826:
Optical fibers are connected to terminal equipment by
1103: 880:
can detect stresses that may have a lasting impact on
6181: 5480:"Optical and surface properties of oxyfluoride glass" 5362: 5020: 4767:"Photovoltaic feat advances power over optical fiber" 4116: 3286:
Optical fiber communications: principles and practice
3016:
to focus the light down to a fine point. A precision
2574: 2467: 1499: 1431: 1101: 759:
Common uses for fiber optic sensors include advanced
521:
10 or 40 Gbit/s is typical in deployed systems.
238:... When the ray passes from water to air it is bent 6278:
Generic Requirements for Fiber Optic Splice Closures
4850:. In Chalmers, John M.; Griffiths, Peter R. (eds.). 3080: 2707:
Some fiber optic cable versions are reinforced with
778:
Optical fiber can be used to transmit power using a
588:
1.05 Pbit/s transmission through a multi-core (
147:, while those that support a single mode are called 4250:Russell, Philip (2003). "Photonic Crystal Fibers". 600:400 Gbit/s over a single channel using 4-mode 369:, and Frank Zimar working for American glass maker 177:. The term was coined by Indian-American physicist 6249: 5770:. National Instruments Corporation. Archived from 4845:"Fiber-optic probes for mid-infrared spectrometry" 4547: 3880:"Press Release – Nobel Prize in Physics 2009" 3560: 2624: 2521: 2045:An example of a heavy metal fluoride glass is the 1891:. One other advantage is that fusion splicing and 1599: 1463: 1116: 340:(STC) were the first to promote the idea that the 5825:Alaska Division of Community and Regional Affairs 5590: 5149: 3568:"Narinder Singh Kapany Chair in Opto-electronics" 1830:Glass optical fibers are almost always made from 676:Optical fibers can be used as sensors to measure 131:. Light is kept in the core by the phenomenon of 8233: 4635:(Press release). Technical University of Denmark 3959:. The Right Stuff Comes in Black. Archived from 353:with high purity. This discovery earned Kao the 139:. Fibers that support many propagation paths or 5818:"Screening report for Alaska rural energy plan" 5442: 4746: 4249: 3797: 3522:(4th ed.). Elsevier Science. p. 355. 2372:Cross-section of a fiber drawn from a D-shaped 4973: 4971: 4842: 4821:Melling, Peter; Thomson, Mary (October 2002). 4820: 4726:. Chichester: John Wiley and Sons. Ch. 18–20. 4462: 4353:. Laurin Publishing. p. 1. Archived from 2404:mechanical properties of the resulting fiber. 1694:is the refractive index of the glass. When GeO 7155: 7049:Conservation and restoration of glass objects 6594: 6391: 6377: 5705:"Optical Fiber Mechanical Testing Techniques" 5698: 5696: 5694: 4488:"Ultrafast fibre optics set new speed record" 1017:. Light can be fed into optical fibers using 510:propagates through the fiber with much lower 6320:Encyclopedia of Laser Physics and Technology 5102:Encyclopedia of Laser Physics and Technology 4900:Encyclopedia of Laser Physics and Technology 4494:. Vol. 210, no. 2809. p. 24. 3701: 3699: 3697: 3695: 3693: 2683:layer, which may be further surrounded by a 1338: 1127: 344:in optical fibers could be reduced below 20 84:because signals travel along them with less 8170:Global telecommunications regulation bodies 6328:", Mercury Communications Ltd, August 1992. 5175: 5173: 4968: 4858: 4378:(Press release). 2007-07-09. Archived from 3816: 2801: 1464:{\displaystyle R=R_{\text{d}}+R_{\text{c}}} 1235:as rays at different angles have different 752:(FOG) has no moving parts and exploits the 111:Glass optical fibers are typically made by 8206: 7162: 7148: 6601: 6587: 6384: 6370: 6335:", Mercury Communications Ltd, March 1993. 5884:"Protect your network against fiber hacks" 5702: 5691: 5644: 3893: 3516:Fennelly, Lawrence J. (26 November 2012). 3488: 3284:Senior, John M.; Jamro, M. Yousif (2009). 2100:is a class of optical glasses composed of 1087:in a material. Light travels fastest in a 6222:Optical Networks: A Practical Perspective 5785: 5674: 5619: 5003: 4915: 4843:Melling, Peter J.; Thomson, Mary (2002). 3841: 3690: 3612:Optical Switching and Networking Handbook 2769:Learn how and when to remove this message 2244:Learn how and when to remove this message 1686:is the mole fraction of the dopant in SiO 1399:Angular dependence of Rayleigh scattering 955: 722:, normally a multi-mode one, to transmit 6608: 6247: 6241:Lennie Lightwave's Guide to Fiber Optics 6114: 5559: 5407: 5319: 5206: 5170: 3903:City of Light, The Story of Fiber Optics 3851:City of Light, The Story of Fiber Optics 3708:City of Light: The Story of Fiber Optics 3605: 3603: 3591: 3515: 3434: 2893: 2805: 2711:yarns or glass yarns as an intermediary 2661: 2367: 2260: 2080: 1394: 1357: 1348: 1312: 1260: 1185: 1173: 972: 959: 810: 802: 790: 477: 471:For broader coverage of this topic, see 194: 191:Fiber-optic communication § History 39: 31: 6342:" Educational site from Arc Electronics 6082: 6034:Seo, Koji; et al. (October 2003). 5182:Journal of the American Ceramic Society 3670: 3653: 3634: 3061: 2442:the fiber for termination or splicing. 1726: 14: 8234: 7169: 4888: 4886: 4864: 4721: 4426: 3774:Two Revolutionary Optical Technologies 2968: 1955:, germanosilicate, phosphosilicate or 1846:as well as crystalline materials like 498:Optical fiber is used as a medium for 7143: 6582: 6365: 6284: 5881: 5791: 5625: 5279:Optical Fiber Reliability and Testing 5095: 5052: 4921: 4892: 4630: 4485: 4463:Alcatel-Lucent (September 29, 2009). 3983:"Executive Profile: Thomas O. Mensah" 3949: 3899: 3847: 3705: 3614:. New York: McGraw-Hill. p. 10. 3609: 3600: 3428: 3229:light propagates in multi-mode fiber. 3040:At high optical intensities, above 2 2651: 2141: 2104:of various metals. Instead of the SiO 1805:The total loss can be calculated by: 1795:dB loss introduced by connectors, and 773: 718:Extrinsic fiber optic sensors use an 602:orbital angular momentum multiplexing 119:. Optical fibers typically include a 8216: 6244:, The Fiber Optic Association, 2016. 6168:Fiber Optics: Physics and Technology 6006:"Origin of 'fiber fuse' is revealed" 6003: 5768:National Instruments' Developer Zone 5712:Fiber Optics Reliability and Testing 4852:Handbook of Vibrational Spectroscopy 3932:"1971–1985 Continuing the Tradition" 3170:Subwavelength-diameter optical fiber 2751:adding citations to reliable sources 2722: 2555:is the diameter of the cladding and 2226:adding citations to reliable sources 2197: 1834:, but some other materials, such as 1250: 1044:facilities or applications prone to 761:intrusion detection security systems 452:These fibers can have hollow cores. 6333:Photonics & the future of fibre 6184:IEEE Journal of Quantum Electronics 6155:, 5th Edition. Focal Press, 2004. ( 6033: 5654:IEEE Journal of Quantum Electronics 4883: 4865:Govind, Agrawal (10 October 2012). 4438:. pp. Mo.4.E.2. Archived from 4427:Alfiad, M. S.; et al. (2008). 4400: 4394: 4341: 4304:. Crystal Fiber A/S. Archived from 3478:. Optical Publishing Company. 1984. 3334: 3288:. Pearson Education. pp. 7–9. 3160:Radiation effects on optical fibers 2718: 1390: 1178:The propagation of light through a 1163: 1074: 135:which causes the fiber to act as a 24: 6287:"Tutorial on Passive Fiber optics" 6075: 5764:"Light collection and propagation" 5366:Proceedings of the Royal Society A 5194:10.1111/j.1151-2916.1993.tb03727.x 5028:"Corning Submarine Optical Fibers" 4747:Anna Basanskaya (1 October 2005). 4302:"The History of Crystal fiber A/S" 3957:"About the Author – Thomas Mensah" 2704:, and insertion in paved streets. 2339:modified chemical vapor deposition 2076: 1880:is better for transmission in the 1227:of the fiber, often reported as a 1214:to the boundary) greater than the 1063:Fiber cables are not targeted for 981:An optical fiber is a cylindrical 872:Optical fiber can also be used in 443:led to the development in 1991 of 25: 8273: 6303: 6086:Fiber-Optic Communication Systems 5593:Journal of Non-Crystalline Solids 5562:Journal of Non-Crystalline Solids 5527:Journal of Non-Crystalline Solids 5410:Journal of Non-Crystalline Solids 5209:Journal of Non-Crystalline Solids 4984:IEEE Photonics Technology Letters 4722:Bănică, Florinel-Gabriel (2012). 1974: 1658:For small dopant concentrations, 997:layer, both of which are made of 490:; the orange and aqua cables are 8215: 8205: 8196: 8195: 8184: 7805:Free-space optical communication 6562: 6553: 6552: 6356:Webdemo for chromatic dispersion 6063: 5613:10.1016/j.jnoncrysol.2012.12.048 4869:(5th ed.). Academic Press. 4631:Krull, Lotte (20 October 2022). 3083: 2727: 2564:is the diameter of the coating. 2546:is the diameter of the mandrel, 2202: 2010:Fluoride fibers are used in mid- 1820: 1117:{\displaystyle {\tfrac {1}{12}}} 526:wavelength-division multiplexing 460: 303:after writing a 1960 article in 7119:Radioactive waste vitrification 7074:Glass fiber reinforced concrete 6027: 5997: 5954: 5943:from the original on 2012-01-27 5925: 5905: 5875: 5846: 5810: 5796:(4th ed.). Prentice Hall. 5756: 5584: 5553: 5518: 5490:. Vol. 4102. p. 122. 5471: 5445:Journal of Lightwave Technology 5436: 5401: 5356: 5328:. Vol. 4073. p. 278. 5313: 5270: 5244:Journal of Lightwave Technology 5235: 5200: 5143: 5108: 5089: 5046: 4836: 4814: 4788: 4759: 4740: 4715: 4664: 4646: 4624: 4606: 4541: 4520: 4479: 4471:(Press release). Archived from 4456: 4420: 4364: 4335: 4319: 4294: 4243: 4198: 4154: 4110: 4093:Archivio storico Telecom Italia 4081: 4064:Archivio storico Telecom Italia 4052: 4023: 4001: 3975: 3924: 3872: 3829: 3810: 3791: 3779: 3767: 3724: 3673:"How Fiber Optics Was Invented" 3664: 3647: 3628: 3585: 3548: 3536: 3509: 3482: 3242: 3232: 3219: 3210: 3200: 2781: 2738:needs additional citations for 2692:between the fibers, or reduces 2213:needs additional citations for 1876:(OH). Alternatively, a high OH 1632:is isothermal compressibility, 756:to detect mechanical rotation. 5484:Inorganic Optical Materials II 4633:"New data transmission record" 3466: 3416: 3392: 3363: 3328: 3302: 3277: 3183: 2388:another form is preferred. In 2152:group 16 of the periodic table 2127:is the cagelike structure of P 1798:dB loss introduced by splices. 1776: 1623:is photo-elastic coefficient, 1319:polarization-maintaining fiber 1033:generated by nuclear devices. 540:Transmission speed milestones 338:Standard Telephones and Cables 13: 1: 8252:Glass engineering and science 6986:Chemically strengthened glass 5628:Optical communication systems 5578:10.1016/S0022-3093(99)00637-7 5547:10.1016/S0022-3093(01)00615-9 4508:10.1016/S0262-4079(11)60912-3 4330:10.1126/science.282.5393.1476 3441:(2nd ed.). McGraw-Hill. 3357:10.1016/s1068-5200(02)00527-8 3271: 3035: 2953:angled physical contact (APC) 2073:(2,000–5,000 nm) range. 1931:)) or to lower it (e.g. with 1425:, can be presented as : 1291:electromagnetic wave equation 1273:2. Cladding: 125 μm dia. 1156:of this maximum angle is the 786: 731:by using a fiber to transmit 385:as the core dopant. In 1981, 8262:Telecommunications equipment 8191:Telecommunication portal 7972:Telecommunications equipment 6819:Glass-ceramic-to-metal seals 6318:", article in RP Photonics' 6248:Friedman, Thomas L. (2007). 5860:. 2007-07-23. Archived from 5430:10.1016/0022-3093(68)90007-0 5229:10.1016/0022-3093(88)90114-7 4922:Gloge, D. (1 October 1971). 4773:. 2006-06-01. Archived from 3492:Photonic Devices and Systems 2882:emits a small spark between 1825: 934:Optical fibers doped with a 874:structural health monitoring 706:Distributed acoustic sensing 434:erbium-doped fiber amplifier 407:The Italian research center 260:in the 1920s. In the 1930s, 123:surrounded by a transparent 90:electromagnetic interference 7: 7708:Alexander Stepanovich Popov 6310:The Fiber Optic Association 6004:Hitz, Breck (August 2003). 3985:. Bloomberg. Archived from 3554: 3542: 3519:Effective Physical Security 3422: 3379:The Fiber Optic Association 3283: 3110:The Fiber Optic Association 3076: 2677:and features an additional 2428: 2419: 1900:. In particular, it is not 1277:4. Jacket: 400 μm dia. 1275:3. Buffer: 250 μm dia. 1271:1. Core: 8 μm diameter 1265:The structure of a typical 819:Optical fibers are used as 799:illuminated by fiber optics 645:high-definition televisions 256:and the television pioneer 199:Colladon's "light fountain" 92:. Fibers are also used for 10: 8278: 7412:Telecommunications history 6540:Modulating retro-reflector 5794:Understanding Fiber Optics 5564:. 263–264 (1–2): 207–212. 4486:Hecht, Jeff (2011-04-29). 4401:NTT (September 29, 2006). 3938:. General Electric Company 3570:. ucsc.edu. Archived from 3065: 2819: 2655: 2407: 2256: 2193: 1889:glass transformation range 1780: 1416:Scattering depends on the 1342: 1254: 1167: 1083:is a way of measuring the 662: 658: 470: 464: 252:by the radio experimenter 188: 184: 74:fiber-optic communications 36:A bundle of optical fibers 8179: 8121: 8058: 8020:Public Switched Telephone 7980: 7944: 7901: 7842: 7832:telecommunication circuit 7793:Fiber-optic communication 7776: 7538:Francis Blake (telephone) 7485: 7333:Optical telecommunication 7177: 7039: 6971: 6903: 6850:Chemical vapor deposition 6837: 6799: 6771:Ultra low expansion glass 6661:Borophosphosilicate glass 6643: 6617: 6548: 6522: 6514:Optical Transport Network 6450: 6399: 6393:Optical telecommunication 6204:10.1109/TMTT.1982.1131071 5882:Olzak, Tom (2007-05-03). 3489:Hunsperger (2017-10-19). 3435:Pearsall, Thomas (2010). 3014:microscope objective lens 2279:chemical vapor deposition 2049:glass group, composed of 1904:(does not absorb water). 1863: 1339:Mechanisms of attenuation 1257:Single-mode optical fiber 1190:A laser bouncing down an 1138:total internal reflection 1128:Total internal reflection 669:Fibers have many uses in 651:protocol over an optical 612:1.84 Pbit/s using a 473:Fiber-optic communication 422:University of Southampton 267:In 1953, Dutch scientist 224:total internal reflection 133:total internal reflection 7931:Orbital angular-momentum 7368:Satellite communications 7207:Communications satellite 7089:Glass-reinforced plastic 6751:Sodium hexametaphosphate 6326:Fibre optic technologies 6083:Agrawal, Govind (2010). 5465:10.1109/JLT.1984.1073661 5005:10.1109/LPT.2024.3372786 4830:American Laboratory News 4749:"Electricity Over Glass" 4530:. Optics.org. 2013-01-22 3660:. New York: D. Appleton. 3405:. chromisfiber.com. 2004 3337:Optical Fiber Technology 3176: 2828:optical fiber connectors 2802:Termination and splicing 2287:outside vapor deposition 2028:yttrium aluminium garnet 1180:multi-mode optical fiber 1170:Multi-mode optical fiber 708:is one example of this. 530:forward error correction 447:, which guides light by 168:optical fiber connectors 7810:Molecular communication 7633:Gardiner Greene Hubbard 7462:Undersea telegraph line 7197:Cable protection system 6981:Anti-reflective coating 6855:Glass batch calculation 6736:Photochromic lens glass 6092:(4th ed.). Wiley. 5703:Matthewson, M. (1994). 5685:10.1109/JQE.2003.818311 5117:Physica Status Solidi C 4924:"Weakly Guiding Fibers" 4577:10.1126/science.1237861 4272:10.1126/science.1079280 3908:Oxford University Press 3856:Oxford University Press 3610:Bates, Regis J (2001). 3120:Interconnect bottleneck 3105:Fiber management system 2822:Fiber cable termination 2314:germanium tetrachloride 2298:inside vapor deposition 2283:inside vapor deposition 1323:whispering gallery mode 1202:. Such fiber is called 741:electrical transformers 455: 336:of the British company 299:Kapany coined the term 7952:Communication protocol 7738:Charles Sumner Tainter 7553:Walter Houser Brattain 7498:Edwin Howard Armstrong 7306:Information revolution 5890:. CNET. Archived from 5387:10.1098/rspa.1967.0085 5137:10.1002/pssc.200460102 5098:"Brillouin Scattering" 5034:. Corning Incorporated 4867:Nonlinear Fiber Optics 4693:10.1002/adma.201304605 4351:The Photonics Handbook 3936:GE Innovation Timeline 3882:. The Nobel Foundation 3654:Tyndall, John (1873). 3635:Tyndall, John (1870). 3314:www.olympus-global.com 3310:"Birth of Fiberscopes" 3053:system, which ensures 2899: 2817: 2702:submarine installation 2670: 2626: 2523: 2381: 2291:vapor axial deposition 2266: 2094: 1858:Plastic optical fibers 1601: 1465: 1400: 1363: 1355: 1329:Photonic-crystal fiber 1278: 1195: 1183: 1118: 1069:2000s commodities boom 1031:electromagnetic pulses 978: 970: 956:Principle of operation 861:, toys and artificial 816: 808: 800: 745:electromagnetic fields 495: 445:photonic-crystal fiber 439:The emerging field of 355:Nobel Prize in Physics 294:University of Michigan 249: 200: 127:material with a lower 49: 37: 27:Light-conducting fiber 7926:Polarization-division 7658:Narinder Singh Kapany 7623:Erna Schneider Hoover 7543:Jagadish Chandra Bose 7523:Alexander Graham Bell 7254:online video platform 7114:Prince Rupert's drops 6963:Transparent materials 6923:Gradient-index optics 6731:Phosphosilicate glass 6098:10.1002/9780470918524 4436:Proceedings ECOC 2008 3838:. NASA. 12 March 1968 3818:US patent 3845293 3799:DE patent 1254513 3657:Six Lectures on Light 3316:. Olympus Corporation 3195:ultraviolet radiation 3145:Optical communication 3115:Gradient-index optics 2975:optoelectronic device 2897: 2809: 2665: 2627: 2524: 2371: 2306:silicon tetrachloride 2264: 2166:(Te)—react with more 2084: 1990:. Because of the low 1602: 1466: 1398: 1361: 1352: 1345:Transparent materials 1313:Special-purpose fiber 1264: 1189: 1177: 1119: 1040:environments such as 976: 968: 815:An optical fiber lamp 814: 806: 794: 750:fiber optic gyroscope 536:systems as of 2008). 481: 277:Narinder Singh Kapany 228: 198: 179:Narinder Singh Kapany 43: 35: 7768:Vladimir K. Zworykin 7728:Almon Brown Strowger 7698:Charles Grafton Page 7353:Prepaid mobile phone 7281:Electrical telegraph 7079:Glass ionomer cement 6953:Photosensitive glass 6880:Liquidus temperature 6701:Fluorosilicate glass 6535:Intensity modulation 6340:Fiber Optic Tutorial 6285:Paschotta, Rüdiger. 5983:10.1364/OL.28.000974 5858:Corning Incorporated 5792:Hecht, Jeff (2002). 5626:Gowar, John (1993). 5096:Paschotta, Rüdiger. 5075:10.1364/AO.11.002489 4948:10.1364/AO.10.002252 4893:Paschotta, Rüdiger. 4229:10.1364/OL.12.000888 3900:Hecht, Jeff (1999). 3848:Hecht, Jeff (1999). 3706:Hecht, Jeff (2004). 3438:Photonics Essentials 3150:Optical mesh network 3062:Chromatic dispersion 3032:are typically used. 2999:silicon optical chip 2979:light-emitting diode 2862:, or permanently by 2747:improve this article 2572: 2465: 2320:) are injected with 2222:improve this article 2113:phosphorus pentoxide 1844:chalcogenide glasses 1783:Optical power budget 1727:UV-Vis-IR absorption 1497: 1429: 1099: 983:dielectric waveguide 743:, where the extreme 623:22.9 Pbit/s by 214:in the early 1840s. 7718:Johann Philipp Reis 7477:Wireless revolution 7439:The Telephone Cases 7296:Hydraulic telegraph 7099:Glass-to-metal seal 7021:Self-cleaning glass 6943:Optical lens design 6417:Hydraulic telegraph 6225:. Morgan Kaufmann. 6196:1982ITMTT..30..305N 6137:10.1109/2944.902157 6129:2000IJSTQ...6.1084G 5975:2003OptL...28..974A 5774:on January 25, 2007 5720:1993SPIE10272E..05M 5667:2003IJQE...39.1452K 5605:2013JNCS..377..225S 5570:2000JNCS..263..207K 5539:2001JNCS..288....8K 5496:2000SPIE.4102..122N 5488:Proceedings of SPIE 5457:1984JLwT....2..566T 5422:1968JNCS....1...69B 5379:1967RSPSA.297..534P 5334:2000SPIE.4073..278S 5326:Proceedings of SPIE 5291:1999SPIE.3848...77K 5283:Proceedings of SPIE 5256:1989JLwT....7.1360K 5221:1988JNCS..102...71K 5164:1999SPIE.CR73....3G 5129:2005PSSCR...2...15S 5067:1972ApOpt..11.2489S 4996:2024IPTL...36..539K 4940:1971ApOpt..10.2252G 4771:Electronic Products 4685:2014AdM....26.3798K 4569:2013Sci...340.1545B 4563:(6140): 1545–1548. 4500:2011NewSc.210R..24H 4475:on October 9, 2009. 4264:2003Sci...299..358R 4221:1987OptL...12..888D 4192:10.1049/el:19870719 4184:1987ElL....23.1026M 4171:Electronics Letters 4148:10.1049/el:19860111 4140:1986ElL....22..159M 4127:Electronics Letters 3989:on 10 February 2015 3745:1954Natur.173...39H 3349:2003OptFT...9...57L 3155:Optical power meter 3100:Fiber Bragg grating 3068:Dispersion (optics) 2969:Free-space coupling 2668:optical fiber cable 2645:optical fiber cable 2016:fiber optic sensors 1667:is proportional to 1384:Rayleigh scattering 1287:Maxwell's equations 977:Optical fiber types 944:physics experiments 925:stimulated emission 906:can be used as the 900:rare-earth elements 851:Optical-fiber lamps 720:optical fiber cable 634:fiber to the office 541: 524:Through the use of 504:computer networking 371:Corning Glass Works 305:Scientific American 129:index of refraction 102:fiber optic sensors 7916:Frequency-division 7893:Telephone exchange 7763:Charles Wheatstone 7693:Jun-ichi Nishizawa 7668:Innocenzo Manzetti 7603:Reginald Fessenden 7338:Optical telegraphy 7171:Telecommunications 7084:Glass microspheres 7006:Hydrogen darkening 6928:Hydrogen darkening 6676:Chalcogenide glass 6666:Borosilicate glass 6170:, Springer, 2009 ( 4673:Advanced Materials 4041:. pp. 315–322 4009:"Thomas O. Mensah" 3091:Electronics portal 3051:open fiber control 3001:. In this case, a 2905:index-matching gel 2900: 2818: 2671: 2652:Cable construction 2622: 2519: 2386:double-clad fibers 2382: 2378:optical microscope 2267: 2188:chalcogenide glass 2170:elements, such as 2142:Chalcogenide glass 2095: 1957:borosilicate glass 1643:Boltzmann constant 1597: 1461: 1401: 1364: 1356: 1289:as reduced to the 1279: 1229:numerical aperture 1200:geometrical optics 1196: 1184: 1158:numerical aperture 1114: 1112: 1014:graded-index fiber 979: 971: 950:Fiber-optic sights 936:wavelength shifter 817: 809: 801: 774:Power transmission 665:Fiber-optic sensor 539: 496: 488:single mode fibers 484:wall-mount cabinet 426:Emmanuel Desurvire 377:silica glass with 201: 149:single-mode fibers 88:and are immune to 68:that can transmit 50: 38: 8229: 8228: 7967:Store and forward 7962:Data transmission 7876:Network switching 7827:Transmission line 7673:Guglielmo Marconi 7638:Internet pioneers 7503:Mohamed M. Atalla 7472:Whistled language 7137: 7136: 7054:Glass-coated wire 7026:sol–gel technique 7011:Insulated glazing 6948:Photochromic lens 6933:Optical amplifier 6885:sol–gel technique 6576: 6575: 6427:Optical telegraph 6263:978-0-312-42507-4 6252:The World is Flat 6232:978-0-08-092072-6 6176:978-3-642-03702-3 6107:978-0-470-50511-3 6010:Photonics Spectra 5937:OpTek Systems Inc 5856:(Press release). 5803:978-0-13-027828-9 5728:10.1117/12.181373 5661:(11): 1452–1461. 5637:978-0-13-638727-5 5504:10.1117/12.405276 5373:(1451): 534–557. 5342:10.1117/12.396408 5299:10.1117/12.372757 5281:. Photonics '99. 4876:978-0-12-397023-7 4733:978-0-470-71066-1 4360:on July 11, 2011. 4178:(19): 1026–1028. 3963:on 2 January 2015 3917:978-0-19-510818-7 3865:978-0-19-510818-7 3641:Notes about Light 3637:"Total Reflexion" 3621:978-0-07-137356-2 3448:978-0-07-162935-5 3018:translation stage 2872:mechanical splice 2779: 2778: 2771: 2658:Fiber-optic cable 2617: 2613: 2596: 2514: 2510: 2497: 2486: 2435:urethane acrylate 2334:germanium dioxide 2254: 2253: 2246: 2150:—the elements in 1913:germanium dioxide 1747:crystal structure 1690:-based glass and 1594: 1584: 1574: 1545: 1507: 1491:germanium dioxide 1458: 1445: 1267:single-mode fiber 1251:Single-mode fiber 1111: 1011:, or gradual, in 966: 916:optical amplifier 894:An optical fiber 847:nonimaging optics 780:photovoltaic cell 630: 629: 500:telecommunication 492:multi-mode fibers 467:Fiber-optic cable 441:photonic crystals 383:germanium dioxide 334:George A. Hockham 290:Basil Hirschowitz 244:totally reflected 164:mechanical splice 145:multi-mode fibers 16:(Redirected from 8269: 8257:Glass production 8219: 8218: 8209: 8208: 8199: 8198: 8189: 8188: 8187: 8060:Notable networks 8050:Wireless network 7990:Cellular network 7982:Types of network 7957:Computer network 7844:Network topology 7758:Thomas A. Watson 7613:Oliver Heaviside 7598:Philo Farnsworth 7573:Daniel Davis Jr. 7548:Charles Bourseul 7508:John Logie Baird 7217:Data compression 7212:Computer network 7164: 7157: 7150: 7141: 7140: 6875:Ion implantation 6630:Glass transition 6603: 6596: 6589: 6580: 6579: 6566: 6556: 6555: 6482:Optical wireless 6386: 6379: 6372: 6363: 6362: 6298: 6296: 6294: 6267: 6255: 6236: 6215: 6148: 6123:(6): 1084–1093. 6111: 6091: 6070: 6067: 6061: 6060: 6058: 6057: 6040: 6031: 6025: 6024: 6022: 6021: 6012:. Archived from 6001: 5995: 5994: 5958: 5952: 5951: 5949: 5948: 5929: 5923: 5922: 5920: 5919: 5909: 5903: 5902: 5900: 5899: 5879: 5873: 5872: 5870: 5869: 5864:on June 13, 2011 5850: 5844: 5843: 5841: 5839: 5833: 5827:. Archived from 5822: 5814: 5808: 5807: 5789: 5783: 5782: 5780: 5779: 5760: 5754: 5753: 5751: 5750: 5744: 5738:. Archived from 5709: 5700: 5689: 5688: 5678: 5648: 5642: 5641: 5623: 5617: 5616: 5588: 5582: 5581: 5557: 5551: 5550: 5522: 5516: 5515: 5475: 5469: 5468: 5440: 5434: 5433: 5405: 5399: 5398: 5360: 5354: 5353: 5317: 5311: 5310: 5274: 5268: 5267: 5264:10.1109/50.50715 5250:(9): 1360–1370. 5239: 5233: 5232: 5204: 5198: 5197: 5188:(5): 1106–1112. 5177: 5168: 5167: 5147: 5141: 5140: 5112: 5106: 5105: 5093: 5087: 5086: 5050: 5044: 5043: 5041: 5039: 5024: 5018: 5017: 5007: 4975: 4966: 4965: 4963: 4962: 4919: 4913: 4912: 4910: 4908: 4890: 4881: 4880: 4862: 4856: 4855: 4849: 4840: 4834: 4833: 4827: 4818: 4812: 4811: 4801: 4792: 4786: 4785: 4783: 4782: 4763: 4757: 4756: 4744: 4738: 4737: 4719: 4713: 4712: 4679:(23): 3798–820. 4668: 4662: 4661: 4650: 4644: 4643: 4641: 4640: 4628: 4622: 4621: 4610: 4604: 4603: 4601: 4595:. Archived from 4554: 4545: 4539: 4538: 4536: 4535: 4524: 4518: 4517: 4515: 4514: 4483: 4477: 4476: 4460: 4454: 4453: 4451: 4450: 4444: 4433: 4424: 4418: 4417: 4415: 4414: 4398: 4392: 4391: 4389: 4387: 4368: 4362: 4361: 4359: 4348: 4342:Yao, S. (2003). 4339: 4333: 4323: 4317: 4316: 4314: 4313: 4298: 4292: 4291: 4258:(5605): 358–62. 4247: 4241: 4240: 4202: 4196: 4195: 4167: 4158: 4152: 4151: 4123: 4114: 4108: 4107: 4105: 4104: 4095:. Archived from 4085: 4079: 4078: 4076: 4075: 4066:. Archived from 4056: 4050: 4049: 4047: 4046: 4036: 4027: 4021: 4020: 4018: 4016: 4005: 3999: 3998: 3996: 3994: 3979: 3973: 3972: 3970: 3968: 3953: 3947: 3946: 3944: 3943: 3928: 3922: 3921: 3897: 3891: 3890: 3888: 3887: 3876: 3870: 3869: 3845: 3839: 3833: 3827: 3826: 3825: 3821: 3814: 3808: 3807: 3806: 3802: 3795: 3789: 3783: 3777: 3771: 3765: 3764: 3753:10.1038/173039b0 3728: 3722: 3721: 3703: 3688: 3687: 3685: 3684: 3675:. Archived from 3668: 3662: 3661: 3651: 3645: 3644: 3632: 3626: 3625: 3607: 3598: 3597: 3589: 3583: 3582: 3580: 3579: 3564: 3558: 3552: 3546: 3540: 3534: 3533: 3513: 3507: 3506: 3486: 3480: 3479: 3470: 3464: 3463: 3461: 3460: 3451:. Archived from 3432: 3426: 3420: 3414: 3413: 3411: 3410: 3404: 3396: 3390: 3389: 3387: 3385: 3367: 3361: 3360: 3332: 3326: 3325: 3323: 3321: 3306: 3300: 3299: 3281: 3265: 3250:fluoride glasses 3246: 3240: 3236: 3230: 3223: 3217: 3214: 3208: 3204: 3198: 3187: 3093: 3088: 3087: 3055:laser eye safety 2949:physical contact 2815:multi-mode fiber 2774: 2767: 2763: 2760: 2754: 2731: 2723: 2719:Practical issues 2635: 2631: 2629: 2628: 2623: 2618: 2616: 2615: 2614: 2611: 2598: 2597: 2594: 2588: 2563: 2554: 2545: 2532: 2528: 2526: 2525: 2520: 2515: 2513: 2512: 2511: 2508: 2499: 2498: 2495: 2488: 2487: 2484: 2478: 2354:flame hydrolysis 2304:. Gases such as 2249: 2242: 2238: 2235: 2229: 2206: 2198: 1909:refractive index 1898:chemically inert 1711: 1693: 1685: 1681: 1666: 1653: 1640: 1631: 1622: 1617:refractive index 1614: 1610: 1606: 1604: 1603: 1598: 1596: 1595: 1592: 1586: 1585: 1582: 1576: 1575: 1572: 1566: 1565: 1556: 1555: 1546: 1544: 1543: 1542: 1529: 1528: 1527: 1514: 1509: 1508: 1505: 1488: 1479: 1470: 1468: 1467: 1462: 1460: 1459: 1456: 1447: 1446: 1443: 1391:Light scattering 1295:transverse modes 1225:acceptance angle 1204:multi-mode fiber 1164:Multi-mode fiber 1123: 1121: 1120: 1115: 1113: 1104: 1081:refractive index 1075:Refractive index 1042:power generation 1008:step-index fiber 1003:refractive index 993:surrounded by a 967: 920:optically pumped 638:category 5 cable 542: 538: 432:, developed the 387:General Electric 367:Peter C. Schultz 359:Robert D. Maurer 288:was patented by 281:Imperial College 258:John Logie Baird 254:Clarence Hansell 141:transverse modes 60:, is a flexible 21: 8277: 8276: 8272: 8271: 8270: 8268: 8267: 8266: 8232: 8231: 8230: 8225: 8185: 8183: 8175: 8117: 8054: 7976: 7940: 7897: 7846: 7838: 7779: 7772: 7678:Robert Metcalfe 7533:Tim Berners-Lee 7481: 7301:Information Age 7173: 7168: 7138: 7133: 7069:Glass electrode 7064:Glass databases 7041: 7035: 6973: 6967: 6899: 6833: 6809:Bioactive glass 6795: 6781:Vitreous enamel 6766:Thoriated glass 6761:Tellurite glass 6746:Soda–lime glass 6716:Gold ruby glass 6686:Cranberry glass 6639: 6613: 6607: 6577: 6572: 6544: 6518: 6446: 6395: 6390: 6306: 6301: 6292: 6290: 6264: 6233: 6108: 6089: 6078: 6076:Further reading 6073: 6068: 6064: 6055: 6053: 6043:Furukawa Review 6038: 6032: 6028: 6019: 6017: 6002: 5998: 5969:(12): 974–976. 5959: 5955: 5946: 5944: 5933:"Laser Lensing" 5931: 5930: 5926: 5917: 5915: 5911: 5910: 5906: 5897: 5895: 5880: 5876: 5867: 5865: 5852: 5851: 5847: 5837: 5835: 5831: 5820: 5816: 5815: 5811: 5804: 5790: 5786: 5777: 5775: 5762: 5761: 5757: 5748: 5746: 5742: 5707: 5701: 5692: 5676:10.1.1.196.6031 5649: 5645: 5638: 5624: 5620: 5589: 5585: 5558: 5554: 5523: 5519: 5476: 5472: 5441: 5437: 5406: 5402: 5361: 5357: 5318: 5314: 5275: 5271: 5240: 5236: 5205: 5201: 5178: 5171: 5148: 5144: 5113: 5109: 5104:. RP Photonics. 5094: 5090: 5061:(11): 2489–94. 5051: 5047: 5037: 5035: 5026: 5025: 5021: 4976: 4969: 4960: 4958: 4920: 4916: 4906: 4904: 4891: 4884: 4877: 4863: 4859: 4847: 4841: 4837: 4825: 4819: 4815: 4799: 4793: 4789: 4780: 4778: 4765: 4764: 4760: 4745: 4741: 4734: 4720: 4716: 4669: 4665: 4652: 4651: 4647: 4638: 4636: 4629: 4625: 4612: 4611: 4607: 4599: 4552: 4546: 4542: 4533: 4531: 4526: 4525: 4521: 4512: 4510: 4484: 4480: 4461: 4457: 4448: 4446: 4442: 4431: 4425: 4421: 4412: 4410: 4399: 4395: 4385: 4383: 4370: 4369: 4365: 4357: 4346: 4340: 4336: 4324: 4320: 4311: 4309: 4300: 4299: 4295: 4248: 4244: 4215:(11): 888–890. 4203: 4199: 4165: 4159: 4155: 4121: 4115: 4111: 4102: 4100: 4087: 4086: 4082: 4073: 4071: 4058: 4057: 4053: 4044: 4042: 4034: 4028: 4024: 4014: 4012: 4007: 4006: 4002: 3992: 3990: 3981: 3980: 3976: 3966: 3964: 3955: 3954: 3950: 3941: 3939: 3930: 3929: 3925: 3918: 3910:. p. 271. 3898: 3894: 3885: 3883: 3878: 3877: 3873: 3866: 3858:. p. 114. 3846: 3842: 3834: 3830: 3823: 3815: 3811: 3804: 3796: 3792: 3784: 3780: 3772: 3768: 3739:(4392): 39–41. 3729: 3725: 3718: 3704: 3691: 3682: 3680: 3669: 3665: 3652: 3648: 3633: 3629: 3622: 3608: 3601: 3590: 3586: 3577: 3575: 3566: 3565: 3561: 3553: 3549: 3541: 3537: 3530: 3514: 3510: 3503: 3487: 3483: 3472: 3471: 3467: 3458: 3456: 3449: 3433: 3429: 3421: 3417: 3408: 3406: 3402: 3398: 3397: 3393: 3383: 3381: 3371:"Optical Fiber" 3369: 3368: 3364: 3333: 3329: 3319: 3317: 3308: 3307: 3303: 3296: 3282: 3278: 3274: 3269: 3268: 3263: 3247: 3243: 3237: 3233: 3224: 3220: 3215: 3211: 3205: 3201: 3188: 3184: 3179: 3174: 3140:Modal bandwidth 3089: 3082: 3079: 3070: 3064: 3038: 3030:Aspheric lenses 2971: 2868:fusion splicing 2824: 2804: 2789:Bendable fibers 2784: 2775: 2764: 2758: 2755: 2744: 2732: 2721: 2713:strength member 2660: 2654: 2633: 2610: 2606: 2599: 2593: 2589: 2587: 2573: 2570: 2569: 2562: 2556: 2553: 2547: 2544: 2538: 2535:Young's modulus 2533:is the fiber's 2530: 2507: 2503: 2494: 2490: 2489: 2483: 2479: 2477: 2466: 2463: 2462: 2431: 2422: 2410: 2319: 2311: 2259: 2250: 2239: 2233: 2230: 2219: 2207: 2196: 2168:electropositive 2144: 2134: 2130: 2122: 2118: 2107: 2098:Phosphate glass 2092: 2088: 2079: 2077:Phosphate glass 2012:IR spectroscopy 1996:crystallization 1977: 1953:aluminosilicate 1946: 1942: 1930: 1926: 1921:aluminium oxide 1918: 1874:hydroxyl groups 1866: 1840:fluoroaluminate 1836:fluorozirconate 1828: 1823: 1785: 1779: 1729: 1718: 1710: 1704: 1702: 1697: 1691: 1689: 1683: 1668: 1665: 1659: 1652: 1646: 1639: 1633: 1630: 1624: 1620: 1612: 1611:is wavelength, 1608: 1591: 1587: 1581: 1577: 1571: 1567: 1561: 1557: 1551: 1547: 1538: 1534: 1530: 1523: 1519: 1515: 1513: 1504: 1500: 1498: 1495: 1494: 1487: 1481: 1478: 1472: 1455: 1451: 1442: 1438: 1430: 1427: 1426: 1393: 1347: 1341: 1315: 1303:evanescent wave 1276: 1274: 1272: 1270: 1259: 1253: 1172: 1166: 1150:acceptance cone 1130: 1102: 1100: 1097: 1096: 1077: 1056:(in this case, 960: 958: 876:. This type of 863:Christmas trees 789: 776: 713:nanofabrication 667: 661: 592:) fiber cable. 476: 469: 463: 458: 389:produced fused 208:Jacques Babinet 204:Daniel Colladon 193: 187: 28: 23: 22: 15: 12: 11: 5: 8275: 8265: 8264: 8259: 8254: 8249: 8244: 8227: 8226: 8224: 8223: 8213: 8203: 8193: 8180: 8177: 8176: 8174: 8173: 8166: 8161: 8156: 8151: 8146: 8145: 8144: 8139: 8131: 8125: 8123: 8119: 8118: 8116: 8115: 8110: 8105: 8100: 8095: 8090: 8085: 8080: 8075: 8070: 8064: 8062: 8056: 8055: 8053: 8052: 8047: 8042: 8037: 8032: 8027: 8022: 8017: 8012: 8007: 8002: 7997: 7992: 7986: 7984: 7978: 7977: 7975: 7974: 7969: 7964: 7959: 7954: 7948: 7946: 7942: 7941: 7939: 7938: 7933: 7928: 7923: 7918: 7913: 7911:Space-division 7907: 7905: 7899: 7898: 7896: 7895: 7890: 7889: 7888: 7883: 7873: 7872: 7871: 7861: 7856: 7850: 7848: 7840: 7839: 7837: 7836: 7835: 7834: 7824: 7823: 7822: 7812: 7807: 7802: 7801: 7800: 7790: 7784: 7782: 7774: 7773: 7771: 7770: 7765: 7760: 7755: 7750: 7748:Camille Tissot 7745: 7740: 7735: 7730: 7725: 7723:Claude Shannon 7720: 7715: 7713:Tivadar Puskás 7710: 7705: 7700: 7695: 7690: 7685: 7683:Antonio Meucci 7680: 7675: 7670: 7665: 7660: 7655: 7653:Charles K. Kao 7650: 7645: 7640: 7635: 7630: 7628:Harold Hopkins 7625: 7620: 7615: 7610: 7605: 7600: 7595: 7590: 7585: 7580: 7575: 7570: 7565: 7560: 7555: 7550: 7545: 7540: 7535: 7530: 7528:Emile Berliner 7525: 7520: 7515: 7510: 7505: 7500: 7495: 7489: 7487: 7483: 7482: 7480: 7479: 7474: 7469: 7467:Videotelephony 7464: 7459: 7458: 7457: 7452: 7442: 7435: 7430: 7424: 7419: 7414: 7409: 7404: 7403: 7402: 7397: 7392: 7382: 7381: 7380: 7370: 7365: 7363:Radiotelephone 7360: 7355: 7350: 7345: 7340: 7335: 7330: 7329: 7328: 7318: 7313: 7308: 7303: 7298: 7293: 7288: 7283: 7278: 7273: 7268: 7267: 7266: 7261: 7256: 7251: 7249:Internet video 7241: 7240: 7239: 7234: 7229: 7224: 7214: 7209: 7204: 7199: 7194: 7189: 7183: 7181: 7175: 7174: 7167: 7166: 7159: 7152: 7144: 7135: 7134: 7132: 7131: 7126: 7121: 7116: 7111: 7106: 7101: 7096: 7091: 7086: 7081: 7076: 7071: 7066: 7061: 7056: 7051: 7045: 7043: 7037: 7036: 7034: 7033: 7031:Tempered glass 7028: 7023: 7018: 7013: 7008: 7003: 7001:DNA microarray 6998: 6996:Dealkalization 6993: 6988: 6983: 6977: 6975: 6969: 6968: 6966: 6965: 6960: 6955: 6950: 6945: 6940: 6935: 6930: 6925: 6920: 6915: 6909: 6907: 6901: 6900: 6898: 6897: 6892: 6887: 6882: 6877: 6872: 6870:Glass modeling 6867: 6862: 6857: 6852: 6847: 6841: 6839: 6835: 6834: 6832: 6831: 6826: 6821: 6816: 6811: 6805: 6803: 6801:Glass-ceramics 6797: 6796: 6794: 6793: 6788: 6783: 6778: 6773: 6768: 6763: 6758: 6753: 6748: 6743: 6741:Silicate glass 6738: 6733: 6728: 6723: 6718: 6713: 6708: 6703: 6698: 6693: 6688: 6683: 6678: 6673: 6668: 6663: 6658: 6653: 6647: 6645: 6641: 6640: 6638: 6637: 6632: 6627: 6621: 6619: 6615: 6614: 6612:science topics 6606: 6605: 6598: 6591: 6583: 6574: 6573: 6571: 6570: 6560: 6549: 6546: 6545: 6543: 6542: 6537: 6532: 6526: 6524: 6520: 6519: 6517: 6516: 6511: 6510: 6509: 6504: 6499: 6494: 6489: 6479: 6478: 6477: 6476: 6475: 6470: 6454: 6452: 6448: 6447: 6445: 6444: 6439: 6434: 6429: 6424: 6419: 6414: 6409: 6403: 6401: 6397: 6396: 6389: 6388: 6381: 6374: 6366: 6360: 6359: 6353: 6348: 6343: 6336: 6329: 6322: 6312: 6305: 6304:External links 6302: 6300: 6299: 6289:. RP Photonics 6282: 6273: 6262: 6245: 6237: 6231: 6216: 6190:(4): 305–322. 6179: 6164: 6149: 6112: 6106: 6079: 6077: 6074: 6072: 6071: 6062: 6026: 5996: 5963:Optics Letters 5953: 5924: 5904: 5874: 5845: 5834:on May 8, 2006 5809: 5802: 5784: 5755: 5690: 5643: 5636: 5618: 5583: 5552: 5517: 5470: 5451:(5): 566–586. 5435: 5400: 5355: 5312: 5269: 5234: 5215:(1–3): 71–81. 5199: 5169: 5142: 5107: 5088: 5055:Applied Optics 5045: 5019: 4990:(8): 539–542. 4967: 4934:(10): 2252–8. 4928:Applied Optics 4914: 4903:. RP Photonics 4882: 4875: 4857: 4835: 4813: 4787: 4758: 4739: 4732: 4714: 4663: 4645: 4623: 4620:on 2023-01-12. 4605: 4602:on 2019-02-20. 4540: 4519: 4478: 4455: 4419: 4393: 4363: 4334: 4318: 4293: 4242: 4208:Optics Letters 4197: 4153: 4134:(3): 159–160. 4109: 4080: 4051: 4022: 4000: 3974: 3948: 3923: 3916: 3892: 3871: 3864: 3840: 3828: 3809: 3790: 3778: 3766: 3723: 3716: 3689: 3663: 3646: 3627: 3620: 3599: 3594:Comptes Rendus 3584: 3559: 3547: 3535: 3528: 3508: 3501: 3481: 3465: 3447: 3427: 3415: 3391: 3375:www.thefoa.org 3362: 3327: 3301: 3295:978-0130326812 3294: 3275: 3273: 3270: 3267: 3266: 3261: 3241: 3231: 3218: 3209: 3199: 3181: 3180: 3178: 3175: 3173: 3172: 3167: 3162: 3157: 3152: 3147: 3142: 3137: 3132: 3127: 3122: 3117: 3112: 3107: 3102: 3096: 3095: 3094: 3078: 3075: 3066:Main article: 3063: 3060: 3037: 3034: 2970: 2967: 2917:turn and latch 2913:push and click 2820:Main article: 2803: 2800: 2783: 2780: 2777: 2776: 2735: 2733: 2726: 2720: 2717: 2656:Main article: 2653: 2650: 2621: 2609: 2605: 2602: 2592: 2586: 2583: 2580: 2577: 2560: 2551: 2542: 2518: 2506: 2502: 2493: 2482: 2476: 2473: 2470: 2430: 2427: 2421: 2418: 2409: 2406: 2394:filling factor 2347:thermophoresis 2317: 2309: 2258: 2255: 2252: 2251: 2210: 2208: 2201: 2195: 2192: 2154:—particularly 2143: 2140: 2132: 2128: 2120: 2116: 2105: 2102:metaphosphates 2090: 2086: 2078: 2075: 1980:Fluoride glass 1976: 1975:Fluoride glass 1973: 1944: 1940: 1937:boron trioxide 1928: 1924: 1916: 1865: 1862: 1827: 1824: 1822: 1819: 1811: 1810: 1800: 1799: 1796: 1793: 1781:Main article: 1778: 1775: 1743: 1742: 1738: 1728: 1725: 1716: 1708: 1700: 1695: 1687: 1663: 1650: 1637: 1628: 1590: 1580: 1570: 1564: 1560: 1554: 1550: 1541: 1537: 1533: 1526: 1522: 1518: 1512: 1503: 1485: 1476: 1454: 1450: 1441: 1437: 1434: 1392: 1389: 1371:1550 nm. 1340: 1337: 1314: 1311: 1255:Main article: 1252: 1249: 1216:critical angle 1168:Main article: 1165: 1162: 1142:weakly guiding 1134:critical angle 1129: 1126: 1110: 1107: 1085:speed of light 1076: 1073: 957: 954: 788: 785: 775: 772: 671:remote sensing 663:Main article: 660: 657: 628: 627: 621: 617: 616: 610: 606: 605: 598: 594: 593: 586: 582: 581: 578: 574: 573: 570: 566: 565: 554: 550: 549: 546: 508:infrared light 465:Main article: 462: 459: 457: 454: 418:David N. Payne 330:Charles K. Kao 312:Manfred Börner 273:Harold Hopkins 186: 183: 26: 18:Optical fibres 9: 6: 4: 3: 2: 8274: 8263: 8260: 8258: 8255: 8253: 8250: 8248: 8245: 8243: 8242:Optical fiber 8240: 8239: 8237: 8222: 8214: 8212: 8204: 8202: 8194: 8192: 8182: 8181: 8178: 8171: 8167: 8165: 8162: 8160: 8157: 8155: 8152: 8150: 8147: 8143: 8140: 8138: 8135: 8134: 8132: 8130: 8127: 8126: 8124: 8120: 8114: 8111: 8109: 8106: 8104: 8101: 8099: 8096: 8094: 8091: 8089: 8086: 8084: 8081: 8079: 8076: 8074: 8071: 8069: 8066: 8065: 8063: 8061: 8057: 8051: 8048: 8046: 8043: 8041: 8038: 8036: 8033: 8031: 8028: 8026: 8023: 8021: 8018: 8016: 8013: 8011: 8008: 8006: 8003: 8001: 7998: 7996: 7993: 7991: 7988: 7987: 7985: 7983: 7979: 7973: 7970: 7968: 7965: 7963: 7960: 7958: 7955: 7953: 7950: 7949: 7947: 7943: 7937: 7936:Code-division 7934: 7932: 7929: 7927: 7924: 7922: 7921:Time-division 7919: 7917: 7914: 7912: 7909: 7908: 7906: 7904: 7900: 7894: 7891: 7887: 7884: 7882: 7879: 7878: 7877: 7874: 7870: 7867: 7866: 7865: 7862: 7860: 7857: 7855: 7852: 7851: 7849: 7847:and switching 7845: 7841: 7833: 7830: 7829: 7828: 7825: 7821: 7818: 7817: 7816: 7813: 7811: 7808: 7806: 7803: 7799: 7798:optical fiber 7796: 7795: 7794: 7791: 7789: 7788:Coaxial cable 7786: 7785: 7783: 7781: 7775: 7769: 7766: 7764: 7761: 7759: 7756: 7754: 7751: 7749: 7746: 7744: 7741: 7739: 7736: 7734: 7731: 7729: 7726: 7724: 7721: 7719: 7716: 7714: 7711: 7709: 7706: 7704: 7703:Radia Perlman 7701: 7699: 7696: 7694: 7691: 7689: 7686: 7684: 7681: 7679: 7676: 7674: 7671: 7669: 7666: 7664: 7661: 7659: 7656: 7654: 7651: 7649: 7646: 7644: 7641: 7639: 7636: 7634: 7631: 7629: 7626: 7624: 7621: 7619: 7616: 7614: 7611: 7609: 7606: 7604: 7601: 7599: 7596: 7594: 7593:Lee de Forest 7591: 7589: 7588:Thomas Edison 7586: 7584: 7581: 7579: 7578:Donald Davies 7576: 7574: 7571: 7569: 7566: 7564: 7563:Claude Chappe 7561: 7559: 7556: 7554: 7551: 7549: 7546: 7544: 7541: 7539: 7536: 7534: 7531: 7529: 7526: 7524: 7521: 7519: 7516: 7514: 7511: 7509: 7506: 7504: 7501: 7499: 7496: 7494: 7491: 7490: 7488: 7484: 7478: 7475: 7473: 7470: 7468: 7465: 7463: 7460: 7456: 7453: 7451: 7448: 7447: 7446: 7443: 7441: 7440: 7436: 7434: 7431: 7428: 7425: 7423: 7420: 7418: 7415: 7413: 7410: 7408: 7407:Smoke signals 7405: 7401: 7398: 7396: 7393: 7391: 7388: 7387: 7386: 7385:Semiconductor 7383: 7379: 7376: 7375: 7374: 7371: 7369: 7366: 7364: 7361: 7359: 7356: 7354: 7351: 7349: 7346: 7344: 7341: 7339: 7336: 7334: 7331: 7327: 7324: 7323: 7322: 7319: 7317: 7314: 7312: 7309: 7307: 7304: 7302: 7299: 7297: 7294: 7292: 7289: 7287: 7284: 7282: 7279: 7277: 7274: 7272: 7269: 7265: 7262: 7260: 7257: 7255: 7252: 7250: 7247: 7246: 7245: 7244:Digital media 7242: 7238: 7235: 7233: 7230: 7228: 7225: 7223: 7220: 7219: 7218: 7215: 7213: 7210: 7208: 7205: 7203: 7200: 7198: 7195: 7193: 7190: 7188: 7185: 7184: 7182: 7180: 7176: 7172: 7165: 7160: 7158: 7153: 7151: 7146: 7145: 7142: 7130: 7127: 7125: 7122: 7120: 7117: 7115: 7112: 7110: 7107: 7105: 7102: 7100: 7097: 7095: 7092: 7090: 7087: 7085: 7082: 7080: 7077: 7075: 7072: 7070: 7067: 7065: 7062: 7060: 7057: 7055: 7052: 7050: 7047: 7046: 7044: 7038: 7032: 7029: 7027: 7024: 7022: 7019: 7017: 7014: 7012: 7009: 7007: 7004: 7002: 6999: 6997: 6994: 6992: 6989: 6987: 6984: 6982: 6979: 6978: 6976: 6970: 6964: 6961: 6959: 6956: 6954: 6951: 6949: 6946: 6944: 6941: 6939: 6938:Optical fiber 6936: 6934: 6931: 6929: 6926: 6924: 6921: 6919: 6916: 6914: 6911: 6910: 6908: 6906: 6902: 6896: 6895:Vitrification 6893: 6891: 6888: 6886: 6883: 6881: 6878: 6876: 6873: 6871: 6868: 6866: 6865:Glass melting 6863: 6861: 6860:Glass forming 6858: 6856: 6853: 6851: 6848: 6846: 6843: 6842: 6840: 6836: 6830: 6827: 6825: 6822: 6820: 6817: 6815: 6812: 6810: 6807: 6806: 6804: 6802: 6798: 6792: 6789: 6787: 6784: 6782: 6779: 6777: 6776:Uranium glass 6774: 6772: 6769: 6767: 6764: 6762: 6759: 6757: 6756:Soluble glass 6754: 6752: 6749: 6747: 6744: 6742: 6739: 6737: 6734: 6732: 6729: 6727: 6724: 6722: 6719: 6717: 6714: 6712: 6709: 6707: 6704: 6702: 6699: 6697: 6694: 6692: 6689: 6687: 6684: 6682: 6679: 6677: 6674: 6672: 6671:Ceramic glaze 6669: 6667: 6664: 6662: 6659: 6657: 6654: 6652: 6649: 6648: 6646: 6642: 6636: 6633: 6631: 6628: 6626: 6623: 6622: 6620: 6616: 6611: 6604: 6599: 6597: 6592: 6590: 6585: 6584: 6581: 6569: 6565: 6561: 6559: 6551: 6550: 6547: 6541: 6538: 6536: 6533: 6531: 6528: 6527: 6525: 6521: 6515: 6512: 6508: 6505: 6503: 6500: 6498: 6495: 6493: 6492:Visible light 6490: 6488: 6485: 6484: 6483: 6480: 6474: 6471: 6469: 6466: 6465: 6464: 6463:Optical fiber 6461: 6460: 6459: 6456: 6455: 6453: 6449: 6443: 6440: 6438: 6435: 6433: 6430: 6428: 6425: 6423: 6420: 6418: 6415: 6413: 6410: 6408: 6405: 6404: 6402: 6398: 6394: 6387: 6382: 6380: 6375: 6373: 6368: 6367: 6364: 6357: 6354: 6352: 6349: 6347: 6344: 6341: 6337: 6334: 6330: 6327: 6323: 6321: 6317: 6313: 6311: 6308: 6307: 6288: 6283: 6280: 6279: 6274: 6271: 6270:globalization 6265: 6259: 6254: 6253: 6246: 6243: 6242: 6238: 6234: 6228: 6224: 6223: 6217: 6213: 6209: 6205: 6201: 6197: 6193: 6189: 6185: 6180: 6177: 6173: 6169: 6166:Mitschke F., 6165: 6162: 6161:0-240-80586-0 6158: 6154: 6150: 6146: 6142: 6138: 6134: 6130: 6126: 6122: 6118: 6113: 6109: 6103: 6099: 6095: 6088: 6087: 6081: 6080: 6066: 6052: 6048: 6045:(24): 17–22. 6044: 6037: 6030: 6016:on 2012-05-10 6015: 6011: 6007: 6000: 5992: 5988: 5984: 5980: 5976: 5972: 5968: 5964: 5957: 5942: 5938: 5934: 5928: 5914: 5908: 5894:on 2010-02-17 5893: 5889: 5885: 5878: 5863: 5859: 5855: 5849: 5830: 5826: 5819: 5813: 5805: 5799: 5795: 5788: 5773: 5769: 5765: 5759: 5745:on 2019-05-02 5741: 5737: 5733: 5729: 5725: 5721: 5717: 5713: 5706: 5699: 5697: 5695: 5686: 5682: 5677: 5672: 5668: 5664: 5660: 5656: 5655: 5647: 5639: 5633: 5629: 5622: 5614: 5610: 5606: 5602: 5598: 5594: 5587: 5579: 5575: 5571: 5567: 5563: 5556: 5548: 5544: 5540: 5536: 5533:(1–3): 8–17. 5532: 5528: 5521: 5513: 5509: 5505: 5501: 5497: 5493: 5489: 5485: 5481: 5474: 5466: 5462: 5458: 5454: 5450: 5446: 5439: 5431: 5427: 5423: 5419: 5415: 5411: 5404: 5396: 5392: 5388: 5384: 5380: 5376: 5372: 5368: 5367: 5359: 5351: 5347: 5343: 5339: 5335: 5331: 5327: 5323: 5316: 5308: 5304: 5300: 5296: 5292: 5288: 5284: 5280: 5273: 5265: 5261: 5257: 5253: 5249: 5245: 5238: 5230: 5226: 5222: 5218: 5214: 5210: 5203: 5195: 5191: 5187: 5183: 5176: 5174: 5165: 5161: 5157: 5153: 5146: 5138: 5134: 5130: 5126: 5122: 5118: 5111: 5103: 5099: 5092: 5084: 5080: 5076: 5072: 5068: 5064: 5060: 5056: 5049: 5033: 5029: 5023: 5015: 5011: 5006: 5001: 4997: 4993: 4989: 4985: 4981: 4974: 4972: 4957: 4953: 4949: 4945: 4941: 4937: 4933: 4929: 4925: 4918: 4902: 4901: 4896: 4889: 4887: 4878: 4872: 4868: 4861: 4853: 4846: 4839: 4831: 4824: 4817: 4809: 4805: 4798: 4791: 4777:on 2011-07-18 4776: 4772: 4768: 4762: 4754: 4753:IEEE Spectrum 4750: 4743: 4735: 4729: 4725: 4718: 4710: 4706: 4702: 4698: 4694: 4690: 4686: 4682: 4678: 4674: 4667: 4659: 4655: 4649: 4634: 4627: 4619: 4615: 4609: 4598: 4594: 4590: 4586: 4582: 4578: 4574: 4570: 4566: 4562: 4558: 4551: 4544: 4529: 4523: 4509: 4505: 4501: 4497: 4493: 4492:New Scientist 4489: 4482: 4474: 4470: 4466: 4459: 4445:on 2013-12-04 4441: 4437: 4430: 4423: 4409:on 2017-09-21 4408: 4404: 4397: 4382:on 2010-01-14 4381: 4377: 4373: 4367: 4356: 4352: 4345: 4338: 4331: 4327: 4322: 4308:on 2001-07-23 4307: 4303: 4297: 4289: 4285: 4281: 4277: 4273: 4269: 4265: 4261: 4257: 4253: 4246: 4238: 4234: 4230: 4226: 4222: 4218: 4214: 4210: 4209: 4201: 4193: 4189: 4185: 4181: 4177: 4173: 4172: 4164: 4157: 4149: 4145: 4141: 4137: 4133: 4129: 4128: 4120: 4113: 4099:on 2016-08-16 4098: 4094: 4090: 4084: 4070:on 2017-09-17 4069: 4065: 4061: 4055: 4040: 4033: 4026: 4010: 4004: 3988: 3984: 3978: 3962: 3958: 3952: 3937: 3933: 3927: 3919: 3913: 3909: 3905: 3904: 3896: 3881: 3875: 3867: 3861: 3857: 3853: 3852: 3844: 3837: 3832: 3819: 3813: 3800: 3794: 3787: 3782: 3775: 3770: 3762: 3758: 3754: 3750: 3746: 3742: 3738: 3734: 3727: 3719: 3717:9780195162554 3713: 3709: 3702: 3700: 3698: 3696: 3694: 3679:on 2012-07-12 3678: 3674: 3671:Mary Bellis. 3667: 3659: 3658: 3650: 3642: 3638: 3631: 3623: 3617: 3613: 3606: 3604: 3595: 3588: 3574:on 2017-05-21 3573: 3569: 3563: 3557:, pp. 234–235 3556: 3551: 3544: 3539: 3531: 3529:9780124159815 3525: 3521: 3520: 3512: 3504: 3502:9781351424844 3498: 3495:. Routledge. 3494: 3493: 3485: 3477: 3476: 3469: 3455:on 2021-08-17 3454: 3450: 3444: 3440: 3439: 3431: 3424: 3419: 3401: 3395: 3380: 3376: 3372: 3366: 3358: 3354: 3350: 3346: 3342: 3338: 3331: 3315: 3311: 3305: 3297: 3291: 3287: 3280: 3276: 3259: 3255: 3251: 3245: 3235: 3228: 3222: 3213: 3203: 3196: 3192: 3186: 3182: 3171: 3168: 3166: 3163: 3161: 3158: 3156: 3153: 3151: 3148: 3146: 3143: 3141: 3138: 3136: 3133: 3131: 3128: 3126: 3123: 3121: 3118: 3116: 3113: 3111: 3108: 3106: 3103: 3101: 3098: 3097: 3092: 3086: 3081: 3074: 3069: 3059: 3056: 3052: 3047: 3043: 3033: 3031: 3028:in the beam. 3027: 3021: 3019: 3015: 3010: 3008: 3004: 3000: 2996: 2992: 2988: 2984: 2980: 2976: 2966: 2963: 2957: 2954: 2950: 2946: 2945: 2939: 2938:strain relief 2934: 2932: 2928: 2924: 2923: 2922:bayonet mount 2918: 2914: 2908: 2906: 2896: 2892: 2889: 2888:melting point 2885: 2880: 2875: 2873: 2869: 2865: 2861: 2857: 2853: 2849: 2845: 2841: 2837: 2833: 2829: 2823: 2816: 2812: 2811:ST connectors 2808: 2799: 2796: 2794: 2790: 2773: 2770: 2762: 2752: 2748: 2742: 2741: 2736:This section 2734: 2730: 2725: 2724: 2716: 2714: 2710: 2705: 2703: 2697: 2695: 2691: 2686: 2682: 2681: 2676: 2669: 2664: 2659: 2649: 2646: 2641: 2637: 2619: 2607: 2603: 2600: 2590: 2584: 2581: 2578: 2575: 2565: 2559: 2550: 2541: 2536: 2516: 2504: 2500: 2491: 2480: 2474: 2471: 2468: 2458: 2456: 2452: 2448: 2443: 2440: 2437:composite or 2436: 2426: 2417: 2415: 2414:drawing tower 2405: 2401: 2399: 2398:laser pumping 2395: 2391: 2387: 2379: 2375: 2370: 2366: 2363: 2359: 2355: 2350: 2348: 2342: 2340: 2335: 2331: 2327: 2323: 2315: 2307: 2303: 2299: 2294: 2292: 2288: 2284: 2280: 2276: 2272: 2263: 2248: 2245: 2237: 2227: 2223: 2217: 2216: 2211:This section 2209: 2205: 2200: 2199: 2191: 2189: 2185: 2181: 2177: 2176:chalcogenides 2173: 2169: 2165: 2161: 2157: 2153: 2149: 2139: 2136: 2126: 2114: 2110: 2103: 2099: 2083: 2074: 2072: 2068: 2064: 2060: 2056: 2052: 2048: 2043: 2041: 2037: 2036:ophthalmology 2033: 2029: 2025: 2021: 2017: 2013: 2008: 2006: 2001: 1997: 1993: 1989: 1985: 1981: 1972: 1968: 1964: 1960: 1958: 1954: 1950: 1938: 1934: 1922: 1914: 1910: 1905: 1903: 1899: 1894: 1890: 1885: 1884:(UV) region. 1883: 1879: 1878:concentration 1875: 1871: 1870:near-infrared 1861: 1859: 1855: 1853: 1852:chalcogenides 1849: 1845: 1841: 1837: 1833: 1821:Manufacturing 1818: 1815: 1808: 1807: 1806: 1803: 1797: 1794: 1791: 1790: 1789: 1784: 1774: 1770: 1768: 1762: 1759: 1755: 1751: 1748: 1739: 1735: 1734: 1733: 1724: 1721: 1713: 1707: 1679: 1675: 1671: 1662: 1656: 1649: 1644: 1636: 1627: 1618: 1588: 1578: 1568: 1562: 1558: 1552: 1548: 1539: 1535: 1531: 1524: 1520: 1516: 1510: 1501: 1492: 1484: 1475: 1452: 1448: 1439: 1435: 1432: 1424: 1419: 1414: 1411: 1405: 1397: 1388: 1385: 1381: 1377: 1372: 1368: 1360: 1351: 1346: 1336: 1334: 1330: 1326: 1325:propagation. 1324: 1320: 1310: 1308: 1307:near infrared 1304: 1300: 1296: 1292: 1288: 1284: 1268: 1263: 1258: 1248: 1246: 1240: 1238: 1234: 1230: 1226: 1222: 1217: 1213: 1209: 1205: 1201: 1193: 1188: 1181: 1176: 1171: 1161: 1159: 1155: 1151: 1145: 1143: 1139: 1135: 1125: 1108: 1105: 1094: 1090: 1086: 1082: 1072: 1070: 1066: 1061: 1059: 1058:fiber tapping 1055: 1051: 1047: 1043: 1039: 1034: 1032: 1026: 1024: 1020: 1016: 1015: 1010: 1009: 1004: 1000: 996: 992: 988: 987:nonconducting 984: 975: 953: 951: 947: 945: 941: 940:scintillation 937: 932: 928: 926: 921: 917: 913: 909: 905: 901: 898:with certain 897: 892: 890: 885: 883: 879: 875: 870: 868: 864: 860: 856: 852: 848: 843: 841: 837: 833: 828: 826: 822: 813: 805: 798: 793: 784: 781: 771: 769: 764: 762: 757: 755: 754:Sagnac effect 751: 746: 742: 738: 734: 730: 725: 721: 716: 714: 709: 707: 703: 699: 695: 691: 687: 683: 679: 674: 672: 666: 656: 654: 650: 646: 641: 639: 635: 626: 622: 620:October 2023 619: 618: 615: 614:photonic chip 611: 609:October 2022 608: 607: 603: 599: 596: 595: 591: 587: 585:January 2013 584: 583: 579: 576: 575: 571: 568: 567: 563: 559: 555: 552: 551: 547: 544: 543: 537: 535: 531: 527: 522: 519: 517: 513: 509: 505: 501: 493: 489: 485: 480: 474: 468: 461:Communication 453: 450: 446: 442: 437: 435: 431: 427: 423: 419: 413: 410: 405: 402: 401:Thomas Mensah 397: 395: 392: 388: 384: 380: 376: 372: 368: 364: 360: 356: 352: 347: 343: 339: 335: 331: 327: 325: 322: 317: 313: 308: 306: 302: 297: 295: 291: 287: 282: 278: 274: 270: 269:Bram van Heel 265: 263: 262:Heinrich Lamm 259: 255: 248: 245: 241: 237: 236:perpendicular 233: 227: 225: 221: 217: 213: 209: 205: 197: 192: 182: 180: 176: 171: 169: 165: 161: 160:fusion splice 157: 152: 150: 146: 142: 138: 134: 130: 126: 122: 118: 114: 109: 107: 103: 99: 95: 91: 87: 83: 79: 75: 71: 67: 63: 59: 58:optical fibre 55: 54:optical fiber 47: 42: 34: 30: 19: 8247:Fiber optics 7903:Multiplexing 7797: 7778:Transmission 7743:Nikola Tesla 7733:Henry Sutton 7688:Samuel Morse 7618:Robert Hooke 7583:Amos Dolbear 7518:John Bardeen 7437: 7417:Telautograph 7321:Mobile phone 7276:Edholm's law 7259:social media 7192:Broadcasting 7104:Porous glass 7059:Safety glass 7016:Porous glass 6974:modification 6937: 6786:Wood's glass 6706:Fused quartz 6681:Cobalt glass 6635:Supercooling 6523:Technologies 6462: 6458:Fiber-optics 6422:Ships' flags 6407:Smoke signal 6319: 6291:. Retrieved 6277: 6251: 6240: 6221: 6187: 6183: 6167: 6152: 6120: 6116: 6085: 6065: 6054:. Retrieved 6042: 6029: 6018:. Retrieved 6014:the original 6009: 5999: 5966: 5962: 5956: 5945:. Retrieved 5936: 5927: 5916:. Retrieved 5907: 5896:. Retrieved 5892:the original 5888:Techrepublic 5887: 5877: 5866:. Retrieved 5862:the original 5848: 5836:. Retrieved 5829:the original 5824: 5812: 5793: 5787: 5776:. Retrieved 5772:the original 5767: 5758: 5747:. Retrieved 5740:the original 5711: 5658: 5652: 5646: 5627: 5621: 5596: 5592: 5586: 5561: 5555: 5530: 5526: 5520: 5487: 5483: 5473: 5448: 5444: 5438: 5416:(1): 69–90. 5413: 5409: 5403: 5370: 5364: 5358: 5325: 5321: 5315: 5282: 5278: 5272: 5247: 5243: 5237: 5212: 5208: 5202: 5185: 5181: 5155: 5151: 5145: 5123:(1): 15–24. 5120: 5116: 5110: 5101: 5091: 5058: 5054: 5048: 5036:. Retrieved 5031: 5022: 4987: 4983: 4959:. Retrieved 4931: 4927: 4917: 4905:. Retrieved 4898: 4866: 4860: 4851: 4838: 4829: 4816: 4807: 4804:Spectroscopy 4803: 4790: 4779:. Retrieved 4775:the original 4770: 4761: 4752: 4742: 4723: 4717: 4676: 4672: 4666: 4657: 4648: 4637:. Retrieved 4626: 4618:the original 4608: 4597:the original 4560: 4556: 4543: 4532:. Retrieved 4522: 4511:. Retrieved 4491: 4481: 4473:the original 4468: 4458: 4447:. Retrieved 4440:the original 4435: 4422: 4411:. Retrieved 4407:the original 4396: 4384:. Retrieved 4380:the original 4375: 4366: 4355:the original 4350: 4337: 4321: 4310:. Retrieved 4306:the original 4296: 4255: 4251: 4245: 4212: 4206: 4200: 4175: 4169: 4156: 4131: 4125: 4112: 4101:. Retrieved 4097:the original 4092: 4083: 4072:. Retrieved 4068:the original 4063: 4054: 4043:. Retrieved 4038: 4025: 4013:. Retrieved 4003: 3991:. Retrieved 3987:the original 3977: 3965:. Retrieved 3961:the original 3951: 3940:. Retrieved 3935: 3926: 3906:. New York: 3902: 3895: 3884:. Retrieved 3874: 3854:. New York: 3850: 3843: 3831: 3812: 3793: 3781: 3769: 3736: 3732: 3726: 3707: 3681:. Retrieved 3677:the original 3666: 3656: 3649: 3640: 3630: 3611: 3593: 3587: 3576:. Retrieved 3572:the original 3562: 3550: 3538: 3518: 3511: 3491: 3484: 3474: 3468: 3457:. Retrieved 3453:the original 3437: 3430: 3418: 3407:. Retrieved 3394: 3382:. Retrieved 3374: 3365: 3343:(2): 57–79. 3340: 3336: 3330: 3318:. Retrieved 3313: 3304: 3285: 3279: 3257: 3244: 3234: 3221: 3212: 3202: 3185: 3071: 3045: 3039: 3022: 3011: 3007:lensed fiber 2972: 2958: 2952: 2948: 2942: 2935: 2930: 2926: 2920: 2916: 2912: 2909: 2901: 2876: 2871: 2855: 2851: 2847: 2843: 2839: 2835: 2831: 2825: 2797: 2788: 2785: 2782:Installation 2765: 2756: 2745:Please help 2740:verification 2737: 2706: 2698: 2684: 2678: 2672: 2642: 2638: 2566: 2557: 2548: 2539: 2459: 2454: 2450: 2447:microbending 2444: 2432: 2423: 2411: 2402: 2390:fiber lasers 2383: 2373: 2361: 2353: 2351: 2343: 2338: 2297: 2295: 2290: 2286: 2282: 2274: 2270: 2268: 2240: 2231: 2220:Please help 2215:verification 2212: 2145: 2137: 2096: 2071:mid-infrared 2044: 2009: 1978: 1969: 1965: 1961: 1906: 1886: 1867: 1856: 1829: 1816: 1812: 1804: 1801: 1786: 1771: 1763: 1744: 1730: 1722: 1714: 1705: 1677: 1673: 1669: 1660: 1657: 1647: 1634: 1625: 1482: 1473: 1422: 1415: 1409: 1406: 1402: 1373: 1369: 1365: 1327: 1316: 1298: 1280: 1241: 1237:path lengths 1203: 1197: 1146: 1141: 1131: 1078: 1062: 1050:ground loops 1038:high voltage 1035: 1027: 1012: 1006: 990: 980: 948: 933: 929: 893: 889:spectroscopy 886: 871: 844: 829: 821:light guides 818: 777: 765: 758: 717: 710: 698:polarization 675: 668: 655:connection. 642: 631: 523: 520: 497: 438: 414: 406: 398: 351:silica glass 328: 324:confidential 323: 309: 304: 301:fiber optics 300: 298: 266: 250: 243: 239: 231: 229: 216:John Tyndall 202: 175:fiber optics 174: 172: 153: 110: 106:fiber lasers 94:illumination 57: 53: 51: 29: 8103:NPL network 7815:Radio waves 7753:Alfred Vail 7663:Hedy Lamarr 7648:Dawon Kahng 7608:Elisha Gray 7568:Yogen Dalal 7493:Nasir Ahmed 7427:Teleprinter 7291:Heliographs 7129:Glass fiber 7094:Glass cloth 6838:Preparation 6814:CorningWare 6696:Flint glass 6691:Crown glass 6644:Formulation 6507:Consumer IR 6437:Signal lamp 6256:. Picador. 5599:: 225–230. 5032:Corning.com 3425:, pp. 12–14 3165:Return loss 3026:aberrations 2983:laser diode 2860:patch panel 2358:oxyhydrogen 2020:thermometry 2000:heavy metal 1986:of various 1911:(e.g. with 1902:hygroscopic 1882:ultraviolet 1777:Loss budget 1333:diffraction 1299:single-mode 1065:metal theft 1054:Wiretapping 912:fiber laser 908:gain medium 825:microscopes 729:jet engines 682:temperature 512:attenuation 449:diffraction 363:Donald Keck 342:attenuation 286:gastroscope 143:are called 64:or plastic 8236:Categories 8149:Antarctica 8108:Toasternet 8030:Television 7513:Paul Baran 7445:Television 7429:(teletype) 7422:Telegraphy 7400:transistor 7378:Phryctoria 7348:Photophone 7326:Smartphone 7316:Mass media 7124:Windshield 6958:Refraction 6918:Dispersion 6726:Milk glass 6721:Lead glass 6487:Free-space 6473:Connectors 6442:Photophone 6432:Heliograph 6293:17 October 6056:2008-07-05 6020:2011-01-23 5947:2012-07-17 5918:2024-06-25 5898:2007-12-10 5868:2013-09-09 5778:2007-03-19 5749:2019-05-02 5152:Proc. SPIE 4961:2023-12-21 4781:2020-09-26 4639:2024-06-17 4534:2013-01-23 4513:2012-02-26 4449:2013-09-17 4413:2017-02-08 4386:29 October 4312:2008-10-22 4103:2017-02-08 4074:2017-02-15 4045:2022-08-18 3942:2012-09-28 3886:2009-10-07 3683:2020-01-20 3578:2016-11-01 3459:2021-02-24 3409:2023-09-11 3272:References 3189:Including 3135:Light tube 3125:Leaky mode 3046:fiber fuse 3036:Fiber fuse 2995:fiber mode 2977:such as a 2884:electrodes 2759:April 2016 2455:wet-on-wet 2451:wet-on-dry 2234:April 2016 2174:, to form 2148:chalcogens 2109:tetrahedra 1750:absorption 1418:wavelength 1380:absorption 1376:scattering 1343:See also: 1283:wavelength 1233:dispersion 1093:kilometers 999:dielectric 882:structures 836:fiberscope 787:Other uses 768:biosensors 702:wavelength 597:June 2013 548:Milestone 321:classified 316:Telefunken 189:See also: 98:fiberscope 78:bandwidths 8133:Americas 8122:Locations 8093:Internet2 7854:Bandwidth 7558:Vint Cerf 7455:streaming 7433:Telephone 7373:Semaphore 7264:streaming 6991:Corrosion 6890:Viscosity 6845:Annealing 6051:1348-1797 5838:April 11, 5736:136377895 5671:CiteSeerX 5512:137381989 5395:137896322 5350:135912790 5307:119534094 5014:1041-1135 4593:206548907 4288:136470113 3058:minimum. 3042:megawatts 2987:modulator 2690:crosstalk 2604:− 2576:σ 2469:σ 2439:polyimide 2281:methods: 2184:electrons 2164:tellurium 2162:(Se) and 2125:polymorph 2063:aluminium 2059:lanthanum 2051:zirconium 2040:dentistry 1992:viscosity 1984:fluorides 1826:Materials 1569:β 1536:λ 1521:π 1245:parabolic 1046:lightning 942:light in 840:borescope 832:endoscope 737:pyrometer 733:radiation 724:modulated 690:intensity 590:lightpath 534:dense WDM 516:repeaters 430:Bell Labs 137:waveguide 117:extrusion 8201:Category 8088:Internet 8078:CYCLADES 7995:Ethernet 7945:Concepts 7869:terminal 7820:wireless 7643:Bob Kahn 7486:Pioneers 7311:Internet 7202:Cable TV 7109:Pre-preg 6913:Achromat 6656:Bioglass 6651:AgInSbTe 6558:Category 6530:OC Rates 6502:In space 6451:Advanced 6276:GR-771, 6212:33979233 6145:23158230 5991:12836750 5941:Archived 5083:20119362 5038:28 March 4956:20111311 4895:"Fibers" 4854:. Wiley. 4810:(6): 15. 4709:32093488 4701:24599822 4585:23812709 4469:Phys.org 4280:12532007 4237:19741905 3993:31 March 3967:29 March 3545:, p. 218 3384:17 April 3320:17 April 3252:such as 3227:coherent 3191:infrared 3077:See also 2944:gap loss 2931:threaded 2927:screw-in 2864:splicing 2429:Coatings 2420:Cladding 2362:seed rod 2160:selenium 2005:hydroxyl 1933:fluorine 1893:cleaving 1848:sapphire 1767:harmonic 1754:coupling 1682:, where 995:cladding 938:collect 902:such as 867:LiTraCon 686:pressure 379:titanium 346:decibels 156:cleaving 125:cladding 8221:Commons 8211:Outline 8164:Oceania 8083:FidoNet 8068:ARPANET 7881:circuit 7450:digital 7179:History 7040:Diverse 6972:Surface 6829:Zerodur 6192:Bibcode 6125:Bibcode 5971:Bibcode 5716:Bibcode 5663:Bibcode 5601:Bibcode 5566:Bibcode 5535:Bibcode 5492:Bibcode 5453:Bibcode 5418:Bibcode 5375:Bibcode 5330:Bibcode 5287:Bibcode 5252:Bibcode 5217:Bibcode 5160:Bibcode 5125:Bibcode 5063:Bibcode 4992:Bibcode 4936:Bibcode 4907:Feb 22, 4681:Bibcode 4565:Bibcode 4557:Science 4496:Bibcode 4260:Bibcode 4252:Science 4217:Bibcode 4180:Bibcode 4136:Bibcode 4015:30 July 4011:. AIChE 3761:4275331 3741:Bibcode 3345:Bibcode 3003:tapered 2985:, or a 2879:cleaved 2408:Drawing 2374:preform 2275:pulling 2271:preform 2257:Preform 2194:Process 2024:imaging 1641:is the 1410:domains 1192:acrylic 797:frisbee 735:into a 659:Sensors 653:TOSLINK 420:of the 247:23°42′. 232:towards 185:History 113:drawing 46:TOSLINK 8159:Europe 8129:Africa 8113:Usenet 8073:BITNET 8010:Mobile 7886:packet 7395:MOSFET 7390:device 7187:Beacon 7042:topics 6905:Optics 6711:GeSbTe 6618:Basics 6568:Portal 6412:Beacon 6316:Fibers 6260:  6229:  6210:  6174:  6159:  6143:  6104:  6049:  5989:  5800:  5734:  5673:  5634:  5510:  5393:  5348:  5305:  5081:  5012:  4954:  4873:  4730:  4707:  4699:  4591:  4583:  4286:  4278:  4235:  3914:  3862:  3824:  3805:  3759:  3733:Nature 3714:  3618:  3555:Senior 3543:Senior 3526:  3499:  3445:  3423:Senior 3292:  2962:cleave 2925:), or 2709:aramid 2685:jacket 2680:buffer 2632:where 2529:where 2330:silica 2322:oxygen 2289:, and 2172:silver 2156:sulfur 2067:sodium 2065:, and 2055:barium 2032:lasers 2022:, and 1988:metals 1864:Silica 1842:, and 1832:silica 1737:color. 1607:where 1471:where 1212:normal 1089:vacuum 1019:lasers 904:erbium 878:sensor 678:strain 649:S/PDIF 558:Gbit/s 394:ingots 391:quartz 375:doping 220:London 8142:South 8137:North 8098:JANET 8035:Telex 8025:Radio 7864:Nodes 7859:Links 7780:media 7358:Radio 7343:Pager 7271:Drums 7237:video 7232:image 7222:audio 6824:Macor 6791:ZBLAN 6625:Glass 6610:Glass 6497:Li-Fi 6468:Cable 6400:Basic 6208:S2CID 6141:S2CID 6090:(PDF) 6039:(PDF) 5832:(PDF) 5821:(PDF) 5743:(PDF) 5732:S2CID 5708:(PDF) 5508:S2CID 5391:S2CID 5346:S2CID 5303:S2CID 5158:: 1. 4848:(PDF) 4826:(PDF) 4800:(PDF) 4705:S2CID 4600:(PDF) 4589:S2CID 4553:(PDF) 4443:(PDF) 4432:(PDF) 4376:Ciena 4358:(PDF) 4347:(PDF) 4284:S2CID 4166:(PDF) 4122:(PDF) 4035:(PDF) 3757:S2CID 3403:(PDF) 3254:ZBLAN 3177:Notes 3130:Li-Fi 2793:G.657 2694:flare 2675:resin 2582:1.198 2316:(GeCl 2312:) or 2308:(SiCl 2302:lathe 2296:With 2158:(S), 2085:The P 2047:ZBLAN 1949:laser 1919:) or 1758:atoms 1354:2005. 910:of a 896:doped 855:signs 694:phase 577:2011 569:2009 553:2006 545:Date 409:CSELT 212:Paris 82:wires 70:light 66:fiber 62:glass 56:, or 8154:Asia 8040:UUCP 8000:ISDN 6295:2013 6258:ISBN 6227:ISBN 6172:ISBN 6157:ISBN 6102:ISBN 6047:ISSN 5987:PMID 5840:2006 5798:ISBN 5632:ISBN 5156:CR73 5079:PMID 5040:2024 5010:ISSN 4952:PMID 4909:2015 4871:ISBN 4728:ISBN 4697:PMID 4581:PMID 4388:2009 4276:PMID 4233:PMID 4017:2024 3995:2015 3969:2015 3912:ISBN 3860:ISBN 3712:ISBN 3616:ISBN 3524:ISBN 3497:ISBN 3443:ISBN 3386:2015 3322:2015 3290:ISBN 3256:and 3193:and 2991:lens 2981:, a 2848:MTRJ 2453:and 2396:for 2180:ions 2146:The 2038:and 1915:(GeO 1378:and 1221:core 1208:rays 1154:sine 1079:The 1023:LEDs 991:core 625:NICT 556:111 502:and 456:Uses 424:and 332:and 275:and 240:from 234:the 206:and 121:core 104:and 86:loss 8045:WAN 8015:NGN 8005:LAN 7286:Fax 7227:DCT 6200:doi 6133:doi 6094:doi 5979:doi 5724:doi 5681:doi 5609:doi 5597:377 5574:doi 5543:doi 5531:288 5500:doi 5461:doi 5426:doi 5383:doi 5371:297 5338:doi 5295:doi 5260:doi 5225:doi 5213:102 5190:doi 5133:doi 5071:doi 5000:doi 4944:doi 4689:doi 4573:doi 4561:340 4504:doi 4326:doi 4268:doi 4256:299 4225:doi 4188:doi 4144:doi 3749:doi 3737:173 3353:doi 3005:or 2856:SMA 2854:or 2852:MPO 2813:on 2749:by 2666:An 2332:or 2224:by 2182:or 2042:). 1959:). 1935:or 1923:(Al 1699:GeO 1615:is 1021:or 914:or 887:In 859:art 849:). 838:or 562:NTT 560:by 428:at 314:at 279:at 52:An 8238:: 6206:. 6198:. 6188:30 6186:. 6163:). 6139:. 6131:. 6119:. 6100:. 6041:. 6008:. 5985:. 5977:. 5967:28 5965:. 5939:. 5935:. 5886:. 5823:. 5766:. 5730:. 5722:. 5710:. 5693:^ 5679:. 5669:. 5659:39 5657:. 5607:. 5595:. 5572:. 5541:. 5529:. 5506:. 5498:. 5482:. 5459:. 5447:. 5424:. 5412:. 5389:. 5381:. 5369:. 5344:. 5336:. 5301:. 5293:. 5258:. 5246:. 5223:. 5211:. 5186:76 5184:. 5172:^ 5154:. 5131:. 5119:. 5100:. 5077:. 5069:. 5059:11 5057:. 5030:. 5008:. 4998:. 4988:36 4986:. 4982:. 4970:^ 4950:. 4942:. 4932:10 4930:. 4926:. 4897:. 4885:^ 4828:. 4808:16 4806:. 4802:. 4769:. 4751:. 4703:. 4695:. 4687:. 4677:26 4675:. 4656:. 4587:. 4579:. 4571:. 4559:. 4555:. 4502:. 4490:. 4467:. 4434:. 4374:. 4349:. 4282:. 4274:. 4266:. 4254:. 4231:. 4223:. 4213:12 4211:. 4186:. 4176:23 4174:. 4168:. 4142:. 4132:22 4130:. 4124:. 4091:. 4062:. 4037:. 3934:. 3755:. 3747:. 3735:. 3692:^ 3639:. 3602:^ 3377:. 3373:. 3351:. 3339:. 3312:. 3260:nF 2915:, 2850:, 2846:, 2844:LC 2842:, 2840:ST 2838:, 2836:SC 2834:, 2832:FC 2537:, 2400:. 2341:. 2293:. 2285:, 2186:. 2135:. 2133:10 2115:(P 2091:10 2061:, 2057:, 2053:, 2030:) 2018:, 2014:, 1939:(B 1838:, 1676:/d 1672:(d 1645:, 1619:, 1109:12 1071:. 1025:. 946:. 927:. 869:. 857:, 795:A 770:. 700:, 696:, 692:, 684:, 680:, 604:. 564:. 518:. 482:A 365:, 361:, 181:. 170:. 108:. 44:A 8172:) 8168:( 7163:e 7156:t 7149:v 6602:e 6595:t 6588:v 6385:e 6378:t 6371:v 6338:" 6331:" 6324:" 6314:" 6297:. 6266:. 6235:. 6214:. 6202:: 6194:: 6178:) 6147:. 6135:: 6127:: 6121:6 6110:. 6096:: 6059:. 6023:. 5993:. 5981:: 5973:: 5950:. 5921:. 5901:. 5871:. 5842:. 5806:. 5781:. 5752:. 5726:: 5718:: 5687:. 5683:: 5665:: 5640:. 5615:. 5611:: 5603:: 5580:. 5576:: 5568:: 5549:. 5545:: 5537:: 5514:. 5502:: 5494:: 5467:. 5463:: 5455:: 5449:2 5432:. 5428:: 5420:: 5414:1 5397:. 5385:: 5377:: 5352:. 5340:: 5332:: 5309:. 5297:: 5289:: 5266:. 5262:: 5254:: 5248:7 5231:. 5227:: 5219:: 5196:. 5192:: 5166:. 5162:: 5139:. 5135:: 5127:: 5121:2 5085:. 5073:: 5065:: 5042:. 5016:. 5002:: 4994:: 4964:. 4946:: 4938:: 4911:. 4879:. 4832:. 4784:. 4755:. 4736:. 4711:. 4691:: 4683:: 4660:. 4642:. 4575:: 4567:: 4537:. 4516:. 4506:: 4498:: 4452:. 4416:. 4390:. 4332:. 4328:: 4315:. 4290:. 4270:: 4262:: 4239:. 4227:: 4219:: 4194:. 4190:: 4182:: 4150:. 4146:: 4138:: 4106:. 4077:. 4048:. 4019:. 3997:. 3971:. 3945:. 3920:. 3889:. 3868:. 3763:. 3751:: 3743:: 3720:. 3686:. 3643:. 3624:. 3596:. 3581:. 3532:. 3505:. 3462:. 3412:. 3388:. 3359:. 3355:: 3347:: 3341:9 3324:. 3298:. 3264:. 3262:3 3258:I 3197:. 2929:( 2919:( 2772:) 2766:( 2761:) 2757:( 2743:. 2634:d 2620:, 2612:c 2608:d 2601:d 2595:f 2591:d 2585:E 2579:= 2561:c 2558:d 2552:f 2549:d 2543:m 2540:d 2531:E 2517:, 2509:c 2505:d 2501:+ 2496:m 2492:d 2485:f 2481:d 2475:E 2472:= 2380:. 2326:K 2318:4 2310:4 2247:) 2241:( 2236:) 2232:( 2218:. 2131:O 2129:4 2121:5 2119:O 2117:2 2106:4 2089:O 2087:4 1945:3 1943:O 1941:2 1929:3 1927:O 1925:2 1917:2 1717:2 1709:c 1706:R 1701:2 1696:2 1692:n 1688:2 1684:x 1680:) 1678:x 1674:n 1670:x 1664:c 1661:R 1651:f 1648:T 1638:B 1635:k 1629:c 1626:β 1621:p 1613:n 1609:λ 1593:f 1589:T 1583:B 1579:k 1573:c 1563:2 1559:p 1553:8 1549:n 1540:4 1532:3 1525:3 1517:8 1511:= 1506:d 1502:R 1486:c 1483:R 1477:d 1474:R 1457:c 1453:R 1449:+ 1444:d 1440:R 1436:= 1433:R 1423:R 1269:. 1182:. 1106:1 985:( 494:. 475:. 20:)

Index

Optical fibres


TOSLINK
glass
fiber
light
fiber-optic communications
bandwidths
wires
loss
electromagnetic interference
illumination
fiberscope
fiber optic sensors
fiber lasers
drawing
extrusion
core
cladding
index of refraction
total internal reflection
waveguide
transverse modes
multi-mode fibers
single-mode fibers
cleaving
fusion splice
mechanical splice
optical fiber connectors

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.