Knowledge

Nick (DNA)

Source 📝

63: 173:. Nicking endonucleases introduce the strand discontinuities, or DNA nicks, for both respective systems. Mut L homologues from eukaryotes and most bacteria incise the discontinuous strand to introduce the entry or termination point for the excision reaction. Similarly, in E. coli, Mut H nicks the unmethylated strand of the duplex to introduce the entry point of excision. For eukaryotes specifically, the mechanism of DNA replication elongation between the leading and lagging strand differs. On the lagging strand, nicks exist between 106: 234:
preferentially acts at nicks in DNA to cleave adjacent to the nick and then winds or unwinds the complex topologies associated with packed DNA. Here, the nick in the DNA serves as a marker for single strand breakage and subsequent unwinding. It is possible that this is not a highly conserved process.
71:
Nicked DNA can be the result of DNA damage or purposeful, regulated biomolecular reactions carried out in the cell. During processing, DNA can be nicked by physical shearing, over-drying or enzymes. Excessive rough handling in pipetting or vortexing creates physical stress that can lead to breaks and
76:
can assist with this process. A single-stranded break (nick) in DNA can be formed by the hydrolysis and subsequent removal of a phosphate group within the helical backbone. This leads to a different DNA conformation, where a hydrogen bond forms in place of the missing piece of the DNA backbone in
66:
The diagram shows the effects of nicks on intersecting DNA forms. A plasmid is tightly wound into a negative supercoil (a). To release the intersecting states, the torsional energy must be released by utilizing nicks (b). After introducing a nick in the system, the negative supercoil gradually
138:
Ligases have a metal binding site which is capable of recognizing nicks in DNA. The ligase forms a DNA-adenylate complex, assisting recognition. With human DNA ligase, this forms a crystallized complex. The complex, which has a DNA–adenylate intermediate, allows
235:
Topoisomerase may cause short deletions when it cleaves bonds, because both full-length DNA products and short deletion strands are seen as products of topoisomerase cleavage while inactive mutants only produced full-length DNA strands.
265:, therefore nick idling plays a role in stalling the complex as it replicates in the reverse direction in small fragments (Okazaki fragments) and has to stop and reposition itself in between each and every fragment length of DNA. 160:(MMR) is an important DNA repair system that helps maintain genome plasticity by correcting mismatches, or non Watson-Crick base pairs in the a DNA duplex. Some sources of mismatched base pairs include replication errors and 92:
that join the 3’ hydroxyl and 5’ phosphate ends to form a phosphodiester bond, making them essential in nicked DNA repair, and ultimately genome fidelity. This biological role has also been extremely valuable in sealing the
211:
and then adding the nicked DNA to an environment rich in DNA polymerase and tagged nucleotide. The DNA polymerase then replaces the DNA nucleotides with the tagged ones, starting at the site of the single-stranded nick.
168:
is directed to the erroneous strand of the mismatched duplex through recognition of strand discontinuities, while MMR in E. coli and closely related bacteria is directed to the strand on the basis of the absence of
97:
of plasmids in molecular cloning. Their importance is attested by the fact most organisms have multiple ligases dedicated to specific pathways of repairing DNA. In eubacteria these ligases are powered by
156:
Single-stranded nicks act as recognizable markers to help the repair machinery distinguish the newly synthesized strand (daughter strand) from the template strand (parental strand).
342:
at the nic site. The cleaved strand is left with a hydroxyl group at the 3' end, which may allow for the strand to form a circular plasmid after moving into the recipient cell.
1206:
Gioia M, Payero L, Salim S, Fajish VG, Farnaz AF, Pannafino G, Chen JJ, Ajith VP, Momoh S, Scotland M, Raghavan V, Manhart CM, Shinohara A, Nishant KT, Alani E (April 2023).
276:, as the built up stress from twisting and packing is not being resisted as strongly anymore. Nicked DNA is more susceptible to degradation due to this reduced stability. 220:
Nicked DNA plays an important role in many biological functions. For instance, single-stranded nicks in DNA may serve as purposeful biological markers for the enzyme
776:
Pascal, John M.; O'Brien, Patrick J.; Tomkinson, Alan E.; Ellenberger, Tom (2004). "Human DNA ligase I completely encircles and partially unwinds nicked DNA".
135:
NAD+ dependent DNA ligase, LigA. LigA is a relevant example as it is structurally similar to a clade of enzymes found across all types of bacteria.
672: 249:
Nick idling is a biological process in which DNA polymerase may slow or stop its activity of adding bases to a new daughter strand during
189:. Together, the presence of a nick and a ribonucleotide make the leading strand easily recognizable to the DNA mismatch repair machinery. 181:. Due to the continuous replication that occurs on the leading strand, the mechanism there is slightly more complex. During replication, 59:. Nicking can be used to dissipate the energy held up by intersecting states. The nicks allow the DNA to take on a circular shape. 203:
must repair the final segment of DNA backbone in order to complete the repair process. In a lab setting, this can be used to introduce
836: 908:"Topoisomerase I alone is sufficient to produce short DNA deletions and can also reverse nicks at ribonucleotide sites" 99: 1110:"Characterization of the reaction product of the oriT nicking reaction catalyzed by Escherichia coli DNA helicase I" 737:"Crystal Structure of Eukaryotic DNA Ligase–Adenylate Illuminates the Mechanism of Nick Sensing and Strand Joining" 539:
Timson, David J; Singleton, Martin R; Wigley, Dale B (2000). "DNA ligases in the repair and replication of DNA".
238:
Nicks in DNA also give rise to different structural properties, can be involved in repairing damages caused by
199:
to excise and replace possibly damaged nucleotides. At the end of the segment that DNA polymerase acts on,
178: 967:"Generation of supercoils in nicked and gapped DNA drives DNA unknotting and postreplicative decatenation" 268:
DNA structure changes when a single-stranded nick is introduced. Stability is decreased as a break in the
43:
action. Nicks allow DNA strands to untwist during replication, and are also thought to play a role in the
143:
to institute a conformational change in the DNA for the isolation and subsequent repair of the DNA nick.
261:
in double stranded DNA replication because the direction of replication is opposite to the direction of
319:. Before this cleavage can occur, however, it is necessary for a group of proteins to attach to the 351: 72:
nicks in DNA. Overdrying of DNA can also break the phosphodiester bond in DNA and result in nicks.
269: 207:
or other tagged nucleotides by purposefully inducing site-specific, single-stranded nicks in DNA
118: 688:"Last stop on the road to repair: structure of E. coli DNA ligase bound to nicked DNA-adenylate" 965:
Racko, Dusan; Benedetti, Fabrizio; Dorier, Julien; Burnier, Yannis; Stasiak, Andrzej (2015).
666: 591: 316: 300: 243: 228:
and transcription. In these instances, nicked DNA is not the result of unwanted cell damage.
62: 785: 486: 473:
Aymami, J.; Coll, M.; Marel, G. A. van der; Boom, J. H. van; Wang, A. H.; Rich, A. (1990).
315:. This single strand is eventually transferred to the recipient cell during the process of 231: 323:
site. This group of proteins is called the relaxosome. It is thought that portions of the
185:
are added by replication enzymes and these ribonucleotides are nicked by an enzyme called
8: 339: 157: 44: 36: 28: 1234: 1207: 1086: 789: 490: 327:
site are bent in a way that creates interaction between the relaxosome proteins and the
991: 966: 942: 907: 880: 853: 809: 600: 575: 409: 384: 204: 1183: 1158: 1134: 1109: 753: 736: 649: 624: 552: 1239: 1208:"Exo1 protects DNA nicks from ligation to promote crossover formation during meiosis" 1188: 1139: 1090: 1048: 1040: 1035: 1018: 996: 947: 929: 885: 832: 801: 758: 717: 709: 654: 605: 556: 514: 509: 474: 414: 254: 195:
is a biological process in which a single-stranded DNA nick serves as the marker for
174: 102:
rather than ATP. Each nick site requires 1 ATP or 1 NAD+ to power the ligase repair.
1125: 1229: 1219: 1178: 1174: 1170: 1129: 1121: 1082: 1030: 986: 978: 937: 919: 875: 865: 813: 793: 748: 699: 644: 636: 595: 587: 548: 504: 494: 450: 404: 396: 192: 132: 1224: 1073:
Lanka E, Wilkins BM (1995). "DNA processing reactions in bacterial conjugation".
704: 687: 400: 250: 225: 170: 262: 258: 196: 182: 73: 105: 1256: 1044: 933: 713: 359: 221: 113:
In order to join these fragments, the ligase progresses through three steps:
47:
mechanisms that fix errors on both the leading and lagging daughter strands.
924: 1262: 1243: 1192: 1000: 951: 889: 805: 762: 735:
Odell, Mark; Sriskanda, Verl; Shuman, Stewart; Nikolov, Dimitar B. (2000).
721: 640: 609: 560: 499: 418: 273: 140: 1143: 1094: 1052: 870: 658: 518: 455: 438: 177:
and are easily recognizable by the DNA mismatch repair machinery prior to
982: 686:
Nandakumar, Jayakrishnan; Nair, Pravin A.; Shuman, Stewart (2007-04-27).
239: 161: 94: 797: 439:"Configuration Transitions of Free Circular DNA System Induced by Nicks" 55:
The diagram shows the effects of nicks on intersecting DNA in a twisted
475:"Molecular structure of nicked DNA: a substrate for DNA repair enzymes" 200: 32: 625:"Chlorella virus DNA ligase: nick recognition and mutational analysis" 775: 165: 906:
Huang, Shar-Yin Naomi; Ghosh, Sanchari; Pommier, Yves (2015-05-29).
67:
unwinds (c) until it reaches its final, circular, plasmid state (d).
335: 312: 208: 186: 164:
of 5-methylcytosine DNA to form thymine. MMR in most bacteria and
131:
One particular example of a ligase catalyzing nick closure is the
355: 56: 89: 85: 40: 576:"Eukaryotic DNA ligases: structural and functional insights" 242:
radiation, and are used in the primary steps that allow for
964: 734: 573: 385:"Ribonucleotides in DNA: origins, repair and consequences" 24: 1159:"Conjugative plasmid transfer in gram-positive bacteria" 215: 121:(AMP) group to the enzyme, referred to as adenylylation, 109:
Minimalistic mechanism of DNA nick sealing by DNA ligase
1205: 827:
Morris, James (2013). "14. Mutations and DNA Repair".
622: 538: 1156: 685: 472: 1107: 905: 432: 430: 428: 253:at a nick site. This is particularly relevant to 1254: 854:"DNA Mismatch Repair in Eukaryotes and Bacteria" 358:, and such nicks are protected from ligation by 567: 479:Proceedings of the National Academy of Sciences 437:Ji, Chao; Zhang, Lingyun; Wang, Pengye (2015). 127:Nick sealing, or phosphodiester bond formation. 124:Adenosine monophosphate transfer to the DNA and 425: 382: 378: 376: 374: 616: 1157:Grohmann E, Muth G, Espinosa M (June 2003). 1108:Matson SW, Nelson WC, Morton BS (May 1993). 1072: 671:: CS1 maint: DOI inactive as of July 2024 ( 436: 371: 224:that unwinds packed DNA and is critical to 1068: 1066: 1064: 1062: 151: 146: 1233: 1223: 1182: 1133: 1034: 1019:"Flexibility and stiffness in nicked DNA" 990: 941: 923: 879: 869: 752: 703: 648: 599: 508: 498: 454: 408: 1016: 592:10.1146/annurev.biochem.77.061306.123941 104: 61: 23:is a discontinuity in a double stranded 1059: 1017:Hays, J. B.; Zimm, B. H. (1970-03-14). 1255: 826: 623:Sriskanda V, Shuman S (January 1998). 1012: 1010: 901: 899: 851: 303:. A single strand of DNA, called the 216:Role in replication and transcription 50: 574:Ellenberger T, Tomkinson AE (2008). 534: 532: 530: 528: 468: 466: 383:Williams JS, Kunkel TA (July 2014). 1087:10.1146/annurev.bi.64.070195.001041 912:The Journal of Biological Chemistry 291:or nick region is found within the 13: 1007: 896: 345: 80: 14: 1274: 525: 463: 77:order to preserve the structure. 299:) site and is a key in starting 1199: 1150: 1126:10.1128/jb.175.9.2599-2606.1993 1101: 958: 845: 820: 334:Cleaving the T-strand involves 1175:10.1128/MMBR.67.2.277-301.2003 769: 728: 679: 279: 1: 754:10.1016/S1097-2765(00)00115-5 553:10.1016/S0921-8777(00)00033-1 365: 88:are versatile and ubiquitous 1225:10.1371/journal.pbio.3002085 1036:10.1016/0022-2836(70)90162-2 1023:Journal of Molecular Biology 705:10.1016/j.molcel.2007.02.026 541:Mutation Research/DNA Repair 401:10.1016/j.dnarep.2014.03.029 74:Nicking endonuclease enzymes 39:typically through damage or 7: 27:molecule where there is no 16:Discontinuity in DNA strand 10: 1279: 858:Journal of Nucleic Acids 443:Journal of Nanomaterials 925:10.1074/jbc.M115.653345 829:Biology: How Life Works 643:(inactive 2024-07-02). 270:phosphodiester backbone 152:Role in mismatch repair 147:Biological implications 119:adenosine monophosphate 1163:Microbiol Mol Biol Rev 971:Nucleic Acids Research 500:10.1073/pnas.87.7.2526 110: 68: 852:Fukui, Kenji (2010). 317:bacterial conjugation 301:bacterial conjugation 244:genetic recombination 108: 65: 641:10.1093/nar/26.2.525 311:by an enzyme called 871:10.4061/2010/260512 798:10.1038/nature03082 790:2004Natur.432..473P 491:1990PNAS...87.2526A 456:10.1155/2015/546851 352:crossover formation 340:phosphodiester bond 158:DNA mismatch repair 45:DNA mismatch repair 29:phosphodiester bond 983:10.1093/nar/gkv683 580:Annu. Rev. Biochem 350:DNA nicks promote 293:origin of transfer 111: 69: 51:Formation of nicks 838:978-1-319-05691-9 629:Nucleic Acids Res 389:DNA Repair (Amst) 255:Okazaki fragments 175:Okazaki fragments 31:between adjacent 1270: 1248: 1247: 1237: 1227: 1203: 1197: 1196: 1186: 1154: 1148: 1147: 1137: 1105: 1099: 1098: 1075:Annu Rev Biochem 1070: 1057: 1056: 1038: 1014: 1005: 1004: 994: 962: 956: 955: 945: 927: 918:(22): 14068–76. 903: 894: 893: 883: 873: 849: 843: 842: 831:. W.H. Freeman. 824: 818: 817: 773: 767: 766: 756: 732: 726: 725: 707: 683: 677: 676: 670: 662: 652: 620: 614: 613: 603: 571: 565: 564: 547:(3–4): 301–318. 536: 523: 522: 512: 502: 470: 461: 460: 458: 434: 423: 422: 412: 380: 193:Nick translation 1278: 1277: 1273: 1272: 1271: 1269: 1268: 1267: 1253: 1252: 1251: 1218:(4): e3002085. 1204: 1200: 1155: 1151: 1120:(9): 2599–606. 1106: 1102: 1071: 1060: 1015: 1008: 977:(15): 7229–36. 963: 959: 904: 897: 850: 846: 839: 825: 821: 784:(7016): 473–8. 774: 770: 733: 729: 684: 680: 664: 663: 621: 617: 572: 568: 537: 526: 471: 464: 435: 426: 381: 372: 368: 348: 346:Role in meiosis 282: 251:DNA replication 232:Topoisomerase-1 226:DNA replication 218: 183:ribonucleotides 154: 149: 117:Addition of an 83: 81:Repair of nicks 53: 17: 12: 11: 5: 1276: 1266: 1265: 1250: 1249: 1198: 1169:(2): 277–301. 1149: 1100: 1058: 1029:(2): 297–317. 1006: 957: 895: 844: 837: 819: 768: 747:(5): 1183–93. 741:Molecular Cell 727: 698:(2): 257–271. 692:Molecular Cell 678: 615: 566: 524: 485:(7): 2526–30. 462: 424: 369: 367: 364: 347: 344: 281: 278: 263:DNA polymerase 259:lagging strand 217: 214: 197:DNA polymerase 153: 150: 148: 145: 129: 128: 125: 122: 82: 79: 52: 49: 15: 9: 6: 4: 3: 2: 1275: 1264: 1261: 1260: 1258: 1245: 1241: 1236: 1231: 1226: 1221: 1217: 1213: 1209: 1202: 1194: 1190: 1185: 1180: 1176: 1172: 1168: 1164: 1160: 1153: 1145: 1141: 1136: 1131: 1127: 1123: 1119: 1115: 1111: 1104: 1096: 1092: 1088: 1084: 1080: 1076: 1069: 1067: 1065: 1063: 1054: 1050: 1046: 1042: 1037: 1032: 1028: 1024: 1020: 1013: 1011: 1002: 998: 993: 988: 984: 980: 976: 972: 968: 961: 953: 949: 944: 939: 935: 931: 926: 921: 917: 913: 909: 902: 900: 891: 887: 882: 877: 872: 867: 863: 859: 855: 848: 840: 834: 830: 823: 815: 811: 807: 803: 799: 795: 791: 787: 783: 779: 772: 764: 760: 755: 750: 746: 742: 738: 731: 723: 719: 715: 711: 706: 701: 697: 693: 689: 682: 674: 668: 660: 656: 651: 646: 642: 638: 635:(2): 525–31. 634: 630: 626: 619: 611: 607: 602: 597: 593: 589: 585: 581: 577: 570: 562: 558: 554: 550: 546: 542: 535: 533: 531: 529: 520: 516: 511: 506: 501: 496: 492: 488: 484: 480: 476: 469: 467: 457: 452: 449:546851: 1–7. 448: 444: 440: 433: 431: 429: 420: 416: 411: 406: 402: 398: 394: 390: 386: 379: 377: 375: 370: 363: 361: 360:Exonuclease 1 357: 353: 343: 341: 337: 332: 330: 326: 322: 318: 314: 310: 306: 302: 298: 294: 290: 288: 277: 275: 274:DNA to unwind 271: 266: 264: 260: 256: 252: 247: 245: 241: 236: 233: 229: 227: 223: 222:topoisomerase 213: 210: 206: 202: 198: 194: 190: 188: 184: 180: 176: 172: 167: 163: 159: 144: 142: 136: 134: 126: 123: 120: 116: 115: 114: 107: 103: 101: 96: 91: 87: 78: 75: 64: 60: 58: 48: 46: 42: 38: 34: 30: 26: 22: 1215: 1211: 1201: 1166: 1162: 1152: 1117: 1113: 1103: 1078: 1074: 1026: 1022: 974: 970: 960: 915: 911: 861: 857: 847: 828: 822: 781: 777: 771: 744: 740: 730: 695: 691: 681: 667:cite journal 632: 628: 618: 583: 579: 569: 544: 540: 482: 478: 446: 442: 392: 388: 349: 333: 328: 324: 320: 308: 307:, is cut at 304: 296: 292: 286: 285: 283: 267: 248: 237: 230: 219: 191: 155: 141:DNA ligase I 137: 130: 112: 84: 70: 54: 20: 18: 1114:J Bacteriol 280:In bacteria 240:ultraviolet 205:fluorescent 171:methylation 162:deamination 95:sticky ends 33:nucleotides 1081:: 141–69. 586:: 313–38. 366:References 338:cutting a 201:DNA ligase 166:eukaryotes 1212:PLOS Biol 1045:0022-2836 934:1083-351X 714:1097-2765 395:: 27–37. 1257:Category 1244:37079643 1235:10153752 1193:12794193 1001:26150424 952:25887397 890:20725617 864:: 1–16. 806:15565146 763:11106756 722:17466627 610:18518823 561:10946235 419:24794402 362:(Exo1). 336:relaxase 313:relaxase 305:T-strand 209:in vitro 187:RNase H2 179:ligation 1144:8386720 1095:7574478 1053:5448592 992:4551925 943:4447978 881:2915661 814:3105417 786:Bibcode 659:9421510 601:2933818 519:2320572 487:Bibcode 410:4065383 356:meiosis 354:during 272:allows 133:E. coli 90:enzymes 86:Ligases 57:plasmid 35:of one 1242:  1232:  1191:  1184:156469 1181:  1142:  1135:204561 1132:  1093:  1051:  1043:  999:  989:  950:  940:  932:  888:  878:  835:  812:  804:  778:Nature 761:  720:  712:  657:  650:147278 647:  608:  598:  559:  517:  507:  417:  407:  331:site. 41:enzyme 37:strand 810:S2CID 510:53722 1240:PMID 1189:PMID 1140:PMID 1091:PMID 1049:PMID 1041:ISSN 997:PMID 948:PMID 930:ISSN 886:PMID 862:2010 833:ISBN 802:PMID 759:PMID 718:PMID 710:ISSN 673:link 655:PMID 606:PMID 557:PMID 515:PMID 447:2015 415:PMID 325:oriT 321:oriT 297:oriT 289:site 284:The 100:NAD+ 21:nick 1263:DNA 1230:PMC 1220:doi 1179:PMC 1171:doi 1130:PMC 1122:doi 1118:175 1083:doi 1031:doi 987:PMC 979:doi 938:PMC 920:doi 916:290 876:PMC 866:doi 794:doi 782:432 749:doi 700:doi 645:PMC 637:doi 596:PMC 588:doi 549:doi 545:460 505:PMC 495:doi 451:doi 405:PMC 397:doi 329:nic 309:nic 287:nic 257:in 25:DNA 1259:: 1238:. 1228:. 1216:21 1214:. 1210:. 1187:. 1177:. 1167:67 1165:. 1161:. 1138:. 1128:. 1116:. 1112:. 1089:. 1079:64 1077:. 1061:^ 1047:. 1039:. 1027:48 1025:. 1021:. 1009:^ 995:. 985:. 975:43 973:. 969:. 946:. 936:. 928:. 914:. 910:. 898:^ 884:. 874:. 860:. 856:. 808:. 800:. 792:. 780:. 757:. 743:. 739:. 716:. 708:. 696:26 694:. 690:. 669:}} 665:{{ 653:. 633:26 631:. 627:. 604:. 594:. 584:77 582:. 578:. 555:. 543:. 527:^ 513:. 503:. 493:. 483:87 481:. 477:. 465:^ 445:. 441:. 427:^ 413:. 403:. 393:19 391:. 387:. 373:^ 246:. 19:A 1246:. 1222:: 1195:. 1173:: 1146:. 1124:: 1097:. 1085:: 1055:. 1033:: 1003:. 981:: 954:. 922:: 892:. 868:: 841:. 816:. 796:: 788:: 765:. 751:: 745:6 724:. 702:: 675:) 661:. 639:: 612:. 590:: 563:. 551:: 521:. 497:: 489:: 459:. 453:: 421:. 399:: 295:(

Index

DNA
phosphodiester bond
nucleotides
strand
enzyme
DNA mismatch repair
plasmid

Nicking endonuclease enzymes
Ligases
enzymes
sticky ends
NAD+

adenosine monophosphate
E. coli
DNA ligase I
DNA mismatch repair
deamination
eukaryotes
methylation
Okazaki fragments
ligation
ribonucleotides
RNase H2
Nick translation
DNA polymerase
DNA ligase
fluorescent
in vitro

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.