Knowledge

Lab-on-a-chip

Source 📝

339:(PCB) substrates is an interesting alternative due to these differentiating characteristics: commercially available substrates with integrated electronics, sensors and actuators; disposable devices at low cost, and very high potential of commercialization. These devices are known as Lab-on-PCBs (LOPs). The following are some of the advantages of PCB technology: a) PCB-based circuit design offers great flexibility and can be tailored to specific demands. b) PCB technology enables the integration of electronic and sensing modules on the same platform, reducing device size while maintaining accuracy of detection. c) The standardized and established PCB manufacturing process allows for cost-effective large-scale production of PCB-based detection devices. d) The growth of flexible PCB technology has driven the development of wearable detection devices. As a result, over the past decade, there have been numerous reports on the application of Lab-on-PCB to various biomedical fields. e) PCBs are compatible with wet deposition methods, to allow for the fabrication of sensors using novel nanomaterials (e.g. graphene). 557:
for controlled separation and mixing. In such devices it is possible to quickly diagnose and potentially treat diseases. As mentioned above, a big motivation for development of these is that they can potentially be manufactured at very low cost. One more area of research that is being looked into with regards to LOC is with home security. Automated monitoring of volatile organic compounds (VOCs) is a desired functionality for LOC. If this application becomes reliable, these micro-devices could be installed on a global scale and notify homeowners of potentially dangerous compounds.
236:, developed in 1979 by S.C. Terry at Stanford University. However, only at the end of the 1980s and beginning of the 1990s did the LOC research start to seriously grow as a few research groups in Europe developed micropumps, flowsensors and the concepts for integrated fluid treatments for analysis systems. These μTAS concepts demonstrated that integration of pre-treatment steps, usually done at lab-scale, could extend the simple sensor functionality towards a complete laboratory analysis, including additional cleaning and separation steps. 187: 601: 587: 46: 276:. Sub-micrometre and nano-sized channels, DNA labyrinths, single cell detection and analysis, and nano-sensors, might become feasible, allowing new ways of interaction with biological species and large molecules. Many books have been written that cover various aspects of these devices, including the fluid transport, system properties, sensing techniques, and bioanalytical applications. 328:. The demand for cheap and easy LOC prototyping resulted in a simple methodology for the fabrication of PDMS microfluidic devices: ESCARGOT (Embedded SCAffold RemovinG Open Technology). This technique allows for the creation of microfluidic channels, in a single block of PDMS, via a dissolvable scaffold (made by e.g. 178:, the physics, manipulation and study of minute amounts of fluids. However, strictly regarded "lab-on-a-chip" indicates generally the scaling of single or multiple lab processes down to chip-format, whereas "μTAS" is dedicated to the integration of the total sequence of lab processes to perform chemical analysis. 556:
is the gold standard for obtaining CD4 counts, but flow cytometry is a complicated technique that is not available in most developing areas because it requires trained technicians and expensive equipment. Recently such a cytometer was developed for just $ 5. Another active area of LOC research is
471:
For the chips to be used in areas with limited resources, many challenges must be overcome. In developed nations, the most highly valued traits for diagnostic tools include speed, sensitivity, and specificity; but in countries where the healthcare infrastructure is less well developed, attributes
408:
In the microliter scale that LOCs deal with, surface dependent effects like capillary forces, surface roughness or chemical interactions are more dominant. This can sometimes make replicating lab processes in LOCs quite challenging and more complex than in conventional lab
332:). Furthermore, the LOC field more and more exceeds the borders between lithography-based microsystem technology, nanotechnology and precision engineering. Printing is considered as a well-established yet maturing method for rapid prototyping in chip fabrication. 263:
agents. The added value was not only limited to integration of lab processes for analysis but also the characteristic possibilities of individual components and the application to other, non-analysis, lab processes. Hence the term "lab-on-a-chip" was introduced.
397:
The complex fluidic actuation network requires multiple pumps and connectors, where fine control is difficult. It can be overcome by careful simulation, an intrinsic pump, such as air-bag embed chip, or by using a centrifugal force to replace the pumping, i.e.
272:, but also in synthetic chemistry such as rapid screening and microreactors for pharmaceutics. Besides further application developments, research in LOC systems is expected to extend towards downscaling of fluid handling structures as well, by using 231:
Next to pressure sensors, airbag sensors and other mechanically movable structures, fluid handling devices were developed. Examples are: channels (capillary connections), mixers, valves, pumps and dosing devices. The first LOC analysis system was a
809:
Chokkalingam Venkat; Tel Jurjen; Wimmers Florian; Liu Xin; Semenov Sergey; Thiele Julian; Figdor Carl G.; Huck Wilhelm T.S. (2013). "Probing cellular heterogeneity in cytokine-secreting immune cells using droplet-based microfluidics".
267:
Although the application of LOCs is still novel and modest, a growing interest of companies and applied research groups is observed in different fields such as chemical analysis, environmental monitoring, medical diagnostics and
295:
fabrication. Because of demands for e.g. specific optical characteristics, bio- or chemical compatibility, lower production costs and faster prototyping, new processes have been developed such as glass, ceramics and metal
385:
The micro-manufacturing process required to make them is complex and labor-intensive, requiring both expensive equipment and specialized personnel. It can be overcome by the recent technology advancement on low-cost
472:
such as ease of use and shelf life must also be considered. The reagents that come with the chip, for example, must be designed so that they remain effective for months even if the chip is not kept in a
441:
to identify patients who should receive the drugs. Many researchers believe that LOC technology may be the key to powerful new diagnostic instruments. The goal of these researchers is to create
1276:
Fenech-Salerno, Benji; Holicky, Martin; Yao, Chengning; Cass, Anthony E. G.; Torrisi, Felice (2023). "A sprayed graphene transistor platform for rapid and low-cost chemical sensing".
279:
The size of the global lab on chip market was estimated at US$ 5,698 million in 2021 and is projected to increase to US$ 14,772 million by 2030, at a CAGR of 11.5% from 2022 to 2030
1443:
Sanchez-Salmeron, A. J.; Lopez-Tarazon, R.; Guzman-Diana, R.; Ricolfe-Viala, C. (2005-08-30). "Recent development in micro-handling systems for micro-manufacturing".
1730:
AK Yetisen; L Jiang; J R Cooper; Y Qin; R Palanivelu; Y Zohar (May 2011). "A microsystem-based assay for studying pollen tube guidance in plant reproduction".
799:
A.Manz, N.Graber and H.M.Widmer: Miniaturized total Chemical Analysis systems: A Novel Concept for Chemical Sensing, Sensors and Actuators, B 1 (1990) 244–248.
437:
that would be treatable in a developed nation are often deadly. In some cases, poor healthcare clinics have the drugs to treat a certain illness but lack the
405:
Most LOCs are novel proof of concept application that are not yet fully developed for widespread use. More validations are needed before practical employment.
372:
safer platform for chemical, radioactive or biological studies because of integration of functionality, smaller fluid volumes and stored energies
552:
in a person's blood is an accurate way to determine if a person has HIV and to track the progress of an HIV infection . At the moment, flow
239:
A big boost in research and commercial interest came in the mid-1990s, when μTAS technologies turned out to provide interesting tooling for
1020:"Fabrication and Functionalization of 3D Printed Polydimethylsiloxane-Based Microfluidic Devices Obtained through Digital Light Processing" 575:. Specifically, plant on a chip is a miniaturized device in which pollen tissues and ovules could be incubated for plant sciences studies. 354:
faster analysis and response times due to short diffusion distances, fast heating, high surface to volume ratios, small heat capacities.
220:-compatibility limited processes, a tool box became available to create micrometre or sub-micrometre sized mechanical structures in 924:
Ghallab, Y.; Badawy, W. (2004-01-01). "Sensing methods for dielectrophoresis phenomenon: from bulky instruments to lab-on-a-chip".
544:
infections are a good example. Around 36.9 million people are infected with HIV in the world today and 59% of these people receive
496:
One of the most prominent and well known LOC devices to reach the market is the at home pregnancy test kit, a device that utilizes
1858: 1840: 1821: 1802: 1489: 1381:
Pawell, Ryan S.; Taylor, Robert A.; Morris, Kevin V.; Barber, Tracie J. (2015). "Automating microfluidic part verification".
1233:
Zhao, Wenhao; Tian, Shulin; Huang, Lei; Liu, Ke; Dong, Lijuan (2020). "The review of Lab‐on‐PCB for biomedical application".
856: 110: 357:
better process control because of a faster response of the system (e.g. thermal control for exothermic chemical reactions)
82: 309: 1781:
Geschke, Klank & Telleman, eds.: Microsystem Engineering of Lab-on-a-chip Devices, 1st ed, John Wiley & Sons.
1786: 399: 129: 89: 1505:
Paul Yager; Thayne Edwards; Elain Fu; Kristen Helton; Kjell Nelson; Milton R. Tam; Bernhard H. Weigl (July 2006).
351:
low fluid volumes consumption (less waste, lower reagents costs and less required sample volumes for diagnostics)
255:(Defense Advanced Research Projects Agency), for their interest in portable systems to aid in the detection of 225: 190: 167: 96: 67: 63: 17: 291:. Initially most processes were in silicon, as these well-developed technologies were directly derived from 1873: 1850: 445:
chips that will allow healthcare providers in poorly equipped clinics to perform diagnostic tests such as
78: 631: 1878: 1019: 720:
James B. Angell; Stephen C. Terry; Phillip W. Barth (April 1983). "Silicon Micromechanical Devices".
653: 497: 325: 244: 159: 158:(commonly called a "chip") of only millimeters to a few square centimeters to achieve automation and 1609:"Digital dipstick: miniaturized bacteria detection and digital quantification for the point-of-care" 1018:
Gonzalez, Gustavo; Chiappone, Annalisa; Dietlikee, Kurt; Pirri, Fabrizio; Roppolo, Ignazio (2020).
525: 1883: 1607:
Iseri, Emre; Biggel, Michael; Goossens, Herman; Moons, Pieter; van der Wijngaart, Wouter (2020).
1111: 1059:"Simple 3D Printed Scaffold-Removal Method for the Fabrication of Intricate Microfluidic Devices" 997: 533: 446: 56: 31: 366:
lower fabrication costs, allowing cost-effective disposable chips, fabricated in mass production
1888: 1671: 548:
treatment. Only 75% of people living with HIV knew their HIV status. Measuring the number of
347:
LOCs may provide advantages, which are specific to their application. Typical advantages are:
1893: 1416:
Engel, U; Eckstein, R (2002-09-09). "Microforming – from basic research to its realization".
757:
Terry J.H.Jerman (1979). "A Gas Chromatographic Air Analyzer Fabricated on a Silicon Wafer".
665: 500:
technology. Another active area of LOC research involves ways to diagnose and manage common
430: 413: 336: 171: 1739: 1520: 766: 731: 571: 301: 103: 8: 722: 685:
Volpatti, L. R.; Yetisen, A. K. (Jul 2014). "Commercialization of microfluidic devices".
549: 501: 434: 221: 1751: 1743: 1524: 770: 735: 1755: 1589: 1546: 1398: 1358: 1333: 1311: 1258: 1210: 1181: 1162: 1083: 1058: 1039: 949: 782: 614: 297: 256: 193: 155: 1442: 1429: 1126: 743: 1854: 1836: 1817: 1798: 1782: 1638: 1630: 1581: 1538: 1485: 1456: 1363: 1315: 1303: 1262: 1250: 1215: 1166: 1154: 1088: 1043: 941: 852: 827: 702: 619: 606: 529: 360:
compactness of the systems due to integration of much functionality and small volumes
321: 313: 233: 1759: 1593: 1402: 786: 1747: 1710: 1620: 1573: 1564:
Yetisen A. K. (2013). "Paper-based microfluidic point-of-care diagnostic devices".
1550: 1528: 1511: 1477: 1452: 1425: 1390: 1353: 1345: 1293: 1285: 1242: 1205: 1195: 1146: 1138: 1078: 1070: 1031: 953: 933: 819: 808: 774: 739: 694: 642: 532:. A recent study based on lab-on-a-chip technology, Digital Dipstick, miniaturised 305: 288: 260: 1142: 698: 892: 647: 545: 473: 438: 425:
Lab-on-a-chip technology may soon become an important part of efforts to improve
412:
Detection principles may not always scale down in a positive way, leading to low
391: 363:
massive parallelization due to compactness, which allows high-throughput analysis
248: 213: 201: 1656: 1447:. 2005 International Forum on the Advances in Materials Processing Technology. 719: 660: 592: 317: 273: 251:. A big boost in research support also came from the military, especially from 1715: 1698: 1504: 1481: 1394: 1107: 937: 1867: 1634: 1186: 945: 637: 537: 485: 426: 292: 205: 175: 1298: 778: 1642: 1585: 1542: 1367: 1307: 1254: 1246: 1219: 1158: 1092: 1074: 1035: 831: 706: 628:: detect bacteria, viruses and cancers based on antigen-antibody reactions. 457: 453: 442: 216:
manufacturing (1966) as well. Due to further development of these usually
1334:"Manufacturing and wetting low-cost microfluidic cell separation devices" 625: 566: 521: 509: 488:
in mind as they choose what materials and fabrication techniques to use.
481: 387: 329: 209: 1533: 1506: 846: 1625: 1608: 1577: 1289: 1200: 848:
Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices
823: 151: 1349: 1150: 186: 553: 517: 269: 886: 45: 586: 505: 240: 600: 162:. LOCs can handle extremely small fluid volumes down to less than 1699:"Chip-scale gas chromatography: From injection through detection" 1833:
Lab-on-a-chip: Techniques, Circuits, and Biomedical Applications
1729: 1507:"Microfluidic diagnostic technologies for global public health" 1108:"Simple fabrication of complex microfluidic devices (ESCARGOT)" 1017: 460: 449: 27:
Device integrating laboratory functions on a integrated circuit
1814:
Lab-on-a-Chip Technology: Biomolecular Separation and Analysis
282: 684: 513: 252: 163: 1275: 1830: 477: 316:-based 3D printing as well as fast replication methods via 217: 30:
This article is about the technology. For the journal, see
1056: 1697:
Akbar, Muhammad; Restaino, Michael; Agah, Masoud (2015).
541: 1606: 1380: 536:
into a dipstick format and enabled it to be used at the
1851:
Methods in Molecular Biology – Microfluidic Diagnostics
1795:
Lab-on-a-Chip Technology: Fabrication and Microfluidics
659:
Testing the safety and efficacy of new drugs, as with
433:
devices. In countries with few healthcare resources,
381:
The most prominent disadvantages of labs-on-chip are:
1849:(2012) Gareth Jenkins & Colin D Mansfield (eds): 966: 491: 1811: 1792: 1657:"Global HIV & AIDS statistics — 2019 fact sheet" 1114:
from the original on 2021-12-22 – via YouTube.
582: 565:
Lab-on-a-chip devices could be used to characterize
1327: 1325: 70:. Unsourced material may be challenged and removed. 1476:. Microsystems. Vol. 10. SpringerLink. 2002. 1696: 1105: 887:Karniadakis, G.M.; Beskok, A.; Aluru, N. (2005). 1865: 1322: 1232: 1182:"Lab-on-PCB and Flow Driving: A Critical Review" 756: 287:The basis for most LOC fabrication processes is 1600: 1124: 1563: 1415: 1331: 923: 656:: detection of bacteria, viruses and cancers. 150:) is a device that integrates one or several 1127:"Integrated Printed Microfluidic Biosensors" 476:environment. Chip designers must also keep 208:structures for microelectronic chips, these 1557: 844: 283:Chip materials and fabrication technologies 170:(MEMS) devices and sometimes called "micro 1445:Journal of Materials Processing Technology 1418:Journal of Materials Processing Technology 1179: 880: 429:, particularly through the development of 369:part quality may be verified automatically 1714: 1624: 1532: 1498: 1357: 1297: 1209: 1199: 1082: 1057:Saggiomo, V.; Velders, H. A. (Jul 2015). 871: 622:: detection of cancer cells and bacteria. 212:-based technologies were soon applied in 130:Learn how and when to remove this message 984:Biological Applications of Microfluidics 960: 905: 185: 166:. Lab-on-a-chip devices are a subset of 981: 899: 14: 1866: 1831:Yehya H. Ghallab; Wael Badawy (2010). 1474:Microfluidics and BioMEMS Applications 1125:Loo J, Ho A, Turner A, Mak WC (2019). 312:(OSTEmer) processing, thick-film- and 1812:Herold, KE; Rasooly, A, eds. (2009). 1793:Herold, KE; Rasooly, A, eds. (2009). 1468: 1466: 975: 919: 917: 540:. When it comes to viral infections, 335:The development of LOC devices using 1672:"Diagnosis in the palm of your hand" 865: 838: 466: 310:Off-stoichiometry thiol-ene polymers 68:adding citations to reliable sources 39: 24: 1770: 1703:Microsystems & Nanoengineering 1463: 1106:Vittorio Saggiomo (17 July 2015). 926:IEEE Circuits and Systems Magazine 914: 492:Examples of global LOC application 196:, sometimes called "lab on a chip" 25: 1905: 1669: 744:10.1038/scientificamerican0483-44 560: 520:. A gold standard for diagnosing 400:centrifugal micro-fluidic biochip 204:(≈1954) for realizing integrated 1457:10.1016/j.jmatprotec.2005.06.027 998:"Acumen Research and Consulting" 599: 585: 420: 376: 44: 1723: 1690: 1663: 1649: 1436: 1409: 1374: 1269: 1226: 1173: 1118: 1099: 1050: 1024:Advanced Materials Technologies 1011: 990: 969:Microfluidics for Biotechnology 55:needs additional citations for 1383:Microfluidics and Nanofluidics 1180:Perdigones, Francisco (2021). 851:. Cambridge University Press. 802: 793: 750: 713: 678: 226:microelectromechanical systems 191:Microelectromechanical systems 168:microelectromechanical systems 13: 1: 1835:. Artech House. p. 220. 1752:10.1088/0960-1317/21/5/054018 1430:10.1016/S0924-0136(02)00415-6 1143:10.1016/j.tibtech.2019.03.009 699:10.1016/j.tibtech.2014.04.010 671: 342: 967:Berthier, J.; Silberzan, P. 908:Introduction to Microfluidic 759:IEEE Trans. Electron Devices 463:with no laboratory support. 7: 578: 10: 1910: 1816:. Caister Academic Press. 1797:. Caister Academic Press. 300:, deposition and bonding, 181: 29: 1716:10.1038/micronano.2015.39 1482:10.1007/978-1-4757-3534-5 1395:10.1007/s10404-014-1464-1 938:10.1109/MCAS.2004.1337805 874:Theoretical Microfluidics 498:paper-based microfluidics 304:(PDMS) processing (e.g., 245:capillary electrophoresis 160:high-throughput screening 889:Microflows and Nanoflows 526:urinary tract infections 228:(MEMS) era had started. 1424:(Supplement C): 35–44. 1131:Trends in Biotechnology 779:10.1109/T-ED.1979.19791 687:Trends in Biotechnology 534:microbiological culture 447:microbiological culture 200:After the invention of 174:" (μTAS). LOCs may use 1732:J. Micromech. Microeng 1332:Pawell Ryan S (2013). 1247:10.1002/elps.201900444 1075:10.1002/advs.201500125 1036:10.1002/admt.202000374 414:signal-to-noise ratios 197: 172:total analysis systems 154:functions on a single 1676:Multimedia::Cytometer 666:Total analysis system 632:Ion channel screening 431:point-of-care testing 337:printed circuit board 189: 1241:(16–17): 1433–1445. 845:Kirby, B.J. (2010). 572:Arabidopsis thaliana 302:polydimethylsiloxane 64:improve this article 1874:Integrated circuits 1744:2011JMiMi..21e4018Y 1534:10.1038/nature05064 1525:2006Natur.442..412Y 771:1979ITED...26.1880T 736:1983SciAm.248d..44A 723:Scientific American 502:infectious diseases 435:infectious diseases 243:applications, like 1626:10.1039/D0LC00793E 1578:10.1039/C3LC50169H 1290:10.1039/d2nr05838c 1201:10.3390/mi12020175 872:Bruus, H. (2007). 824:10.1039/C3LC50945A 615:Biochemical assays 550:CD4+ T lymphocytes 474:climate controlled 198: 156:integrated circuit 1859:978-1-62703-133-2 1842:978-1-59693-418-4 1823:978-1-904455-47-9 1804:978-1-904455-46-2 1678:. The Daily Bruin 1619:(23): 4349–4356. 1572:(12): 2210–2251. 1519:(7101): 412–418. 1491:978-1-4419-5316-2 1350:10.1063/1.4821315 1137:(10): 1104–1120. 858:978-0-521-11903-0 818:(24): 4740–4744. 765:(12): 1880–1886. 620:Dielectrophoresis 607:Technology portal 530:microbial culture 467:Global challenges 322:injection molding 314:stereolithography 234:gas chromatograph 140: 139: 132: 114: 16:(Redirected from 1901: 1879:Laboratory types 1853:, Humana Press, 1846: 1827: 1808: 1764: 1763: 1727: 1721: 1720: 1718: 1694: 1688: 1687: 1685: 1683: 1670:Ozcan, Aydogan. 1667: 1661: 1660: 1653: 1647: 1646: 1628: 1604: 1598: 1597: 1561: 1555: 1554: 1536: 1502: 1496: 1495: 1470: 1461: 1460: 1440: 1434: 1433: 1413: 1407: 1406: 1378: 1372: 1371: 1361: 1338:Biomicrofluidics 1329: 1320: 1319: 1301: 1284:(7): 3243–3254. 1273: 1267: 1266: 1230: 1224: 1223: 1213: 1203: 1177: 1171: 1170: 1122: 1116: 1115: 1103: 1097: 1096: 1086: 1063:Advanced Science 1054: 1048: 1047: 1015: 1009: 1008: 1006: 1004: 994: 988: 987: 979: 973: 972: 964: 958: 957: 921: 912: 911: 903: 897: 896: 884: 878: 877: 869: 863: 862: 842: 836: 835: 806: 800: 797: 791: 790: 754: 748: 747: 717: 711: 710: 682: 643:Microphysiometry 609: 604: 603: 595: 590: 589: 439:diagnostic tools 306:soft lithography 289:photolithography 261:chemical warfare 135: 128: 124: 121: 115: 113: 72: 48: 40: 21: 1909: 1908: 1904: 1903: 1902: 1900: 1899: 1898: 1864: 1863: 1843: 1824: 1805: 1773: 1771:Further reading 1768: 1767: 1728: 1724: 1695: 1691: 1681: 1679: 1668: 1664: 1655: 1654: 1650: 1605: 1601: 1562: 1558: 1503: 1499: 1492: 1472: 1471: 1464: 1441: 1437: 1414: 1410: 1379: 1375: 1330: 1323: 1274: 1270: 1235:Electrophoresis 1231: 1227: 1178: 1174: 1123: 1119: 1104: 1100: 1055: 1051: 1016: 1012: 1002: 1000: 996: 995: 991: 980: 976: 965: 961: 922: 915: 904: 900: 893:Springer Verlag 885: 881: 870: 866: 859: 843: 839: 807: 803: 798: 794: 755: 751: 718: 714: 683: 679: 674: 648:Organ-on-a-chip 605: 598: 591: 584: 581: 563: 546:anti-retroviral 494: 469: 423: 392:laser engraving 379: 345: 285: 249:DNA microarrays 214:pressure sensor 202:microtechnology 184: 136: 125: 119: 116: 79:"Lab-on-a-chip" 73: 71: 61: 49: 38: 28: 23: 22: 15: 12: 11: 5: 1907: 1897: 1896: 1891: 1886: 1884:Nanotechnology 1881: 1876: 1862: 1861: 1847: 1841: 1828: 1822: 1809: 1803: 1790: 1778: 1777: 1772: 1769: 1766: 1765: 1722: 1689: 1662: 1648: 1599: 1556: 1497: 1490: 1462: 1451:(2): 499–507. 1435: 1408: 1389:(4): 657–665. 1373: 1321: 1299:10044/1/102808 1268: 1225: 1172: 1117: 1098: 1049: 1030:(9): 2000374. 1010: 989: 974: 959: 913: 898: 879: 864: 857: 837: 801: 792: 749: 712: 693:(7): 347–350. 676: 675: 673: 670: 669: 668: 663: 661:lung on a chip 657: 650: 645: 640: 635: 629: 623: 617: 611: 610: 596: 593:Biology portal 580: 577: 562: 561:Plant sciences 559: 493: 490: 468: 465: 422: 419: 418: 417: 410: 406: 403: 395: 378: 375: 374: 373: 370: 367: 364: 361: 358: 355: 352: 344: 341: 318:electroplating 284: 281: 274:nanotechnology 222:silicon wafers 183: 180: 138: 137: 52: 50: 43: 26: 9: 6: 4: 3: 2: 1906: 1895: 1892: 1890: 1889:Microfluidics 1887: 1885: 1882: 1880: 1877: 1875: 1872: 1871: 1869: 1860: 1856: 1852: 1848: 1844: 1838: 1834: 1829: 1825: 1819: 1815: 1810: 1806: 1800: 1796: 1791: 1788: 1787:3-527-30733-8 1784: 1780: 1779: 1775: 1774: 1761: 1757: 1753: 1749: 1745: 1741: 1738:(5): 054018. 1737: 1733: 1726: 1717: 1712: 1708: 1704: 1700: 1693: 1677: 1673: 1666: 1658: 1652: 1644: 1640: 1636: 1632: 1627: 1622: 1618: 1614: 1613:Lab on a Chip 1610: 1603: 1595: 1591: 1587: 1583: 1579: 1575: 1571: 1567: 1566:Lab on a Chip 1560: 1552: 1548: 1544: 1540: 1535: 1530: 1526: 1522: 1518: 1514: 1513: 1508: 1501: 1493: 1487: 1483: 1479: 1475: 1469: 1467: 1458: 1454: 1450: 1446: 1439: 1431: 1427: 1423: 1419: 1412: 1404: 1400: 1396: 1392: 1388: 1384: 1377: 1369: 1365: 1360: 1355: 1351: 1347: 1344:(5): 056501. 1343: 1339: 1335: 1328: 1326: 1317: 1313: 1309: 1305: 1300: 1295: 1291: 1287: 1283: 1279: 1272: 1264: 1260: 1256: 1252: 1248: 1244: 1240: 1236: 1229: 1221: 1217: 1212: 1207: 1202: 1197: 1193: 1189: 1188: 1187:Micromachines 1183: 1176: 1168: 1164: 1160: 1156: 1152: 1148: 1144: 1140: 1136: 1132: 1128: 1121: 1113: 1109: 1102: 1094: 1090: 1085: 1080: 1076: 1072: 1068: 1064: 1060: 1053: 1045: 1041: 1037: 1033: 1029: 1025: 1021: 1014: 999: 993: 985: 978: 970: 963: 955: 951: 947: 943: 939: 935: 931: 927: 920: 918: 909: 906:Tabeling, P. 902: 894: 890: 883: 875: 868: 860: 854: 850: 849: 841: 833: 829: 825: 821: 817: 813: 812:Lab on a Chip 805: 796: 788: 784: 780: 776: 772: 768: 764: 760: 753: 745: 741: 737: 733: 729: 725: 724: 716: 708: 704: 700: 696: 692: 688: 681: 677: 667: 664: 662: 658: 655: 651: 649: 646: 644: 641: 639: 638:Microfluidics 636: 634:(patch clamp) 633: 630: 627: 624: 621: 618: 616: 613: 612: 608: 602: 597: 594: 588: 583: 576: 574: 573: 568: 558: 555: 551: 547: 543: 539: 538:point-of-care 535: 531: 527: 523: 519: 515: 511: 507: 503: 499: 489: 487: 486:recyclability 483: 479: 475: 464: 462: 459: 455: 451: 448: 444: 440: 436: 432: 428: 427:global health 421:Global health 415: 411: 407: 404: 401: 396: 393: 389: 384: 383: 382: 377:Disadvantages 371: 368: 365: 362: 359: 356: 353: 350: 349: 348: 340: 338: 333: 331: 327: 323: 319: 315: 311: 307: 303: 299: 294: 293:semiconductor 290: 280: 277: 275: 271: 265: 262: 258: 254: 250: 246: 242: 237: 235: 229: 227: 224:as well: the 223: 219: 215: 211: 207: 206:semiconductor 203: 195: 192: 188: 179: 177: 176:microfluidics 173: 169: 165: 161: 157: 153: 149: 145: 144:lab-on-a-chip 134: 131: 123: 112: 109: 105: 102: 98: 95: 91: 88: 84: 81: –  80: 76: 75:Find sources: 69: 65: 59: 58: 53:This article 51: 47: 42: 41: 36: 34: 33:Lab on a Chip 19: 18:Lab on a chip 1894:Optofluidics 1832: 1813: 1794: 1735: 1731: 1725: 1706: 1702: 1692: 1680:. Retrieved 1675: 1665: 1651: 1616: 1612: 1602: 1569: 1565: 1559: 1516: 1510: 1500: 1473: 1448: 1444: 1438: 1421: 1417: 1411: 1386: 1382: 1376: 1341: 1337: 1281: 1277: 1271: 1238: 1234: 1228: 1191: 1185: 1175: 1134: 1130: 1120: 1101: 1066: 1062: 1052: 1027: 1023: 1013: 1001:. Retrieved 992: 983: 982:Gomez, F.A. 977: 968: 962: 929: 925: 907: 901: 888: 882: 873: 867: 847: 840: 815: 811: 804: 795: 762: 758: 752: 730:(4): 44–55. 727: 721: 715: 690: 686: 680: 570: 569:guidance in 564: 495: 470: 458:nucleic acid 454:immunoassays 443:microfluidic 424: 380: 346: 334: 286: 278: 266: 238: 230: 199: 147: 143: 141: 126: 117: 107: 100: 93: 86: 74: 62:Please help 57:verification 54: 32: 932:(3): 5–15. 626:Immunoassay 567:pollen tube 522:bacteriuria 510:bacteriuria 482:scalability 388:3D printing 330:3D printing 210:lithography 164:pico-liters 120:August 2010 1868:Categories 1682:26 January 1194:(2): 175. 1151:1826/15985 672:References 652:Real-time 504:caused by 409:equipment. 343:Advantages 257:biological 152:laboratory 90:newspapers 1635:1473-0197 1316:256261782 1278:Nanoscale 1263:210699552 1167:119536401 1044:225360332 946:1531-636X 554:cytometry 518:influenza 326:embossing 270:cellomics 35:(journal) 1760:12989263 1643:33169747 1594:17745196 1586:23652632 1543:16871209 1403:96793921 1368:24404077 1308:36723120 1255:31945803 1220:33578984 1159:30992149 1112:Archived 1093:27709002 1069:(8): X. 832:24185478 787:21971431 707:24954000 579:See also 506:bacteria 241:genomics 1740:Bibcode 1551:4429504 1521:Bibcode 1359:3785532 1211:7916810 1084:5115388 954:6178424 767:Bibcode 732:Bibcode 516:, e.g. 508:, e.g. 298:etching 182:History 104:scholar 1857:  1839:  1820:  1801:  1785:  1758:  1641:  1633:  1592:  1584:  1549:  1541:  1512:Nature 1488:  1401:  1366:  1356:  1314:  1306:  1261:  1253:  1218:  1208:  1165:  1157:  1091:  1081:  1042:  1003:23 May 952:  944:  855:  830:  785:  705:  484:, and 461:assays 450:assays 106:  99:  92:  85:  77:  1776:Books 1756:S2CID 1590:S2CID 1547:S2CID 1399:S2CID 1312:S2CID 1259:S2CID 1163:S2CID 1040:S2CID 950:S2CID 783:S2CID 528:) is 514:virus 253:DARPA 111:JSTOR 97:books 1855:ISBN 1837:ISBN 1818:ISBN 1799:ISBN 1783:ISBN 1684:2015 1639:PMID 1631:ISSN 1582:PMID 1539:PMID 1486:ISBN 1364:PMID 1304:PMID 1251:PMID 1216:PMID 1155:PMID 1089:PMID 1005:2023 942:ISSN 853:ISBN 828:PMID 703:PMID 478:cost 456:and 390:and 324:and 259:and 247:and 218:CMOS 194:chip 83:news 1748:doi 1711:doi 1621:doi 1574:doi 1529:doi 1517:442 1478:doi 1453:doi 1449:167 1426:doi 1422:125 1391:doi 1354:PMC 1346:doi 1294:hdl 1286:doi 1243:doi 1206:PMC 1196:doi 1147:hdl 1139:doi 1079:PMC 1071:doi 1032:doi 934:doi 820:doi 775:doi 740:doi 728:248 695:doi 654:PCR 542:HIV 512:or 308:), 148:LOC 66:by 1870:: 1754:. 1746:. 1736:25 1734:. 1709:. 1705:. 1701:. 1674:. 1637:. 1629:. 1617:20 1615:. 1611:. 1588:. 1580:. 1570:13 1568:. 1545:. 1537:. 1527:. 1515:. 1509:. 1484:. 1465:^ 1420:. 1397:. 1387:18 1385:. 1362:. 1352:. 1340:. 1336:. 1324:^ 1310:. 1302:. 1292:. 1282:15 1280:. 1257:. 1249:. 1239:41 1237:. 1214:. 1204:. 1192:12 1190:. 1184:. 1161:. 1153:. 1145:. 1135:37 1133:. 1129:. 1110:. 1087:. 1077:. 1065:. 1061:. 1038:. 1026:. 1022:. 948:. 940:. 928:. 916:^ 891:. 826:. 816:13 814:. 781:. 773:. 763:26 761:. 738:. 726:. 701:. 691:32 689:. 480:, 452:, 320:, 142:A 1845:. 1826:. 1807:. 1789:. 1762:. 1750:: 1742:: 1719:. 1713:: 1707:1 1686:. 1659:. 1645:. 1623:: 1596:. 1576:: 1553:. 1531:: 1523:: 1494:. 1480:: 1459:. 1455:: 1432:. 1428:: 1405:. 1393:: 1370:. 1348:: 1342:7 1318:. 1296:: 1288:: 1265:. 1245:: 1222:. 1198:: 1169:. 1149:: 1141:: 1095:. 1073:: 1067:2 1046:. 1034:: 1028:5 1007:. 986:. 971:. 956:. 936:: 930:4 910:. 895:. 876:. 861:. 834:. 822:: 789:. 777:: 769:: 746:. 742:: 734:: 709:. 697:: 524:( 416:. 402:. 394:. 146:( 133:) 127:( 122:) 118:( 108:· 101:· 94:· 87:· 60:. 37:. 20:)

Index

Lab on a chip
Lab on a Chip (journal)

verification
improve this article
adding citations to reliable sources
"Lab-on-a-chip"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
laboratory
integrated circuit
high-throughput screening
pico-liters
microelectromechanical systems
total analysis systems
microfluidics

Microelectromechanical systems
chip
microtechnology
semiconductor
lithography
pressure sensor
CMOS
silicon wafers
microelectromechanical systems

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.