Knowledge

Missing fundamental

Source đź“ť

31: 1409: 166: 78: 160: 1696: 222:
filter is sent to a circuit where harmonics are synthesized above the low notes. The newly created harmonics are mixed back into the main output to create a perception of the filtered-out low notes. Using a device with this synthetic process can reduce complaints from low frequency noise carrying through walls and it can be employed to reduce low frequency content in loud music that might otherwise vibrate and damage breakable valuables.
111:; however, earlier work has shown that certain sounds with a prominent peak in their autocorrelation function do not elicit a corresponding pitch percept, and that certain sounds without a peak in their autocorrelation function nevertheless elicit a pitch. Autocorrelation can thus be considered, at best, an incomplete model. 69:, it will consist of frequency components that are integer multiples of that value (e.g. 100, 200, 300, 400, 500.... Hz). However, smaller loudspeakers may not produce low frequencies, so in our example, the 100 Hz component may be missing. Nevertheless, a pitch corresponding to the fundamental may still be heard. 92:
It was once thought that this effect was because the missing fundamental was replaced by distortions introduced by the physics of the ear. However, experiments subsequently showed that when a noise was added that would have masked these distortions had they been present, listeners still heard a pitch
122:
shows that, under narrow stimulus conditions with a small number of harmonics, the general population can be divided into those who perceive missing fundamentals, and those who primarily hear the overtones instead. This was done by asking subjects to judge the direction of motion (up or down) of two
221:
is set at a low frequency above which the sound system is capable of safely reproducing tones. Musical signal content above the high-pass part of the crossover filter is sent to the main output which is amplified by the sound system. Low frequency content below the low-pass part of the crossover
185:
overtones, but are constructed and tuned to produce near-harmonic overtones to an implied missing fundamental. Hit in the usual way (half to three-quarters the distance from the center to the rim), the fundamental note of a timpani is very weak in relation to its second through fifth "harmonic"
102:
involving the timing of neural impulses in the auditory nerve. However, it has long been noted that any neural mechanisms which may accomplish a delay (a necessary operation of a true autocorrelation) have not been found. At least one model shows a temporal delay to be unnecessary to produce an
258:
that relied on the missing fundamental concept to give the illusion of low bass. Both products processed certain overtones selectively to help small loudspeakers, ones which could not reproduce low-frequency components, to sound as if they were capable of low bass. Both products included a
135:
to show that the preference for missing fundamental hearing correlated with left-hemisphere lateralization of pitch perception, where the preference for spectral hearing correlated with right-hemisphere lateralization, and those who exhibited the latter preference tended to be musicians.
208:
cannot reproduce sounds lower than 300 Hz, but a male voice has a fundamental frequency of approximately 150 Hz. Because of the missing fundamental effect, the fundamental frequencies of male voices are still perceived as their pitches over the telephone.
295:
has been identified as a possible target for such processing. Many computer sound systems are not capable of low bass, and songs offered to consumers via computer have been identified as ones that may benefit from augmented bass harmonics processing.
97:
in 1954. It is now widely accepted that the brain processes the information present in the overtones to calculate the fundamental frequency. The precise way in which it does so is still a matter of debate, but the processing seems to be based on an
89:(also known as the pitch of the missing fundamental or virtual pitch) can sometimes be heard when there is no apparent source or component of that frequency. This perception is due to the brain interpreting repetition patterns that are present. 167: 241:
This very concept of "missing fundamental" being reproduced based on the overtones in the tone has been used to create the illusion of bass in sound systems that are not capable of such bass. In mid-1999, Meir Shashoua of
186:
overtones. A timpani might be tuned to produce sound most strongly at 200, 302, 398, and 488 Hz, for instance, implying a missing fundamental at 100 Hz (though the actual dampened fundamental is 170 Hz).
212:
The missing fundamental phenomenon is used electronically by some pro audio manufacturers to allow sound systems to seem to produce notes that are lower in pitch than they are capable of reproducing. In a hardware
53:
that the auditory system, with its natural tendency to distinguish a tone from another, will persistently assign a pitch to a complex tone given that a sufficient set of harmonics are present in the spectrum.
263:
which greatly attenuated all the low frequency tones that were expected to be beyond the capabilities of the target sound system. One example of a popular song that was recorded with MaxxBass processing is
1110: 1320:– discussion forum thread about the Heidelberg research, with a link to a sound file used in the research so that readers can determine whether they are fundamental or overtone hearers 412: 151:
et al. have a related study that claims that most people can switch from listening for the pitch from the harmonics that are evident to finding these pitches spectrally.
507: 291:
Other software and hardware companies have developed their own versions of missing fundamental-based bass augmentation products. The poor bass reproduction of
944: 1204: 1317: 1040: 810: 17: 874:
Schneider, P.; Sluming, V.; Roberts, N.; Scherg, M.; Goebel, R.; Specht, H.; Dosch, H.G.; Bleeck, S.; Stippich, C.; Rupp, A. (August 2005).
1732: 250:, patented an algorithm to create the sense of the missing fundamental by synthesizing higher harmonics. Waves Audio released the MaxxBass 875: 450: 163:
Timpani bodies modify modes of vibration to match harmonics. Red: Harmonics of perceived pitch. Dark blue: Prominent modes of vibration.
766:
Fitzgerald, M.B.; Wright, B. (December 2005). "A perceptual learning investigation of the pitch elicited by amplitude-modulated noise".
639:
Kaernbach, C.; Demany, L. (October 1998). "Psychophysical evidence against the autocorrelation theory of auditory temporal processing".
30: 428: 1124: 1618: 38:, and the second harmonic, 200 hertz. The periodicity is nevertheless clear when compared to the full-spectrum waveform on top. 1167: 1068: 1047:. "The sequence 1; 1:51; 1:99; 2:44; 2:89 is almost 1; 1:5; 2; 2:5; 3 which is the harmonic series of a missing fundamental." 1019: 517: 490: 460: 422: 193:'s lowest air and body resonances generally fall between 250 Hz and 300 Hz. The fundamental frequency of the open 1345: 1298: 945:
https://www.nats.org/_Library/So_You_Want_To_Sing_Book_Series/HOWELL-Parsing-the-spectral-envelope-PROQUEST-FINAL.pdf
339: 1725: 254:
to allow computer users to apply the synthesized harmonics to their audio files. Later, Waves Audio produced small
147:, He wrote that although not everyone can hear the missing fundamentals, noticing them can be taught and learned. 957: 1780: 1215: 1765: 1718: 201:, so the lowest notes of a violin have an attenuated fundamental, although listeners seldom notice this. 480: 1457: 1105: 1578: 194: 876:"Structural and functional asymmetry of lateral Heschl's gyrus reflects pitch perception preference" 583: 1884: 1760: 1633: 1034: 849: 584:"The case of the missing delay lines: Synthetic delays obtained by cross-channel phase interaction" 1308:
Structural and functional asymmetry of lateral Heschl's gyrus reflects pitch perception preference
1827: 1790: 1513: 1370: 1338: 1267: 534: 115: 1785: 1452: 1362: 914: 148: 132: 1058: 1593: 1491: 1395: 198: 119: 86: 1307: 775: 740: 648: 598: 982: 8: 1613: 1132: 251: 779: 744: 652: 602: 1810: 1775: 1699: 1545: 1535: 1496: 1331: 906: 841: 713: 672: 269: 94: 77: 1408: 1741: 1669: 1501: 1175: 1064: 1015: 987: 898: 833: 791: 717: 664: 614: 557: 513: 486: 456: 418: 379: 335: 118:
of the frequencies present, is not, however, always perceived. Research conducted at
104: 910: 845: 676: 1858: 1853: 1679: 1598: 1562: 1530: 1481: 1390: 1268:"Better Bass: The Complete Guide To Recording, Mixing & Monitoring The Low End" 977: 969: 958:"Patterns of Individual Differences in the Perception of Missing Fundamental Tones" 890: 825: 783: 748: 703: 656: 606: 549: 371: 260: 1242:"Low Complexity Virtual Bass Enhancement Algorithm For Portable Multimedia Device" 1090: 1863: 1832: 1820: 1805: 1770: 1674: 1628: 1469: 1427: 1302: 1241: 1044: 1009: 829: 305: 233:, which allows relatively smaller bass pipes to produce very low-pitched sounds. 218: 99: 50: 356: 1889: 1755: 1623: 1608: 1555: 265: 230: 1295: 1153: 553: 535:"Neural Correlates of the Pitch of Complex Tones. I. Pitch and Pitch Salience" 159: 1878: 1795: 1588: 1550: 1518: 1473: 1435: 1385: 1380: 1179: 285: 281: 62: 1815: 1583: 991: 902: 837: 795: 668: 618: 448: 214: 46:
being absent in the waveform is called the missing fundamental phenomenon.
939:
Parsing the Spectral Envelope: Toward a General Theory of Vocal Tone Color
561: 410: 383: 141:
Parsing the Spectral Envelope: Toward a General Theory of Vocal Tone Color
1603: 1415: 873: 692:"Perceptual pitch shift for sounds with similar waveform autocorrelation" 310: 273: 247: 144: 1664: 1654: 1440: 689: 397: 292: 226: 205: 182: 787: 708: 691: 610: 81:
The GCD of the frequency of all harmonics is the fundamental (dashed).
1710: 1445: 1375: 1354: 973: 752: 660: 375: 255: 58: 1848: 1540: 1508: 894: 731:
Burns, E.M.; Viemeister, N.F. (October 1976). "Nonspectral pitch".
243: 43: 1314:
8, 1241–1247 (2005); downloading the full article requires payment
1486: 178: 108: 690:
Pressnitzer, D.; de Cheveigné, A.; Winter, I.M. (January 2002).
1239: 1108:, "Method and system for enhancing quality of sound signal" 505: 190: 124: 1240:
Arora, Manish; Seongcheol Jang; Hangil Moon (September 2006).
277: 34:
The bottom waveform is missing the fundamental frequency, 100
1659: 66: 35: 1323: 811:"Pitch is determined by naturally occurring periodic sounds" 1649: 581: 1205:"MaxxBass Applications for Small, Full Range Loudspeakers" 197:
string is below 200 Hz in modern tunings as well as
128: 93:
corresponding to the missing fundamental, as reported by
103:
autocorrelation model of pitch perception, appealing to
1310:– abstract of the Heidelberg research, as published in 1035:
McGill University. Physics Department. Guy D. Moore.
730: 114:
The pitch of the missing fundamental, usually at the
1214:. Nashua, New Hampshire: Waves Audio. Archived from 765: 478: 449:
John Clark, Colin Yallop and Janet Fletcher (2007).
398:"Virtual Pitch Algorithm of Terhardt and Extensions" 638: 532: 411:Jan Schnupp, Israel Nelken and Andrew King (2011). 808: 334:(5th ed.). New York: Routledge. p. 123. 1198: 1196: 1125:"ProSoundWeb. LAB: The Classic Live Audio Board. 1007: 357:"Pitch, Periodicity, & Auditory Organization" 268:", the 2001 Grammy award-winning version sung by 1876: 236: 1159: 582:de CheveignĂ©, A.; Pressnitzer, D. (June 2006). 1193: 533:Cariani, P.A.; Delgutte, B. (September 1996). 1726: 1339: 1259: 768:Journal of the Acoustical Society of America 733:Journal of the Acoustical Society of America 641:Journal of the Acoustical Society of America 591:Journal of the Acoustical Society of America 1050: 332:Acoustics and Psychoacoustics Fifth Edition 329: 1733: 1719: 1346: 1332: 1233: 1003: 1001: 452:An Introduction to Phonetics and Phonology 330:Howard, David M.; Angus, J. A. S. (2017). 1202: 981: 707: 42:The pitch being perceived with the first 1265: 506:Peter M. Todd and D. Gareth Loy (1991). 354: 158: 76: 57:For example, when a note (that is not a 29: 998: 809:Schwartz, D.A.; Purves, D. (May 2004). 474: 472: 14: 1877: 1740: 1129:posts by Doug Fowler June 28-29, 2008" 1056: 1008:Howard, David M.; Jamie Angus (2006). 386:– via Michigan State University. 1714: 1327: 1203:Bundschuh, Paul (April 15–17, 2004). 1165: 1063:. Taylor & Francis. p. 125. 1093:MaxxBass Bass Enhancement Technology 955: 469: 482:Pitch: Neural Coding and Perception 355:Hartmann, William (December 1996). 24: 962:Journal of Experimental Psychology 25: 1901: 1289: 696:Acoustics Research Letters Online 229:make use of this phenomenon as a 1695: 1694: 1407: 1146: 1117: 1098: 1084: 1028: 1014:. Focal Press. pp. 200–3. 949: 931: 867: 802: 759: 724: 683: 632: 983:11858/00-001M-0000-0010-247B-4 575: 526: 499: 442: 404: 390: 348: 323: 127:. The authors used structural 72: 13: 1: 1353: 1266:Houghton, Matt (April 2007). 1011:Acoustics and Psychoacoustics 479:Christopher J. Plack (2005). 364:Acoustical Society of America 316: 237:Audio processing applications 18:Missing fundamental frequency 1781:Illusory continuity of tones 830:10.1016/j.heares.2004.01.019 7: 299: 154: 10: 1906: 542:Journal of Neurophysiology 1841: 1748: 1690: 1642: 1571: 1468: 1426: 1402: 1361: 1060:Foundations of perception 554:10.1152/jn.1996.76.3.1698 169:Play C0 harp-timpano-harp 1811:Risset's rhythmic effect 1766:Deutsch's scale illusion 1761:Constant spectrum melody 1166:Norem, Josh (May 2004). 455:. Blackwell Publishing. 217:or a software plugin, a 1828:Speech-to-song illusion 1821:Deutsch tritone paradox 1791:Lossy audio compression 1371:Architectural acoustics 1057:Mather, George (2006). 509:Music and Connectionism 199:most historical tunings 116:greatest common divisor 1786:Illusory discontinuity 1458:Fletcher–Munson curves 1453:Equal-loudness contour 1363:Acoustical engineering 1318:How do you hear tones? 1212:Loudspeaker University 1037:Lecture 26: Percussion 175: 82: 39: 1594:Hermann von Helmholtz 1492:Fundamental frequency 1396:Sympathetic resonance 1168:"MaxxBass MiniWoofer" 1154:U.S. patent 5,930,373 956:Ladd, Robert (2013). 414:Auditory Neuroscience 162: 120:Heidelberg University 80: 49:It is established in 33: 1816:Shepard-Risset tone 1801:Missing fundamental 1614:Werner Meyer-Eppler 1524:Missing fundamental 1312:Nature Neuroscience 994:– via Pubmed. 937:Howell, I. (2017). 883:Nature Neuroscience 780:2005ASAJ..118.3794F 745:1976ASAJ...60..863B 653:1998ASAJ..104.2298K 603:2006ASAJ..119.3908D 27:Acoustic phenomenon 1776:Glissando illusion 1742:Auditory illusions 1497:Frequency spectrum 1301:2003-08-13 at the 1043:2015-09-24 at the 270:Christina Aguilera 176: 95:J. C. R. Licklider 83: 40: 1872: 1871: 1864:Temporal illusion 1708: 1707: 1670:Musical acoustics 1502:harmonic spectrum 1296:Pitch Paradoxical 1091:Waves Car Audio. 1070:978-0-86377-835-3 1021:978-0-240-51995-1 788:10.1121/1.2074687 709:10.1121/1.1416671 611:10.1121/1.2195291 519:978-0-262-20081-3 492:978-0-387-23472-4 462:978-1-4051-3083-7 424:978-0-262-11318-2 16:(Redirected from 1897: 1859:Tactile illusion 1854:Optical illusion 1735: 1728: 1721: 1712: 1711: 1698: 1697: 1599:Carleen Hutchins 1531:Combination tone 1418: 1411: 1391:String vibration 1348: 1341: 1334: 1325: 1324: 1283: 1282: 1280: 1278: 1263: 1257: 1256: 1254: 1252: 1237: 1231: 1230: 1228: 1226: 1221:on July 14, 2011 1220: 1209: 1200: 1191: 1190: 1188: 1186: 1163: 1157: 1156: 1150: 1144: 1143: 1141: 1140: 1131:. Archived from 1121: 1115: 1114: 1113: 1109: 1102: 1096: 1088: 1082: 1081: 1079: 1077: 1054: 1048: 1032: 1026: 1025: 1005: 996: 995: 985: 974:10.1037/a0031261 968:(5): 1386–1397. 953: 947: 935: 929: 928: 926: 925: 919: 913:. Archived from 889:(9): 1241–1247. 880: 871: 865: 864: 862: 860: 854: 848:. Archived from 818:Hearing Research 815: 806: 800: 799: 774:(6): 3794–3803. 763: 757: 756: 753:10.1121/1.381166 728: 722: 721: 711: 687: 681: 680: 661:10.1121/1.423742 647:(4): 2298–2306. 636: 630: 629: 627: 625: 597:(6): 3908–3918. 588: 579: 573: 572: 570: 568: 548:(3): 1698–1716. 539: 530: 524: 523: 503: 497: 496: 476: 467: 466: 446: 440: 439: 437: 436: 427:. Archived from 408: 402: 401: 394: 388: 387: 376:10.1121/1.417248 370:(6): 3491–3902. 361: 352: 346: 345: 327: 261:high-pass filter 246:, co-founder of 219:crossover filter 174: 173: 172: 170: 109:cochlear filters 21: 1905: 1904: 1900: 1899: 1898: 1896: 1895: 1894: 1885:Psychoacoustics 1875: 1874: 1873: 1868: 1837: 1833:Yanny or Laurel 1806:Octave illusion 1771:Franssen effect 1744: 1739: 1709: 1704: 1686: 1638: 1629:D. Van Holliday 1567: 1536:Mersenne's laws 1470:Audio frequency 1464: 1428:Psychoacoustics 1422: 1421: 1414: 1400: 1357: 1352: 1303:Wayback Machine 1292: 1287: 1286: 1276: 1274: 1264: 1260: 1250: 1248: 1238: 1234: 1224: 1222: 1218: 1207: 1201: 1194: 1184: 1182: 1164: 1160: 1152: 1151: 1147: 1138: 1136: 1123: 1122: 1118: 1111: 1104: 1103: 1099: 1089: 1085: 1075: 1073: 1071: 1055: 1051: 1045:Wayback Machine 1033: 1029: 1022: 1006: 999: 954: 950: 936: 932: 923: 921: 917: 878: 872: 868: 858: 856: 852: 813: 807: 803: 764: 760: 729: 725: 688: 684: 637: 633: 623: 621: 586: 580: 576: 566: 564: 537: 531: 527: 520: 504: 500: 493: 477: 470: 463: 447: 443: 434: 432: 425: 409: 405: 396: 395: 391: 359: 353: 349: 342: 328: 324: 319: 306:Psychoacoustics 302: 239: 168: 165: 164: 157: 100:autocorrelation 75: 51:psychoacoustics 28: 23: 22: 15: 12: 11: 5: 1903: 1893: 1892: 1887: 1870: 1869: 1867: 1866: 1861: 1856: 1851: 1845: 1843: 1839: 1838: 1836: 1835: 1830: 1825: 1824: 1823: 1813: 1808: 1803: 1798: 1793: 1788: 1783: 1778: 1773: 1768: 1763: 1758: 1756:Binaural beats 1752: 1750: 1746: 1745: 1738: 1737: 1730: 1723: 1715: 1706: 1705: 1703: 1702: 1691: 1688: 1687: 1685: 1684: 1683: 1682: 1677: 1667: 1662: 1657: 1652: 1646: 1644: 1643:Related topics 1640: 1639: 1637: 1636: 1631: 1626: 1624:Joseph Sauveur 1621: 1616: 1611: 1609:Marin Mersenne 1606: 1601: 1596: 1591: 1586: 1581: 1575: 1573: 1569: 1568: 1566: 1565: 1560: 1559: 1558: 1548: 1543: 1538: 1533: 1528: 1527: 1526: 1521: 1516: 1506: 1505: 1504: 1494: 1489: 1484: 1478: 1476: 1466: 1465: 1463: 1462: 1461: 1460: 1450: 1449: 1448: 1443: 1432: 1430: 1424: 1423: 1420: 1419: 1412: 1404: 1403: 1401: 1399: 1398: 1393: 1388: 1383: 1378: 1373: 1367: 1365: 1359: 1358: 1351: 1350: 1343: 1336: 1328: 1322: 1321: 1315: 1305: 1291: 1290:External links 1288: 1285: 1284: 1272:Sound on Sound 1258: 1246:AES Conference 1232: 1192: 1158: 1145: 1116: 1097: 1083: 1069: 1049: 1027: 1020: 997: 948: 930: 895:10.1038/nn1530 866: 824:(1–2): 31–46. 801: 758: 739:(4): 863–869. 723: 682: 631: 574: 525: 518: 498: 491: 468: 461: 441: 423: 403: 389: 347: 340: 321: 320: 318: 315: 314: 313: 308: 301: 298: 284:, produced by 266:Lady Marmalade 238: 235: 231:resultant tone 156: 153: 149:D. Robert Ladd 74: 71: 26: 9: 6: 4: 3: 2: 1902: 1891: 1888: 1886: 1883: 1882: 1880: 1865: 1862: 1860: 1857: 1855: 1852: 1850: 1847: 1846: 1844: 1840: 1834: 1831: 1829: 1826: 1822: 1819: 1818: 1817: 1814: 1812: 1809: 1807: 1804: 1802: 1799: 1797: 1796:McGurk effect 1794: 1792: 1789: 1787: 1784: 1782: 1779: 1777: 1774: 1772: 1769: 1767: 1764: 1762: 1759: 1757: 1754: 1753: 1751: 1747: 1743: 1736: 1731: 1729: 1724: 1722: 1717: 1716: 1713: 1701: 1693: 1692: 1689: 1681: 1678: 1676: 1673: 1672: 1671: 1668: 1666: 1663: 1661: 1658: 1656: 1653: 1651: 1648: 1647: 1645: 1641: 1635: 1632: 1630: 1627: 1625: 1622: 1620: 1619:Lord Rayleigh 1617: 1615: 1612: 1610: 1607: 1605: 1602: 1600: 1597: 1595: 1592: 1590: 1589:Ernst Chladni 1587: 1585: 1582: 1580: 1577: 1576: 1574: 1570: 1564: 1561: 1557: 1554: 1553: 1552: 1551:Standing wave 1549: 1547: 1544: 1542: 1539: 1537: 1534: 1532: 1529: 1525: 1522: 1520: 1519:Inharmonicity 1517: 1515: 1512: 1511: 1510: 1507: 1503: 1500: 1499: 1498: 1495: 1493: 1490: 1488: 1485: 1483: 1480: 1479: 1477: 1475: 1471: 1467: 1459: 1456: 1455: 1454: 1451: 1447: 1444: 1442: 1439: 1438: 1437: 1434: 1433: 1431: 1429: 1425: 1417: 1413: 1410: 1406: 1405: 1397: 1394: 1392: 1389: 1387: 1386:Soundproofing 1384: 1382: 1381:Reverberation 1379: 1377: 1374: 1372: 1369: 1368: 1366: 1364: 1360: 1356: 1349: 1344: 1342: 1337: 1335: 1330: 1329: 1326: 1319: 1316: 1313: 1309: 1306: 1304: 1300: 1297: 1294: 1293: 1273: 1269: 1262: 1247: 1243: 1236: 1217: 1213: 1206: 1199: 1197: 1181: 1177: 1173: 1169: 1162: 1155: 1149: 1135:on 2011-05-21 1134: 1130: 1128: 1120: 1107: 1101: 1095: 1094: 1087: 1072: 1066: 1062: 1061: 1053: 1046: 1042: 1039: 1038: 1031: 1023: 1017: 1013: 1012: 1004: 1002: 993: 989: 984: 979: 975: 971: 967: 963: 959: 952: 946: 943: 940: 934: 920:on 2017-08-09 916: 912: 908: 904: 900: 896: 892: 888: 884: 877: 870: 855:on 2012-12-08 851: 847: 843: 839: 835: 831: 827: 823: 819: 812: 805: 797: 793: 789: 785: 781: 777: 773: 769: 762: 754: 750: 746: 742: 738: 734: 727: 719: 715: 710: 705: 701: 697: 693: 686: 678: 674: 670: 666: 662: 658: 654: 650: 646: 642: 635: 620: 616: 612: 608: 604: 600: 596: 592: 585: 578: 563: 559: 555: 551: 547: 543: 536: 529: 521: 515: 512:. MIT Press. 511: 510: 502: 494: 488: 484: 483: 475: 473: 464: 458: 454: 453: 445: 431:on 2012-03-18 430: 426: 420: 417:. MIT Press. 416: 415: 407: 399: 393: 385: 381: 377: 373: 369: 365: 358: 351: 343: 341:9781315716879 337: 333: 326: 322: 312: 309: 307: 304: 303: 297: 294: 289: 287: 286:Missy Elliott 283: 279: 275: 271: 267: 262: 257: 253: 249: 245: 234: 232: 228: 223: 220: 216: 210: 207: 202: 200: 196: 192: 187: 184: 180: 171: 161: 152: 150: 146: 142: 137: 134: 130: 126: 123:complexes in 121: 117: 112: 110: 106: 101: 96: 90: 88: 79: 70: 68: 64: 60: 55: 52: 47: 45: 37: 32: 19: 1800: 1634:Thomas Young 1584:Jens Blauert 1572:Acousticians 1523: 1311: 1275:. Retrieved 1271: 1261: 1249:. Retrieved 1245: 1235: 1223:. Retrieved 1216:the original 1211: 1183:. Retrieved 1171: 1161: 1148: 1137:. Retrieved 1133:the original 1127:Re: maxxbass 1126: 1119: 1100: 1092: 1086: 1074:. Retrieved 1059: 1052: 1036: 1030: 1010: 965: 961: 951: 941: 938: 933: 922:. Retrieved 915:the original 886: 882: 869: 857:. Retrieved 850:the original 821: 817: 804: 771: 767: 761: 736: 732: 726: 699: 695: 685: 644: 640: 634: 622:. Retrieved 594: 590: 577: 565:. Retrieved 545: 541: 528: 508: 501: 485:. Springer. 481: 451: 444: 433:. Retrieved 429:the original 413: 406: 392: 367: 363: 350: 331: 325: 290: 240: 224: 215:effects unit 211: 204:Most common 203: 188: 177: 140: 138: 113: 105:phase shifts 91: 84: 65:of 100  56: 48: 41: 1604:Franz Melde 1579:John Backus 1563:Subharmonic 1416:Spectrogram 859:4 September 624:13 November 567:13 November 311:Subharmonic 248:Waves Audio 227:pipe organs 73:Explanation 1879:Categories 1665:Ultrasound 1655:Infrasound 1441:Bark scale 1172:Maximum PC 1139:2008-09-03 1106:US 5930373 924:2012-07-22 702:(1): 1–6. 435:2018-08-30 317:References 256:subwoofers 206:telephones 183:inharmonic 145:Ian Howell 143:(2016) by 125:succession 1546:Resonance 1446:Mel scale 1376:Monochord 1355:Acoustics 1180:1522-4279 718:123182480 59:pure tone 1849:Illusion 1749:Examples 1700:Category 1541:Overtone 1509:Harmonic 1299:Archived 1041:Archived 992:23398251 911:16010412 903:16116442 846:40608136 838:15276674 796:16419824 677:18133681 669:10491694 619:16838534 300:See also 274:Lil' Kim 244:Tel Aviv 181:produce 155:Examples 107:between 61:) has a 44:harmonic 1842:Related 1487:Formant 1277:May 11, 1251:May 11, 1225:May 11, 1185:May 11, 1076:May 11, 776:Bibcode 741:Bibcode 649:Bibcode 599:Bibcode 562:8890286 384:8969472 293:earbuds 252:plug-in 179:Timpani 1680:Violin 1514:Series 1178:  1174:: 78. 1112:  1067:  1018:  990:  909:  901:  844:  836:  794:  716:  675:  667:  617:  560:  516:  489:  459:  421:  382:  338:  280:, and 191:violin 85:A low 1890:Waves 1675:Piano 1660:Sound 1474:pitch 1436:Pitch 1219:(PDF) 1208:(PDF) 918:(PDF) 907:S2CID 879:(PDF) 853:(PDF) 842:S2CID 814:(PDF) 714:S2CID 673:S2CID 587:(PDF) 538:(PDF) 360:(PDF) 225:Some 87:pitch 63:pitch 36:hertz 1650:Echo 1556:Node 1482:Beat 1472:and 1279:2010 1253:2010 1227:2010 1187:2010 1176:ISSN 1078:2010 1065:ISBN 1016:ISBN 988:PMID 899:PMID 861:2012 834:PMID 792:PMID 665:PMID 626:2012 615:PMID 569:2012 558:PMID 514:ISBN 487:ISBN 457:ISBN 419:ISBN 380:PMID 336:ISBN 282:Pink 131:and 978:hdl 970:doi 891:doi 826:doi 822:194 784:doi 772:118 749:doi 704:doi 657:doi 645:104 607:doi 595:119 550:doi 372:doi 368:100 278:MĂ˝a 139:In 133:MEG 129:MRI 1881:: 1270:. 1244:. 1210:. 1195:^ 1170:. 1000:^ 986:. 976:. 966:39 964:. 960:. 905:. 897:. 885:. 881:. 840:. 832:. 820:. 816:. 790:. 782:. 770:. 747:. 737:60 735:. 712:. 698:. 694:. 671:. 663:. 655:. 643:. 613:. 605:. 593:. 589:. 556:. 546:76 544:. 540:. 471:^ 378:. 366:. 362:. 288:. 276:, 272:, 195:G3 189:A 67:Hz 1734:e 1727:t 1720:v 1347:e 1340:t 1333:v 1281:. 1255:. 1229:. 1189:. 1142:. 1080:. 1024:. 980:: 972:: 942:. 927:. 893:: 887:8 863:. 828:: 798:. 786:: 778:: 755:. 751:: 743:: 720:. 706:: 700:3 679:. 659:: 651:: 628:. 609:: 601:: 571:. 552:: 522:. 495:. 465:. 438:. 400:. 374:: 344:. 264:" 20:)

Index

Missing fundamental frequency

hertz
harmonic
psychoacoustics
pure tone
pitch
Hz

pitch
J. C. R. Licklider
autocorrelation
phase shifts
cochlear filters
greatest common divisor
Heidelberg University
succession
MRI
MEG
Ian Howell
D. Robert Ladd

Play C0 harp-timpano-harp
Timpani
inharmonic
violin
G3
most historical tunings
telephones
effects unit

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑