Knowledge

Vertical-cavity surface-emitting laser

Source 📝

568:, Sam McCall, Yong Hee Lee and James Harbison) that demonstrated over 1 million VCSELs on a small chip. These first all-semiconductor VCSELs introduced other design features still used in all commercial VCSELs. "This demonstration marked a turning point in the development of the surface-emitting laser. Several more research groups entered the field, and many important innovations were soon being reported from all over the world". Andrew Yang of the Defense Advanced Research Projects Agency (DARPA) quickly initiated significant funding toward VCSEL R&D, followed by other government and industrial funding efforts. VCSELs replaced edge-emitting lasers in applications for short-range fiberoptic communication such as 414:
single devices operating around 100 mW were first reported in 1993. Improvements in the epitaxial growth, processing, device design, and packaging led to individual large-aperture VCSELs emitting several hundreds of milliwatts by 1998. More than 2 W continuous-wave (CW) operation at -10 degrees Celsius heat-sink temperature was also reported in 1998 from a VCSEL array consisting of 1,000 elements, corresponding to a power density of 30 W/cm. In 2001, more than 1 W CW power and 10 W pulsed power at room temperature were reported from a 19-element array. The VCSEL array chip was mounted on a
287:"The stress results show that the activation energy and the wearout lifetime of oxide VCSEL are similar to that of implant VCSEL emitting the same amount of output power." A production concern also plagued the industry when moving the oxide VCSELs from research and development to production mode. The oxidation rate of the oxide layer was highly dependent on the aluminium content. Any slight variation in aluminium would change the oxidation rate sometimes resulting in apertures that were either too big or too small to meet the specification standards. 283:
to late 1990s, companies moved towards the technology of oxide VCSELs. The current is confined in an oxide VCSEL by oxidizing the material around the aperture of the VCSEL. A high content aluminium layer that is grown within the VCSEL structure is the layer that is oxidized. Oxide VCSELs also often employ the ion implant production step. As a result, in the oxide VCSEL, the current path is confined by the ion implant and the oxide aperture.
75: 188: 1476: 25: 282:
In the early 1990s, telecommunications companies tended to favor ion-implanted VCSELs. Ions, (often hydrogen ions, H+), were implanted into the VCSEL structure everywhere except the aperture of the VCSEL, destroying the lattice structure around the aperture, thus inhibiting the current. In the mid
413:
High-power vertical-cavity surface-emitting lasers can also be fabricated, either by increasing the emitting aperture size of a single device or by combining several elements into large two-dimensional (2D) arrays. There have been relatively few reported studies on high-power VCSELs. Large-aperture
358:
are optically pumped with conventional laser diodes. This arrangement allows a larger area of the device to be pumped and therefore more power can be extracted – as much as 30 W. The external cavity also allows intracavity techniques such as frequency doubling, single frequency operation and
286:
The initial acceptance of oxide VCSELs was plagued with concern about the apertures "popping off" due to the strain and defects of the oxidation layer. However, after much testing, the reliability of the structure has proven to be robust. As stated in one study by Hewlett Packard on oxide VCSELs,
275:
of AlGaAs does vary relatively strongly as the Al fraction is increased, minimizing the number of layers required to form an efficient Bragg mirror compared to other candidate material systems. Furthermore, at high aluminium concentrations, an oxide can be formed from AlGaAs, and this oxide can be
214:
for the laser light generation in between. The planar DBR-mirrors consist of layers with alternating high and low refractive indices. Each layer has a thickness of a quarter of the laser wavelength in the material, yielding intensity reflectivities above 99%. High reflectivity mirrors are required
165:
There are several advantages to producing VCSELs, in contrast to the production process of edge-emitting lasers. Edge-emitters cannot be tested until the end of the production process. If the edge-emitter does not function properly, whether due to bad contacts or poor material growth quality, the
398:
The small active region, compared to edge-emitting lasers, reduces the threshold current of VCSELs, resulting in low power consumption. However, as yet, VCSELs have lower emission power compared to edge-emitting lasers. The low threshold current also permits high intrinsic modulation bandwidths in
174:
material during the etch, an interim testing process will flag that the top metal layer is not making contact to the initial metal layer. Additionally, because VCSELs emit the beam perpendicular to the active region of the laser as opposed to parallel as with an edge emitter, tens of thousands of
551:
VCSEL was done by Kenichi Iga of Tokyo Institute of Technology in 1977. A simple drawing of his idea is shown in his research note. Contrary to the conventional Fabry-Perot edge-emitting semiconductor lasers, his invention comprises a short laser cavity less than 1/10 of the edge-emitting lasers
425:
In 2007, more than 200 W of CW output power was reported from a large (5 × 5mm) 2D VCSEL array emitting around the 976 nm wavelength, representing a substantial breakthrough in the field of high-power VCSELs. The high power level achieved was mostly due to improvements in
370:
are optimized as amplifiers as opposed to oscillators. VCSOAs must be operated below threshold and thus require reduced mirror reflectivities for decreased feedback. In order to maximize the signal gain, these devices contain a large number of quantum wells (optically pumped devices have been
371:
demonstrated with 21–28 wells) and as a result exhibit single-pass gain values which are significantly larger than that of a typical VCSEL (roughly 5%). These structures operate as narrow linewidth (tens of GHz) amplifiers and may be implemented as amplifying filters.
230:
junction. In more complex structures, the p-type and n-type regions may be embedded between the mirrors, requiring a more complex semiconductor process to make electrical contact to the active region, but eliminating electrical power loss in the DBR structure.
775:
D. D. John, C. Burgner, B. Potsaid, M. Robertson, B. Lee, W. J. Choi, A. Cable, J. Fujimoto, and V. Jayaraman, "Wideband Electrically-Pumped 1050 nm MEMS-Tunable VCSEL for Ophthalmic Imaging", Jnl. Lightwave Tech., vol. 33, no. 16, pp. 3461 - 3468, Feb.
348:
A photodiode is integrated under the back mirror of the VCSEL. VCSEL with transversally integrated monitor diode: With suitable etching of the VCSEL's wafer, a resonant photodiode can be manufactured that may measure the light intensity of a neighboring
755:
V. Jayaraman, J. Jiang, B. Potsaid, G. Cole, J Fujimoto, and Alex Cable "Design and performance of broadly tunable, narrow linewidth, high repetition rate 1310nm VCSELs for swept source optical coherence tomography", SPIE volume 8276 paper 82760D,
765:
C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. Davani, G. Böhm, S. Jatta, F. Küppers, P. Meißner, and M. Amann, "Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning," Opt. Express 19, 17336-17343
1084:
Van Leeuwen, R.; Seurin, J-F.; Xu, G.; Ghosh, C. (February 2009). Clarkson, W. Andrew; Hodgson, Norman; Shori, Ramesh K (eds.). "High power pulsed intra-cavity frequency doubled vertical extended cavity blue laser arrays".
166:
production time and the processing materials have been wasted. VCSELs however, can be tested at several stages throughout the process to check for material quality and processing issues. For instance, if the
1040:
Seurin, J-F.; G. Xu; V. Khalfin; A. Miglo; J. D. Wynn; P. Pradhan; C. L. Ghosh; L. A. D'Asaro (February 2009). Choquette, Kent D; Lei, Chun (eds.). "Progress in high-power high-efficiency VCSEL arrays".
785:
V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, "High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range", Electronics Letters, vol. 48, no. 14, pp. 867–869, 2012.
242:, usually another laser. This allows a VCSEL to be demonstrated without the additional problem of achieving good electrical performance; however such devices are not practical for most applications. 395:
The larger output aperture of VCSELs, compared to most edge-emitting lasers, produces a lower divergence angle of the output beam, and makes possible high coupling efficiency with optical fibers.
433:
At that point, the VCSEL technology became useful for a variety of medical, industrial, and military applications requiring high power or high energy. Examples of such applications are:
1300:
Jewell, J.L.; Scherer, A.; McCall, S.L.; Lee, Y.H.; Walker, S.; Harbison, J.P.; Florez, L.T. (August 1989). "Low-threshold electrically pumped vertical-cavity surface-emitting microlasers".
316:
Using a tunnel junction (np), an electrically advantageous n-np-p-i-n configuration can be built that also may beneficially influence other structural elements (e.g. in the form of a
700:
1999 Digest of the LEOS Summer Topical Meetings: Nanostructures and Quantum Dots/WDM Components/VCSELs and Microcavaties/RF Photonics for CATV and HFC Systems (Cat. No.99TH8455)
547:
The surface emission from a bulk semiconductor at ultra-low temperature and magnetic carrier confinement was reported by Ivars Melngailis in 1965. The first proposal of short
1255:
Christensen, D. H.; Barnes, F. S. (February 1987). "Vertical Cavity Surface Emitting Laser in Molecular Beam Epitaxial GaAs/AlGaAs using a Multilayer Dielectric Mirror".
1539: 873:
Grabherr, M.; R. Jager; M. Miller; C. Thalmaier; J. Herlein; R. Michalzik; K. Ebeling (August 1998). "Bottom-emitting VCSEL's for high-CW optical output power".
179:
wafer. Thus, although the VCSEL production process is more labor and material intensive, the yield can be controlled to a more predictable and higher outcome.
1388:
Towe, Elias; Leheny, Robert F.; Yang, Andrew (December 2000). "A historical perspective of the development of the vertical-cavity surface-emitting laser".
916:
Francis, D.; Chen, H.-L.; Yuen, W.; Li, G.; Chang-Hasnain, C. (October 1998). "Monolithic 2D-VCSEL array with >2 W CW and >5 W pulsed output power".
294:. VCSELs at even higher wavelengths are experimental and usually optically pumped. 1310 nm VCSELs are desirable as the dispersion of silica-based 838:
Peters, F.; M. Peters; D. Young; J. Scott; B. Thibeault; S. Corzine; L. Coldren (January 1993). "High-power vertical-cavity surface-emitting lasers".
43: 1579: 1465: 1433: 698: 697:
Lei, C.; Deng, H.; Dudley, J.J.; Lim, S.F.; Liang, B.; Tashima, M.; Herrick, R.W. (1999). "Manufacturing of oxide VCSEL at Hewlett Packard".
245:
VCSELs for wavelengths from 650 nm to 1300 nm are typically based on gallium arsenide (GaAs) wafers with DBRs formed from GaAs and
951:
Miller, M.; M. Grabherr; R. Jager; K. Ebeling (March 2001). "High-power VCSEL arrays for emission in the watt regime at room temperature".
402:
The wavelength of VCSELs may be tuned, within the gain band of the active region, by adjusting the thickness of the reflector layers.
279:
The main methods of restricting the current in a VCSEL are characterized by two types: ion-implanted VCSELs and oxide VCSELs.
290:
Longer wavelength devices, from 1300 nm to 2000 nm, have been demonstrated with at least the active region made of
129:
beam emission perpendicular from the top surface, contrary to conventional edge-emitting semiconductor lasers (also called
654: 422:. A record 3 W CW output power was reported in 2005 from large diameter single devices emitting around 980 nm. 552:
vertical to a wafer surface. In 1979, a first demonstration on a short cavity VCSEL was done by Soda, Iga, Kitahara and
223: 219: 1511: 1505: 1458: 1276: 1177: 1137: 720: 61: 1236:
Koyama, Fumio; et al. (1988). "Room temperature cw operation of GaAs vertical cavity surface emitting laser".
405:
While early VCSELs emitted in multiple longitudinal modes or in filament modes, single-mode VCSELs are now common.
1650: 430:
and packaging. In 2009, >100 W power levels were reported for VCSEL arrays emitting around 808 nm.
388:
cost of the devices. It also allows VCSELs to be built not only in one-dimensional, but also in two-dimensional
39: 560:
operation at room temperature were not reported until 1988. The term VCSEL was coined in a publication of the
324: 1671: 267:
of the material does not vary strongly as the composition is changed, permitting multiple "lattice-matched"
1451: 367: 203: 170:, which are the electrical connections between layers of a circuit, have not been completely cleared of 1622: 1617: 1517: 1499: 615: 561: 458: 336:
Combination of semiconductor materials that can be fabricated using different types of substrate wafers
246: 795:
Iga, Kenichi (2000). "Surface-emitting laser—Its birth and generation of new optoelectronics field".
385: 142: 1596: 1343:
Lee, Y.H.; Jewell, J.L.; Scherer, A.; McCall, S.L.; Harbison, J.P.; Florez, L.T. (September 1989).
565: 734: 1590: 585: 704: 635: 1533: 595: 310:
Allows for differential quantum efficiency values in excess of 100% through carrier recycling
1585: 1556: 1397: 1359: 1309: 1202: 1094: 1050: 960: 925: 882: 847: 804: 605: 427: 419: 234:
In laboratory investigation of VCSELs using new material systems, the active region may be
8: 1479: 610: 600: 207: 134: 1401: 1363: 1345:"Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes" 1344: 1313: 1206: 1098: 1054: 964: 929: 886: 851: 808: 1523: 1413: 1325: 1282: 1218: 1110: 1066: 976: 898: 820: 726: 438: 1528: 1329: 1286: 1272: 1222: 1193:
Soda, Haruhisa; et al. (1979). "GaInAsP/InP Surface Emitting Injection Lasers".
1173: 1133: 1070: 716: 576:, and are now used for link bandwidths from 1 to 400 gigabits per second or greater. 553: 448: 167: 1438: 1417: 1114: 980: 902: 824: 730: 1644: 1405: 1367: 1317: 1264: 1210: 1102: 1058: 968: 933: 890: 855: 812: 708: 569: 528: 291: 272: 264: 176: 92: 1018: 995: 673: 564:
in 1987. In 1989, Jack Jewell led a Bell Labs / Bellcore collaboration (including
1638: 1601: 557: 477: 133:
lasers) which emit from surfaces formed by cleaving the individual chip out of a
712: 590: 548: 473: 469: 276:
used to restrict the current in a VCSEL, enabling very low threshold currents.
1665: 573: 505: 489: 465: 295: 146: 138: 119: 1443: 517: 342:
Two VCSELs on top of each other. One of them optically pumps the other one.
263:
As). The GaAs–AlGaAs system is favored for constructing VCSELs because the
211: 154: 1371: 1321: 937: 859: 1493: 1268: 1214: 452: 380:
Because VCSELs emit from the top surface of the chip, they can be tested
122: 1409: 816: 239: 171: 1106: 1062: 972: 894: 1087:
Proceedings SPIE, in Solid State Lasers XVIII: Technology and Devices
872: 658: 384:, before they are cleaved into individual devices. This reduces the 950: 1043:
Proceedings SPIE, in Vertical-Cavity Surface-Emitting Lasers XIII
532: 415: 268: 150: 215:
in VCSELs to balance the short axial length of the gain region.
837: 674:"Introduction of VCSEL: Working Principles And Characteristics" 355: 74: 110: 1039: 522: 499: 227: 187: 126: 1475: 1016: 993: 639: 307:
Multiple active region devices (aka bipolar cascade VCSELs)
218:
In common VCSELs the upper and lower mirrors are doped as
1257:
Topical Meeting on Semiconductor Lasers, Technical Digest
101: 1083: 137:. VCSELs are used in various laser products, including 418:
heat spreader, taking advantage of diamond’s very high
323:
Tunable VCSELs with micromechanically movable mirrors (
175:
VCSELs can be processed simultaneously on a three-inch
1390:
IEEE Journal of Selected Topics in Quantum Electronics
1342: 1299: 1019:"A New Application for VCSELs: High-Power Pump Lasers" 994:
D’Asaro, L. A.; J. Seurin and J.Wynn (February 2005).
797:
IEEE Journal of Selected Topics in Quantum Electronics
1434:
Long Wavelength Surface Emitting Lasers: Introduction
271:
layers to be grown on a GaAs substrate. However, the
107: 104: 1089:. Solid State Lasers XVIII: Technology and Devices. 996:"High-power, high efficiency VCSELs pursue the goal" 206:(DBR) mirrors parallel to the wafer surface with an 98: 1017:Seurin, J-F.; L. A. D’Asaro; C. Ghosh (July 2007). 95: 34:
may be too technical for most readers to understand
345:VCSEL with longitudinally integrated monitor diode 1254: 1130:Semiconductor Lasers II: Materials and Structures 915: 1663: 1439:Britney's Guide to Semiconductor Physics: VCSELs 1152: 1045:. Vertical-Cavity Surface-Emitting Lasers XIII. 696: 364:Vertical-cavity semiconductor optical amplifiers 1580:Vertical-external-cavity surface-emitting-laser 444:Infrared illuminators for military/surveillance 1387: 1077: 191:A realistic VCSEL device structure. This is a 1473: 1459: 1167: 866: 671: 909: 655:"Intel made smart glasses that look normal" 330:(either optically or electrically pumped ) 238:by an external light source with a shorter 1506:Separate confinement heterostructure laser 1466: 1452: 1229: 1033: 1010: 987: 944: 831: 1127: 62:Learn how and when to remove this message 46:, without removing the technical details. 1186: 538:Lidar for automobile collision avoidance 186: 160: 73: 1383: 1381: 633: 352:VCSELs with external cavities (VECSELs) 1664: 1574:Vertical-cavity surface-emitting laser 1235: 339:Monolithically optically pumped VCSELs 84:vertical-cavity surface-emitting laser 1447: 1263:. Optical Society of America: WA7-1. 788: 636:"Faces light up over VCSEL prospects" 531:(e.g. the "dot projector" for iPhone 298:is minimal in this wavelength range. 44:make it understandable to non-experts 1378: 1192: 652: 495:Analog broadband signal transmission 408: 202:The laser resonator consists of two 78:Diagram of a simple VCSEL structure. 18: 1195:Japanese Journal of Applied Physics 1170:Fiber Optics Illustrated Dictionary 794: 13: 375: 14: 1683: 1512:Distributed Bragg reflector laser 1427: 953:IEEE Photonics Technology Letters 875:IEEE Photonics Technology Letters 333:Wafer-bonded or wafer-fused VCSEL 16:Type of semiconductor laser diode 1474: 653:Bohn, Dieter (5 February 2018). 301: 91: 23: 1651:List of semiconductor materials 1336: 1293: 1248: 1161: 1146: 1121: 483: 779: 769: 759: 749: 690: 665: 646: 634:Extance, Andy (9 April 2018). 627: 359:femtosecond pulse modelocking. 1: 621: 1500:Double heterostructure laser 313:VCSELs with tunnel junctions 182: 7: 1155:Physics of Photonic Devices 672:SEO_INPHENIX (2021-09-24). 579: 204:distributed Bragg reflector 10: 1688: 1623:Laser diode rate equations 1618:Semiconductor laser theory 1518:Distributed-feedback laser 713:10.1109/LEOSST.1999.794691 616:Parallel optical interface 562:Optical Society of America 542: 513:Biological tissue analysis 459:second harmonic generation 247:aluminium gallium arsenide 210:consisting of one or more 143:fiber optic communications 1631: 1610: 1566: 1549: 1486: 1153:Shun Lien Chuang (2009). 498:Absorption spectroscopy ( 1597:Semiconductor ring laser 1172:. Taylor & Francis. 707:. pp. III11–III12. 1591:Interband cascade laser 586:Interconnect bottleneck 457:High-power/high-energy 441:, laser wrinkle removal 1168:J.K. Peterson (2002). 705:IEEE Photonics Society 318:Buried Tunnel Junction 199: 79: 1540:External-cavity laser 1534:Quantum-cascade laser 596:Optical communication 525:for cellphone cameras 226:materials, forming a 196:multiple-quantum-well 190: 161:Production advantages 77: 1672:Semiconductor lasers 1586:Hybrid silicon laser 1557:Volume Bragg grating 1480:Semiconductor lasers 1269:10.1364/SLA.1987.WA7 1215:10.1143/JJAP.18.2329 606:Optical interconnect 428:wall-plug efficiency 420:thermal conductivity 1410:10.1109/2944.902201 1402:2000IJSTQ...6.1458T 1372:10.1049/el:19890921 1364:1989ElL....25.1377L 1352:Electronics Letters 1322:10.1049/el:19890754 1314:1989ElL....25.1123J 1302:Electronics Letters 1207:1979JaJAP..18.2329S 1099:2009SPIE.7193E..1DV 1055:2009SPIE.7229E..03S 965:2001IPTL...13..173M 938:10.1049/el:19981517 930:1998ElL....34.2132F 918:Electronics Letters 887:1998IPTL...10.1061G 860:10.1049/el:19930134 852:1993ElL....29..200P 840:Electronics Letters 817:10.1109/2944.902168 809:2000IJSTQ...6.1201I 737:on 10 November 2016 611:Optical microcavity 601:Optical fiber cable 437:Medical/cosmetics: 1524:Quantum well laser 1128:Eli Kapon (1998). 556:, but devices for 461:(blue/green light) 449:solid-state lasers 439:laser hair removal 200: 80: 1659: 1658: 1529:Quantum dot laser 1358:(20): 1377–1378. 1308:(17): 1123–1124. 1201:(12): 2329–2330. 1107:10.1117/12.816035 1063:10.1117/12.808294 1023:Photonics Spectra 1000:Photonics Spectra 973:10.1109/68.914311 924:(22): 2132–2133. 895:10.1109/68.701502 492:data transmission 464:Laser machining: 409:High-power VCSELs 72: 71: 64: 1679: 1645:Gallium arsenide 1478: 1468: 1461: 1454: 1445: 1444: 1422: 1421: 1396:(6): 1458–1464. 1385: 1376: 1375: 1349: 1340: 1334: 1333: 1297: 1291: 1290: 1252: 1246: 1245: 1244:(11): 1089–1090. 1233: 1227: 1226: 1190: 1184: 1183: 1165: 1159: 1158: 1150: 1144: 1143: 1125: 1119: 1118: 1081: 1075: 1074: 1037: 1031: 1030: 1014: 1008: 1007: 991: 985: 984: 948: 942: 941: 913: 907: 906: 881:(8): 1061–1063. 870: 864: 863: 835: 829: 828: 803:(6): 1201–1215. 792: 786: 783: 777: 773: 767: 763: 757: 753: 747: 746: 744: 742: 733:. Archived from 694: 688: 687: 685: 684: 669: 663: 662: 650: 644: 643: 631: 570:Gigabit Ethernet 529:Structured light 292:indium phosphide 273:refractive index 265:lattice constant 177:gallium arsenide 117: 116: 113: 112: 109: 106: 103: 100: 97: 67: 60: 56: 53: 47: 27: 26: 19: 1687: 1686: 1682: 1681: 1680: 1678: 1677: 1676: 1662: 1661: 1660: 1655: 1639:Indium arsenide 1627: 1606: 1602:Polariton laser 1562: 1545: 1482: 1472: 1430: 1425: 1386: 1379: 1347: 1341: 1337: 1298: 1294: 1279: 1253: 1249: 1234: 1230: 1191: 1187: 1180: 1166: 1162: 1151: 1147: 1140: 1126: 1122: 1093:: 771931D–1–9. 1082: 1078: 1049:: 722903–1–11. 1038: 1034: 1015: 1011: 992: 988: 949: 945: 914: 910: 871: 867: 836: 832: 793: 789: 784: 780: 774: 770: 764: 760: 754: 750: 740: 738: 723: 695: 691: 682: 680: 670: 666: 651: 647: 632: 628: 624: 582: 545: 486: 478:laser engraving 411: 378: 376:Characteristics 304: 262: 254: 193:bottom-emitting 185: 163: 118:) is a type of 94: 90: 68: 57: 51: 48: 40:help improve it 37: 28: 24: 17: 12: 11: 5: 1685: 1675: 1674: 1657: 1656: 1654: 1653: 1648: 1642: 1635: 1633: 1629: 1628: 1626: 1625: 1620: 1614: 1612: 1608: 1607: 1605: 1604: 1599: 1594: 1588: 1583: 1577: 1570: 1568: 1564: 1563: 1561: 1560: 1553: 1551: 1547: 1546: 1544: 1543: 1537: 1531: 1526: 1521: 1515: 1509: 1503: 1497: 1490: 1488: 1484: 1483: 1471: 1470: 1463: 1456: 1448: 1442: 1441: 1436: 1429: 1428:External links 1426: 1424: 1423: 1377: 1335: 1292: 1277: 1247: 1228: 1185: 1178: 1160: 1145: 1138: 1120: 1076: 1032: 1009: 986: 959:(3): 173–175. 943: 908: 865: 846:(2): 200–201. 830: 787: 778: 768: 758: 748: 721: 689: 664: 645: 625: 623: 620: 619: 618: 613: 608: 603: 598: 593: 591:Optical cavity 588: 581: 578: 544: 541: 540: 539: 536: 526: 520: 514: 511: 510:Computer mouse 508: 506:Laser printers 503: 496: 493: 485: 482: 481: 480: 474:laser ablation 470:laser drilling 462: 455: 445: 442: 410: 407: 377: 374: 373: 372: 365: 361: 360: 353: 350: 346: 343: 340: 337: 334: 331: 328: 321: 314: 311: 308: 303: 300: 256: 250: 184: 181: 162: 159: 147:laser printers 70: 69: 31: 29: 22: 15: 9: 6: 4: 3: 2: 1684: 1673: 1670: 1669: 1667: 1652: 1649: 1646: 1643: 1640: 1637: 1636: 1634: 1630: 1624: 1621: 1619: 1616: 1615: 1613: 1609: 1603: 1600: 1598: 1595: 1592: 1589: 1587: 1584: 1581: 1578: 1575: 1572: 1571: 1569: 1565: 1558: 1555: 1554: 1552: 1548: 1541: 1538: 1535: 1532: 1530: 1527: 1525: 1522: 1519: 1516: 1513: 1510: 1507: 1504: 1501: 1498: 1495: 1492: 1491: 1489: 1485: 1481: 1477: 1469: 1464: 1462: 1457: 1455: 1450: 1449: 1446: 1440: 1437: 1435: 1432: 1431: 1419: 1415: 1411: 1407: 1403: 1399: 1395: 1391: 1384: 1382: 1373: 1369: 1365: 1361: 1357: 1353: 1346: 1339: 1331: 1327: 1323: 1319: 1315: 1311: 1307: 1303: 1296: 1288: 1284: 1280: 1278:0-936659-39-4 1274: 1270: 1266: 1262: 1258: 1251: 1243: 1239: 1232: 1224: 1220: 1216: 1212: 1208: 1204: 1200: 1196: 1189: 1181: 1179:9780849313493 1175: 1171: 1164: 1156: 1149: 1141: 1139:9780080516967 1135: 1131: 1124: 1116: 1112: 1108: 1104: 1100: 1096: 1092: 1088: 1080: 1072: 1068: 1064: 1060: 1056: 1052: 1048: 1044: 1036: 1028: 1024: 1020: 1013: 1005: 1001: 997: 990: 982: 978: 974: 970: 966: 962: 958: 954: 947: 939: 935: 931: 927: 923: 919: 912: 904: 900: 896: 892: 888: 884: 880: 876: 869: 861: 857: 853: 849: 845: 841: 834: 826: 822: 818: 814: 810: 806: 802: 798: 791: 782: 772: 762: 752: 736: 732: 728: 724: 722:0-7803-5633-0 718: 714: 710: 706: 702: 701: 693: 679: 675: 668: 660: 656: 649: 641: 637: 630: 626: 617: 614: 612: 609: 607: 604: 602: 599: 597: 594: 592: 589: 587: 584: 583: 577: 575: 574:Fibre Channel 571: 567: 563: 559: 555: 550: 537: 534: 530: 527: 524: 521: 519: 515: 512: 509: 507: 504: 501: 497: 494: 491: 490:Optical fiber 488: 487: 479: 475: 471: 467: 466:laser cutting 463: 460: 456: 454: 450: 446: 443: 440: 436: 435: 434: 431: 429: 423: 421: 417: 406: 403: 400: 396: 393: 391: 387: 383: 369: 366: 363: 362: 357: 354: 351: 347: 344: 341: 338: 335: 332: 329: 326: 322: 319: 315: 312: 309: 306: 305: 302:Special forms 299: 297: 296:optical fiber 293: 288: 284: 280: 277: 274: 270: 266: 260: 253: 248: 243: 241: 237: 232: 229: 225: 221: 216: 213: 212:quantum wells 209: 208:active region 205: 197: 194: 189: 180: 178: 173: 169: 158: 156: 152: 148: 144: 140: 139:computer mice 136: 132: 128: 124: 121: 120:semiconductor 115: 89: 85: 76: 66: 63: 55: 52:February 2017 45: 41: 35: 32:This article 30: 21: 20: 1573: 1550:Hybrid types 1393: 1389: 1355: 1351: 1338: 1305: 1301: 1295: 1260: 1256: 1250: 1241: 1238:Trans. IEICE 1237: 1231: 1198: 1194: 1188: 1169: 1163: 1154: 1148: 1132:. Elsevier. 1129: 1123: 1090: 1086: 1079: 1046: 1042: 1035: 1026: 1022: 1012: 1003: 999: 989: 956: 952: 946: 921: 917: 911: 878: 874: 868: 843: 839: 833: 800: 796: 790: 781: 771: 761: 751: 739:. Retrieved 735:the original 699: 692: 681:. Retrieved 677: 667: 648: 629: 566:Axel Scherer 546: 518:atomic clock 484:Applications 453:fiber lasers 432: 424: 412: 404: 401: 397: 394: 389: 381: 379: 317: 289: 285: 281: 278: 258: 251: 244: 235: 233: 217: 201: 195: 192: 164: 155:smartglasses 130: 87: 83: 81: 58: 49: 33: 1567:Other Types 1494:Laser diode 1487:Basic types 1006:(2): 62–66. 516:Chip scale 447:Pumping of 386:fabrication 123:laser diode 683:2023-12-21 622:References 240:wavelength 172:dielectric 1632:Materials 1330:111035374 1287:257137192 1223:122958383 1071:109520958 659:The Verge 269:epitaxial 183:Structure 1666:Category 1582:(VECSEL) 1418:46544782 1115:21109187 981:22964703 903:22839700 825:10550809 731:39634122 678:INPHENIX 580:See also 554:Suematsu 399:VCSELs. 382:on-wafer 131:in-plane 1576:(VCSEL) 1398:Bibcode 1360:Bibcode 1310:Bibcode 1203:Bibcode 1095:Bibcode 1051:Bibcode 961:Bibcode 926:Bibcode 883:Bibcode 848:Bibcode 805:Bibcode 543:History 533:Face ID 416:diamond 356:VECSELs 320:(BTJ)). 151:Face ID 38:Please 1647:(GaAs) 1641:(InAs) 1611:Theory 1416:  1328:  1285:  1275:  1221:  1176:  1136:  1113:  1069:  979:  901:  823:  741:3 June 729:  719:  549:cavity 390:arrays 368:VCSOAs 349:VCSEL. 236:pumped 224:n-type 220:p-type 198:VCSEL. 153:, and 1593:(ICL) 1559:laser 1542:(ECL) 1536:(QCL) 1520:(DFB) 1514:(DBR) 1508:(SCH) 1414:S2CID 1348:(PDF) 1326:S2CID 1283:S2CID 1219:S2CID 1111:S2CID 1067:S2CID 977:S2CID 899:S2CID 821:S2CID 776:2015. 727:S2CID 523:Lidar 500:TDLAS 228:diode 135:wafer 127:laser 125:with 88:VCSEL 1502:(DH) 1496:(LD) 1273:ISBN 1174:ISBN 1134:ISBN 1091:7193 1047:7229 1029:(7). 766:2011 756:2012 743:2021 717:ISBN 640:SPIE 572:and 451:and 325:MEMS 222:and 168:vias 82:The 1406:doi 1368:doi 1318:doi 1265:doi 1242:E71 1211:doi 1103:doi 1059:doi 969:doi 934:doi 891:doi 856:doi 813:doi 709:doi 257:(1− 249:(Al 42:to 1668:: 1412:. 1404:. 1392:. 1380:^ 1366:. 1356:25 1354:. 1350:. 1324:. 1316:. 1306:25 1304:. 1281:. 1271:. 1259:. 1240:. 1217:. 1209:. 1199:18 1197:. 1109:. 1101:. 1065:. 1057:. 1027:41 1025:. 1021:. 1004:39 1002:. 998:. 975:. 967:. 957:13 955:. 932:. 922:34 920:. 897:. 889:. 879:10 877:. 854:. 844:29 842:. 819:. 811:. 799:. 725:. 715:. 703:. 676:. 657:. 638:. 558:CW 476:, 472:, 468:, 392:. 255:Ga 157:. 149:, 145:, 141:, 111:əl 1467:e 1460:t 1453:v 1420:. 1408:: 1400:: 1394:6 1374:. 1370:: 1362:: 1332:. 1320:: 1312:: 1289:. 1267:: 1261:6 1225:. 1213:: 1205:: 1182:. 1157:. 1142:. 1117:. 1105:: 1097:: 1073:. 1061:: 1053:: 983:. 971:: 963:: 940:. 936:: 928:: 905:. 893:: 885:: 862:. 858:: 850:: 827:. 815:: 807:: 801:6 745:. 711:: 686:. 661:. 642:. 535:) 502:) 327:) 261:) 259:x 252:x 114:/ 108:s 105:k 102:ɪ 99:v 96:ˈ 93:/ 86:( 65:) 59:( 54:) 50:( 36:.

Index

help improve it
make it understandable to non-experts
Learn how and when to remove this message

/ˈvɪksəl/
semiconductor
laser diode
laser
wafer
computer mice
fiber optic communications
laser printers
Face ID
smartglasses
vias
dielectric
gallium arsenide

distributed Bragg reflector
active region
quantum wells
p-type
n-type
diode
wavelength
aluminium gallium arsenide
lattice constant
epitaxial
refractive index
indium phosphide

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.