Knowledge

Nuclease

Source đź“ť

20: 2764: 269: 951:) can trigger this repair pathway. Short stretches of single stranded DNA containing such damaged nucleotide are removed from duplex DNA by separate endonucleases effecting nicks upstream and downstream of the damage. Deletions or mutations which affect these nucleases instigate increased sensitivity to ultraviolet damage and carcinogenesis. Such abnormalities can even impinge neural development. 491:
other, and to the recognition sequence itself, are determined by the identity of the restriction endonuclease. Different endonucleases yield different sets of cuts, but one endonuclease will always cut a particular base sequence the same way, no matter what DNA molecule it is acting on. Once the cuts have been made, the DNA molecule will break into fragments.
1096:
less frequent digestion. For example, a given four-base sequence (corresponding to the recognition site for a hypothetical nuclease) would be predicted to occur every 256 base pairs on average (where 4^4=256), but any given six-base sequence would be expected to occur once every 4,096 base pairs on average (4^6=4096).
684:
enzyme is then used to join the phosphate backbones of the two molecules. The cellular origin, or even the species origin, of the sticky ends does not affect their stickiness. Any pair of complementary sequences will tend to bond, even if one of the sequences comes from a length of human DNA, and the
490:
A restriction endonuclease functions by "scanning" the length of a DNA molecule. Once it encounters its particular specific recognition sequence, it will bind to the DNA molecule and makes one cut in each of the two sugar-phosphate backbones. The positions of these two cuts, both in relation to each
1095:
The frequency at which a particular nuclease will cut a given DNA molecule depends on the complexity of the DNA and the length of the nuclease's recognition sequence; due to the statistical likelihood of finding the bases in a particular order by chance, a longer recognition sequence will result in
667:
When the enzyme encounters this sequence, it cleaves each backbone between the G and the closest A base residues. Once the cuts have been made, the resulting fragments are held together only by the relatively weak hydrogen bonds that hold the complementary bases to each other. The weakness of these
281:
A nuclease must associate with a nucleic acid before it can cleave the molecule. That entails a degree of recognition. Nucleases variously employ both nonspecific and specific associations in their modes of recognition and binding. Both modes play important roles in living organisms, especially in
668:
bonds allows the DNA fragments to separate from each other. Each resulting fragment has a protruding 5' end composed of unpaired bases. Other enzymes create cuts in the DNA backbone which result in protruding 3' ends. Protruding ends—both 3' and 5'—are sometimes called "
452:
II. These restriction enzymes generally have names that reflect their origin—The first letter of the name comes from the genus and the second two letters come from the species of the prokaryotic cell from which they were isolated. For example,
759:. The polymerase elongates the new strand in the 5' → 3' direction. The exonuclease removes erroneous nucleotides from the same strand in the 3’ → 5’ direction. This exonuclease activity is essential for a DNA polymerase's ability to proofread. 685:
other comes from a length of bacterial DNA. In fact, it is this quality of stickiness that allows production of recombinant DNA molecules, molecules which are composed of DNA from different sources, and which has given birth to the
1107:
applications in complex organisms such as plants and mammals, where typically larger genomes (numbering in the billions of base pairs) would result in frequent and deleterious site-specific digestion using traditional nucleases.
859:. MutS recognizes and binds to mismatches, where it recruits MutL and MutH. MutL mediates the interaction between MutS and MutH, and enhances the endonucleasic activity of the latter. MutH recognizes hemimethylated 309:, and PvuII, this nonspecific binding involves electrostatic interactions between minimal surface area of the protein and the DNA. This weak association leaves the overall shape of the DNA undeformed, remaining in 264:
is by and large poorly conserved and minimally conserved at active sites, the surfaces of which primarily comprise acidic and basic amino acid residues. Nucleases can be classified into folding families.
1103:, which are characterized by having larger, and therefore less common, recognition sequences consisting of 12 to 40 base pairs. These nucleases are particularly useful for genetic engineering and 174:" DNA molecules. What was then needed was a tool that would cut DNA at specific sites, rather than at random sites along the length of the molecule, so that scientists could cut 337:
Some nucleases involved in DNA repair exhibit partial sequence-specificity. However most are nonspecific, instead recognizing structural abnormalities produced in the DNA
2245: 2191: 722:. Most nucleases involved in DNA repair are not sequence-specific. They recognize damage sites through deformation of double stranded DNA (dsDNA) secondary structure. 503:
II described above. Many endonucleases cleave the DNA backbones in positions that are not directly opposite each other, creating overhangs. For example, the nuclease
448:
There are more than 900 restriction enzymes, some sequence specific and some not, have been isolated from over 230 strains of bacteria since the initial discovery of
229: 706:
is an error prone process, and DNA molecules themselves are vulnerable to modification by many metabolic and environmental stressors. Ubiquitous examples include
718:. Many nucleases participate in DNA repair by recognizing damage sites and cleaving them from the surrounding DNA. These enzymes function independently or in 1618: 783:, causing the DNA polymerases and associated machinery to abandon the fork. It must then be processed by fork-specific proteins. The most notable is 252:(EC-number 3.1), a subgroup of the hydrolases. The esterases to which nucleases belong are classified with the EC-numbers 3.1.11 - EC-number 3.1.31. 162:, while the other cleaved unmethylated DNA at a wide variety of locations along the length of the molecule. The first type of enzyme was called a " 1853: 893:, where it nicks the DNA strand on the 5' side of the mismatched thymine (underlined in the previous sequence). One of the exonucleases RecJ, 2014: 840:
in any given organism is effected by a suite of mismatch-specific endonucleases. In prokaryotes, this role is primarily filled by MutSLH and
139: 1671: 2110: 702:
With all cells depending on DNA as the medium of genetic information, genetic quality control is an essential function of all organisms.
1057:
Holliday junctions into two separate dsDNAs by cleaving the junctions at two symmetrical sites near the junction centre. In eukaryotes,
985:, various exogenous and endogenous chemical agents, and halted replication forks. Intentional breaks are generated as intermediaries in 468:
strain Rd. Numbers following the nuclease names indicate the order in which the enzymes were isolated from single strains of bacteria:
1821: 1074: 1001:. Both cases require the ends in double strand breaks be processed by nucleases before repair can take place. One such nuclease is 382: 206: 1838: 2085: 1028:
participates in this reaction. Although Artemis exhibits 5' → 3' ssDNA exonuclease activity when alone, its complexing with
1999: 958:
complex. In budding yeast, Rad2 and the Rad1-Rad10 complex make the 5' and 3' cuts, respectively. In mammals, the homologs
935:, not to be confused with base excision repair, involves the removal and replacement of damaged nucleotides. Instances of 2100: 2094: 1895: 1645: 212:, that always cut DNA molecules at a particular point within a specific sequence of six base pairs. They found that the 1943: 2483: 2054: 1843: 776: 290: 1035:
allows for endonucleasic processing of the stem-loops. Defects of either protein confers severe immunodeficiency.
672:" because they tend to bond with complementary sequences of bases. In other words, if an unpaired length of bases 2161: 2049: 327: 83:
stranded breaks in their target molecules. In living organisms, they are essential machinery for many aspects of
1970: 1880: 1833: 981:, both intentional and unintentional, regularly occur in cells. Unintentional breaks are commonly generated by 2639: 2392: 2333: 1417:"The crystal structure of EcoRV endonuclease and of its complexes with cognate and non-cognate DNA fragments" 1271:"Host specificity of DNA produced by Escherichia coli, X. In vitro restriction of phage fd replicative form" 2437: 2004: 1994: 1152: 912:
formation is a common occurrence in dsDNA. It is the result of spontaneous hydrolysis and the activity of
2397: 2289: 1914: 186: 2754: 1983: 1979: 1975: 1891: 1724: 998: 932: 741:
new strands of DNA against complementary template strands. Most DNA polymerases comprise two different
630: 2740: 2727: 2714: 2701: 2688: 2675: 2662: 2624: 2151: 1707: 1132: 261: 216:
II enzyme always cuts directly in the center of this sequence (between the 3rd and 4th base pairs).
2634: 2588: 2531: 1899: 1748: 1662: 994: 225: 190: 19: 2536: 1768: 1638: 1613: 948: 841: 707: 2324: 1963: 898: 753: 540: 465: 391: 334:(positively charged) residues. It engages in extensive electrostatic interaction with the DNA. 202: 1562:"Structure and function of nucleases in DNA repair: shape, grip and blade of the DNA scissors" 1514:"Structure and function of nucleases in DNA repair: shape, grip and blade of the DNA scissors" 1473:"Structure and function of nucleases in DNA repair: shape, grip and blade of the DNA scissors" 1415:
Winkler FK, Banner DW, Oefner C, Tsernoglou D, Brown RS, Heathman SP, et al. (May 1993).
1376:"Structure and function of nucleases in DNA repair: shape, grip and blade of the DNA scissors" 1178:"Structure and function of nucleases in DNA repair: shape, grip and blade of the DNA scissors" 763:
inactivating or removing these nucleases increase rates of mutation and mortality in affected
170:". These enzymatic tools were important to scientists who were gathering the tools needed to " 2557: 2476: 2259: 2156: 1948: 1909: 1773: 1695: 1039: 1010: 888: 2629: 2442: 2277: 2272: 2205: 1865: 1690: 1282: 1127: 917: 719: 286: 194: 167: 1603: 146:
isolated examples of the two types of enzymes responsible for phage growth restriction in
8: 2593: 2297: 2267: 2071: 2066: 1990: 1926: 1712: 990: 978: 936: 856: 837: 760: 686: 88: 80: 64: 1608: 1341: 1286: 1020:
structures associated with double-strand breaks and subsequently joining both ends. The
2526: 2430: 2282: 1763: 1753: 1631: 1246: 1221: 1104: 982: 715: 323: 294: 24: 1441: 1416: 1305: 1270: 322:
forms far stronger associations by contrast. It draws DNA into the deep groove of its
2231: 2176: 2144: 2019: 1738: 1583: 1535: 1494: 1446: 1397: 1345: 1310: 1251: 1199: 1047: 823: 354: 237: 182: 115: 96: 2572: 2567: 2541: 2469: 2307: 1887: 1792: 1787: 1743: 1573: 1525: 1484: 1436: 1428: 1387: 1337: 1300: 1290: 1241: 1233: 1189: 800: 780: 585: 461: 331: 301:
interact with the chemical groups of the DNA. In the case of endonucleases such as
147: 92: 32: 901:
then degrades the site before DNA polymerase resynthesizes the gap in the strand.
293:. Such a nuclease diffuses along DNA until it encounters a target, upon which the 2784: 2619: 2603: 2516: 2409: 2223: 2139: 2134: 2129: 2042: 2037: 1797: 1675: 1021: 921: 913: 894: 731: 703: 159: 1623: 2768: 2657: 2598: 2382: 2377: 2372: 1758: 1733: 1729: 1702: 1685: 1275:
Proceedings of the National Academy of Sciences of the United States of America
852: 807: 745: 738: 735: 338: 1237: 499:
Not all restriction endonucleases cut symmetrically and leave blunt ends like
2778: 2562: 2521: 2123: 2032: 1782: 171: 2511: 2250: 2181: 1904: 1825: 1587: 1578: 1561: 1539: 1530: 1513: 1498: 1489: 1472: 1401: 1392: 1375: 1295: 1255: 1203: 1194: 1177: 1100: 1090: 155: 143: 119: 107: 72: 44: 1450: 1432: 1349: 1314: 2735: 2670: 2506: 2425: 2196: 2090: 1953: 1919: 1857: 1157: 1137: 875: 756: 711: 298: 245: 103: 870:
VSP repair is initiated by the endonuclease Vsr. It corrects a specific
2402: 1147: 1142: 944: 940: 879: 806:
from replication. Most such primers are excised from newly synthesized
803: 749: 669: 198: 84: 76: 68: 102:
There are two primary classifications based on the locus of activity.
2709: 2683: 2315: 2114: 2027: 1654: 1017: 867:
of the non-methylated strand (the more recently synthesized strand).
815: 742: 680:
they will bond to each other—they are "sticky" for each other.
342: 233: 163: 787:. Deletions of which causes UV or methylation damage sensitivity in 2763: 2360: 2355: 2350: 1806: 1658: 1029: 436: 249: 285:
Nonspecific endonucleases involved in DNA repair can scan DNA for
268: 2367: 2345: 2340: 1958: 1117: 986: 909: 819: 811: 764: 531: 440: 432: 428: 151: 28: 2722: 2492: 2387: 2320: 2213: 1811: 1719: 1122: 1051: 1043: 1002: 955: 681: 476: 241: 60: 2696: 2329: 2080: 2076: 1414: 1070: 1066: 1062: 1006: 967: 963: 959: 788: 784: 621: 576: 469: 454: 310: 306: 302: 1328:
Arber W, Linn S (1969). "DNA modification and restriction".
2061: 1938: 1931: 1875: 1870: 1078: 1058: 848: 826: 2461: 1038:
Homologous recombination, on the other hand, involves two
829:
also participates in the processing of Okazaki fragments.
230:
International Union of Biochemistry and Molecular Biology
175: 127: 123: 114:
of target molecules. They are further subcategorized as
2752: 924:, which effect single strand breaks around the site. 676:
encounters another unpaired length with the sequence
326:. This results in significant deformation of the DNA 1222:"Enzymes used in molecular biology: a useful guide" 882:cytosines to thymines. Vsr recognizes the sequence 31:cleaving a double-stranded DNA molecule at a valid 1215: 1213: 1169: 219: 1949:Fructose 6-P,2-kinase:fructose 2,6-bisphosphatase 1653: 178:molecules in a predictable and reproducible way. 2776: 205:bacteria, this group isolated an enzyme, called 1559: 1511: 1470: 1373: 1210: 1175: 272:Crystal structure of EcoRV in complex with DNA. 1466: 1464: 1462: 1460: 1081:processes Holliday junctions in mitochondria. 794: 348: 236:(EC-number 3). The nucleases belong just like 193:in 1968, isolated and characterized the first 2477: 1639: 973: 927: 799:A ubiquitous task in cells is the removal of 360: 197:whose functioning depended on a specific DNA 1219: 330:and is accomplished with a surfaces rich in 1457: 1226:Journal of Cell Communication and Signaling 725: 16:Class of enzymes which cleave nucleic acids 2484: 2470: 1646: 1632: 1555: 1553: 1551: 1549: 1369: 1367: 1365: 1363: 1361: 1359: 1321: 1262: 770: 1577: 1529: 1488: 1440: 1391: 1327: 1304: 1294: 1268: 1245: 1193: 154:) bacteria. One of these enzymes added a 95:. Nucleases are also extensively used in 87:. Defects in certain nucleases can cause 1153:Serratia marcescens nuclease (benzonase) 267: 18: 1839:Ubiquitin carboxy-terminal hydrolase L1 1560:Nishino T, Morikawa K (December 2002). 1546: 1512:Nishino T, Morikawa K (December 2002). 1471:Nishino T, Morikawa K (December 2002). 1374:Nishino T, Morikawa K (December 2002). 1356: 1176:Nishino T, Morikawa K (December 2002). 993:, which are primarily repaired through 954:In bacteria, both cuts executed by the 904: 464:RY13 bacteria, while HindII comes from 2777: 1619:Nucleases (Main source of the page...) 1099:One unique family of nucleases is the 228:of the "Nomenclature Committee of the 2465: 2419:either deoxy- or ribo-     1627: 1604:Examples of Restriction Enzymes Chart 1016:V(D)J recombination involves opening 1009:. Mutations of Mre11 can precipitate 224:Most nucleases are classified by the 2000:Protein serine/threonine phosphatase 494: 106:digest nucleic acids from the ends. 2101:Cyclic nucleotide phosphodiesterase 2095:Clostridium perfringens alpha toxin 1896:Tartrate-resistant acid phosphatase 1342:10.1146/annurev.bi.38.070169.002343 947:(generated by ultraviolet light or 874:mismatch caused by the spontaneous 810:DNA by endonucleases of the family 276: 181:An important development came when 13: 1944:Pyruvate dehydrogenase phosphatase 1609:Restriction Enzyme Action of EcoRI 1050:. In bacteria, endonucleases like 970:affect the same respective nicks. 844:(VSP repair) associated proteins. 832: 791:, in addition to meiotic defects. 14: 2796: 1844:4-hydroxybenzoyl-CoA thioesterase 1597: 692: 2762: 1220:RittiĂ© L, Perbal B (June 2008). 1084: 920:. These AP sites are removed by 507:RI has the recognition sequence 485: 2162:N-acetylglucosamine-6-sulfatase 2050:Sphingomyelin phosphodiesterase 220:Numerical Classification System 1971:Inositol-phosphate phosphatase 1834:Palmitoyl protein thioesterase 1505: 1408: 1269:Linn S, Arber W (April 1968). 863:sites and cleaves next to the 847:The MutSLH system (comprising 138:In the late 1960s, scientists 1: 2334:RNA-induced silencing complex 1330:Annual Review of Biochemistry 1163: 697: 75:. Nucleases variously affect 2438:Serratia marcescens nuclease 2005:Dual-specificity phosphatase 1995:Protein tyrosine phosphatase 255: 7: 2491: 1915:Fructose 1,6-bisphosphatase 1111: 916:as an intermediary step in 851:, MutL, and MutH) corrects 795:Okazaki fragment processing 349:Structure specific nuclease 51:(also archaically known as 10: 2801: 1088: 999:non-homologous end joining 974:Double-strand break repair 933:Nucleotide excision repair 928:Nucleotide excision repair 631:Bacillus amyloliquefaciens 361:Sequence specific nuclease 133: 2648: 2640:Michaelis–Menten kinetics 2612: 2581: 2550: 2499: 2418: 2306: 2258: 2244: 2222: 2204: 2190: 2170: 2152:Galactosamine-6 sulfatase 2109: 2013: 1852: 1820: 1708:6-phosphogluconolactonase 1670: 1238:10.1007/s12079-008-0026-2 1133:Nuclease protection assay 426: 2532:Diffusion-limited enzyme 1900:Purple acid phosphatases 1073:cleave the D-loops, and 995:homologous recombination 779:stop progression of the 726:Replication proofreading 226:Enzyme Commission number 191:Johns Hopkins University 63:capable of cleaving the 949:reactive oxygen species 842:very short patch repair 771:Halted replication fork 708:reactive oxygen species 201:sequence. Working with 158:to the DNA, generating 2325:Microprocessor complex 1964:Beta-propeller phytase 1579:10.1038/sj.onc.1206135 1531:10.1038/sj.onc.1206135 1490:10.1038/sj.onc.1206135 1393:10.1038/sj.onc.1206135 1296:10.1073/pnas.59.4.1300 1195:10.1038/sj.onc.1206135 1042:duplexes connected by 541:Haemophilus influenzae 466:Haemophilus influenzae 392:Haemophilus influenzae 319:site-specific nuclease 273: 203:Haemophilus influenzae 110:act on regions in the 40: 2625:Eadie–Hofstee diagram 2558:Allosteric regulation 2260:Endodeoxyribonuclease 2157:Iduronate-2-sulfatase 1910:Glucose 6-phosphatase 1696:Butyrylcholinesterase 1011:ataxia-telangiectasia 271: 122:. The former acts on 22: 2635:Lineweaver–Burk plot 2443:Micrococcal nuclease 2278:Deoxyribonuclease IV 2273:Deoxyribonuclease II 2206:Exodeoxyribonuclease 1866:Alkaline phosphatase 1691:Acetylcholinesterase 1128:Micrococcal nuclease 979:Double-strand breaks 918:base excision repair 905:Base excision repair 767:and cancer in mice. 523:Recognition Sequence 374:Recognition Sequence 195:restriction nuclease 168:restriction nuclease 65:phosphodiester bonds 2298:UvrABC endonuclease 2268:Deoxyribonuclease I 1991:Protein phosphatase 1927:Protein phosphatase 1725:Bile salt-dependent 1713:PAF acetylhydrolase 1433:10.2210/pdb4rve/pdb 1287:1968PNAS...59.1300L 991:V(D)J recombination 838:DNA mismatch repair 687:genetic engineering 185:, K.W. Wilcox, and 166:" and the other a " 89:genetic instability 2594:Enzyme superfamily 2527:Enzyme promiscuity 2431:Mung bean nuclease 2290:Restriction enzyme 2283:Restriction enzyme 1105:Genome engineering 1048:Holliday junctions 983:ionizing radiation 716:ionizing radiation 328:tertiary structure 324:DNA-binding domain 274: 116:deoxyribonucleases 53:nucleodepolymerase 41: 37:5'–A|AGCTT–3' 25:restriction enzyme 2750: 2749: 2459: 2458: 2455: 2454: 2451: 2450: 2240: 2239: 2232:Oligonucleotidase 2177:deoxyribonuclease 2145:Steroid sulfatase 2020:Phosphodiesterase 1749:Hormone-sensitive 824:flap endonuclease 665: 664: 495:Staggered cutting 446: 445: 355:flap endonuclease 262:primary structure 238:phosphodiesterase 97:molecular cloning 71:together to form 23:Depiction of the 2792: 2767: 2766: 2758: 2630:Hanes–Woolf plot 2573:Enzyme activator 2568:Enzyme inhibitor 2542:Enzyme catalysis 2486: 2479: 2472: 2463: 2462: 2308:Endoribonuclease 2294: 2288: 2256: 2255: 2202: 2201: 2188: 2187: 1888:Acid phosphatase 1769:Monoacylglycerol 1679:ester hydrolases 1648: 1641: 1634: 1625: 1624: 1592: 1591: 1581: 1557: 1544: 1543: 1533: 1509: 1503: 1502: 1492: 1468: 1455: 1454: 1444: 1421:The EMBO Journal 1412: 1406: 1405: 1395: 1371: 1354: 1353: 1325: 1319: 1318: 1308: 1298: 1266: 1260: 1259: 1249: 1217: 1208: 1207: 1197: 1173: 1013:-like disorder. 922:AP endonucleases 914:DNA glycosylases 892: 873: 866: 862: 801:Okazaki fragment 781:replication fork 679: 675: 659: 656: 650: 647: 614: 611: 605: 602: 586:Escherichia coli 569: 566: 560: 557: 514: 513: 510: 462:Escherichia coli 420: 417: 411: 408: 365: 364: 353:For details see 321: 320: 287:target sequences 277:Site recognition 148:Escherichia coli 126:, the latter on 93:immunodeficiency 57:polynucleotidase 38: 33:restriction site 2800: 2799: 2795: 2794: 2793: 2791: 2790: 2789: 2775: 2774: 2773: 2761: 2753: 2751: 2746: 2658:Oxidoreductases 2644: 2620:Enzyme kinetics 2608: 2604:List of enzymes 2577: 2546: 2517:Catalytic triad 2495: 2490: 2460: 2447: 2414: 2302: 2292: 2286: 2249: 2236: 2224:Exoribonuclease 2218: 2195: 2179: 2175: 2166: 2140:Arylsulfatase L 2135:Arylsulfatase B 2130:Arylsulfatase A 2105: 2018: 2009: 1848: 1816: 1678: 1666: 1652: 1614:Enzyme glossary 1600: 1595: 1572:(58): 9022–32. 1558: 1547: 1524:(58): 9022–32. 1510: 1506: 1483:(58): 9022–32. 1469: 1458: 1413: 1409: 1386:(58): 9022–32. 1372: 1357: 1326: 1322: 1267: 1263: 1218: 1211: 1188:(58): 9022–32. 1174: 1170: 1166: 1114: 1093: 1087: 1033: 1025: 1005:complexed with 976: 930: 907: 883: 871: 864: 860: 853:point mutations 835: 833:Mismatch repair 797: 773: 736:DNA polymerases 732:DNA replication 728: 704:DNA replication 700: 695: 677: 673: 661: 657: 654: 652: 648: 645: 640: 638: 616: 612: 609: 607: 603: 600: 595: 593: 571: 567: 564: 562: 558: 555: 550: 548: 508: 497: 488: 418: 415: 413: 409: 406: 399: 363: 351: 318: 317: 279: 258: 222: 136: 36: 27:(endonuclease) 17: 12: 11: 5: 2798: 2788: 2787: 2772: 2771: 2748: 2747: 2745: 2744: 2731: 2718: 2705: 2692: 2679: 2666: 2652: 2650: 2646: 2645: 2643: 2642: 2637: 2632: 2627: 2622: 2616: 2614: 2610: 2609: 2607: 2606: 2601: 2596: 2591: 2585: 2583: 2582:Classification 2579: 2578: 2576: 2575: 2570: 2565: 2560: 2554: 2552: 2548: 2547: 2545: 2544: 2539: 2534: 2529: 2524: 2519: 2514: 2509: 2503: 2501: 2497: 2496: 2489: 2488: 2481: 2474: 2466: 2457: 2456: 2453: 2452: 2449: 2448: 2446: 2445: 2440: 2435: 2434: 2433: 2422: 2420: 2416: 2415: 2413: 2412: 2407: 2406: 2405: 2400: 2395: 2390: 2380: 2375: 2370: 2365: 2364: 2363: 2358: 2353: 2348: 2338: 2337: 2336: 2327: 2312: 2310: 2304: 2303: 2301: 2300: 2295: 2280: 2275: 2270: 2264: 2262: 2253: 2242: 2241: 2238: 2237: 2235: 2234: 2228: 2226: 2220: 2219: 2217: 2216: 2210: 2208: 2199: 2185: 2168: 2167: 2165: 2164: 2159: 2154: 2149: 2148: 2147: 2142: 2137: 2132: 2119: 2117: 2107: 2106: 2104: 2103: 2098: 2088: 2083: 2074: 2069: 2064: 2059: 2058: 2057: 2047: 2046: 2045: 2040: 2030: 2024: 2022: 2011: 2010: 2008: 2007: 2002: 1997: 1988: 1987: 1986: 1968: 1967: 1966: 1956: 1951: 1946: 1941: 1936: 1935: 1934: 1924: 1923: 1922: 1912: 1907: 1902: 1885: 1884: 1883: 1878: 1873: 1862: 1860: 1850: 1849: 1847: 1846: 1841: 1836: 1830: 1828: 1818: 1817: 1815: 1814: 1809: 1803: 1802: 1801: 1800: 1795: 1790: 1779: 1778: 1777: 1776: 1774:Diacylglycerol 1771: 1766: 1761: 1756: 1751: 1746: 1741: 1736: 1727: 1716: 1715: 1710: 1705: 1703:Pectinesterase 1700: 1699: 1698: 1693: 1686:Cholinesterase 1682: 1680: 1668: 1667: 1651: 1650: 1643: 1636: 1628: 1622: 1621: 1616: 1611: 1606: 1599: 1598:External links 1596: 1594: 1593: 1545: 1504: 1456: 1427:(5): 1781–95. 1407: 1355: 1320: 1261: 1232:(1–2): 25–45. 1209: 1167: 1165: 1162: 1161: 1160: 1155: 1150: 1145: 1140: 1135: 1130: 1125: 1120: 1113: 1110: 1089:Main article: 1086: 1083: 1040:homologous DNA 1031: 1023: 975: 972: 929: 926: 906: 903: 834: 831: 808:lagging strand 796: 793: 775:Many forms of 772: 769: 727: 724: 699: 696: 694: 693:Role in nature 691: 663: 662: 643: 641: 636: 634: 627: 618: 617: 598: 596: 591: 589: 582: 573: 572: 553: 551: 546: 544: 537: 528: 527: 524: 521: 518: 496: 493: 487: 484: 444: 443: 424: 423: 402: 395: 388: 379: 378: 375: 372: 369: 362: 359: 350: 347: 278: 275: 257: 254: 221: 218: 160:methylated DNA 135: 132: 15: 9: 6: 4: 3: 2: 2797: 2786: 2783: 2782: 2780: 2770: 2765: 2760: 2759: 2756: 2742: 2738: 2737: 2732: 2729: 2725: 2724: 2719: 2716: 2712: 2711: 2706: 2703: 2699: 2698: 2693: 2690: 2686: 2685: 2680: 2677: 2673: 2672: 2667: 2664: 2660: 2659: 2654: 2653: 2651: 2647: 2641: 2638: 2636: 2633: 2631: 2628: 2626: 2623: 2621: 2618: 2617: 2615: 2611: 2605: 2602: 2600: 2599:Enzyme family 2597: 2595: 2592: 2590: 2587: 2586: 2584: 2580: 2574: 2571: 2569: 2566: 2564: 2563:Cooperativity 2561: 2559: 2556: 2555: 2553: 2549: 2543: 2540: 2538: 2535: 2533: 2530: 2528: 2525: 2523: 2522:Oxyanion hole 2520: 2518: 2515: 2513: 2510: 2508: 2505: 2504: 2502: 2498: 2494: 2487: 2482: 2480: 2475: 2473: 2468: 2467: 2464: 2444: 2441: 2439: 2436: 2432: 2429: 2428: 2427: 2424: 2423: 2421: 2417: 2411: 2408: 2404: 2401: 2399: 2396: 2394: 2391: 2389: 2386: 2385: 2384: 2381: 2379: 2376: 2374: 2371: 2369: 2366: 2362: 2359: 2357: 2354: 2352: 2349: 2347: 2344: 2343: 2342: 2339: 2335: 2331: 2328: 2326: 2322: 2319: 2318: 2317: 2314: 2313: 2311: 2309: 2305: 2299: 2296: 2291: 2284: 2281: 2279: 2276: 2274: 2271: 2269: 2266: 2265: 2263: 2261: 2257: 2254: 2252: 2247: 2243: 2233: 2230: 2229: 2227: 2225: 2221: 2215: 2212: 2211: 2209: 2207: 2203: 2200: 2198: 2193: 2189: 2186: 2183: 2178: 2173: 2169: 2163: 2160: 2158: 2155: 2153: 2150: 2146: 2143: 2141: 2138: 2136: 2133: 2131: 2128: 2127: 2126: 2125: 2124:arylsulfatase 2121: 2120: 2118: 2116: 2112: 2108: 2102: 2099: 2096: 2092: 2089: 2087: 2084: 2082: 2078: 2075: 2073: 2070: 2068: 2065: 2063: 2060: 2056: 2053: 2052: 2051: 2048: 2044: 2041: 2039: 2036: 2035: 2034: 2033:Phospholipase 2031: 2029: 2026: 2025: 2023: 2021: 2016: 2012: 2006: 2003: 2001: 1998: 1996: 1992: 1989: 1985: 1981: 1977: 1974: 1973: 1972: 1969: 1965: 1962: 1961: 1960: 1957: 1955: 1952: 1950: 1947: 1945: 1942: 1940: 1937: 1933: 1930: 1929: 1928: 1925: 1921: 1918: 1917: 1916: 1913: 1911: 1908: 1906: 1903: 1901: 1897: 1893: 1889: 1886: 1882: 1879: 1877: 1874: 1872: 1869: 1868: 1867: 1864: 1863: 1861: 1859: 1855: 1851: 1845: 1842: 1840: 1837: 1835: 1832: 1831: 1829: 1827: 1823: 1819: 1813: 1810: 1808: 1805: 1804: 1799: 1796: 1794: 1791: 1789: 1786: 1785: 1784: 1783:Phospholipase 1781: 1780: 1775: 1772: 1770: 1767: 1765: 1762: 1760: 1757: 1755: 1752: 1750: 1747: 1745: 1742: 1740: 1737: 1735: 1731: 1728: 1726: 1723: 1722: 1721: 1718: 1717: 1714: 1711: 1709: 1706: 1704: 1701: 1697: 1694: 1692: 1689: 1688: 1687: 1684: 1683: 1681: 1677: 1673: 1669: 1664: 1660: 1656: 1649: 1644: 1642: 1637: 1635: 1630: 1629: 1626: 1620: 1617: 1615: 1612: 1610: 1607: 1605: 1602: 1601: 1589: 1585: 1580: 1575: 1571: 1567: 1563: 1556: 1554: 1552: 1550: 1541: 1537: 1532: 1527: 1523: 1519: 1515: 1508: 1500: 1496: 1491: 1486: 1482: 1478: 1474: 1467: 1465: 1463: 1461: 1452: 1448: 1443: 1438: 1434: 1430: 1426: 1422: 1418: 1411: 1403: 1399: 1394: 1389: 1385: 1381: 1377: 1370: 1368: 1366: 1364: 1362: 1360: 1351: 1347: 1343: 1339: 1335: 1331: 1324: 1316: 1312: 1307: 1302: 1297: 1292: 1288: 1284: 1281:(4): 1300–6. 1280: 1276: 1272: 1265: 1257: 1253: 1248: 1243: 1239: 1235: 1231: 1227: 1223: 1216: 1214: 1205: 1201: 1196: 1191: 1187: 1183: 1179: 1172: 1168: 1159: 1156: 1154: 1151: 1149: 1146: 1144: 1141: 1139: 1136: 1134: 1131: 1129: 1126: 1124: 1121: 1119: 1116: 1115: 1109: 1106: 1102: 1101:meganucleases 1097: 1092: 1085:Meganucleases 1082: 1080: 1076: 1072: 1068: 1064: 1060: 1056: 1053: 1049: 1045: 1041: 1036: 1034: 1027: 1022:Artemis-DNAPK 1019: 1014: 1012: 1008: 1004: 1000: 996: 992: 988: 984: 980: 971: 969: 965: 961: 957: 952: 950: 946: 942: 938: 934: 925: 923: 919: 915: 911: 902: 900: 896: 890: 887: 881: 877: 868: 858: 854: 850: 845: 843: 839: 830: 828: 825: 821: 817: 813: 809: 805: 802: 792: 790: 786: 782: 778: 768: 766: 762: 758: 755: 751: 747: 744: 740: 737: 733: 723: 721: 717: 713: 709: 705: 690: 688: 683: 671: 642: 635: 633: 632: 628: 626: 624: 620: 619: 597: 590: 588: 587: 583: 581: 579: 575: 574: 552: 545: 543: 542: 538: 536: 534: 530: 529: 525: 522: 519: 516: 515: 512: 506: 502: 492: 486:Endonucleases 483: 481: 479: 474: 472: 467: 463: 459: 457: 451: 442: 438: 434: 430: 425: 422: 403: 401: 400:3'–CARYTG–5' 396: 394: 393: 389: 387: 385: 381: 380: 376: 373: 370: 367: 366: 358: 356: 346: 344: 340: 335: 333: 329: 325: 314: 312: 308: 304: 300: 296: 292: 288: 283: 270: 266: 263: 253: 251: 247: 243: 239: 235: 231: 227: 217: 215: 211: 209: 204: 200: 196: 192: 189:, working at 188: 184: 179: 177: 173: 172:cut and paste 169: 165: 161: 157: 153: 149: 145: 141: 131: 129: 125: 121: 120:ribonucleases 117: 113: 109: 108:Endonucleases 105: 100: 98: 94: 90: 86: 82: 78: 74: 73:nucleic acids 70: 66: 62: 58: 54: 50: 46: 34: 30: 26: 21: 2736:Translocases 2733: 2720: 2707: 2694: 2681: 2671:Transferases 2668: 2655: 2512:Binding site 2293:}} 2287:{{ 2251:Endonuclease 2182:ribonuclease 2171: 2122: 1905:Nucleotidase 1826:Thioesterase 1569: 1565: 1521: 1517: 1507: 1480: 1476: 1424: 1420: 1410: 1383: 1379: 1333: 1329: 1323: 1278: 1274: 1264: 1229: 1225: 1185: 1181: 1171: 1098: 1094: 1091:meganuclease 1054: 1037: 1015: 977: 953: 937:crosslinking 931: 908: 885: 869: 846: 836: 798: 774: 754:proofreading 729: 701: 689:technology. 666: 639:3'–CCTAGG–5' 637:5'–GGATCC–3' 629: 622: 594:3'–CTTAAG–5' 592:5'–GAATTC-3' 584: 577: 549:3'–TTCGAA–5' 547:5'–AAGCTT–3' 539: 532: 509:5'—GAATTC—3' 504: 500: 498: 489: 477: 470: 455: 449: 447: 404: 398:5'–GTYRAC–3' 397: 390: 383: 352: 345:mismatches. 336: 315: 284: 282:DNA repair. 280: 259: 223: 213: 207: 180: 156:methyl group 144:Werner Arber 137: 111: 104:Exonucleases 101: 56: 52: 48: 45:biochemistry 42: 2507:Active site 2426:Nuclease S1 2197:Exonuclease 2091:Lecithinase 1920:Calcineurin 1858:Phosphatase 1764:Lipoprotein 1754:Endothelial 1336:: 467–500. 1158:S1 nuclease 1138:P1 nuclease 876:deamination 804:RNA primers 757:exonuclease 712:ultraviolet 670:sticky ends 460:comes from 299:active site 246:phosphatase 140:Stuart Linn 69:nucleotides 2710:Isomerases 2684:Hydrolases 2551:Regulation 1739:Pancreatic 1676:Carboxylic 1164:References 1148:Polymerase 1143:PIN domain 1018:stem-loops 880:methylated 861:5'—GATC—3' 855:and small 816:eukaryotes 777:DNA damage 750:polymerase 698:DNA repair 678:3'—TTAA—5' 674:5'—AATT—3' 234:hydrolases 199:nucleotide 187:T.J. Kelly 183:H.O. Smith 85:DNA repair 67:that link 2589:EC number 2316:RNase III 2174:(includes 2115:Sulfatase 2028:Autotaxin 1892:Prostatic 1744:Lysosomal 1659:esterases 1655:Hydrolase 956:UvrB-UvrC 761:Deletions 743:enzymatic 720:complexes 343:base pair 260:Nuclease 256:Structure 250:esterases 164:methylase 2779:Category 2613:Kinetics 2537:Cofactor 2500:Activity 2410:RNase T1 2172:Nuclease 1807:Cutinase 1588:12483517 1566:Oncogene 1540:12483517 1518:Oncogene 1499:12483517 1477:Oncogene 1402:12483517 1380:Oncogene 1256:18766469 1204:12483517 1182:Oncogene 1112:See also 765:microbes 739:elongate 339:backbone 295:residues 59:) is an 49:nuclease 2769:Biology 2723:Ligases 2493:Enzymes 2383:RNase E 2378:RNase Z 2373:RNase A 2368:RNase P 2341:RNase H 1959:Phytase 1759:Hepatic 1734:Lingual 1730:Gastric 1451:8491171 1350:4897066 1315:4870862 1283:Bibcode 1247:2570007 1118:HindIII 1055:resolve 1044:D-loops 1026:complex 987:meiosis 945:lesions 941:adducts 910:AP site 822:, the 820:archaea 818:and in 812:RNase H 746:domains 730:During 710:, near 297:of its 248:to the 152:E. coli 134:History 29:HindIII 2785:EC 3.1 2755:Portal 2697:Lyases 2321:Drosha 2246:3.1.21 2214:RecBCD 2192:3.1.11 1812:PETase 1720:Lipase 1586:  1538:  1497:  1449:  1442:413397 1439:  1400:  1348:  1313:  1306:224867 1303:  1254:  1244:  1202:  1123:Ligase 1069:, and 1030:DNA-PK 943:, and 895:ExoVII 752:and a 714:, and 682:Ligase 520:Source 517:Enzyme 435:; Y = 371:Source 368:Enzyme 311:B-form 291:damage 242:lipase 112:middle 81:double 77:single 61:enzyme 2649:Types 2330:Dicer 2285:;see 2111:3.1.6 2081:PDE4B 2077:PDE4A 2015:3.1.4 1984:IMPA3 1980:IMPA2 1976:IMPA1 1854:3.1.3 1822:3.1.2 1672:3.1.1 1071:MUS81 1067:ERCC1 1007:Rad50 1003:Mre11 968:ERCC1 897:, or 891:GG—3' 857:turns 814:. In 789:yeast 785:MUS81 655:CCTAG 649:GATCC 610:CTTAA 604:AATTC 565:TTCGA 559:AGCTT 332:basic 307:BamHI 303:EcoRV 232:" as 2741:list 2734:EC7 2728:list 2721:EC6 2715:list 2708:EC5 2702:list 2695:EC4 2689:list 2682:EC3 2676:list 2669:EC2 2663:list 2656:EC1 2248:-31: 2194:-16: 2180:and 2086:PDE5 2072:PDE3 2067:PDE2 2062:PDE1 1954:PTEN 1939:OCRL 1932:PP2A 1881:ALPP 1876:ALPL 1871:ALPI 1665:3.1) 1584:PMID 1536:PMID 1495:PMID 1447:PMID 1398:PMID 1346:PMID 1311:PMID 1252:PMID 1200:PMID 1079:Ydc2 1075:Cce1 1059:FEN1 1052:RuvC 997:and 989:and 962:and 899:ExoI 884:5'—C 849:MutS 827:FEN1 748:: a 533:Hind 526:Cut 501:Hind 450:Hind 427:R = 421:–5' 384:Hind 377:Cut 244:and 214:Hind 208:Hind 142:and 118:and 79:and 47:, a 2403:4/5 1574:doi 1526:doi 1485:doi 1437:PMC 1429:doi 1388:doi 1338:doi 1301:PMC 1291:doi 1242:PMC 1234:doi 1190:doi 1063:XPF 1046:or 964:XPF 960:XPG 878:of 872:T/G 660:–5' 653:3'– 651:–3' 644:5'– 623:Bam 615:–5' 608:3'– 606:–3' 599:5'– 578:Eco 570:–5' 563:3'– 561:–3' 554:5'– 535:III 505:Eco 480:RII 478:Eco 471:Eco 456:Eco 439:or 431:or 419:YTG 416:CAR 414:3'– 412:–3' 410:RAC 407:GTY 405:5'– 341:by 289:or 176:DNA 128:RNA 124:DNA 91:or 55:or 43:In 2781:: 2361:2C 2356:2B 2351:2A 2332:: 2323:: 2113:: 1993:: 1982:, 1978:, 1894:)/ 1856:: 1824:: 1793:A2 1788:A1 1674:: 1663:EC 1657:: 1582:. 1570:21 1568:. 1564:. 1548:^ 1534:. 1522:21 1520:. 1516:. 1493:. 1481:21 1479:. 1475:. 1459:^ 1445:. 1435:. 1425:12 1423:. 1419:. 1396:. 1384:21 1382:. 1378:. 1358:^ 1344:. 1334:38 1332:. 1309:. 1299:. 1289:. 1279:59 1277:. 1273:. 1250:. 1240:. 1228:. 1224:. 1212:^ 1198:. 1186:21 1184:. 1180:. 1061:, 1032:cs 1024:cs 939:, 734:, 625:HI 580:RI 511:. 482:. 475:, 473:RI 458:RI 386:II 357:. 316:A 313:. 305:, 240:, 210:II 130:. 99:. 39:). 2757:: 2743:) 2739:( 2730:) 2726:( 2717:) 2713:( 2704:) 2700:( 2691:) 2687:( 2678:) 2674:( 2665:) 2661:( 2485:e 2478:t 2471:v 2398:3 2393:2 2388:1 2346:1 2184:) 2097:) 2093:( 2079:/ 2055:1 2043:D 2038:C 2017:: 1898:/ 1890:( 1798:B 1732:/ 1661:( 1647:e 1640:t 1633:v 1590:. 1576:: 1542:. 1528:: 1501:. 1487:: 1453:. 1431:: 1404:. 1390:: 1352:. 1340:: 1317:. 1293:: 1285:: 1258:. 1236:: 1230:2 1206:. 1192:: 1077:/ 1065:- 966:- 889:W 886:T 865:G 658:G 646:G 613:G 601:G 568:A 556:A 441:T 437:C 433:G 429:A 150:( 35:(

Index


restriction enzyme
HindIII
restriction site
biochemistry
enzyme
phosphodiester bonds
nucleotides
nucleic acids
single
double
DNA repair
genetic instability
immunodeficiency
molecular cloning
Exonucleases
Endonucleases
deoxyribonucleases
ribonucleases
DNA
RNA
Stuart Linn
Werner Arber
Escherichia coli
E. coli
methyl group
methylated DNA
methylase
restriction nuclease
cut and paste

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑