Knowledge

Multi-mode optical fiber

Source 📝

33: 107: 285:
VCSEL power profiles, along with variations in fiber uniformity, can cause modal dispersion which is measured by differential modal delay (DMD). Modal dispersion is caused by the different speeds of the individual modes in a light pulse. The net effect causes the light pulse to spread over distance,
82:
Because of its high capacity and reliability, multi-mode optical fiber generally is used for backbone applications in buildings. An increasing number of users are taking the benefits of fiber closer to the user by running fiber to the desktop or to the zone. Standards-compliant architectures such as
259:
The migration to LOMMF/OM3 has occurred as users upgrade to higher speed networks. LEDs have a maximum modulation rate of 622 Mbit/s because they cannot be turned on/off fast enough to support higher bandwidth applications. VCSELs are capable of modulation over 10 Gbit/s and are used in
187:
from single-mode ones. The standard TIA-598C recommends, for non-military applications, the use of a yellow jacket for single-mode fiber, and orange or aqua for multi-mode fiber, depending on type. Some vendors use violet to distinguish higher performance OM4 communications fiber from other types.
251:
up to 300 meters. Optical fiber manufacturers have greatly refined their manufacturing process since that standard was issued and cables can be made that support 10 GbE up to 400 meters. Laser optimized multi-mode fiber (LOMMF) is designed for use with 850 nm VCSELs.
255:
Older FDDI grade, OM1, and OM2 fiber can be used for 10 Gigabit Ethernet through 10GBASE-LRM. This requires the SFP+ interface to support electronic dispersion compensation (EDC) however, so not all switches, routers and other equipment can use these SFP+ modules.
247:(1 Gbit/s) and, because of their relatively large core size, were ideal for use with LED transmitters. Newer deployments often use laser-optimized 50/125 μm multi-mode fiber (OM3). Fibers that meet this designation provide sufficient bandwidth to support 271:(WDM) even for multi-mode fiber which is outside the specification for OM4 and lower. In 2017, OM5 has been standardized by TIA and ISO for WDM MMF, specifying not only a minimum modal bandwidth for 850 nm but a curve spanning from 850 to 953 nm. 90:
Multi-mode fiber is used for transporting light signals to and from miniature fiber optic spectroscopy equipment (spectrometers, sources, and sampling accessories) and was instrumental in the development of the first portable spectrometer.
290:. The greater the length, the greater the modal dispersion. To combat modal dispersion, LOMMF is manufactured in a way that eliminates variations in the fiber which could affect the speed that a light pulse can travel. The 200:
diameters. Thus, 62.5/125 μm multi-mode fiber has a core size of 62.5 micrometres (μm) and a cladding diameter of 125 μm. The transition between the core and cladding can be sharp, which is called a
597:
which specifies test light injection sizes (for various fiber diameters) to make sure the fiber core is not over-filled or under-filled to allow more reproducible (and less variable) link-loss measurements.
138:, multi-mode fiber has higher "light-gathering" capacity than single-mode fiber. In practical terms, the larger core size simplifies connections and also allows the use of lower-cost electronics such as 239:
For many years 62.5/125 μm (OM1) and conventional 50/125 μm multi-mode fiber (OM2) were widely deployed in premises applications. These fibers easily support applications ranging from
173:
of a single wavelength. Because of the modal dispersion, multi-mode fiber has higher pulse spreading rates than single mode fiber, limiting multi-mode fiber's information transmission capacity.
47:
mostly used for communication over short distances, such as within a building or on a campus. Multi-mode links can be used for data rates up to 800 Gbit/s. Multi-mode fiber has a fairly
150:
and 1300 nm wavelength (single-mode fibers used in telecommunications typically operate at 1310 or 1550 nm). However, compared to single-mode fibers, the multi-mode fiber
87:
offer users the ability to leverage the distance capabilities of fiber by centralizing electronics in telecommunications rooms, rather than having active electronics on each floor.
688: 294:
is enhanced for VCSEL transmission and to prevent pulse spreading. As a result, the fibers maintain signal integrity over longer distances, thereby maximizing the bandwidth.
176:
Single-mode fibers are often used in high-precision scientific research because restricting the light to only one propagation mode allows it to be focused to an intense,
1114: 993: 209:. The two types have different dispersion characteristics and thus different effective propagation distances. Multi-mode fibers may be constructed with either 134:
diameter, typically 50–100 micrometers—much larger than the wavelength of the light carried in it. Because of the large core and also the possibility of large
274:
Cables can sometimes be distinguished by jacket color: for 62.5/125 μm (OM1) and 50/125 μm (OM2), orange jackets are recommended, while
983:
As with all multi-mode fiber connections, the MMF segment of the patch cord should match the type of fiber in the cable plant (Clause 38.11.4).
963: 165:
The LED light sources sometimes used with multi-mode fiber produce a range of wavelengths and these each propagate at different speeds. This
278:
is recommended for 50/125 μm "laser optimized" OM3 and OM4 fiber. Some fiber vendors use violet for "OM4+". OM5 is officially colored
1200: 780: 169:
is another limit to the useful length for multi-mode fiber optic cable. In contrast, the lasers used to drive single-mode fibers produce
1137: 695: 1015: 1068: 1163: 229: 228:
of the multi-mode fiber. OM4 (defined in TIA-492-AAAD) was finalized in August 2009, and was published by the end of 2009 by the
151: 1242: 143: 114:(TE) modes in an optical fiber. At fixed radius and refractive index, the number of modes allowed depends on the wavelength. 1269: 903: 852: 540: 268: 17: 154:
limit is lower. Because multi-mode fiber has a larger core size than single-mode fiber, it supports more than one
721: 84: 1069:"40G Extended Reach with Corning Cable Systems OM3/OM4 Connectivity with the Avago 40G QSFP+ eSR4 Transceiver" 94:
Multi-mode fiber is also used when high optical powers are to be carried through an optical fiber, such as in
1221: 648: 378: 758: 831: 607: 127: 72: 75:. Typical transmission speed and distance limits are 100 Mbit/s for distances up to 2 km ( 71:
The equipment used for communications over multi-mode optical fiber is less expensive than that for
291: 287: 264: 627: 197: 220:
In addition, multi-mode fibers are described using a system of classification determined by the
1322: 1204: 870: 139: 581:
OFL Over-Filled Launch for 850/953 nm / EMB Effective Modal Bandwidth for 1310 nm
354: 206: 166: 131: 1115:"TIA Updates Data Center Cabling Standard to Keep Pace with Rapid Technology Advancements" 1040: 8: 343: 337: 328: 248: 184: 177: 1167: 612: 214: 210: 202: 135: 106: 1249: 244: 159: 56: 807: 312: 225: 155: 111: 55:
to be propagated and limits the maximum length of a transmission link because of
1276: 910: 170: 1307: 1302: 1316: 617: 232:. OM4 cable supports 125 m links at 40 and 100 Gbit/s. The letters 95: 44: 275: 750: 572:
reach is the length that is guaranteed to work when within specifications.
1303:
Optics: Single mode fiber | MIT Video Demonstrations in Lasers and Optics
1267: 901: 725: 79:), 1 Gbit/s up to 1000 m, and 10 Gbit/s up to 550 m. 52: 1308:
Optics: Multi-mode fiber | MIT Video Demonstrations in Lasers and Optics
27:
Type of optical fiber mostly used for communication over short distances
1240: 622: 279: 76: 221: 147: 1184: 1219: 805: 646: 240: 1225: 652: 60: 32: 1198: 63:
defines the most widely used forms of multi-mode optical fiber.
933: 931: 781:"Who is Erika Violet and what is she doing in my data center?" 122:
is the ratio of the light's wavelength to the fiber's radius.
1243:"Choosing the right multimode fiber for data communications" 1093: 1041:"40GE SWDM4 QSFP+ Optical Transceiver | Finisar Corporation" 928: 686: 1241:
Telecommunications Industry Association (September 2008).
1138:"Encircled flux improves test equipment loss measurements" 1016:"What is a 10GBASE-LRM transceiver and why do I need it?" 303:
Minimum reach of Ethernet variants over multi-mode fiber
183:
Jacket color is sometimes used to distinguish multi-mode
474:
550 m (No mode-conditioning patch cord should be used.)
964:"Cisco Mode-Conditioning Patch Cord Installation Note" 948:
38.4 PMD to MDI optical specifications for 1000BASE-LX
593:
The IEC 61280-4-1 (now TIA-526-14-B) standard defines
48: 224:
standard — OM1, OM2, and OM3 — which is based on the
101: 1268:Hewlett-Packard Development Company, L.P. (2007). 961: 902:Hewlett-Packard Development Company, L.P. (2007). 539:OM5 (50/125) "Wideband multi-mode" for short-wave 196:Multi-mode fibers are described by their core and 1314: 1182: 719: 334:10 Gb Ethernet 10GBASE-LRM (requires EDC) 263:Some 200 and 400 Gigabit Ethernet speeds (e.g. 1035: 1033: 689:"OM4 - The next generation of multimode fiber" 325:1 Gb (1000 Mb) Ethernet 1000BASE-LX 322:1 Gb (1000 Mb) Ethernet 1000BASE-SX 205:, or a gradual transition, which is called a 1161: 1030: 1008: 957: 955: 772: 126:The main difference between multi-mode and 1185:"Lennie Lightwave's Guide to Fiber Optics" 1183:Hayes, Jim; Karen Hayes (March 22, 2008). 1086: 858:. Telecommunications Industry Association. 745: 743: 1222:"Multimode Fiber for Enterprise Networks" 1220:Telecommunications Industry Association. 806:British FibreOptic Industry Association. 649:"Multimode Fiber for Enterprise Networks" 647:Telecommunications Industry Association. 952: 778: 105: 31: 779:Crawford, Dwayne (September 11, 2013). 740: 713: 146:(VCSELs) which operate at the 850  144:vertical-cavity surface-emitting lasers 14: 1315: 1199:International Engineering Consortium. 1142:Cabling Installation & Maintenance 1135: 1063: 1061: 994:"Cisco 10GBASE X2 Modules Data Sheet" 897: 895: 893: 682: 680: 678: 676: 674: 672: 670: 986: 868: 720:ARC Electronics (October 1, 2007). 130:is that the former has much larger 24: 1058: 940: 890: 667: 25: 1334: 1296: 687:Furukawa Electric North America. 588: 102:Comparison with single-mode fiber 351:40 Gb Ethernet 40GBASE-SR4 269:wavelength-division multiplexing 236:stand for 'optical multi-mode'. 1129: 1107: 977: 881: 871:"Next generation fiber arrives" 751:"Fiber optic cable color codes" 575: 559: 545:3500 / 1850 / 500  MHz·km 505:OM4 (50/125) *Laser Optimized* 468:OM3 (50/125) *Laser Optimized* 66: 1162:Force, Inc. (April 14, 2005). 869:Kish, Paul (January 1, 2010). 862: 845: 824: 799: 640: 85:fiber to the telecom enclosure 13: 1: 877:. Business Information Group. 633: 297: 1270:"100BASE-FX Technical Brief" 904:"100BASE-FX Technical Brief" 875:# Cabling Networking Systems 722:"Fiber Optic Cable Tutorial" 379:mode-conditioning patch cord 162:, while single mode is not. 51:that enables multiple light 7: 962:Cisco Systems, Inc (2009). 937:IEEE 802.3-2012 Clause 38.3 759:The Fiber Optic Association 601: 508:3500 / – / 500 MHz·km 471:1500 / – / 500 MHz·km 36:A stripped multi-mode fiber 10: 1339: 808:"Optical Fibers Explained" 568:means maximum length, the 440:500 / – / 500 MHz·km 409:200 / – / 500 MHz·km 368:160 / – / 500 MHz·km 308:Jacket color and category 260:many high speed networks. 152:bandwidth–distance product 608:Fiber-optic communication 531: 528:(550 m QSFP+ eSR4) 525: 519: 510: 473: 442: 376: 370: 319:Fast Ethernet 100BASE-FX 316:850 / 953 / 1300 nm 307: 158:; hence it is limited by 128:single-mode optical fiber 73:single-mode optical fiber 1201:"Fiber Optic Technology" 1164:"Types of Optical Fiber" 494:(330 m QSFP+ eSR4) 292:refractive index profile 288:intersymbol interference 191: 83:Centralized Cabling and 41:Multi-mode optical fiber 832:"Fiber Optics Overview" 628:Optical fiber connector 110:Energy distribution of 123: 37: 1117:. TIA. August 9, 2017 887:IEEE 802.3 Clause 150 140:light-emitting diodes 109: 35: 1207:on February 13, 2009 1136:Goldstein, Seymour. 853:"Meeting Report #14" 243:(10 Mbit/s) to 207:graded-index profile 167:chromatic dispersion 1170:on October 12, 2007 728:on October 23, 2018 304: 249:10 Gigabit Ethernet 178:diffraction-limited 112:transverse electric 49:large core diameter 1282:on October 9, 2012 1255:on January 6, 2009 916:on October 9, 2012 613:Graded-index fiber 302: 215:step-index profile 203:step-index profile 136:numerical aperture 124: 38: 701:on April 22, 2014 555: 554: 16:(Redirected from 1330: 1291: 1289: 1287: 1281: 1275:. Archived from 1274: 1264: 1262: 1260: 1254: 1248:. Archived from 1247: 1237: 1235: 1233: 1224:. Archived from 1216: 1214: 1212: 1203:. Archived from 1195: 1193: 1191: 1179: 1177: 1175: 1166:. Archived from 1153: 1152: 1150: 1148: 1133: 1127: 1126: 1124: 1122: 1111: 1105: 1104: 1102: 1100: 1090: 1084: 1083: 1081: 1079: 1073: 1065: 1056: 1055: 1053: 1051: 1037: 1028: 1027: 1025: 1023: 1012: 1006: 1005: 1003: 1001: 990: 984: 981: 975: 974: 972: 970: 959: 950: 944: 938: 935: 926: 925: 923: 921: 915: 909:. Archived from 908: 899: 888: 885: 879: 878: 866: 860: 859: 857: 849: 843: 842: 840: 838: 828: 822: 821: 819: 817: 812: 803: 797: 796: 794: 792: 776: 770: 769: 767: 765: 747: 738: 737: 735: 733: 724:. Archived from 717: 711: 710: 708: 706: 700: 694:. Archived from 693: 684: 665: 664: 662: 660: 651:. Archived from 644: 582: 579: 573: 563: 365:FDDI (62.5/125) 305: 301: 245:gigabit Ethernet 160:modal dispersion 156:propagation mode 57:modal dispersion 21: 18:Multi-mode fiber 1338: 1337: 1333: 1332: 1331: 1329: 1328: 1327: 1313: 1312: 1299: 1294: 1285: 1283: 1279: 1272: 1258: 1256: 1252: 1245: 1231: 1229: 1228:on June 4, 2009 1210: 1208: 1189: 1187: 1173: 1171: 1157: 1156: 1146: 1144: 1134: 1130: 1120: 1118: 1113: 1112: 1108: 1098: 1096: 1092: 1091: 1087: 1077: 1075: 1074:. Corning. 2013 1071: 1067: 1066: 1059: 1049: 1047: 1045:www.finisar.com 1039: 1038: 1031: 1021: 1019: 1014: 1013: 1009: 999: 997: 992: 991: 987: 982: 978: 968: 966: 960: 953: 945: 941: 936: 929: 919: 917: 913: 906: 900: 891: 886: 882: 867: 863: 855: 851: 850: 846: 836: 834: 830: 829: 825: 815: 813: 810: 804: 800: 790: 788: 777: 773: 763: 761: 749: 748: 741: 731: 729: 718: 714: 704: 702: 698: 691: 685: 668: 658: 656: 655:on June 4, 2009 645: 641: 636: 604: 591: 586: 585: 580: 576: 564: 560: 406:OM1 (62.5/125) 355:100 Gb Ethernet 315: 313:modal bandwidth 300: 226:modal bandwidth 194: 104: 69: 59:. The standard 28: 23: 22: 15: 12: 11: 5: 1336: 1326: 1325: 1311: 1310: 1305: 1298: 1297:External links 1295: 1293: 1292: 1265: 1238: 1217: 1196: 1180: 1158: 1155: 1154: 1128: 1106: 1085: 1057: 1029: 1007: 985: 976: 951: 939: 927: 889: 880: 861: 844: 823: 798: 771: 739: 712: 666: 638: 637: 635: 632: 631: 630: 625: 620: 615: 610: 603: 600: 595:encircled flux 590: 589:Encircled flux 587: 584: 583: 574: 557: 556: 553: 552: 549: 546: 543: 537: 534: 533: 530: 524: 518: 515: 512: 509: 506: 503: 500: 499: 496: 490: 484: 481: 478: 475: 472: 469: 466: 463: 462: 461:Not supported 459: 458:Not supported 456: 455:Not supported 453: 452:Not supported 450: 447: 444: 441: 438: 435: 432: 431: 430:Not supported 428: 427:Not supported 425: 424:Not supported 422: 421:Not supported 419: 416: 413: 410: 407: 404: 401: 400: 399:Not supported 397: 396:Not supported 394: 393:Not supported 391: 390:Not supported 388: 385: 382: 375: 372: 369: 366: 363: 359: 358: 357:100GBASE-SR10 352: 349: 347:40GBASE-SWDM4 344:40 Gb Ethernet 341: 338:25 Gb Ethernet 335: 332: 329:10 Gb Ethernet 326: 323: 320: 317: 309: 299: 296: 265:400GBASE-SR4.2 193: 190: 171:coherent light 103: 100: 68: 65: 26: 9: 6: 4: 3: 2: 1335: 1324: 1323:Optical fiber 1321: 1320: 1318: 1309: 1306: 1304: 1301: 1300: 1278: 1271: 1266: 1251: 1244: 1239: 1227: 1223: 1218: 1206: 1202: 1197: 1186: 1181: 1169: 1165: 1160: 1159: 1143: 1139: 1132: 1116: 1110: 1095: 1089: 1070: 1064: 1062: 1046: 1042: 1036: 1034: 1017: 1011: 995: 989: 980: 965: 958: 956: 949: 943: 934: 932: 912: 905: 898: 896: 894: 884: 876: 872: 865: 854: 848: 833: 827: 809: 802: 786: 782: 775: 764:September 17, 760: 756: 752: 746: 744: 727: 723: 716: 697: 690: 683: 681: 679: 677: 675: 673: 671: 654: 650: 643: 639: 629: 626: 624: 621: 619: 618:ISO/IEC 11801 616: 614: 611: 609: 606: 605: 599: 596: 578: 571: 567: 562: 558: 550: 547: 544: 542: 538: 536: 535: 529: 523: 516: 513: 507: 504: 502: 501: 497: 495: 491: 489: 485: 482: 479: 476: 470: 467: 465: 464: 460: 457: 454: 451: 448: 445: 439: 437:OM2 (50/125) 436: 434: 433: 429: 426: 423: 420: 417: 414: 411: 408: 405: 403: 402: 398: 395: 392: 389: 386: 383: 380: 373: 367: 364: 361: 360: 356: 353: 350: 348: 345: 342: 339: 336: 333: 330: 327: 324: 321: 318: 314: 310: 306: 295: 293: 289: 283: 281: 277: 272: 270: 266: 261: 257: 253: 250: 246: 242: 237: 235: 231: 227: 223: 218: 216: 212: 208: 204: 199: 189: 186: 181: 179: 174: 172: 168: 163: 161: 157: 153: 149: 145: 141: 137: 133: 129: 121: 117: 113: 108: 99: 97: 96:laser welding 92: 88: 86: 80: 78: 74: 64: 62: 58: 54: 50: 46: 45:optical fiber 43:is a type of 42: 34: 30: 19: 1286:November 20, 1284:. Retrieved 1277:the original 1259:November 17, 1257:. Retrieved 1250:the original 1230:. Retrieved 1226:the original 1209:. Retrieved 1205:the original 1188:. Retrieved 1172:. Retrieved 1168:the original 1145:. Retrieved 1141: 1131: 1119:. Retrieved 1109: 1097:. Retrieved 1094:"IEEE 802.3" 1088: 1076:. Retrieved 1048:. Retrieved 1044: 1020:. Retrieved 1010: 998:. Retrieved 988: 979: 969:February 20, 967:. Retrieved 947: 942: 920:November 20, 918:. Retrieved 911:the original 883: 874: 864: 847: 837:November 23, 835:. Retrieved 826: 814:. Retrieved 801: 791:February 12, 789:. Retrieved 784: 774: 762:. Retrieved 754: 730:. Retrieved 726:the original 715: 703:. Retrieved 696:the original 657:. Retrieved 653:the original 642: 594: 592: 577: 569: 565: 561: 527: 521: 493: 487: 377:550 m ( 371:2000 m 346: 286:introducing 284: 273: 262: 258: 254: 238: 233: 219: 195: 182: 175: 164: 125: 119: 115: 93: 89: 81: 70: 67:Applications 40: 39: 29: 1099:October 31, 1050:February 6, 1022:December 3, 946:IEEE 802.3 785:Tech Topics 755:Tech Topics 532:150 m 526:150 m 511:400 m 498:100 m 492:100 m 477:300 m 443:550 m 412:275 m 374:220 m 340:25GBASE-SR 331:10GBASE-SR 142:(LEDs) and 1121:August 27, 1078:August 14, 1018:. CBO GmbH 634:References 623:IEEE 802.3 548:>220 m 522:Duplex LC 514:>220 m 488:Duplex LC 446:82 m 415:33 m 384:26 m 381:required) 298:Comparison 280:lime green 77:100BASE-FX 1174:April 17, 222:ISO 11801 1317:Category 1000:June 23, 816:April 9, 787:. Belden 732:March 4, 602:See also 311:Minimum 241:Ethernet 198:cladding 1232:June 4, 1211:June 4, 1190:June 4, 1147:June 1, 996:. Cisco 705:May 16, 659:June 4, 570:minimum 61:G.651.1 551:100 m 517:100 m 480:220 m 449:220 m 418:220 m 387:220 m 362:  267:) use 211:graded 185:cables 180:spot. 1280:(PDF) 1273:(PDF) 1253:(PDF) 1246:(PDF) 1072:(PDF) 914:(PDF) 907:(PDF) 856:(PDF) 811:(PDF) 699:(PDF) 692:(PDF) 566:Reach 520:350m 486:240m 483:70 m 192:Types 53:modes 1288:2012 1261:2008 1234:2008 1213:2008 1192:2008 1176:2008 1149:2017 1123:2018 1101:2014 1080:2013 1052:2018 1024:2019 1002:2015 971:2015 922:2012 839:2012 818:2011 793:2014 766:2009 734:2015 707:2012 661:2008 276:aqua 132:core 541:WDM 230:TIA 213:or 1319:: 1140:. 1060:^ 1043:. 1032:^ 954:^ 930:^ 892:^ 873:. 783:. 757:. 753:. 742:^ 669:^ 282:. 234:OM 217:. 148:nm 98:. 1290:. 1263:. 1236:. 1215:. 1194:. 1178:. 1151:. 1125:. 1103:. 1082:. 1054:. 1026:. 1004:. 973:. 924:. 841:. 820:. 795:. 768:. 736:. 709:. 663:. 120:R 118:/ 116:λ 20:)

Index

Multi-mode fiber

optical fiber
large core diameter
modes
modal dispersion
G.651.1
single-mode optical fiber
100BASE-FX
fiber to the telecom enclosure
laser welding

transverse electric
single-mode optical fiber
core
numerical aperture
light-emitting diodes
vertical-cavity surface-emitting lasers
nm
bandwidth–distance product
propagation mode
modal dispersion
chromatic dispersion
coherent light
diffraction-limited
cables
cladding
step-index profile
graded-index profile
graded

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.