Knowledge

Nanofluid

Source 📝

223:
samples are expensive, complex and time-consuming. The sensor uses a magnetic nanofluid that consists of nano-droplets with magnetic grains suspended in water. In a fixed magnetic field, a light source illuminates the nanofluid, changing its colour depending on the cation concentration. This color change occurs within a second after exposure to cations, much faster than other existing cation sensing methods.
89:(CFD), nanofluids can be assumed to be single phase fluids; however, almost all academic papers use a two-phase assumption. Classical theory of single phase fluids can be applied, where physical properties of nanofluid is taken as a function of properties of both constituents and their concentrations. An alternative approach simulates nanofluids using a two-component model. 326:
Discharged nanofluids could be recharged while in a vehicle or after removal at a service station. Costs are claimed to be comparable to lithium ion. An EV-battery sized fuel reservoir (80 gallons) was expected to provide range comparable to a conventional gasoline vehicle. Fluids that escape, e.g.,
222:
A nanofluid-based ultrasensitive optical sensor changes its colour on exposure to low concentrations of toxic cations. The sensor is useful in detecting minute traces of cations in industrial and environmental samples. Existing techniques for monitoring cations levels in industrial and environmental
213:
A 2013 study considered the effect of an external magnetic field on the convective heat transfer coefficient of water-based magnetite nanofluid experimentally under laminar flow regime. It obtained up to 300% enhancement at Re=745 and magnetic field gradient of 32.5 mT/mm. The effect of the magnetic
174:
A biologically-based, environmentally friendly approach for the covalent functionalization of multi-walled carbon nanotubes (MWCNTs) using clove buds was developed. No toxic/hazardous acids are typically used in common carbon nanomaterial functionalization procedures, as employed in this synthesis.
209:
One project demonstrated a class of magnetically polarizable nanofluids with thermal conductivity enhanced up to 300%. Fatty-acid-capped magnetite nanoparticles of different sizes (3-10 nm) were synthesized. It showed that the thermal and rheological properties of such magnetic nanofluids are
226:
Such responsive nanofluids can detect and image defects in ferromagnetic components. The so-called photonic eye is based on a magnetically polarizable nano-emulsion that changes colour when it comes into contact with a defective region in a sample. The device could monitor structures such as rail
348:
induces nanoparticle migration from warmer to colder regions, again due to such collisions. A 2017 study considered the mismatch between experimental and theoretical results. It reported that Brownian motion and thermophoresis effects have no significant effects: their role is often amplified in
343:
Despite these apparently conclusive experimental investigations theoretical papers continue to claim anomalous enhancement, particularly via Brownian and thermophoretic mechanisms. Brownian diffusion is due to the random drifting of suspended nanoparticles in the base fluid which originates from
339:
funded research programme, Nanouptake (COST Action CA15119) was conducted with the intention "develop and foster the use of nanofluids as advanced heat transfer/thermal storage materials to increase the efficiency of heat exchange and storage systems". One 5-lab study reported that "there are no
191:
in heat transfer equipment such as heat exchangers, electronic cooling system(such as flat plate) and radiators. Heat transfer over flat plate has been analyzed by many researchers. However, they are also useful for their controlled optical properties. Graphene based nanofluid has been found to
200:
is another application where nanofluids are employed for their tunable optical properties. Nanofluids have also been explored to enhance thermal desalination technologies, by altering thermal conductivity and absorbing sunlight, but surface fouling of the nanofluids poses a major risk to those
258:
Other nanolubricant approaches, such as magnesium silicate hydroxides (MSH) rely on nanoparticle coatings by synthesizing nanomaterials with adhesive and lubricating functionalities. Research into nanolubricant coatings has been conducted in both the academic and industrial spaces. Nanoborate
105:
Thermal conductivity, viscosity, density, specific heat, and surface tension are significant thermophysical properties of nanofluids. Parameters such as nanoparticle type, size, shape, volume concentration, fluid temperature, and nanofluid preparation method affect thermophysical properties.
254:
and graphene work as third body lubricants, essentially acting as ball bearings that reduce the friction between surfaces. This mechanism requires sufficient particles to be present at the contact interface. The beneficial effects diminish because sustained contac pushes away the third body
81:
behaviour of nanofluids is critical in deciding their suitability for convective heat transfer applications. Nanofluids also have special acoustical properties and in ultrasonic fields display shear-wave reconversion of an incident compressional wave; the effect becomes more pronounced as
2466:
Buongiorno, Jacopo; Venerus, David C.; Prabhat, Naveen; McKrell, Thomas; Townsend, Jessica; Christianson, Rebecca; Tolmachev, Yuriy V.; Keblinski, Pawel; Hu, Lin-wen; Alvarado, Jorge L.; Bang, In Cheol (2009-11-01). "A benchmark study on the thermal conductivity of nanofluids".
275:
Magnetic nanoparticle clusters or magnetic nanobeads of size 80–150 nanometers form ordered structures along the direction of an external magnetic field with a regular interparticle spacing on the order of hundreds of nanometers resulting in strong diffraction of visible light.
259:
additives as well as mechanical model descriptions of diamond-like carbon (DLC) coating formations have been developed. Companies such as TriboTEX provide commercial formulations of synthesized MSH nanomaterial coatings for vehicle engine and industrial applications.
235:
Nanolubricants modify oils used for engine and machine lubrication. Materials including metals, oxides and allotropes of carbon have supplied nanoparticles for such applications. The nanofluid enhances thermal conductivity and anti-wear properties. Although
210:
tunable by varying magnetic field strength and orientation with respect to the direction of heat flow. Such response stimuli fluids are reversible and have applications in miniature devices such as micro- and nano-electromechanical systems.
2606:
Malvandi, A.; Ghasemi, Amirmahdi; Ganji, D. D. (2016-11-01). "Thermal performance analysis of hydromagnetic Al2O3-water nanofluid flows inside a concentric microannulus considering nanoparticle migration and asymmetric heating".
1863:
Heysiattalab, S.; Malvandi, A.; Ganji, D. D. (2016-07-01). "Anisotropic behavior of magnetic nanofluids (MNFs) at filmwise condensation over a vertical plate in presence of a uniform variable-directional magnetic field".
2634:
Bahiraei, Mehdi (2015-05-01). "Studying nanoparticle distribution in nanofluids considering the effective factors on particle migration and determination of phenomenological constants by Eulerian–Lagrangian simulation".
149:
Base liquids include water, ethylene glycol, and oils have been used. Although stabilization can be a challenge, on-going research indicates that it is possible. Nano-materials used so far in nanofluid synthesis include
1253:
Hosseini, M (February 22, 2017). "Experimental Study on Heat Transfer and Thermo-Physical Properties of Covalently Functionalized Carbon Nanotubes Nanofluids in an Annular Heat Exchanger: A Green and Novel Synthesis".
1367:
Hewakuruppu, Yasitha L.; Dombrovsky, Leonid A.; Chen, Chuyang; Timchenko, Victoria; Jiang, Xuchuan; Baek, Sung; Taylor, Robert A. (2013-08-20). "Plasmonic "pump–probe" method to study semi-transparent nanofluids".
349:
theoretical studies due to the use of incorrect parameter values. Experimental validation of these assertions came in 2018 Brownian diffusion as a cause for enhanced heat transfer is dismissed in the discussion of
96:
in the vicinity of the contact line. However, such enhancement is not observed for small droplets with diameter of nanometer scale, because the wetting time scale is much smaller than the diffusion time scale.
2145:
Rasheed, A.K.; Khalid, M.; Javeed, A.; Rashmi, W.; Gupta, T.C.S.M.; Chan, A. (November 2016). "Heat transfer and tribological performance of graphene nanolubricant in an internal combustion engine".
2724:
Malvandi, A.; Ganji, D. D. (2014-10-01). "Brownian motion and thermophoresis effects on slip flow of alumina/water nanofluid inside a circular microchannel in the presence of a magnetic field".
1446:
Otanicar, Todd P.; Phelan, Patrick E.; Taylor, Robert A.; Tyagi, Himanshu (2011-03-22). "Spatially Varying Extinction Coefficient for Direct Absorption Solar Thermal Collector Optimization".
1210:
Sadri, R (15 October 2017). "A bio-based, facile approach for the preparation of covalently functionalized carbon nanotubes aqueous suspensions and their potential as heat transfer fluids".
1891:
Malvandi, Amir (2016-06-01). "Anisotropic behavior of magnetic nanofluids (MNFs) at film boiling over a vertical cylinder in the presence of a uniform variable-directional magnetic field".
327:
following a crash, turn into a pastelike substance, which can be removed and reused safely. Flow batteries also produce less heat, reducing their thermal signature for military vehicles.
1411:
Lv, Wei; Phelan, Patrick E.; Swaminathan, Rajasekaran; Otanicar, Todd P.; Taylor, Robert A. (2012-11-21). "Multifunctional Core-Shell Nanoparticle Suspensions for Efficient Absorption".
69:, engine cooling/vehicle thermal management, domestic refrigerator, chiller, heat exchanger, in grinding, machining and in boiler flue gas temperature reduction. They exhibit enhanced 92:
The spreading of a nanofluid droplet is enhanced by the solid-like ordering structure of nanoparticles assembled near the contact line by diffusion, which gives rise to a structural
2759:
Bahiraei, Mehdi; Abdi, Farshad (2016-10-15). "Development of a model for entropy generation of water-TiO2 nanofluid flow considering nanoparticle migration within a minichannel".
462: 2015:
Azizian, R.; Doroodchi, E.; McKrell, T.; Buongiorno, J.; Hu, L.W.; Moghtaderi, B. (2014). "Effect of magnetic field on laminar convective heat transfer of magnetite nanofluids".
179:
grafting reaction. The clove-functionalized MWCNTs are then dispersed in distilled water (DI water), producing a highly stable MWCNT aqueous suspension (MWCNTs Nanofluid).
2697:
Malvandi, A.; Moshizi, S. A.; Ganji, D. D. (2016-01-01). "Two-component heterogeneous mixed convection of alumina/water nanofluid in microchannels with heat source/sink".
2237:
Chang Q, Rudenko P (Washington SU, Miller D, et al. Diamond like Nanocomposite Boundary Films from Synthetic Magnesium Silicon Hydroxide (MSH) Additives.; 2014.
1918:
Malvandi, Amir (2016-05-15). "Film boiling of magnetic nanofluids (MNFs) over a vertical plate in presence of a uniform variable-directional magnetic field".
1708:
Zhang, Yong; Liu, Lie; Li, Kuiling; Hou, Deyin; Wang, Jun (2018). "Enhancement of energy utilization using nanofluid in solar powered membrane distillation".
2228:
Rudenko P (Washington SU, Chang Q, Erdemir A (Argonne NL. Effect of Magnesium Hydrosillicate on Rolling Element Bearings. In: STLE 2014 Annual Meeting; 2014.
2922: 539: 335:
A 30-lab study reported that "no anomalous enhancement of thermal conductivity was observed in the limited set of nanofluids tested in this exercise". The
2247:
Erdemir, Ali; Ramirez, Giovanni; Eryilmaz, Osman L.; Narayanan, Badri; Liao, Yifeng; Kamath, Ganesh; Sankaranarayanan, Subramanian K. R. S. (2016-08-04).
1332:
Phelan, Patrick; Otanicar, Todd; Taylor, Robert; Tyagi, Himanshu (2013-05-17). "Trends and Opportunities in Direct-Absorption Solar Thermal Collectors".
673:
Chen, H.; Witharana, S.; et al. (2009). "Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on Rheology".
323:
of 550-850 wh/kg, higher than conventional lithium-ion batteries. A demonstration battery operated successfully between −40 °C and 80 °C.
118: 2662:
Pakravan, Hossein Ali; Yaghoubi, Mahmood (2013-06-01). "Analysis of nanoparticles migration on natural convective heat transfer of nanofluids".
350: 1659:
Parmar, Harsharaj B.; Fattahi Juybari, Hamid; Yogi, Yashwant S.; Nejati, Sina; Jacob, Ryan M.; Menon, Prashant S.; Warsinger, David M. (2021).
336: 2579:
Bahiraei, Mehdi (2015-09-01). "Effect of particle migration on flow and heat transfer characteristics of magnetic nanoparticle suspensions".
1507: 319:(cathode). The nanofluids use a nonflammable aqueous suspension. As of 2024 DARPA-funded Influit claimed to be developing a battery with an 2520:
Buschmann, M. H.; Azizian, R.; Kempe, T.; Juliá, J. E.; Martínez-Cuenca, R.; Sundén, B.; Wu, Z.; Seppälä, A.; Ala-Nissila, T. (2018-07-01).
288:((NFB) have been claimed to store 15 to 25 times as much energy as traditional flow batteries. The Strategic Technology Office of the U.S. 798:
Alizadeh, M. R.; Dehghan, A. A. (2014-02-01). "Conjugate Natural Convection of Nanofluids in an Enclosure with a Volumetric Heat Source".
499: 2930:
Khashi’ie, Najiyah Safwa; Md Arifin, Norihan; Nazar, Roslinda; Hafidzuddin, Ezad Hafidz; Wahi, Nadihah; Pop, Ioan (January 2019).
2932:"A Stability Analysis for Magnetohydrodynamics Stagnation Point Flow with Zero Nanoparticles Flux Condition and Anisotropic Slip" 2213: 2186: 1034: 525: 1482:"Enhancing the efficiency of polymerase chain reaction using graphene nanoflakes - Abstract - Nanotechnology - IOPscience" 2085:
Mahendran, V. (2012). "Nanofluid based opticalsensor for rapid visual inspection of defects in ferromagnetic materials".
307:. Particles are engineered to remain suspended indefinitely, comprising up to 80 percent of the liquid’s weight with the 1988:
Shima P.D.and J. Philip (2011). "Tuning of Thermal Conductivity and Rheology of Nanofluids using an External Stimulus".
19:
This article is about fluids containing nanoparticles. For the dynamics of fluids confined in nanoscale structures, see
1508:"Broadband absorbing mono, blended and hybrid nanofluids for direct absorption solar collector: A comprehensive review" 2849:"A practical evaluation of the performance of Al2O3-water, TiO2-water and CuO-water nanofluids for convective cooling" 549: 2786:
Myers, Tim G.; Ribera, Helena; Cregan, Vincent (2017-08-01). "Does mathematics contribute to the nanofluid debate?".
882:
Kuznetsov, A.V.; Nield, D.A. (2010). "Natural convective boundary-layer flow of a nanofluid past a vertical plate".
247:, and Cu-based fluids have been studied extensively, fundamental understanding of underlying mechanisms is absent. 2848: 571:
Kakaç, Sadik; Anchasa Pramuanjaroenkij (2009). "Review of convective heat transfer enhancement with nanofluids".
969: 201:
approaches. Researchers proposed nanofluids for electronics cooling. Nanofluids also can be used in machining.
197: 1767:
Khaleduzzaman, S. S.; Rahman, Saidur; Selvaraj, Jeyraj; Mahbubul, I. M.; Sohel, M. R.; Shahrul, I. M. (2014).
974:"Wetting kinetics of water nano-droplet containing non-surfactant nanoparticles: A molecular dynamics study" 387: 86: 751:"Numerical Investigation and Feasibility Study on MXene/Water Nanofluid Based Photovoltaic/thermal System" 1022: 362: 1056: 418: 193: 74: 2969: 2847:
Alkasmoul, Fahad S.; Al-Asadi, M. T.; Myers, T. G.; Thompson, H. M.; Wilson, M. C. T. (2018-11-01).
2989: 1558:"Nanofluid optical property characterization: towards efficient direct absorption solar collectors" 1314: 66: 2999: 2994: 2984: 2327: 1175:
Nor Azwadi, Che Sidik (2014). "A review on preparation methods and challenges of nanofluids".
503: 2875: 2817: 2036: 1784: 1196: 1080: 592: 2863: 2805: 2733: 2671: 2533: 2476: 2339: 2260: 2205:
Self-Organization During Friction: Advanced Surface-Engineered Materials and Systems Design
2094: 2059: 2024: 1962: 1927: 1717: 1672: 1628: 1569: 1522: 1377: 1219: 1184: 1139: 1068: 985: 926: 891: 854: 762: 713: 619: 580: 545: 430: 237: 70: 867: 842: 46:. The nanoparticles used in nanofluids are typically made of metals, oxides, carbides, or 8: 293: 93: 2867: 2809: 2737: 2675: 2537: 2480: 2343: 2264: 2098: 2063: 2028: 1966: 1953:
J. Philip, Shima.P.D. & B. Raj (2006). "Nanofluid with tunable thermal properties".
1931: 1721: 1676: 1632: 1573: 1526: 1381: 1223: 1188: 1143: 1072: 989: 930: 895: 858: 766: 717: 623: 584: 434: 2897: 2829: 2795: 2745: 2683: 2620: 2546: 2521: 2365: 1845: 1796: 1749: 1592: 1557: 1538: 1271: 1157: 1003: 950: 903: 823: 780: 650: 607: 382: 1729: 2953: 2901: 2889: 2833: 2821: 2561: 2502: 2404: 2357: 2284: 2276: 2209: 2182: 1849: 1837: 1800: 1788: 1741: 1733: 1690: 1597: 1542: 1463: 1428: 1393: 1349: 1235: 1161: 1084: 1030: 942: 827: 815: 784: 731: 702:"Experimental verification of nanofluid shear-wave reconversion in ultrasonic fields" 655: 637: 316: 267:
Many researches claim that nanoparticles can be used to enhance crude oil recovery.
2440: 2369: 1753: 1275: 1267: 1007: 2943: 2879: 2871: 2813: 2772: 2768: 2741: 2706: 2679: 2644: 2616: 2588: 2551: 2541: 2492: 2484: 2396: 2347: 2268: 2158: 2154: 2102: 2067: 2032: 1997: 1970: 1935: 1900: 1873: 1827: 1780: 1725: 1680: 1636: 1587: 1577: 1530: 1481: 1455: 1420: 1385: 1341: 1289: 1263: 1227: 1192: 1147: 1076: 993: 954: 934: 917:
Wasan, Darsh T.; Nikolov, Alex D. (May 2003). "Spreading of nanofluids on solids".
899: 862: 841:
Maiga, Sidi El Becaye; Palm, S.J.; Nguyen, C.T.; Roy, G; Galanis, N (3 June 2005).
807: 770: 721: 682: 645: 627: 588: 474: 438: 1506:
Sreekumar, S.; Shah, N.; Mondol, J.; Hewitt, N.; Chakrabarti, S. (February 2022).
419:"Small particles, big impacts: A review of the diverse applications of nanofluids" 2592: 2352: 2203: 2176: 2050:
Mahendran, V. (2013). "Spectral Response of MagneticNanofluid to Toxic Cations".
1904: 1877: 1685: 1660: 686: 159: 51: 47: 2120: 1769:"Nanofluids for Thermal Performance Improvement in Cooling of Electronic Device" 110: 1939: 1534: 1231: 775: 750: 372: 345: 320: 285: 2918: 2710: 2648: 2248: 1152: 1127: 811: 749:
Sreekumar, S.; Shah, N.; Mondol, J.; Hewitt, N.; Chakrabarti, S. (June 2022).
2978: 2957: 2893: 2825: 2565: 2506: 2361: 2280: 1841: 1792: 1737: 1694: 1467: 1432: 1353: 1088: 819: 641: 377: 58: 2970:
NanoHex is a European project developing industrial-class nanofluid coolants
2384: 1582: 1029:, Micro and Nano Technologies, William Andrew Publishing, pp. 113–196, 632: 292:(DARPA) is exploring military’s deployment of NFB in place of conventional 2408: 2288: 1745: 1601: 1397: 1239: 946: 735: 659: 367: 312: 311:
of motor oil. The particles can be made from inexpensive minerals, such as
176: 35: 20: 843:"Heat transfer enhancement by using nanofluids in forced convection flows" 2424:
Properties and use of magnetic nanoparticle clusters (magnetic nanobeads)
2385:"Magnetic Assembly Route to Colloidal Responsive Photonic Nanostructures" 2175:
Anis, Mohab; AlTaher, Ghada; Sarhan, Wesam; Elsemary, Mona (2016-12-08).
1768: 1389: 2556: 2497: 2383:
He, Le; Wang, Mingsheng; Ge, Jianping; Yin, Yadong (18 September 2012).
2272: 1641: 1616: 938: 537: 2948: 2931: 2884: 2421: 1832: 1815: 726: 701: 392: 187:
Nanofluids are primarily used for their enhanced thermal properties as
2488: 2400: 2303:"TriboTEX REVERSE WEAR: run longer, stronger, and cleaner w/ nanotech" 2106: 2071: 2001: 1974: 1459: 1424: 1345: 1102: 1027:
Preparation, Characterization, Properties and Application of Nanofluid
998: 973: 478: 443: 397: 308: 304: 62: 31: 2800: 1766: 244: 163: 78: 2929: 2639:. Special issue of the 7th World Congress on Particle Technology. 1952: 1366: 2014: 1816:"Analysis of Nanofluids as Cutting Fluid in Grinding EN-31 Steel" 1701: 840: 538:
Das, Sarit K.; Stephen U. S. Choi; Wenhua Yu; T. Pradeep (2007).
188: 39: 606:
Witharana, Sanjeeva; Chen, Haisheng; Ding, Yulong (2011-03-16).
16:
Fluid containing nanometer-sized particles, called nanoparticles
2465: 2246: 1661:"Nanofluids improve energy efficiency of membrane distillation" 1658: 2846: 2522:"Correct interpretation of nanofluid convective heat transfer" 2326:
Suleimanov, B.A.; Ismailov, F.S.; Veliyev, E.F. (2011-08-01).
1617:"Nanofluid-based optical filter optimization for PV/T systems" 570: 300: 289: 155: 151: 43: 2302: 608:"Stability of nanofluids in quiescent and shear flow fields" 2919:
Magnetically responsive photonic crystals nanofluid (video)
2445: 1410: 2519: 2441:"Can Flow Batteries Finally Beat Lithium? - IEEE Spectrum" 1055:
Mahbubul, I. M.; Saidur, R.; Amalina, M. A. (2012-01-31).
2325: 2174: 2144: 1862: 1505: 1445: 1331: 748: 2202:
Fox-Rabinovich, German; Totten, George E. (2006-09-18).
1987: 1334:
Journal of Thermal Science and Engineering Applications
344:
collisions between nanoparticles and liquid molecules.
1318: 1177:
International Communications in Heat and Mass Transfer
2178:
Nanovate: Commercializing Disruptive Nanotechnologies
1054: 1021:
Mahbubul, I. M. (2019-01-01), Mahbubul, I. M. (ed.),
2696: 2605: 2201: 1654: 1652: 1057:"Latest developments on the viscosity of nanofluids" 881: 500:"Argonne Transportation Technology R&D Center" 2785: 1649: 605: 175:The MWCNTs are functionalized in one pot using a 2976: 2661: 1014: 2856:International Journal of Heat and Mass Transfer 2788:International Journal of Heat and Mass Transfer 2761:Chemometrics and Intelligent Laboratory Systems 2249:"Carbon-based tribofilms from lubricating oils" 1061:International Journal of Heat and Mass Transfer 797: 573:International Journal of Heat and Mass Transfer 129:Nanofluids are produced by several techniques: 2723: 2170: 2168: 1707: 1023:"4 - Thermophysical Properties of Nanofluids" 672: 77:compared to the base fluid. Knowledge of the 2758: 2332:Journal of Petroleum Science and Engineering 916: 847:International Journal of Heat and Fluid Flow 2382: 1920:Journal of Magnetism and Magnetic Materials 967: 800:Arabian Journal for Science and Engineering 2165: 1174: 460: 214:field on pressure was not as significant. 61:applications, including microelectronics, 2947: 2883: 2799: 2726:International Journal of Thermal Sciences 2664:International Journal of Thermal Sciences 2609:International Journal of Thermal Sciences 2555: 2545: 2526:International Journal of Thermal Sciences 2496: 2351: 2084: 2049: 1831: 1813: 1684: 1640: 1591: 1581: 1151: 1125: 997: 884:International Journal of Thermal Sciences 866: 774: 725: 699: 649: 631: 526:Nanoparticle Heat Transfer and Fluid Flow 442: 351:the use of nanofluids in solar collectors 330: 290:Defense Advanced Research Projects Agency 2876:10.1016/j.ijheatmasstransfer.2018.05.072 2818:10.1016/j.ijheatmasstransfer.2017.03.118 2633: 2578: 2439:CHARETTE, ROBERT N. (24 December 2023). 2438: 2037:10.1016/j.ijheatmasstransfer.2013.09.011 1917: 1890: 1814:Vasu, V.; Kumar, K. Manoj (2011-12-01). 1252: 1212:Journal of Colloid and Interface Science 1197:10.1016/j.icheatmasstransfer.2014.03.002 1081:10.1016/j.ijheatmasstransfer.2011.10.021 1020: 593:10.1016/j.ijheatmasstransfer.2009.02.006 528:, CRC Press, Taylor & Francis, 2013 2977: 1785:10.4028/www.scientific.net/AMR.832.218 1614: 1555: 1128:"Heat Transfer in Nanofluids—A Review" 700:Forrester, D. M.; et al. (2016). 416: 2434: 2432: 2430: 2328:"Nanofluid for enhanced oil recovery" 1209: 868:10.1016/j.ijheatfluidflow.2005.02.004 834: 340:anomalous or unexplainable effects". 262: 139:Chemical vapour condensation (1 step) 2422:http://nanos-sci.com/technology.html 1290:"Advances in Mechanical Engineering" 1103:"Thermal Conductivity of Nanofluids" 564: 463:"Convective Transport in Nanofluids" 456: 454: 270: 136:Gas condensation/dispersion (2 step) 50:. Common base fluids include water, 1448:Journal of Solar Energy Engineering 1413:Journal of Solar Energy Engineering 166:nano-flakes and ceramic particles. 13: 2779: 2746:10.1016/j.ijthermalsci.2014.05.013 2684:10.1016/j.ijthermalsci.2012.12.012 2621:10.1016/j.ijthermalsci.2016.05.023 2547:10.1016/j.ijthermalsci.2017.11.003 2427: 1126:Kumar Das, Sarit (December 2006). 968:Lu, Gui; Hu, Han; Duan, Yuanyuan; 904:10.1016/j.ijthermalsci.2009.07.015 541:Nanofluids: Science and Technology 417:Taylor, R.A.; et al. (2013). 14: 3011: 2912: 2121:"Nanofluid sensor images defects" 1730:10.1016/j.chemosphere.2018.08.114 1621:Light: Science & Applications 1615:Taylor, Robert A (October 2012). 451: 230: 57:Nanofluids have many potentially 299:The nanofluid particles undergo 204: 65:, pharmaceutical processes, and 2840: 2752: 2717: 2690: 2655: 2627: 2599: 2572: 2513: 2459: 2415: 2376: 2319: 2295: 2240: 2231: 2222: 2195: 2138: 2113: 2078: 2043: 2008: 1981: 1946: 1911: 1884: 1856: 1807: 1760: 1608: 1549: 1499: 1474: 1439: 1404: 1360: 1325: 1307: 1282: 1268:10.1021/acs.energyfuels.6b02928 1246: 1203: 1168: 1119: 1095: 1048: 961: 910: 875: 791: 742: 279: 182: 142:Chemical precipitation (1 step) 2773:10.1016/j.chemolab.2016.06.012 2159:10.1016/j.triboint.2016.08.007 693: 666: 599: 531: 518: 492: 410: 198:Nanofluids in solar collectors 38:. These fluids are engineered 1: 2389:Accounts of Chemical Research 548:. p. 397. Archived from 461:Buongiorno, J. (March 2006). 403: 100: 2593:10.1016/j.molliq.2015.06.030 2581:Journal of Molecular Liquids 2353:10.1016/j.petrol.2011.06.014 1905:10.1016/j.powtec.2016.02.037 1878:10.1016/j.molliq.2016.04.004 1866:Journal of Molecular Liquids 1686:10.1016/j.nanoen.2021.106235 687:10.1016/j.partic.2009.01.005 388:Surface-area-to-volume ratio 169: 124: 87:computational fluid dynamics 7: 1773:Advanced Materials Research 1315:"Dr. AMINREZA NOGHREHABADI" 363:Argonne National Laboratory 356: 133:Direct Evaporation (1 step) 42:of nanoparticles in a base 10: 3016: 2699:Advanced Powder Technology 2637:Advanced Powder Technology 2469:Journal of Applied Physics 1940:10.1016/j.jmmm.2016.01.008 1562:Nanoscale Research Letters 1232:10.1016/j.jcis.2017.03.051 776:10.1016/j.cles.2022.100010 612:Nanoscale Research Letters 423:Journal of Applied Physics 217: 18: 2711:10.1016/j.apt.2015.12.009 2649:10.1016/j.apt.2015.02.005 1556:Taylor, Robert A (2011). 1153:10.1080/01457630600904593 1132:Heat Transfer Engineering 812:10.1007/s13369-013-0658-2 194:Polymerase chain reaction 82:concentration increases. 75:heat transfer coefficient 34:-sized particles, called 1716:. Elsevier BV: 554–562. 1535:10.1088/2399-1984/ac57f7 467:Journal of Heat Transfer 2475:(9): 094312–094312–14. 2147:Tribology International 1955:Applied Physics Letters 1671:. Elsevier BV: 106235. 1583:10.1186/1556-276X-6-225 633:10.1186/1556-276X-6-231 524:Minkowycz, W., et al., 429:(1): 011301–011301–19. 755:Cleaner Energy Systems 331:Nanoparticle migration 284:Nanoelectrofuel-based 227:tracks and pipelines. 67:hybrid-powered engines 30:is a fluid containing 294:lithium-ion batteries 40:colloidal suspensions 1390:10.1364/ao.52.006041 579:(13–14): 3187–3196. 119:Thermal conductivity 71:thermal conductivity 2965:European projects: 2868:2018IJHMT.126..639A 2810:2017IJHMT.111..279M 2738:2014IJTS...84..196M 2676:2013IJTS...68...79P 2538:2018IJTS..129..504B 2481:2009JAP...106i4312B 2344:2011JPSE...78..431S 2273:10.1038/nature18948 2265:2016Natur.536...67E 2099:2012ApPhL.100g3104M 2064:2013ApPhL.102p3109M 2029:2014IJHMT..68...94A 1996:(41): 20097–20104. 1967:2008ApPhL..92d3108P 1932:2016JMMM..406...95M 1722:2018Chmsp.212..554Z 1677:2021NEne...8806235P 1642:10.1038/lsa.2012.34 1633:2012LSA.....1E..34T 1574:2011NRL.....6..225T 1527:2022NanoF...6b2002S 1382:2013ApOpt..52.6041H 1224:2017JCIS..504..115S 1189:2014ICHMT..54..115S 1144:2006HTrEn..27....3D 1073:2012IJHMT..55..874M 990:2013ApPhL.103y3104L 939:10.1038/nature01591 931:2003Natur.423..156W 896:2010IJTS...49..243K 859:2005IJHFF..26..530M 767:2022CESys...200010S 718:2016Nanos...8.5497F 624:2011NRL.....6..231W 585:2009IJHMT..52.3187K 435:2013JAP...113a1301T 94:disjoining pressure 2949:10.3390/en12071268 2923:Nanos scientificae 1833:10.1007/BF03353674 1820:Nano-Micro Letters 1256:Energy & Fuels 727:10.1039/C5NR07396K 552:on 3 December 2010 546:Wiley-Interscience 383:Nanophase material 315:(anode) and gamma 263:Petroleum refining 145:Bio-based (2 step) 2489:10.1063/1.3245330 2401:10.1021/ar200276t 2215:978-1-4200-1786-1 2188:978-3-319-44863-3 2107:10.1063/1.3684969 2072:10.1063/1.4802899 2017:Int. J. Heat Mass 2002:10.1021/jp204827q 1975:10.1063/1.2838304 1893:Powder Technology 1460:10.1115/1.4003679 1425:10.1115/1.4007845 1346:10.1115/1.4023930 1036:978-0-12-813245-6 999:10.1063/1.4837717 925:(6936): 156–159. 712:(10): 5497–5506. 479:10.1115/1.2150834 444:10.1063/1.4754271 317:manganese dioxide 303:reactions at the 271:Photonic crystals 3007: 2961: 2951: 2906: 2905: 2887: 2853: 2844: 2838: 2837: 2803: 2783: 2777: 2776: 2756: 2750: 2749: 2721: 2715: 2714: 2694: 2688: 2687: 2659: 2653: 2652: 2631: 2625: 2624: 2603: 2597: 2596: 2576: 2570: 2569: 2559: 2549: 2517: 2511: 2510: 2500: 2463: 2457: 2456: 2454: 2453: 2436: 2425: 2419: 2413: 2412: 2395:(9): 1431–1440. 2380: 2374: 2373: 2355: 2323: 2317: 2316: 2314: 2313: 2299: 2293: 2292: 2244: 2238: 2235: 2229: 2226: 2220: 2219: 2199: 2193: 2192: 2172: 2163: 2162: 2142: 2136: 2135: 2133: 2131: 2117: 2111: 2110: 2087:Appl. Phys. Lett 2082: 2076: 2075: 2052:Appl. Phys. Lett 2047: 2041: 2040: 2012: 2006: 2005: 1990:J. Phys. Chem. C 1985: 1979: 1978: 1950: 1944: 1943: 1915: 1909: 1908: 1888: 1882: 1881: 1860: 1854: 1853: 1835: 1811: 1805: 1804: 1764: 1758: 1757: 1705: 1699: 1698: 1688: 1656: 1647: 1646: 1644: 1612: 1606: 1605: 1595: 1585: 1553: 1547: 1546: 1512: 1503: 1497: 1496: 1494: 1492: 1478: 1472: 1471: 1443: 1437: 1436: 1408: 1402: 1401: 1364: 1358: 1357: 1329: 1323: 1322: 1317:. Archived from 1311: 1305: 1304: 1302: 1300: 1286: 1280: 1279: 1262:(5): 5635–5644. 1250: 1244: 1243: 1207: 1201: 1200: 1172: 1166: 1165: 1155: 1123: 1117: 1116: 1114: 1113: 1107:encyclopedia.pub 1099: 1093: 1092: 1052: 1046: 1045: 1044: 1043: 1018: 1012: 1011: 1001: 978:Appl. Phys. Lett 965: 959: 958: 914: 908: 907: 879: 873: 872: 870: 838: 832: 831: 806:(2): 1195–1207. 795: 789: 788: 778: 746: 740: 739: 729: 697: 691: 690: 670: 664: 663: 653: 635: 603: 597: 596: 568: 562: 561: 559: 557: 535: 529: 522: 516: 515: 513: 511: 506:on 23 March 2012 502:. Archived from 496: 490: 489: 487: 485: 458: 449: 448: 446: 414: 160:carbon nanotubes 48:carbon nanotubes 3015: 3014: 3010: 3009: 3008: 3006: 3005: 3004: 2990:Fluid mechanics 2975: 2974: 2915: 2910: 2909: 2851: 2845: 2841: 2784: 2780: 2757: 2753: 2722: 2718: 2695: 2691: 2660: 2656: 2632: 2628: 2604: 2600: 2577: 2573: 2518: 2514: 2464: 2460: 2451: 2449: 2437: 2428: 2420: 2416: 2381: 2377: 2324: 2320: 2311: 2309: 2301: 2300: 2296: 2259:(7614): 67–71. 2245: 2241: 2236: 2232: 2227: 2223: 2216: 2200: 2196: 2189: 2173: 2166: 2143: 2139: 2129: 2127: 2125:nanotechweb.org 2119: 2118: 2114: 2083: 2079: 2048: 2044: 2013: 2009: 1986: 1982: 1951: 1947: 1916: 1912: 1889: 1885: 1861: 1857: 1812: 1808: 1765: 1761: 1706: 1702: 1657: 1650: 1613: 1609: 1554: 1550: 1510: 1504: 1500: 1490: 1488: 1480: 1479: 1475: 1444: 1440: 1409: 1405: 1376:(24): 6041–50. 1365: 1361: 1330: 1326: 1313: 1312: 1308: 1298: 1296: 1288: 1287: 1283: 1251: 1247: 1208: 1204: 1173: 1169: 1124: 1120: 1111: 1109: 1101: 1100: 1096: 1053: 1049: 1041: 1039: 1037: 1019: 1015: 966: 962: 915: 911: 880: 876: 839: 835: 796: 792: 747: 743: 698: 694: 671: 667: 604: 600: 569: 565: 555: 553: 536: 532: 523: 519: 509: 507: 498: 497: 493: 483: 481: 459: 452: 415: 411: 406: 359: 333: 282: 273: 265: 253: 241: 233: 220: 207: 185: 172: 127: 103: 73:and convective 52:ethylene glycol 24: 17: 12: 11: 5: 3013: 3003: 3002: 2997: 2992: 2987: 2973: 2972: 2963: 2962: 2926: 2925: 2914: 2913:External links 2911: 2908: 2907: 2839: 2778: 2751: 2716: 2705:(1): 245–254. 2689: 2654: 2643:(3): 802–810. 2626: 2598: 2571: 2512: 2458: 2426: 2414: 2375: 2338:(2): 431–437. 2318: 2294: 2239: 2230: 2221: 2214: 2194: 2187: 2164: 2137: 2112: 2077: 2058:(16): 163109. 2042: 2007: 1980: 1945: 1910: 1883: 1855: 1826:(4): 209–214. 1806: 1759: 1700: 1648: 1607: 1548: 1521:(2): 504–515. 1498: 1473: 1438: 1403: 1370:Applied Optics 1359: 1324: 1321:on 2013-11-11. 1306: 1281: 1245: 1202: 1167: 1118: 1094: 1067:(4): 874–885. 1047: 1035: 1013: 984:(25): 253104. 960: 909: 890:(2): 243–247. 874: 853:(4): 530–546. 833: 790: 741: 692: 681:(2): 151–157. 665: 598: 563: 530: 517: 491: 473:(3): 240–250. 450: 408: 407: 405: 402: 401: 400: 395: 390: 385: 380: 375: 373:Fluid dynamics 370: 365: 358: 355: 346:Thermophoresis 332: 329: 321:energy density 286:flow batteries 281: 278: 272: 269: 264: 261: 251: 239: 232: 231:Nanolubricants 229: 219: 216: 206: 203: 184: 181: 171: 168: 147: 146: 143: 140: 137: 134: 126: 123: 122: 121: 116: 113: 102: 99: 15: 9: 6: 4: 3: 2: 3012: 3001: 3000:Nanomaterials 2998: 2996: 2995:Heat transfer 2993: 2991: 2988: 2986: 2985:Nanoparticles 2983: 2982: 2980: 2971: 2968: 2967: 2966: 2959: 2955: 2950: 2945: 2941: 2937: 2933: 2928: 2927: 2924: 2920: 2917: 2916: 2903: 2899: 2895: 2891: 2886: 2881: 2877: 2873: 2869: 2865: 2861: 2857: 2850: 2843: 2835: 2831: 2827: 2823: 2819: 2815: 2811: 2807: 2802: 2797: 2793: 2789: 2782: 2774: 2770: 2766: 2762: 2755: 2747: 2743: 2739: 2735: 2731: 2727: 2720: 2712: 2708: 2704: 2700: 2693: 2685: 2681: 2677: 2673: 2669: 2665: 2658: 2650: 2646: 2642: 2638: 2630: 2622: 2618: 2614: 2610: 2602: 2594: 2590: 2586: 2582: 2575: 2567: 2563: 2558: 2553: 2548: 2543: 2539: 2535: 2531: 2527: 2523: 2516: 2508: 2504: 2499: 2494: 2490: 2486: 2482: 2478: 2474: 2470: 2462: 2448: 2447: 2442: 2435: 2433: 2431: 2423: 2418: 2410: 2406: 2402: 2398: 2394: 2390: 2386: 2379: 2371: 2367: 2363: 2359: 2354: 2349: 2345: 2341: 2337: 2333: 2329: 2322: 2308: 2304: 2298: 2290: 2286: 2282: 2278: 2274: 2270: 2266: 2262: 2258: 2254: 2250: 2243: 2234: 2225: 2217: 2211: 2208:. CRC Press. 2207: 2206: 2198: 2190: 2184: 2180: 2179: 2171: 2169: 2160: 2156: 2152: 2148: 2141: 2126: 2122: 2116: 2108: 2104: 2100: 2096: 2093:(7): 073104. 2092: 2088: 2081: 2073: 2069: 2065: 2061: 2057: 2053: 2046: 2038: 2034: 2030: 2026: 2022: 2018: 2011: 2003: 1999: 1995: 1991: 1984: 1976: 1972: 1968: 1964: 1961:(4): 043108. 1960: 1956: 1949: 1941: 1937: 1933: 1929: 1925: 1921: 1914: 1906: 1902: 1898: 1894: 1887: 1879: 1875: 1871: 1867: 1859: 1851: 1847: 1843: 1839: 1834: 1829: 1825: 1821: 1817: 1810: 1802: 1798: 1794: 1790: 1786: 1782: 1778: 1774: 1770: 1763: 1755: 1751: 1747: 1743: 1739: 1735: 1731: 1727: 1723: 1719: 1715: 1711: 1704: 1696: 1692: 1687: 1682: 1678: 1674: 1670: 1666: 1662: 1655: 1653: 1643: 1638: 1634: 1630: 1626: 1622: 1618: 1611: 1603: 1599: 1594: 1589: 1584: 1579: 1575: 1571: 1567: 1563: 1559: 1552: 1544: 1540: 1536: 1532: 1528: 1524: 1520: 1516: 1509: 1502: 1487: 1483: 1477: 1469: 1465: 1461: 1457: 1454:(2): 024501. 1453: 1449: 1442: 1434: 1430: 1426: 1422: 1419:(2): 021004. 1418: 1414: 1407: 1399: 1395: 1391: 1387: 1383: 1379: 1375: 1371: 1363: 1355: 1351: 1347: 1343: 1340:(2): 021003. 1339: 1335: 1328: 1320: 1316: 1310: 1295: 1291: 1285: 1277: 1273: 1269: 1265: 1261: 1257: 1249: 1241: 1237: 1233: 1229: 1225: 1221: 1217: 1213: 1206: 1198: 1194: 1190: 1186: 1182: 1178: 1171: 1163: 1159: 1154: 1149: 1145: 1141: 1137: 1133: 1129: 1122: 1108: 1104: 1098: 1090: 1086: 1082: 1078: 1074: 1070: 1066: 1062: 1058: 1051: 1038: 1032: 1028: 1024: 1017: 1009: 1005: 1000: 995: 991: 987: 983: 979: 975: 971: 964: 956: 952: 948: 944: 940: 936: 932: 928: 924: 920: 913: 905: 901: 897: 893: 889: 885: 878: 869: 864: 860: 856: 852: 848: 844: 837: 829: 825: 821: 817: 813: 809: 805: 801: 794: 786: 782: 777: 772: 768: 764: 760: 756: 752: 745: 737: 733: 728: 723: 719: 715: 711: 707: 703: 696: 688: 684: 680: 676: 669: 661: 657: 652: 647: 643: 639: 634: 629: 625: 621: 617: 613: 609: 602: 594: 590: 586: 582: 578: 574: 567: 551: 547: 543: 542: 534: 527: 521: 505: 501: 495: 480: 476: 472: 468: 464: 457: 455: 445: 440: 436: 432: 428: 424: 420: 413: 409: 399: 396: 394: 391: 389: 386: 384: 381: 379: 378:Heat transfer 376: 374: 371: 369: 366: 364: 361: 360: 354: 352: 347: 341: 338: 328: 324: 322: 318: 314: 310: 306: 302: 297: 295: 291: 287: 277: 268: 260: 256: 255:lubricants. 248: 246: 242: 228: 224: 215: 211: 205:Smart cooling 202: 199: 195: 190: 180: 178: 167: 165: 161: 157: 153: 144: 141: 138: 135: 132: 131: 130: 120: 117: 114: 112: 109: 108: 107: 98: 95: 90: 88: 83: 80: 76: 72: 68: 64: 60: 59:heat transfer 55: 53: 49: 45: 41: 37: 36:nanoparticles 33: 29: 22: 2964: 2939: 2935: 2921:produced by 2859: 2855: 2842: 2791: 2787: 2781: 2764: 2760: 2754: 2729: 2725: 2719: 2702: 2698: 2692: 2667: 2663: 2657: 2640: 2636: 2629: 2612: 2608: 2601: 2584: 2580: 2574: 2557:10234/174682 2529: 2525: 2515: 2498:1721.1/66196 2472: 2468: 2461: 2450:. Retrieved 2444: 2417: 2392: 2388: 2378: 2335: 2331: 2321: 2310:. Retrieved 2306: 2297: 2256: 2252: 2242: 2233: 2224: 2204: 2197: 2181:. Springer. 2177: 2150: 2146: 2140: 2128:. Retrieved 2124: 2115: 2090: 2086: 2080: 2055: 2051: 2045: 2020: 2016: 2010: 1993: 1989: 1983: 1958: 1954: 1948: 1923: 1919: 1913: 1896: 1892: 1886: 1869: 1865: 1858: 1823: 1819: 1809: 1776: 1772: 1762: 1713: 1709: 1703: 1668: 1664: 1624: 1620: 1610: 1565: 1561: 1551: 1518: 1515:Nano Futures 1514: 1501: 1489:. Retrieved 1485: 1476: 1451: 1447: 1441: 1416: 1412: 1406: 1373: 1369: 1362: 1337: 1333: 1327: 1319:the original 1309: 1297:. Retrieved 1293: 1284: 1259: 1255: 1248: 1215: 1211: 1205: 1180: 1176: 1170: 1138:(10): 3–19. 1135: 1131: 1121: 1110:. Retrieved 1106: 1097: 1064: 1060: 1050: 1040:, retrieved 1026: 1016: 981: 977: 963: 922: 918: 912: 887: 883: 877: 850: 846: 836: 803: 799: 793: 758: 754: 744: 709: 705: 695: 678: 675:Particuology 674: 668: 615: 611: 601: 576: 572: 566: 554:. Retrieved 550:the original 540: 533: 520: 508:. Retrieved 504:the original 494: 482:. Retrieved 470: 466: 426: 422: 412: 368:Flow battery 342: 334: 325: 313:ferric oxide 298: 283: 280:Flow battery 274: 266: 257: 249: 234: 225: 221: 212: 208: 196:efficiency. 186: 183:Applications 177:free radical 173: 148: 128: 104: 91: 84: 56: 27: 25: 21:Nanofluidics 2942:(7): 1268. 2885:2072/445790 2862:: 639–651. 2794:: 279–288. 2732:: 196–206. 2587:: 531–538. 2532:: 504–531. 2153:: 504–515. 1899:: 307–314. 1872:: 875–882. 1779:: 218–223. 1710:Chemosphere 1665:Nano Energy 1627:(10): e34. 1294:hindawi.com 1218:: 115–123. 1183:: 115–125. 761:: 504–515. 158:particles, 154:particles, 79:rheological 54:, and oil. 2979:Categories 2801:1902.09346 2452:2024-06-17 2312:2024-06-17 2023:: 94–109. 1926:: 95–102. 1568:(1): 225. 1112:2022-09-18 1042:2022-09-18 618:(1): 231. 404:References 393:Surfactant 101:Properties 63:fuel cells 2958:1996-1073 2902:126074065 2894:0017-9310 2834:119067497 2826:0017-9310 2767:: 16–28. 2670:: 79–93. 2615:: 10–22. 2566:1290-0729 2507:0021-8979 2362:0920-4105 2281:0028-0836 1850:135588867 1842:2150-5551 1801:136011443 1793:1662-8985 1738:0045-6535 1695:2211-2855 1543:247095942 1468:0199-6231 1433:0199-6231 1354:1948-5085 1162:121751385 1089:0017-9310 970:Sun, Ying 828:137198606 820:2191-4281 785:249738724 706:Nanoscale 642:1931-7573 398:Therminol 309:viscosity 305:electrode 170:Bio-based 125:Synthesis 111:Viscosity 32:nanometer 28:nanofluid 2936:Energies 2409:22578015 2370:95822692 2307:TriboTEX 2289:27488799 1754:52138195 1746:30165282 1602:21711750 1398:24085009 1276:99426800 1240:28531649 1008:22154751 972:(2013). 947:12736681 736:26763173 660:21711748 556:27 March 510:27 March 484:27 March 357:See also 245:graphene 192:enhance 189:coolants 164:graphene 152:metallic 2864:Bibcode 2806:Bibcode 2734:Bibcode 2672:Bibcode 2534:Bibcode 2477:Bibcode 2340:Bibcode 2261:Bibcode 2095:Bibcode 2060:Bibcode 2025:Bibcode 1963:Bibcode 1928:Bibcode 1718:Bibcode 1673:Bibcode 1629:Bibcode 1593:3211283 1570:Bibcode 1523:Bibcode 1486:iop.org 1378:Bibcode 1220:Bibcode 1185:Bibcode 1140:Bibcode 1069:Bibcode 986:Bibcode 955:4419113 927:Bibcode 892:Bibcode 855:Bibcode 763:Bibcode 714:Bibcode 651:3211290 620:Bibcode 581:Bibcode 431:Bibcode 218:Sensing 115:Density 2956:  2900:  2892:  2832:  2824:  2564:  2505:  2407:  2368:  2360:  2287:  2279:  2253:Nature 2212:  2185:  2130:8 June 1848:  1840:  1799:  1791:  1752:  1744:  1736:  1693:  1600:  1590:  1541:  1491:8 June 1466:  1431:  1396:  1352:  1299:8 June 1274:  1238:  1160:  1087:  1033:  1006:  953:  945:  919:Nature 826:  818:  783:  734:  658:  648:  640:  2898:S2CID 2852:(PDF) 2830:S2CID 2796:arXiv 2366:S2CID 1846:S2CID 1797:S2CID 1750:S2CID 1539:S2CID 1511:(PDF) 1272:S2CID 1158:S2CID 1004:S2CID 951:S2CID 824:S2CID 781:S2CID 301:redox 156:oxide 44:fluid 2954:ISSN 2890:ISSN 2822:ISSN 2562:ISSN 2503:ISSN 2446:IEEE 2405:PMID 2358:ISSN 2285:PMID 2277:ISSN 2210:ISBN 2183:ISBN 2132:2015 1838:ISSN 1789:ISSN 1742:PMID 1734:ISSN 1691:ISSN 1598:PMID 1493:2015 1464:ISSN 1429:ISSN 1394:PMID 1350:ISSN 1301:2015 1236:PMID 1085:ISSN 1031:ISBN 943:PMID 816:ISSN 732:PMID 656:PMID 638:ISSN 558:2010 512:2010 486:2010 337:COST 2944:doi 2880:hdl 2872:doi 2860:126 2814:doi 2792:111 2769:doi 2765:157 2742:doi 2707:doi 2680:doi 2645:doi 2617:doi 2613:109 2589:doi 2585:209 2552:hdl 2542:doi 2530:129 2493:hdl 2485:doi 2473:106 2397:doi 2348:doi 2269:doi 2257:536 2155:doi 2151:103 2103:doi 2091:100 2068:doi 2056:102 2033:doi 1998:doi 1994:115 1971:doi 1936:doi 1924:406 1901:doi 1897:294 1874:doi 1870:219 1828:doi 1781:doi 1777:832 1726:doi 1714:212 1681:doi 1637:doi 1588:PMC 1578:doi 1531:doi 1519:103 1456:doi 1452:133 1421:doi 1417:135 1386:doi 1342:doi 1264:doi 1228:doi 1216:504 1193:doi 1148:doi 1077:doi 994:doi 982:103 935:doi 923:423 900:doi 863:doi 808:doi 771:doi 759:103 722:doi 683:doi 646:PMC 628:doi 589:doi 475:doi 471:128 439:doi 427:113 250:MoS 238:MoS 85:In 2981:: 2952:. 2940:12 2938:. 2934:. 2896:. 2888:. 2878:. 2870:. 2858:. 2854:. 2828:. 2820:. 2812:. 2804:. 2790:. 2763:. 2740:. 2730:84 2728:. 2703:27 2701:. 2678:. 2668:68 2666:. 2641:26 2611:. 2583:. 2560:. 2550:. 2540:. 2528:. 2524:. 2501:. 2491:. 2483:. 2471:. 2443:. 2429:^ 2403:. 2393:45 2391:. 2387:. 2364:. 2356:. 2346:. 2336:78 2334:. 2330:. 2305:. 2283:. 2275:. 2267:. 2255:. 2251:. 2167:^ 2149:. 2123:. 2101:. 2089:. 2066:. 2054:. 2031:. 2021:68 2019:. 1992:. 1969:. 1959:92 1957:. 1934:. 1922:. 1895:. 1868:. 1844:. 1836:. 1822:. 1818:. 1795:. 1787:. 1775:. 1771:. 1748:. 1740:. 1732:. 1724:. 1712:. 1689:. 1679:. 1669:88 1667:. 1663:. 1651:^ 1635:. 1623:. 1619:. 1596:. 1586:. 1576:. 1564:. 1560:. 1537:. 1529:. 1517:. 1513:. 1484:. 1462:. 1450:. 1427:. 1415:. 1392:. 1384:. 1374:52 1372:. 1348:. 1336:. 1292:. 1270:. 1260:31 1258:. 1234:. 1226:. 1214:. 1191:. 1181:54 1179:. 1156:. 1146:. 1136:27 1134:. 1130:. 1105:. 1083:. 1075:. 1065:55 1063:. 1059:. 1025:, 1002:. 992:. 980:. 976:. 949:. 941:. 933:. 921:. 898:. 888:49 886:. 861:. 851:26 849:. 845:. 822:. 814:. 804:39 802:. 779:. 769:. 757:. 753:. 730:. 720:. 708:. 704:. 677:. 654:. 644:. 636:. 626:. 614:. 610:. 587:. 577:52 575:. 544:. 469:. 465:. 453:^ 437:. 425:. 421:. 353:. 296:. 243:, 162:, 26:A 2960:. 2946:: 2904:. 2882:: 2874:: 2866:: 2836:. 2816:: 2808:: 2798:: 2775:. 2771:: 2748:. 2744:: 2736:: 2713:. 2709:: 2686:. 2682:: 2674:: 2651:. 2647:: 2623:. 2619:: 2595:. 2591:: 2568:. 2554:: 2544:: 2536:: 2509:. 2495:: 2487:: 2479:: 2455:. 2411:. 2399:: 2372:. 2350:: 2342:: 2315:. 2291:. 2271:: 2263:: 2218:. 2191:. 2161:. 2157:: 2134:. 2109:. 2105:: 2097:: 2074:. 2070:: 2062:: 2039:. 2035:: 2027:: 2004:. 2000:: 1977:. 1973:: 1965:: 1942:. 1938:: 1930:: 1907:. 1903:: 1880:. 1876:: 1852:. 1830:: 1824:3 1803:. 1783:: 1756:. 1728:: 1720:: 1697:. 1683:: 1675:: 1645:. 1639:: 1631:: 1625:1 1604:. 1580:: 1572:: 1566:6 1545:. 1533:: 1525:: 1495:. 1470:. 1458:: 1435:. 1423:: 1400:. 1388:: 1380:: 1356:. 1344:: 1338:5 1303:. 1278:. 1266:: 1242:. 1230:: 1222:: 1199:. 1195:: 1187:: 1164:. 1150:: 1142:: 1115:. 1091:. 1079:: 1071:: 1010:. 996:: 988:: 957:. 937:: 929:: 906:. 902:: 894:: 871:. 865:: 857:: 830:. 810:: 787:. 773:: 765:: 738:. 724:: 716:: 710:8 689:. 685:: 679:7 662:. 630:: 622:: 616:6 595:. 591:: 583:: 560:. 514:. 488:. 477:: 447:. 441:: 433:: 252:2 240:2 23:.

Index

Nanofluidics
nanometer
nanoparticles
colloidal suspensions
fluid
carbon nanotubes
ethylene glycol
heat transfer
fuel cells
hybrid-powered engines
thermal conductivity
heat transfer coefficient
rheological
computational fluid dynamics
disjoining pressure
Viscosity
Thermal conductivity
metallic
oxide
carbon nanotubes
graphene
free radical
coolants
Polymerase chain reaction
Nanofluids in solar collectors
MoS2
graphene
flow batteries
Defense Advanced Research Projects Agency
lithium-ion batteries

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.