Knowledge

Luminescence dating

Source 📝

125:, and some water-laid deposits. Single Quartz OSL ages can be determined typically from 100 to 350,000 years BP, and can be reliable when suitable methods are used and proper checks are done. Feldspar IRSL techniques have the potential to extend the datable range out to a million years as feldspars typically have significantly higher dose saturation levels than quartz, though issues regarding anomalous fading will need to be dealt with first. Ages can be obtained outside these ranges, but they should be regarded with caution. The uncertainty of an OSL date is typically 5-10% of the age of the sample. 129:
operator does not know the individual figures that are being averaged, and so if there are partially prebleached grains in the sample it can give an exaggerated age. In contrast to the multiple-aliquot method, the SAR method tests the burial ages of individual grains of sand which are then plotted. Mixed deposits can be identified and taken into consideration when determining the age.
146:
transfer of electrons from one trap, to holes located elsewhere in the lattice – necessarily requiring two defects to be in nearby proximity, and hence it is a destructive technique. The problem is that nearby electron/hole trapping centres suffer from localized tunneling, eradicating their signal over time; it is this issue that currently defines the upper age-limit for OSL dating
226:, luminescence dating methods do not require a contemporary organic component of the sediment to be dated; just quartz, potassium feldspar, or certain other mineral grains that have been fully bleached during the event being dated. These methods also do not suffer from overestimation of dates when the sediment in question has been mixed with “old carbon”, or 108:. The radiation causes charge to remain within the grains in structurally unstable "electron traps". The trapped charge accumulates over time at a rate determined by the amount of background radiation at the location where the sample was buried. Stimulating these mineral grains using either light (blue or green for OSL; 201:. A sample in which the mineral grains have all been exposed to sufficient daylight (seconds for quartz; hundreds of seconds for potassium feldspar) can be said to be of zero age; when excited it will not emit any such photons. The older the sample is, the more light it emits, up to a saturation limit. 267:
carbonate rocks, a process that is also active today. This reworked carbon changed the measured isotopic ratios, giving a false older age. However, the wind-blown origin of these sediments were ideal for OSL dating, as most of the grains would have been completely bleached by sunlight exposure during
141:
In 1963, Aitken et al. noted that TL traps in calcite could be bleached by sunlight as well as heat, and in 1965 Shelkoplyas and Morozov were the first to use TL to date unheated sediments. Throughout the 70s and early 80s TL dating of light-sensitive traps in geological sediments of both terrestrial
137:
The concept of using luminescence dating in archaeological contexts was first suggested in 1953 by Farrington Daniels, Charles A. Boyd, and Donald F. Saunders, who thought the thermoluminescence response of pottery shards could date the last incidence of heating. Experimental tests on archaeological
116:
Most luminescence dating methods rely on the assumption that the mineral grains were sufficiently "bleached" at the time of the event being dated. For example, in quartz a short daylight exposure in the range of 1–100 seconds before burial is sufficient to effectively “reset” the OSL dating clock.
145:
Optical dating using optically stimulated luminescence (OSL) was developed in 1984 by David J. Huntley and colleagues. HĂŒtt et al. laid the groundwork for the infrared stimulated luminescence (IRSL) dating of potassium feldspars in 1988. The traditional OSL method relies on optical stimulation and
128:
There are two different methods of OSL dating: multiple-aliquot-dose and single-aliquot-regenerative-dose (SAR). In multiple-aliquot testing, a number of grains of sand are stimulated at the same time and the resulting luminescence signature is averaged. The problem with this technique is that the
959:
Liritzis, Ioannis; Singhvi, Ashok Kumar; Feathers, James K.; Wagner, Gunther A.; Kadereit, Annette; Zacharias, Nikolaos; Li, Sheng-Hua (2013), Liritzis, Ioannis; Singhvi, Ashok Kumar; Feathers, James K.; Wagner, Gunther A. (eds.), "Luminescence-Based Authenticity Testing",
209:
The minerals that are measured are usually either quartz or potassium feldspar sand-sized grains, or unseparated silt-sized grains. There are advantages and disadvantages to using each. For quartz, blue or green excitation frequencies are normally used and the near
268:
transport and burial. Lee et al. concluded that when aeolian sediment transport is suspected, especially in lakes of arid environments, the OSL dating method is superior to the radiocarbon dating method, as it eliminates a common ‘old-carbon’ error problem.
138:
ceramics followed a few years later in 1960 by Grögler et al. Over the next few decades, thermoluminescence research was focused on heated pottery and ceramics, burnt flints, baked hearth sediments, oven stones from burnt mounds and other heated objects.
112:
for IRSL) or heat (for TL) causes a luminescence signal to be emitted as the stored unstable electron energy is released, the intensity of which varies depending on the amount of radiation absorbed during burial and specific properties of the mineral.
902:
Lee, M.K., Lee, Y.I., Lim, H.S., Lee, J.I., Choi, J.H., & Yoon, H.I. (2011). "Comparison of radiocarbon and OSL dating methods for a Late Quaternary sediment core from Lake Ulaan, Mongolia".
276:
One of the benefits of luminescence dating is that it can be used to confirm the authenticity of an artifact. Under proper low light conditions a sample in the tens of milligrams can be used.
872:
Liritzis, I. (2010). "Strofilas (Andros Island, Greece): new evidence for the cycladic final neolithic period through novel dating methods using luminescence and obsidian hydration".
1329:
Wintle A. G., Murray A. S. (2006). "A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols".
1156:
Liritzis I., Sideris C., Vafiadou A., Mitsis J. (2008). "Mineralogical, petrological and radioactivity aspects of some building material from Egyptian Old Kingdom monuments".
53:(TL). "Optical dating" typically refers to OSL and IRSL, but not TL. The age range of luminescence dating methods extends from a few years to over one million years. 1135:
Liritzis I (2010). "Strofilas (Andros Island, Greece): New evidence of Cycladic Final Neolithic dated by novel luminescence and Obsidian Hydration methods".
214:
emission is measured. For potassium feldspar or silt-sized grains, near infrared excitation (IRSL) is normally used and violet emissions are measured.
831:
Liritzis, I., Polymeris, S.G., and Zacharias, N. (2010). "Surface Luminescence Dating of 'Dragon Houses' and Armena Gate at Styra (Euboea, Greece)".
447:
Jacobs, Z and Roberts, R (2007). "Advances in Optically Stimulated Luminescence Dating of Individual Grains of Quartz from Archaeological Deposits".
1384: 1321: 1286: 1218: 1183: 1127: 1079: 1036: 945: 858: 781: 732: 625: 584: 539: 482: 428: 249:, Lee et al. discovered that OSL and radiocarbon dates agreed in some samples, but the radiocarbon dates were up to 5800 years older in others. 2284: 1987: 1663: 1100:
Liritzis I., Guibert P., Foti F., Schvoerer M. (1997). "The temple of Apollo (Delphi) strengthens novel thermoluminescence dating method".
639:
Shelkoplyas, V.N. & Morozov, G.V. (1965). "Some results of an investigation of Quaternary deposits by the thermoluminescence method".
1294:
Theocaris P. S., Liritzis I., Galloway R. B. (1997). "Dating of two Hellenic pyramids by a novel application of thermoluminescence".
1113: 153:
were extended to include surfaces made of granite, basalt and sandstone, such as carved rock from ancient monuments and artifacts.
2279: 252:
The sediments with disagreeing ages were determined to be deposited by aeolian processes. Westerly winds delivered an influx of
1191:
Morgenstein M. E., Luo S., Ku T. L., Feathers J. (2003). "Uranium-series and luminescence dating of volcanic lithic artefacts".
977: 1434: 396: 1392:
Fattahi M., Stokes S. (2001). "Extending the time range of luminescence dating using red TL (RTL) from volcanic quartz".
1781: 1982: 1578: 1003: 197:
of the emitted light must have higher energies than the excitation photons in order to avoid measurement of ordinary
46: 1618: 1254: 1044:
Habermann J., Schilles T., Kalchgruber R., Wagner G. A. (2000). "Steps towards surface dating using luminescence".
237:-deficient carbon that is not the same isotopic ratio as the atmosphere. In a study of the chronology of arid-zone 996:
An introduction to optical dating: the dating of Quaternary sediments by the use of photon-stimulated luminescence
242: 746:
HĂŒtt, G., Jaek, I. & Tchonka, J. (1988). "Optical dating: K-feldspars optical response stimulation spectra".
185:/1000 years. The total absorbed radiation dose is determined by exciting, with light, specific minerals (usually 157:, the initiator of ancient buildings luminescence dating, has shown this in several cases of various monuments. 1256: 398: 362:"Precision and accuracy in the optically stimulated luminescence dating of sedimentary quartz: a status review" 2028: 1776: 1771: 325:
Rhodes, E. J. (2011). "Optically stimulated luminescence dating of sediments over the past 250,000 years".
1226:
Rhodes E. J. (2011). "Optically stimulated luminescence dating of sediments over the past 200,000 years".
964:, SpringerBriefs in Earth System Sciences, Heidelberg: Springer International Publishing, pp. 41–43, 1961: 1831: 901: 2171: 2151: 2161: 2133: 1966: 1745: 689:
Huntley, D. J., Godfrey-Smith, D. I., & Thewalt, M. L. W. (1985). "Optical dating of sediments".
150: 50: 1087:
Liritzis I (1994). "A new dating method by thermoluminescence of carved megalithic stone building".
397:
Roberts, R.G., Jacobs, Z., Li, B., Jankowski, N.R., Cunningham, A.C., & Rosenfeld, A.B. (2015).
2228: 1427: 177:
elements (K, U, Th and Rb) within the sample and its surroundings and the radiation dose rate from
2166: 2116: 1903: 1750: 1359: 1009:
Greilich S., Glasmacher U. A., Wagner G. A. (2005). "Optical dating of granitic stone surfaces".
2066: 1867: 1613: 1512: 1257:"Optical dating in archaeology: thirty years in retrospect and grand challenges for the future" 496:
Daniels, F., Boyd, C.A., & Saunders, D.F. (1953). "Thermoluminescence as a research tool".
399:"Optical dating in archaeology: thirty years in retrospect and grand challenges for the future" 38:
who want to know when such an event occurred. It uses various methods to stimulate and measure
554: 1668: 1378: 1315: 1280: 1212: 1177: 1121: 1073: 1030: 939: 852: 775: 726: 688: 619: 598:
Aitken, M.J., Tite, M.S. & Reid, J. (1963). "Thermoluminescent dating: progress report".
578: 533: 476: 422: 1255:
Roberts R. G., Jacobs Z., Li B., Jankowski N. R., Cunningham A. C., Rosenfeld A. B. (2015).
2101: 2042: 2018: 2013: 1338: 1235: 1053: 911: 840: 755: 698: 663: 505: 334: 165:
Luminescence dating is one of several techniques in which an age is calculated as follows:
23: 8: 1941: 1931: 1706: 1623: 1603: 1593: 1420: 1342: 1247: 1239: 1057: 915: 844: 759: 702: 667: 509: 361: 346: 338: 193:) extracted from the sample, and measuring the amount of light emitted as a result. The 2253: 2233: 2111: 2096: 2081: 2003: 1802: 1766: 1568: 1043: 927: 714: 611: 464: 285: 223: 190: 105: 97: 16:
Form of dating how long ago mineral grains had been last exposed to sunlight or heating
1405: 1065: 2061: 1857: 1852: 1696: 1532: 1022: 999: 973: 931: 767: 675: 521: 198: 118: 93: 468: 2258: 2207: 2123: 2071: 1847: 1825: 1691: 1588: 1401: 1346: 1303: 1268: 1243: 1200: 1165: 1144: 1109: 1061: 1018: 965: 919: 881: 811: 763: 718: 706: 671: 654:
Wintle, A.G. & Huntley, D.J. (1982). "Thermoluminescence dating of sediments".
607: 513: 456: 410: 342: 154: 1350: 2191: 2156: 2143: 2106: 2053: 1911: 1806: 1740: 1701: 1538: 1169: 962:
Luminescence Dating in Archaeology, Anthropology, and Geoarchaeology: An Overview
552: 517: 1190: 969: 830: 2289: 2091: 1889: 1877: 1821: 1816: 1810: 1735: 1658: 1583: 1155: 1272: 1148: 1099: 923: 885: 816: 799: 414: 2273: 2008: 1926: 1921: 1872: 1862: 1502: 495: 35: 1293: 1204: 30:
grains were last exposed to sunlight or sufficient heating. It is useful to
2086: 1884: 1598: 1573: 1558: 1524: 1484: 1307: 1008: 525: 211: 39: 1786: 1683: 1645: 1628: 1563: 1544: 1477: 1457: 182: 174: 70: 1114:
10.1002/(sici)1520-6548(199708)12:5<479::aid-gea3>3.0.co;2-x
1553: 1548: 1443: 597: 460: 178: 2243: 2223: 1956: 1916: 1653: 1462: 710: 264: 77: 31: 745: 100:
they produce is absorbed by mineral grains in the sediments such as
2238: 2076: 1720: 1633: 1357: 555:"Über die datierung von keramik und ziegel durch thermolumineszenz" 246: 109: 89: 62: 2248: 1472: 1467: 643:. 7th International Quaternary Association Congress, Kiev: 83–90. 85: 81: 73: 27: 194: 186: 173:
The radiation dose rate is calculated from measurements of the
101: 638: 169:
age = (total absorbed radiation dose) / (radiation dose rate)
1673: 1412: 958: 122: 1607: 1489: 238: 66: 1328: 553:
Grögler, N., Houtermans, F.G., & Stauffer, H. (1960).
1507: 653: 359: 446: 1391: 1360:"TL dating in the Holocene using red TL from quartz" 49:(OSL), infrared stimulated luminescence (IRSL), and 1988:
Global Boundary Stratotype Section and Point (GSSP)
1089:
Comptes Rendus de l'Académie des Sciences, Série II
217: 641:Materials on the Quaternary Period of the Ukraine 2271: 181:. The dose rate is usually in the range 0.5 - 5 117:This is usually, but not always, the case with 392: 390: 1428: 1228:Annual Review of Earth and Planetary Sciences 800:"Surface Dating by Luminescence: An Overview" 327:Annual Review of Earth and Planetary Sciences 324: 320: 318: 1383:: CS1 maint: multiple names: authors list ( 1358:Montret, M., Fain, J., Miallier, D. (1992). 1320:: CS1 maint: multiple names: authors list ( 1285:: CS1 maint: multiple names: authors list ( 1225: 1217:: CS1 maint: multiple names: authors list ( 1182:: CS1 maint: multiple names: authors list ( 1126:: CS1 maint: multiple names: authors list ( 1078:: CS1 maint: multiple names: authors list ( 1035:: CS1 maint: multiple names: authors list ( 944:: CS1 maint: multiple names: authors list ( 871: 857:: CS1 maint: multiple names: authors list ( 797: 780:: CS1 maint: multiple names: authors list ( 731:: CS1 maint: multiple names: authors list ( 624:: CS1 maint: multiple names: authors list ( 583:: CS1 maint: multiple names: authors list ( 538:: CS1 maint: multiple names: authors list ( 481:: CS1 maint: multiple names: authors list ( 427:: CS1 maint: multiple names: authors list ( 897: 895: 387: 149:In 1994, the principles behind optical and 1435: 1421: 1134: 1086: 833:Mediterranean Archaeology and Archaeometry 591: 315: 263:-deficient carbon from adjacent soils and 142:and marine origin became more widespread. 56: 815: 360:Murray, A. S. & Olley, J. M. (2002). 1983:Global Standard Stratigraphic Age (GSSA) 892: 2272: 1416: 793: 791: 442: 440: 438: 26:methods of determining how long ago 2285:Dating methodologies in archaeology 1248:10.1146/annurev-earth-040610-133425 347:10.1146/annurev-earth-040610-133425 13: 1782:Adoption of the Gregorian calendar 788: 612:10.1111/j.1475-4754.1963.tb00581.x 14: 2301: 1296:Journal of Archaeological Science 1261:Journal of Archaeological Science 1137:Journal of Archaeological Science 874:Journal of Archaeological Science 435: 403:Journal of Archaeological Science 121:deposits, such as sand dunes and 47:optically stimulated luminescence 1023:10.1111/j.1475-4754.2005.00224.x 218:Comparison to radiocarbon dating 2280:Geochronological dating methods 1664:English and British regnal year 952: 865: 824: 739: 682: 647: 632: 45:It includes techniques such as 1442: 546: 489: 353: 306: 297: 1: 1777:Old Style and New Style dates 1406:10.1016/S1350-4487(00)00105-0 1351:10.1016/j.radmeas.2005.11.001 1066:10.1016/s1350-4487(00)00066-4 988: 271: 1729:Pre-Julian / Julian 1170:10.1016/j.culher.2007.03.009 1158:Journal of Cultural Heritage 768:10.1016/0277-3791(88)90033-9 676:10.1016/0277-3791(82)90018-X 518:10.1126/science.117.3040.343 7: 1962:Geological history of Earth 1832:Astronomical year numbering 998:. Oxford University Press. 970:10.1007/978-3-319-00170-8_5 312:Fattahi M., Stokes S., 2001 279: 204: 10: 2306: 748:Quaternary Science Reviews 656:Quaternary Science Reviews 160: 132: 2216: 2200: 2184: 2142: 2134:Thermoluminescence dating 2052: 2041: 2029:Samarium–neodymium dating 1996: 1975: 1949: 1940: 1902: 1840: 1795: 1759: 1728: 1719: 1682: 1644: 1523: 1498: 1450: 1273:10.1016/j.jas.2015.02.028 1149:10.1016/j.jas.2009.12.041 924:10.1007/s10933-010-9484-7 904:Journal of Paleolimnology 886:10.1016/j.jas.2009.12.041 817:10.2478/s13386-011-0032-7 449:Evolutionary Anthropology 415:10.1016/j.jas.2015.02.028 151:thermoluminescence dating 69:contain trace amounts of 51:thermoluminescence dating 1848:Chinese sexagenary cycle 291: 2062:Amino acid racemisation 1205:10.1111/1475-4754.00124 57:Conditions and accuracy 2067:Archaeomagnetic dating 1579:Era of Caesar (Iberia) 1394:Radiation Measurements 1331:Radiation Measurements 1308:10.1006/jasc.1996.0124 1046:Radiation Measurements 994:Aitken, M. J. (1998). 559:Helvetica Physica Acta 171: 1967:Geological time units 798:Liritzis, I. (2011). 167: 22:refers to a group of 2019:Law of superposition 2014:Isotope geochemistry 303:Montret et al., 1992 76:of elements such as 24:chronological dating 2152:Fluorine absorption 2129:Luminescence dating 2024:Luminescence dating 1932:Milankovitch cycles 1772:Proleptic Gregorian 1604:Hindu units of time 1343:2006RadM...41..369W 1240:2011AREPS..39..461R 1058:2000RadM...32..847H 916:2011JPall..45..127L 845:2010MAA....10...65L 760:1988QSRv....7..381H 703:1985Natur.313..105H 668:1982QSRv....1...31W 510:1953Sci...117..343D 339:2011AREPS..39..461R 20:Luminescence dating 2254:Terminus post quem 2234:Synchronoptic view 2201:Linguistic methods 2162:Obsidian hydration 2097:Radiometric dating 2082:Incremental dating 2004:Chronostratigraphy 461:10.1002/evan.20150 286:Radiometric dating 191:potassium feldspar 106:potassium feldspar 98:ionizing radiation 96:over time and the 2267: 2266: 2180: 2179: 2037: 2036: 1898: 1897: 1853:Geologic Calendar 1715: 1714: 979:978-3-319-00170-8 697:(5998): 105–107. 504:(3040): 343–349. 199:photoluminescence 2297: 2259:ASPRO chronology 2208:Glottochronology 2124:Tephrochronology 2072:Dendrochronology 2050: 2049: 1947: 1946: 1746:Proleptic Julian 1736:Pre-Julian Roman 1726: 1725: 1521: 1520: 1437: 1430: 1423: 1414: 1413: 1409: 1400:(5–6): 479–485. 1388: 1382: 1374: 1364: 1354: 1325: 1319: 1311: 1290: 1284: 1276: 1251: 1222: 1216: 1208: 1187: 1181: 1173: 1152: 1131: 1125: 1117: 1096: 1083: 1077: 1069: 1040: 1034: 1026: 983: 982: 956: 950: 949: 943: 935: 899: 890: 889: 880:(6): 1367–1377. 869: 863: 862: 856: 848: 828: 822: 821: 819: 795: 786: 785: 779: 771: 754:(3–4): 381–385. 743: 737: 736: 730: 722: 711:10.1038/313105a0 686: 680: 679: 651: 645: 644: 636: 630: 629: 623: 615: 595: 589: 588: 582: 574: 572: 570: 550: 544: 543: 537: 529: 493: 487: 486: 480: 472: 444: 433: 432: 426: 418: 394: 385: 384: 382: 380: 366: 357: 351: 350: 322: 313: 310: 304: 301: 262: 260: 259: 236: 234: 233: 224:carbon-14 dating 155:Ioannis Liritzis 2305: 2304: 2300: 2299: 2298: 2296: 2295: 2294: 2270: 2269: 2268: 2263: 2212: 2196: 2192:Molecular clock 2185:Genetic methods 2176: 2157:Nitrogen dating 2144:Relative dating 2138: 2107:Potassium–argon 2054:Absolute dating 2044: 2033: 1992: 1971: 1936: 1912:Cosmic Calendar 1904:Astronomic time 1894: 1836: 1791: 1755: 1741:Original Julian 1711: 1678: 1640: 1539:Ab urbe condita 1517: 1494: 1446: 1441: 1376: 1375: 1362: 1313: 1312: 1278: 1277: 1210: 1209: 1175: 1174: 1119: 1118: 1071: 1070: 1028: 1027: 991: 986: 980: 957: 953: 937: 936: 900: 893: 870: 866: 850: 849: 829: 825: 804:Geochronometria 796: 789: 773: 772: 744: 740: 724: 723: 687: 683: 652: 648: 637: 633: 617: 616: 596: 592: 576: 575: 568: 566: 551: 547: 531: 530: 494: 490: 474: 473: 445: 436: 420: 419: 395: 388: 378: 376: 369:Geochronometria 364: 358: 354: 323: 316: 311: 307: 302: 298: 294: 282: 274: 258: 256: 255: 254: 253: 241:sediments from 232: 230: 229: 228: 227: 220: 207: 163: 135: 92:. These slowly 59: 17: 12: 11: 5: 2303: 2293: 2292: 2287: 2282: 2265: 2264: 2262: 2261: 2256: 2251: 2246: 2241: 2236: 2231: 2229:New Chronology 2226: 2220: 2218: 2217:Related topics 2214: 2213: 2211: 2210: 2204: 2202: 2198: 2197: 2195: 2194: 2188: 2186: 2182: 2181: 2178: 2177: 2175: 2174: 2169: 2164: 2159: 2154: 2148: 2146: 2140: 2139: 2137: 2136: 2131: 2126: 2121: 2120: 2119: 2114: 2109: 2104: 2094: 2092:Paleomagnetism 2089: 2084: 2079: 2074: 2069: 2064: 2058: 2056: 2047: 2039: 2038: 2035: 2034: 2032: 2031: 2026: 2021: 2016: 2011: 2006: 2000: 1998: 1994: 1993: 1991: 1990: 1985: 1979: 1977: 1973: 1972: 1970: 1969: 1964: 1959: 1953: 1951: 1944: 1938: 1937: 1935: 1934: 1929: 1924: 1919: 1914: 1908: 1906: 1900: 1899: 1896: 1895: 1893: 1892: 1890:New Earth Time 1887: 1882: 1881: 1880: 1875: 1865: 1860: 1855: 1850: 1844: 1842: 1838: 1837: 1835: 1834: 1829: 1819: 1814: 1799: 1797: 1793: 1792: 1790: 1789: 1784: 1779: 1774: 1769: 1763: 1761: 1757: 1756: 1754: 1753: 1751:Revised Julian 1748: 1743: 1738: 1732: 1730: 1723: 1717: 1716: 1713: 1712: 1710: 1709: 1704: 1699: 1694: 1688: 1686: 1680: 1679: 1677: 1676: 1671: 1669:Lists of kings 1666: 1661: 1659:Canon of Kings 1656: 1650: 1648: 1642: 1641: 1639: 1638: 1637: 1636: 1631: 1626: 1621: 1611: 1601: 1596: 1591: 1586: 1584:Before present 1581: 1576: 1571: 1566: 1561: 1556: 1551: 1542: 1535: 1529: 1527: 1518: 1516: 1515: 1510: 1505: 1499: 1496: 1495: 1493: 1492: 1487: 1482: 1481: 1480: 1470: 1465: 1460: 1454: 1452: 1448: 1447: 1440: 1439: 1432: 1425: 1417: 1411: 1410: 1389: 1355: 1337:(4): 369–391. 1326: 1302:(5): 399–405. 1291: 1252: 1223: 1199:(3): 503–518. 1188: 1153: 1132: 1108:(5): 479–496. 1102:Geoarchaeology 1097: 1084: 1052:(5): 847–851. 1041: 1017:(3): 645–665. 1006: 990: 987: 985: 984: 978: 951: 910:(2): 127–135. 891: 864: 823: 810:(3): 292–302. 787: 738: 681: 646: 631: 590: 545: 488: 434: 386: 352: 314: 305: 295: 293: 290: 289: 288: 281: 278: 273: 270: 257: 231: 219: 216: 206: 203: 162: 159: 134: 131: 58: 55: 36:archaeologists 15: 9: 6: 4: 3: 2: 2302: 2291: 2288: 2286: 2283: 2281: 2278: 2277: 2275: 2260: 2257: 2255: 2252: 2250: 2247: 2245: 2242: 2240: 2237: 2235: 2232: 2230: 2227: 2225: 2222: 2221: 2219: 2215: 2209: 2206: 2205: 2203: 2199: 2193: 2190: 2189: 2187: 2183: 2173: 2170: 2168: 2165: 2163: 2160: 2158: 2155: 2153: 2150: 2149: 2147: 2145: 2141: 2135: 2132: 2130: 2127: 2125: 2122: 2118: 2115: 2113: 2110: 2108: 2105: 2103: 2100: 2099: 2098: 2095: 2093: 2090: 2088: 2085: 2083: 2080: 2078: 2075: 2073: 2070: 2068: 2065: 2063: 2060: 2059: 2057: 2055: 2051: 2048: 2046: 2043:Chronological 2040: 2030: 2027: 2025: 2022: 2020: 2017: 2015: 2012: 2010: 2009:Geochronology 2007: 2005: 2002: 2001: 1999: 1995: 1989: 1986: 1984: 1981: 1980: 1978: 1974: 1968: 1965: 1963: 1960: 1958: 1955: 1954: 1952: 1948: 1945: 1943: 1942:Geologic time 1939: 1933: 1930: 1928: 1927:Metonic cycle 1925: 1923: 1922:Galactic year 1920: 1918: 1915: 1913: 1910: 1909: 1907: 1905: 1901: 1891: 1888: 1886: 1883: 1879: 1876: 1874: 1871: 1870: 1869: 1866: 1864: 1863:ISO week date 1861: 1859: 1856: 1854: 1851: 1849: 1846: 1845: 1843: 1839: 1833: 1830: 1827: 1823: 1820: 1818: 1815: 1812: 1808: 1804: 1801: 1800: 1798: 1794: 1788: 1785: 1783: 1780: 1778: 1775: 1773: 1770: 1768: 1765: 1764: 1762: 1758: 1752: 1749: 1747: 1744: 1742: 1739: 1737: 1734: 1733: 1731: 1727: 1724: 1722: 1718: 1708: 1705: 1703: 1700: 1698: 1695: 1693: 1690: 1689: 1687: 1685: 1681: 1675: 1672: 1670: 1667: 1665: 1662: 1660: 1657: 1655: 1652: 1651: 1649: 1647: 1643: 1635: 1632: 1630: 1627: 1625: 1622: 1620: 1617: 1616: 1615: 1612: 1609: 1605: 1602: 1600: 1597: 1595: 1592: 1590: 1587: 1585: 1582: 1580: 1577: 1575: 1572: 1570: 1569:Byzantine era 1567: 1565: 1562: 1560: 1557: 1555: 1552: 1550: 1546: 1543: 1541: 1540: 1536: 1534: 1531: 1530: 1528: 1526: 1525:Calendar eras 1522: 1519: 1514: 1511: 1509: 1506: 1504: 1501: 1500: 1497: 1491: 1488: 1486: 1483: 1479: 1476: 1475: 1474: 1471: 1469: 1466: 1464: 1461: 1459: 1456: 1455: 1453: 1449: 1445: 1438: 1433: 1431: 1426: 1424: 1419: 1418: 1415: 1407: 1403: 1399: 1395: 1390: 1386: 1380: 1372: 1368: 1367:Ancient TL 10 1361: 1356: 1352: 1348: 1344: 1340: 1336: 1332: 1327: 1323: 1317: 1309: 1305: 1301: 1297: 1292: 1288: 1282: 1274: 1270: 1266: 1262: 1258: 1253: 1249: 1245: 1241: 1237: 1233: 1229: 1224: 1220: 1214: 1206: 1202: 1198: 1194: 1189: 1185: 1179: 1171: 1167: 1163: 1159: 1154: 1150: 1146: 1143:: 1367–1377. 1142: 1138: 1133: 1129: 1123: 1115: 1111: 1107: 1103: 1098: 1095:(5): 603–610. 1094: 1090: 1085: 1081: 1075: 1067: 1063: 1059: 1055: 1051: 1047: 1042: 1038: 1032: 1024: 1020: 1016: 1012: 1007: 1005: 1004:0-19-854092-2 1001: 997: 993: 992: 981: 975: 971: 967: 963: 955: 947: 941: 933: 929: 925: 921: 917: 913: 909: 905: 898: 896: 887: 883: 879: 875: 868: 860: 854: 846: 842: 838: 834: 827: 818: 813: 809: 805: 801: 794: 792: 783: 777: 769: 765: 761: 757: 753: 749: 742: 734: 728: 720: 716: 712: 708: 704: 700: 696: 692: 685: 677: 673: 669: 665: 661: 657: 650: 642: 635: 627: 621: 613: 609: 605: 601: 594: 586: 580: 564: 560: 556: 549: 541: 535: 527: 523: 519: 515: 511: 507: 503: 499: 492: 484: 478: 470: 466: 462: 458: 454: 450: 443: 441: 439: 430: 424: 416: 412: 408: 404: 400: 393: 391: 374: 370: 363: 356: 348: 344: 340: 336: 332: 328: 321: 319: 309: 300: 296: 287: 284: 283: 277: 269: 266: 250: 248: 244: 240: 225: 215: 213: 202: 200: 196: 192: 188: 184: 180: 176: 170: 166: 158: 156: 152: 147: 143: 139: 130: 126: 124: 120: 114: 111: 107: 103: 99: 95: 91: 87: 83: 79: 75: 72: 68: 64: 54: 52: 48: 43: 41: 37: 33: 29: 25: 21: 2172:Stratigraphy 2128: 2117:Uranium–lead 2087:Lichenometry 2023: 1885:Winter count 1868:Mesoamerican 1796:Astronomical 1614:Mesoamerican 1599:Sothic cycle 1574:Seleucid era 1559:Bosporan era 1547: / 1537: 1485:Paleontology 1397: 1393: 1379:cite journal 1370: 1366: 1334: 1330: 1316:cite journal 1299: 1295: 1281:cite journal 1264: 1260: 1231: 1227: 1213:cite journal 1196: 1193:Archaeometry 1192: 1178:cite journal 1161: 1157: 1140: 1136: 1122:cite journal 1105: 1101: 1092: 1088: 1074:cite journal 1049: 1045: 1031:cite journal 1014: 1011:Archaeometry 1010: 995: 961: 954: 940:cite journal 907: 903: 877: 873: 867: 853:cite journal 839:(3): 65–81. 836: 832: 826: 807: 803: 776:cite journal 751: 747: 741: 727:cite journal 694: 690: 684: 662:(1): 31–53. 659: 655: 649: 640: 634: 620:cite journal 603: 600:Archaeometry 599: 593: 579:cite journal 569:February 16, 567:. Retrieved 562: 558: 548: 534:cite journal 501: 497: 491: 477:cite journal 452: 448: 423:cite journal 406: 402: 377:. Retrieved 372: 368: 355: 330: 326: 308: 299: 275: 251: 245:in southern 221: 212:ultra-violet 208: 172: 168: 164: 148: 144: 140: 136: 127: 115: 60: 44: 40:luminescence 19: 18: 2112:Radiocarbon 1787:Dual dating 1646:Regnal year 1624:Short Count 1564:Bostran era 1545:Anno Domini 1478:Big History 1458:Archaeology 1234:: 461–488. 1164:(1): 1–13. 379:February 8, 333:: 461–488. 179:cosmic rays 175:radioactive 71:radioactive 2274:Categories 1707:Vietnamese 1619:Long Count 1554:Anno Mundi 1549:Common Era 1451:Key topics 1444:Chronology 989:References 455:(6): 218. 272:Other uses 243:Lake Ulaan 239:lacustrine 32:geologists 2244:Year zero 2224:Chronicle 2167:Seriation 2102:Lead–lead 1976:Standards 1957:Deep time 1917:Ephemeris 1803:Lunisolar 1767:Gregorian 1760:Gregorian 1721:Calendars 1684:Era names 1654:Anka year 1533:Human Era 1463:Astronomy 1267:: 41–60. 932:128511753 606:: 65–75. 565:: 595–596 409:: 41–60. 265:Paleozoic 78:potassium 63:sediments 2239:Timeline 2077:Ice core 1950:Concepts 1697:Japanese 1629:Tzolk'in 1594:Egyptian 1373:: 33–36. 526:17756578 469:84231863 280:See also 247:Mongolia 205:Minerals 110:infrared 90:rubidium 74:isotopes 2249:Floruit 1997:Methods 1858:Iranian 1826:Islamic 1692:Chinese 1503:Periods 1473:History 1468:Geology 1339:Bibcode 1236:Bibcode 1054:Bibcode 912:Bibcode 841:Bibcode 756:Bibcode 719:4258671 699:Bibcode 664:Bibcode 506:Bibcode 498:Science 335:Bibcode 222:Unlike 195:photons 161:Physics 133:History 119:aeolian 86:thorium 82:uranium 28:mineral 2045:dating 1841:Others 1807:Hebrew 1702:Korean 1513:Epochs 1002:  976:  930:  717:  691:Nature 524:  467:  375:: 1–16 187:quartz 102:quartz 88:, and 2290:Light 1878:Aztec 1822:Lunar 1817:Solar 1811:Hindu 1674:Limmu 1634:Haab' 1589:Hijri 1363:(PDF) 928:S2CID 715:S2CID 465:S2CID 365:(PDF) 292:Notes 183:grays 123:loess 94:decay 67:soils 1873:Maya 1608:Yuga 1508:Eras 1490:Time 1385:link 1322:link 1287:link 1219:link 1184:link 1128:link 1080:link 1037:link 1000:ISBN 974:ISBN 946:link 859:link 782:link 733:link 626:link 585:link 571:2016 540:link 522:PMID 483:link 429:link 381:2016 104:and 65:and 61:All 34:and 1402:doi 1347:doi 1304:doi 1269:doi 1244:doi 1201:doi 1166:doi 1145:doi 1110:doi 1093:319 1062:doi 1019:doi 966:doi 920:doi 882:doi 812:doi 764:doi 707:doi 695:313 672:doi 608:doi 514:doi 502:117 457:doi 411:doi 343:doi 189:or 2276:: 1809:, 1398:32 1396:. 1381:}} 1377:{{ 1371:10 1369:. 1365:. 1345:. 1335:41 1333:. 1318:}} 1314:{{ 1300:24 1298:. 1283:}} 1279:{{ 1265:56 1263:. 1259:. 1242:. 1232:39 1230:. 1215:}} 1211:{{ 1197:45 1195:. 1180:}} 1176:{{ 1160:. 1141:37 1139:. 1124:}} 1120:{{ 1106:12 1104:. 1091:. 1076:}} 1072:{{ 1060:. 1050:32 1048:. 1033:}} 1029:{{ 1015:47 1013:. 972:, 942:}} 938:{{ 926:. 918:. 908:45 906:. 894:^ 878:37 876:. 855:}} 851:{{ 837:10 835:. 808:38 806:. 802:. 790:^ 778:}} 774:{{ 762:. 750:. 729:}} 725:{{ 713:. 705:. 693:. 670:. 658:. 622:}} 618:{{ 602:. 581:}} 577:{{ 563:33 561:. 557:. 536:}} 532:{{ 520:. 512:. 500:. 479:}} 475:{{ 463:. 453:16 451:. 437:^ 425:}} 421:{{ 407:56 405:. 401:. 389:^ 373:21 371:. 367:. 341:. 331:39 329:. 317:^ 84:, 80:, 42:. 1828:) 1824:( 1813:) 1805:( 1610:) 1606:( 1436:e 1429:t 1422:v 1408:. 1404:: 1387:) 1353:. 1349:: 1341:: 1324:) 1310:. 1306:: 1289:) 1275:. 1271:: 1250:. 1246:: 1238:: 1221:) 1207:. 1203:: 1186:) 1172:. 1168:: 1162:9 1151:. 1147:: 1130:) 1116:. 1112:: 1082:) 1068:. 1064:: 1056:: 1039:) 1025:. 1021:: 968:: 948:) 934:. 922:: 914:: 888:. 884:: 861:) 847:. 843:: 820:. 814:: 784:) 770:. 766:: 758:: 752:7 735:) 721:. 709:: 701:: 678:. 674:: 666:: 660:1 628:) 614:. 610:: 604:6 587:) 573:. 542:) 528:. 516:: 508:: 485:) 471:. 459:: 431:) 417:. 413:: 383:. 349:. 345:: 337:: 261:C 235:C

Index

chronological dating
mineral
geologists
archaeologists
luminescence
optically stimulated luminescence
thermoluminescence dating
sediments
soils
radioactive
isotopes
potassium
uranium
thorium
rubidium
decay
ionizing radiation
quartz
potassium feldspar
infrared
aeolian
loess
thermoluminescence dating
Ioannis Liritzis
radioactive
cosmic rays
grays
quartz
potassium feldspar
photons

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑