Knowledge

Temperature

Source 📝

6709: 3990:
coarse-grained as they average out the microscopic thermal information based on the scale of the representative sample volume of the control system, and thus it is likely that temperature discontinuities at the micro-scale may be overlooked in such averages. Such an averaging may even produce incorrect or misleading results in many cases of temperature measurements, even at macro-scales, and thus it is prudent that one examines the micro-physical information carefully before averaging out or smoothing out any potential temperature discontinuities in a system as such discontinuities cannot always be averaged or smoothed out. Temperature discontiuities, rather than merely being anomalies, have actually substantially improved our understanding and predictive abilities pertaining to heat transfer at small scales.
6700:, because the slope of the entropy as a function of energy decreases to zero and then turns negative. As the subsystem's entropy reaches its maximum, its thermodynamic temperature goes to positive infinity, switching to negative infinity as the slope turns negative. Such negative temperatures are hotter than any positive temperature. Over time, when the subsystem is exposed to the rest of the body, which has a positive temperature, energy is transferred as heat from the negative temperature subsystem to the positive temperature system. The kinetic theory temperature is not defined for such subsystems. 3182:, that it has a density per unit volume or a quantity per unit mass of the system, but it makes no sense to speak of the density of temperature per unit volume or quantity of temperature per unit mass of the system. On the other hand, it makes no sense to speak of the internal energy at a point, while when local thermodynamic equilibrium prevails, it makes good sense to speak of the temperature at a point. Consequently, the temperature can vary from point to point in a medium that is not in global thermodynamic equilibrium, but in which there is local thermodynamic equilibrium. 4017:. In addition, rigorous and purely mathematical treatments have provided an axiomatic approach to classical thermodynamics and temperature. Statistical physics provides a deeper understanding by describing the atomic behavior of matter and derives macroscopic properties from statistical averages of microscopic states, including both classical and quantum states. In the fundamental physical description, the temperature may be measured directly in units of energy. However, in the practical systems of measurement for science, technology, and commerce, such as the modern 4161: 3980:, that is, temperature may not be continuous outside these conditions. For systems outside equilibrium, such as at interfaces between materials (e.g., a metal/non-metal interface or a liquid-vapour interface) temperature measurements may show steep discontinuities in time and space. For instance, Fang and Ward were some of the first authors to successfully report temperature discontinuities of as much as 7.8 K at the surface of evaporating water droplets. This was reported at inter-molecular scales, or at the scale of the 3408:. The customarily stated minimalist version of such a law postulates only that all bodies, which when thermally connected would be in thermal equilibrium, should be said to have the same temperature by definition, but by itself does not establish temperature as a quantity expressed as a real number on a scale. A more physically informative version of such a law views empirical temperature as a chart on a hotness manifold. While the zeroth law permits the definitions of many different empirical scales of temperature, the 11751: 833:. That constant refers to chosen kinds of motion of microscopic particles in the constitution of the body. In those kinds of motion, the particles move individually, without mutual interaction. Such motions are typically interrupted by inter-particle collisions, but for temperature measurement, the motions are chosen so that, between collisions, the non-interactive segments of their trajectories are known to be accessible to accurate measurement. For this purpose, interparticle potential energy is disregarded. 4558:, stretching between hot and cold. Sometimes the zeroth law is stated to include the existence of a unique universal hotness manifold, and of numerical scales on it, so as to provide a complete definition of empirical temperature. To be suitable for empirical thermometry, a material must have a monotonic relation between hotness and some easily measured state variable, such as pressure or volume, when all other relevant coordinates are fixed. An exceptionally suitable system is the 840:, and in other theoretically understood bodies, the Kelvin temperature is defined to be proportional to the average kinetic energy of non-interactively moving microscopic particles, which can be measured by suitable techniques. The proportionality constant is a simple multiple of the Boltzmann constant. If molecules, atoms, or electrons are emitted from material and their velocities are measured, the spectrum of their velocities often nearly obeys a theoretical law called the 1050: 2682:. Being an absolute scale with one fixed point (zero), there is only one degree of freedom left to arbitrary choice, rather than two as in relative scales. For the Kelvin scale since May 2019, by international convention, the choice has been made to use knowledge of modes of operation of various thermometric devices, relying on microscopic kinetic theories about molecular motion. The numerical scale is settled by a conventional definition of the value of the 392: 11796: 2620: 3380:
in thermodynamic equilibrium. It can then well be that different empirical thermometers disagree about which is hotter, and if this is so, then at least one of the bodies does not have a well-defined absolute thermodynamic temperature. Nevertheless, any one given body and any one suitable empirical thermometer can still support notions of empirical, non-absolute, hotness, and temperature, for a suitable range of processes. This is a matter for study in
909:. The pressure exerted by a fixed volume and mass of an ideal gas is directly proportional to its temperature. Some natural gases show so nearly ideal properties over suitable temperature range that they can be used for thermometry; this was important during the development of thermodynamics and is still of practical importance today. The ideal gas thermometer is, however, not theoretically perfect for thermodynamics. This is because the 11830: 503: 556: 4075:. It also determines the probability distribution function of energy. In condensed matter, and particularly in solids, this purely mechanical description is often less useful and the oscillator model provides a better description to account for quantum mechanical phenomena. Temperature determines the statistical occupation of the microstates of the ensemble. The microscopic definition of temperature is only meaningful in the 630:, although this does not enter into the definition of absolute temperature. Experimentally, absolute zero can be approached only very closely; it can never be reached (the lowest temperature attained by experiment is 38 pK). Theoretically, in a body at a temperature of absolute zero, all classical motion of its particles has ceased and they are at complete rest in this classical sense. Absolute zero, defined as 807:, which contributed greatly to the discovery of thermodynamics. Nevertheless, empirical thermometry has serious drawbacks when judged as a basis for theoretical physics. Empirically based thermometers, beyond their base as simple direct measurements of ordinary physical properties of thermometric materials, can be re-calibrated, by use of theoretical physical reasoning, and this can extend their range of adequacy. 3568: 6688:
whole body and of the subsystem must be the same. The two temperatures can differ when, by work through externally imposed force fields, energy can be transferred to and from the subsystem, separately from the rest of the body; then the whole body is not in its own state of internal thermodynamic equilibrium. There is an upper limit of energy such a spin subsystem can attain.
800:, a mercury-in-glass thermometer is impracticable. Most materials expand with temperature increase, but some materials, such as water, contract with temperature increase over some specific range, and then they are hardly useful as thermometric materials. A material is of no use as a thermometer near one of its phase-change temperatures, for example, its boiling-point. 3320:, any two suitably given empirical thermometers with numerical scale readings will agree as to which is the hotter of the two given bodies, or that they have the same temperature. This does not require the two thermometers to have a linear relation between their numerical scale readings, but it does require that the relation between their numerical readings shall be 2876:
only to heat; the intensive variable for this case is temperature. When the two bodies have been connected through the specifically permeable wall for a very long time, and have settled to a permanent steady state, the relevant intensive variables are equal in the two bodies; for a diathermal wall, this statement is sometimes called the zeroth law of thermodynamics.
2843:
caloric that passed from the hot reservoir was passed into the cold reservoir. Kelvin wrote in his 1848 paper that his scale was absolute in the sense that it was defined "independently of the properties of any particular kind of matter". His definitive publication, which sets out the definition just stated, was printed in 1853, a paper read in 1851.
2674:
specific heat of zero for zero temperature, according to the third law of thermodynamics. Nevertheless, a thermodynamic temperature does in fact have a definite numerical value that has been arbitrarily chosen by tradition and is dependent on the property of particular materials; it is simply less arbitrary than relative "degrees" scales such as
47: 6406:, the logarithm of which (times the Boltzmann constant) is the sum of their entropies; thus a flow of heat from high to low temperature, which brings an increase in total entropy, is more likely than any other scenario (normally it is much more likely), as there are more microstates in the resulting macrostate. 4767: 4123: 666:, as distinct from the Gibbs definition, for independently moving microscopic particles, disregarding interparticle potential energy, by international agreement, a temperature scale is defined and said to be absolute because it is independent of the characteristics of particular thermometric substances and 4592:) outcomes are possible, and their number increases with each toss. Eventually, the combinations of ~50% heads and ~50% tails dominate, and obtaining an outcome significantly different from 50/50 becomes increasingly unlikely. Thus the system naturally progresses to a state of maximum disorder or entropy. 825:
the body whose temperature is to be measured. In contrast with the thermodynamic temperature scale invented by Kelvin, the presently conventional Kelvin temperature is not defined through comparison with the temperature of a reference state of a standard body, nor in terms of macroscopic thermodynamics.
6695:
on the thermodynamic scale. Thermodynamic temperature is the inverse of the derivative of the subsystem's entropy with respect to its internal energy. As the subsystem's internal energy increases, the entropy increases for some range, but eventually attains a maximum value and then begins to decrease
3162:
Real-world bodies are often not in thermodynamic equilibrium and not homogeneous. For the study by methods of classical irreversible thermodynamics, a body is usually spatially and temporally divided conceptually into 'cells' of small size. If classical thermodynamic equilibrium conditions for matter
3379:
While for bodies in their own thermodynamic equilibrium states, the notion of temperature requires that all empirical thermometers must agree as to which of two bodies is the hotter or that they are at the same temperature, this requirement is not safe for bodies that are in steady states though not
3307:
says that they all measure the same quality. This means that for a body in its own state of internal thermodynamic equilibrium, every correctly calibrated thermometer, of whatever kind, that measures the temperature of the body, records one and the same temperature. For a body that is not in its own
3275:
by some writers. The quality of hotness refers to the state of material only in a particular locality, and in general, apart from bodies held in a steady state of thermodynamic equilibrium, hotness varies from place to place. It is not necessarily the case that a material in a particular place is in
1029:
particles if they are allowed to escape from the bulk of the system, through a small hole in the containing wall. The spectrum of velocities has to be measured, and the average calculated from that. It is not necessarily the case that the particles that escape and are measured have the same velocity
1021:
As noted above, the speed of sound in a gas can be calculated from the gas's molecular character, temperature, pressure, and the Boltzmann constant. Taking the value of the Boltzmann constant as a primarily defined reference of exactly defined value, a measurement of the speed of sound can provide a
824:
In physics, the internationally agreed conventional temperature scale is called the Kelvin scale. It is calibrated through the internationally agreed and prescribed value of the Boltzmann constant, referring to motions of microscopic particles, such as atoms, molecules, and electrons, constituent in
913:
at its absolute zero of temperature is not a positive semi-definite quantity, which puts the gas in violation of the third law of thermodynamics. In contrast to real materials, the ideal gas does not liquefy or solidify, no matter how cold it is. Alternatively thinking, the ideal gas law, refers to
879:
Measurement of the spectrum of noise-power produced by an electrical resistor can also provide accurate temperature measurement. The resistor has two terminals and is in effect a one-dimensional body. The Bose-Einstein law for this case indicates that the noise-power is directly proportional to the
2875:
of two extensive variables. In thermodynamics, two bodies are often considered as connected by contact with a common wall, which has some specific permeability properties. Such specific permeability can be referred to a specific intensive variable. An example is a diathermic wall that is permeable
590:
in the International System of Units, it has subsequently been redefined in terms of the equivalent fixing points on the Kelvin scale, so that a temperature increment of one degree Celsius is the same as an increment of one kelvin, though numerically the scales differ by an exact offset of 273.15.
6687:
For a body of matter, there can sometimes be conceptually defined, in terms of microscopic degrees of freedom, namely particle spins, a subsystem, with a temperature other than that of the whole body. When the body is in its own state of internal thermodynamic equilibrium, the temperatures of the
6128:
When two systems with different temperatures are put into purely thermal connection, heat will flow from the higher temperature system to the lower temperature one; thermodynamically this is understood by the second law of thermodynamics: The total change in entropy following a transfer of energy
4292:
provides an essential theoretical basis by which all thermometers can be calibrated. As a practical matter, it is not possible to use a gas thermometer to measure absolute zero temperature since the gases condense into a liquid long before the temperature reaches zero. It is possible, however, to
3760:
were defined as those of the triple point of water. This definition served the following purposes: it fixed the magnitude of the kelvin as being precisely 1 part in 273.16 parts of the difference between absolute zero and the triple point of water; it established that one kelvin has precisely the
3366:
such as the melting of ice, as a closed system receives heat, without a change in its volume and without a change in external force fields acting on it, its temperature rises. For a system undergoing such a phase change so slowly that departure from thermodynamic equilibrium can be neglected, its
3153:
The above definition, equation (1), of the absolute temperature, is due to Kelvin. It refers to systems closed to the transfer of matter and has a special emphasis on directly experimental procedures. A presentation of thermodynamics by Gibbs starts at a more abstract level and deals with systems
2673:
for two reasons. One is that its formal character is independent of the properties of particular materials. The other reason is that its zero is, in a sense, absolute, in that it indicates absence of microscopic classical motion of the constituent particles of matter, so that they have a limiting
892:
Historically, till May 2019, the definition of the Kelvin scale was that invented by Kelvin, based on a ratio of quantities of energy in processes in an ideal Carnot engine, entirely in terms of macroscopic thermodynamics. That Carnot engine was to work between two temperatures, that of the body
855:
character, temperature, pressure, and the Boltzmann constant. For a gas of known molecular character and pressure, this provides a relation between temperature and the Boltzmann constant. Those quantities can be known or measured more precisely than can the thermodynamic variables that define the
3971:
When one measures the variation of temperature across a region of space or time, do the temperature measurements turn out to be continuous or discrete? There is a widely held misconception that such temperature measurements must always be continuous. This misconception partly originates from the
3458:
When an energy transfer to or from a body is only as heat, the state of the body changes. Depending on the surroundings and the walls separating them from the body, various changes are possible in the body. They include chemical reactions, increase of pressure, increase of temperature and phase
2842:
Kelvin's original work postulating absolute temperature was published in 1848. It was based on the work of Carnot, before the formulation of the first law of thermodynamics. Carnot had no sound understanding of heat and no specific concept of entropy. He wrote of 'caloric' and said that all the
2724:
to a cold reservoir. The net heat energy absorbed by the working body is passed, as thermodynamic work, to a work reservoir, and is considered to be the output of the engine. The cycle is imagined to run so slowly that at each point of the cycle the working body is in a state of thermodynamic
815:
Theoretically based temperature scales are based directly on theoretical arguments, especially those of kinetic theory and thermodynamics. They are more or less ideally realized in practically feasible physical devices and materials. Theoretically based temperature scales are used to provide
3989:
across such interfaces which prevent instantaneous transfer of heat and the establishment of thermal equilibrium (a prerequisite for having a uniform equilibrium temperature across the interface). Further, temperature measurements at the macro-scale (typical observational scale) may be too
2846:
Numerical details were formerly settled by making one of the heat reservoirs a cell at the triple point of water, which was defined to have an absolute temperature of 273.16 K. Nowadays, the numerical value is instead obtained from measurement through the microscopic statistical mechanical
3984:
of molecules which is typically of the order of a few micrometers in gases at room temperature. Generally speaking, temperature discontinuities are considered to be norms rather than exceptions in cases of interfacial heat transfer. This is due to the abrupt change in the vibrational or
795:
Empirically based temperature scales rely directly on measurements of simple macroscopic physical properties of materials. For example, the length of a column of mercury, confined in a glass-walled capillary tube, is dependent largely on temperature and is the basis of the very useful
6319: 6623: 8000:
Based on a computer model that predicted a peak internal temperature of 30 MeV (350 GK) during the merger of a binary neutron star system (which produces a gamma–ray burst). The neutron stars in the model were 1.2 and 1.6 solar masses respectively, were roughly
828:
Apart from the absolute zero of temperature, the Kelvin temperature of a body in a state of internal thermodynamic equilibrium is defined by measurements of suitably chosen of its physical properties, such as have precisely known theoretical explanations in terms of the
856:
state of a sample of water at its triple point. Consequently, taking the value of the Boltzmann constant as a primarily defined reference of exactly defined value, a measurement of the speed of sound can provide a more precise measurement of the temperature of the gas.
5819:
where the subscript indicates a reversible process. This function corresponds to the entropy of the system, which was described previously. Rearranging (8) gives a formula for temperature in terms of fictive infinitesimal quasi-reversible elements of entropy and heat:
1005:
than single spherical atoms: they undergo rotational and vibrational motions as well as translations. Heating results in an increase of temperature due to an increase in the average translational kinetic energy of the molecules. Heating will also cause, through
5627: 897:. Since May 2019, that value has not been fixed by definition but is to be measured through microscopic phenomena, involving the Boltzmann constant, as described above. The microscopic statistical mechanical definition does not have a reference temperature. 786:
There are various kinds of temperature scale. It may be convenient to classify them as empirically and theoretically based. Empirical temperature scales are historically older, while theoretically based scales arose in the middle of the nineteenth century.
3740:. It is the temperature at which all classical translational motion of the particles comprising matter ceases and they are at complete rest in the classical model. Quantum-mechanically, however, zero-point motion remains and has an associated energy, the 4060:
squared. In this mechanical interpretation of thermal motion, the kinetic energies of material particles may reside in the velocity of the particles of their translational or vibrational motion or in the inertia of their rotational modes. In monatomic
753:
Since May 2019, the magnitude of the kelvin is defined in relation to microscopic phenomena, characterized in terms of statistical mechanics. Previously, but since 1954, the International System of Units defined a scale and unit for the kelvin as a
4506: 974:. The translational motion of the particle has three degrees of freedom, so that, except at very low temperatures where quantum effects predominate, the average translational kinetic energy of a freely moving particle in a system with temperature 5233: 2838:
The zeroth law of thermodynamics allows this definition to be used to measure the absolute or thermodynamic temperature of an arbitrary body of interest, by making the other heat reservoir have the same temperature as the body of interest.
4942: 4538:
When two otherwise isolated bodies are connected together by a rigid physical path impermeable to matter, there is the spontaneous transfer of energy as heat from the hotter to the colder of them. Eventually, they reach a state of mutual
5742: 5507: 4633: 8777:, B.G. Teubner, Leipzig, p. 5: "... when a body is spoken of as growing hotter or colder an increase of temperature is always implied, for the hotness and coldness of a body are qualitative terms which can only refer to temperature." 4411: 4587:
For example, in a series of coin tosses, a perfectly ordered system would be one in which either every toss comes up heads or every toss comes up tails. This means the outcome is always 100% the same result. In contrast, many mixed
3976:, which states that physical quantities must assume every intermediate value between a starting value and a final value. However, the classical picture is only true in the cases where temperature is measured in a system that is in 4553:
This statement helps to define temperature but it does not, by itself, complete the definition. An empirical temperature is a numerical scale for the hotness of a thermodynamic system. Such hotness may be defined as existing on a
769:
Historically, the temperature of the triple point of water was defined as exactly 273.16 K. Today it is an empirically measured quantity. The freezing point of water at sea-level atmospheric pressure occurs at very close to
8013:
across over a time span of around 5 ms. Imagine two city-sized objects of unimaginable density orbiting each other at the same frequency as the G4 musical note (the 28th white key on a piano). It's also noteworthy that at
3139: 3283:
When two systems in thermal contact are at the same temperature no heat transfers between them. When a temperature difference does exist heat flows spontaneously from the warmer system to the colder system until they are in
2686:, which relates macroscopic temperature to average microscopic kinetic energy of particles such as molecules. Its numerical value is arbitrary, and an alternate, less widely used absolute temperature scale exists called the 3462:
For example, if the change is an increase in temperature at constant volume, with no phase change and no chemical change, then the temperature of the body rises and its pressure increases. The quantity of heat transferred,
2729:. Then the quantity of entropy taken in from the hot reservoir when the working body is heated is equal to that passed to the cold reservoir when the working body is cooled. Then the absolute or thermodynamic temperatures, 3550:
is the measure of the heat required to increase the temperature of such a unit quantity by one unit of temperature. For example, raising the temperature of water by one kelvin (equal to one degree Celsius) requires 4186
705:, that takes interparticle potential energy into account, as well as independent particle motion so that it can account for measurements of temperatures near absolute zero. This scale has a reference temperature at the 6418:. The generalized temperature is obtained by considering time ensembles instead of configuration-space ensembles given in statistical mechanics in the case of thermal and particle exchange between a small system of 3003: 4004:
Historically, there are several scientific approaches to the explanation of temperature: the classical thermodynamic description based on macroscopic empirical variables that can be measured in a laboratory; the
9170:
Contemporary Developments in Continuum Mechanics and Partial Differential Equations. Proceedings of the International Symposium on Continuum Mechanics and Partial Differential Equations, Rio de Janeiro, August
4595:
As temperature governs the transfer of heat between two systems and the universe tends to progress toward a maximum of entropy, it is expected that there is some relationship between temperature and entropy. A
7916:
into heavier elements in the following steps: sulfur–32 → argon–36 → calcium–40 → titanium–44 → chromium–48 → iron–52 → nickel–56. Within minutes of finishing the sequence, the star explodes as a Type II
3185:
Thus, when local thermodynamic equilibrium prevails in a body, the temperature can be regarded as a spatially varying local property in that body, and this is because the temperature is an intensive variable.
6158: 2824: 10541:
in Upton, New York. Bathe has studied gold-gold, deuteron-gold, and proton-proton collisions to test the theory of quantum chromodynamics, the theory of the strong force that holds atomic nuclei together.
6494: 893:
whose temperature was to be measured, and a reference, that of a body at the temperature of the triple point of water. Then the reference temperature, that of the triple point, was defined to be exactly
863:
can provide an accurate temperature measurement because the frequency of maximum spectral radiance of black-body radiation is directly proportional to the temperature of the black body; this is known as
10094:, Amsterdam, (1st edition 1949) fifth edition 1965, p. 8, "... will gradually adjust themselves until eventually they do reach mutual equilibrium after which there will of course be no further change." 3659:. Many engineering fields in the US, notably high-tech and US federal specifications (civil and military), also use the Kelvin and Celsius scales. Other engineering fields in the US also rely upon the 5083: 8094:
Thermal discharges at nuclear power stations: their management and environmental impacts: a report prepared by a group of experts as the result of a panel meeting held in Vienna, 23–27 October 1972
2339: 10792:
Zeppenfeld, M.; Englert, B.G.U.; Glöckner, R.; Prehn, A.; Mielenz, M.; Sommer, C.; van Buuren, L.D.; Motsch, M.; Rempe, G. (2012). "Sysiphus cooling of electrically trapped polyatomic molecules".
3392:
When a body is not in a steady-state, then the notion of temperature becomes even less safe than for a body in a steady state not in thermodynamic equilibrium. This is also a matter for study in
8621: 3536: 880:
temperature of the resistor and to the value of its resistance and to the noise bandwidth. In a given frequency band, the noise-power has equal contributions from every frequency and is called
5876: 5805: 932:
provides a microscopic account of temperature for some bodies of material, especially gases, based on macroscopic systems' being composed of many microscopic particles, such as molecules and
10564: 3352:. Thermal radiation is initially defined for a cavity in thermodynamic equilibrium. These physical facts justify a mathematical statement that hotness exists on an ordered one-dimensional 229: 5979: 5529: 3371:. Conversely, a loss of heat from a closed system, without phase change, without change of volume, and without a change in external force fields acting on it, decreases its temperature. 6083: 10135:, Amsterdam, (1st edition 1949) fifth edition 1965, p. 8: "If two systems are both in thermal equilibrium with a third system then they are in thermal equilibrium with each other." 8321:
de Podesta, M., Underwood, R., Sutton, G., Morantz, P, Harris, P, Mark, D.F., Stuart, F.M., Vargha, G., Machin, M. (2013). A low-uncertainty measurement of the Boltzmann constant,
8009:
during the last several milliseconds before they completely merged. The 350 GK portion was a small volume located at the pair's developing common core and varied from roughly
3424:
is considered as a function of the volume and entropy of a homogeneous system in thermodynamic equilibrium, thermodynamic absolute temperature appears as the partial derivative of
4608:
that does not change over a full cycle, the work from a heat engine over a full cycle is equal to the net heat, i.e. the sum of the heat put into the system at high temperature,
3308:
state of internal thermodynamic equilibrium, different thermometers can record different temperatures, depending respectively on the mechanisms of operation of the thermometers.
261: 7853:
applies only to the debris from two subatomic particles or nuclei at any given instant. The >2 GK temperature was achieved over a period of about ten nanoseconds during
6404: 6115: 185: 4437: 3927: 6362: 4584:. The second law states that any process will result in either no change or a net increase in the entropy of the universe. This can be understood in terms of probability. 3276:
a state that is steady and nearly homogeneous enough to allow it to have a well-defined hotness or temperature. Hotness may be represented abstractly as a one-dimensional
5094: 3643:), the Celsius scale is used for most temperature measuring purposes. Most scientists measure temperature using the Celsius scale and thermodynamic temperature using the 2174: 2119: 2064: 4576:
As an alternative to considering or defining the zeroth law of thermodynamics, it was the historical development in thermodynamics to define temperature in terms of the
3580: 1871: 1824: 1739: 1692: 1604: 1557: 844:, which gives a well-founded measurement of temperatures for which the law holds. There have not yet been successful experiments of this same kind that directly use the 6486: 6459: 10749:(March 1851). "On the Dynamical Theory of Heat, with numerical results deduced from Mr Joule's equivalent of a Thermal Unit, and M. Regnault's Observations on Steam". 7883: 6150: 1775: 1643: 8061: 4235: 4098:
of energy depends on the temperature, i.e. the energy region of the interactions under consideration. For solids, the thermal energy is associated primarily with the
4852: 4762:{\displaystyle {\text{efficiency}}={\frac {w_{\text{cy}}}{q_{\text{H}}}}={\frac {q_{\text{H}}+q_{\text{C}}}{q_{\text{H}}}}=1-{\frac {|q_{\text{C}}|}{q_{\text{H}}}},} 2009: 10384:: "It is impossible by any procedure, no matter how idealized, to reduce the temperature of any system to zero temperature in a finite number of finite operations." 7939: 5670: 5429: 6657:
On the empirical temperature scales that are not referenced to absolute zero, a negative temperature is one below the zero-point of the scale used. For example,
4329: 1508: 10148:, Cambridge University Press, Cambridge, p. 29: "... if each of two systems is in equilibrium with a third system then they are in equilibrium with each other." 6022: 1847: 1800: 1715: 1668: 1580: 1533: 3459:
change. For each kind of change under specified conditions, the heat capacity is the ratio of the quantity of heat transferred to the magnitude of the change.
3163:
are fulfilled to good approximation in such a 'cell', then it is homogeneous and a temperature exists for it. If this is so for every 'cell' of the body, then
570:
scale (°C) is used for common temperature measurements in most of the world. It is an empirical scale that developed historically, which led to its zero point
8186: 4562:, which can provide a temperature scale that matches the absolute Kelvin scale. The Kelvin scale is defined on the basis of the second law of thermodynamics. 9797: 3154:
open to the transfer of matter; in this development of thermodynamics, the equations (2) and (3) above are actually alternative definitions of temperature.
4009:
which relates the macroscopic description to the probability distribution of the energy of motion of gas particles; and a microscopic explanation based on
10998: 4296:
The kinetic theory assumes that pressure is caused by the force associated with individual atoms striking the walls, and that all energy is translational
4285:. The temperature in kelvins can be defined as the pressure in pascals of one mole of gas in a container of one cubic meter, divided by the gas constant. 9146:
The Concepts and Logic of Classical Thermodynamics as a Theory of Heat Engines, Rigorously Constructed upon the Foundation Laid by S. Carnot and F. Reech
9000: 7401:
For a true black-body (which tungsten filaments are not). Tungsten filament emissivity is greater at shorter wavelengths, which makes them appear whiter.
3070: 2666:. Formerly, the magnitude of the kelvin was defined in thermodynamic terms, but nowadays, as mentioned above, it is defined in terms of kinetic theory. 11029: 10250: 3271:
of a state of a material. The quality may be regarded as a more abstract entity than any particular temperature scale that measures it, and is called
6684:
The internal kinetic theory temperature of a body cannot take negative values. The thermodynamic temperature scale, however, is not so constrained.
9274: 8892: 2649: 10561: 7814:
The 350 MK value is the maximum peak fusion fuel temperature in a thermonuclear weapon of the Teller–Ulam configuration (commonly known as a
10909: 7957: 10734:(1848). On an absolute thermometric scale founded on Carnot's theory of the motive power of heat, and calculated from Regnault's observations, 9971: 2350: 563:
Temperature scales need two values for definition: the point chosen as zero degrees and the magnitudes of the incremental unit of temperature.
10000: 8206: 4513: 2238: 914:
the limit of infinitely high temperature and zero pressure; these conditions guarantee non-interactive motions of the constituent molecules.
6004:
defines temperature based on a system's fundamental degrees of freedom. Eq.(10) is the defining relation of temperature, where the entropy
4959:
states that all reversible engines operating between the same heat reservoirs are equally efficient. Thus, a heat engine operating between
2941: 11480: 10546: 7792: 4065:
and, approximately, in most gas and in simple metals, the temperature is a measure of the mean particle translational kinetic energy, 3/2
796:
mercury-in-glass thermometer. Such scales are valid only within convenient ranges of temperature. For example, above the boiling point of
10180:
Prati, E. (2010). "The finite quantum grand canonical ensemble and temperature from single-electron statistics for a mesoscopic device".
6708: 4037: 1472: 803:
In spite of these limitations, most generally used practical thermometers are of the empirically based kind. Especially, it was used for
6314:{\displaystyle \Delta S=-(dS/dE)_{1}\cdot \Delta E+(dS/dE)_{2}\cdot \Delta E=\left({\frac {1}{T_{2}}}-{\frac {1}{T_{1}}}\right)\Delta E} 6618:{\displaystyle T={\frac {E-E_{\text{F}}\left(1+{\frac {3}{2N}}\right)}{k_{\text{B}}\ln \left(2{\frac {\tau _{2}}{\tau _{1}}}\right)}},} 4550:
is that if two systems are each in thermal equilibrium with a third system, then they are also in thermal equilibrium with each other.
4087: 3329: 1002: 945: 7857:. In fact, the iron and manganese ions in the plasma averaged 3.58±0.41 GK (309±35 keV) for 3 ns (ns 112 through 115). 3761:
same magnitude as one degree on the Celsius scale; and it established the difference between the null points of these scales as being
8208:
Draft Resolution A "On the revision of the International System of Units (SI)" to be submitted to the CGPM at its 26th meeting (2018)
7800: 3792:. The Rankine scale, still used in fields of chemical engineering in the US, is an absolute scale based on the Fahrenheit increment. 2755: 2328: 298:
that historically have relied on various reference points and thermometric substances for definition. The most common scales are the
10488: 8783: 8732: 9317: 7845:
Peak temperature for a bulk quantity of matter was achieved by a pulsed-power machine used in fusion physics experiments. The term
4044:. As a collection of classical material particles, the temperature is a measure of the mean energy of motion, called translational 3732:, which is water specially prepared with a specified blend of hydrogen and oxygen isotopes. Absolute zero was defined as precisely 8300:
Zeppenfeld, M., Englert, B.G.U., Glöckner, R., Prehn, A., Mielenz, M., Sommer, C., van Buuren, L.D., Motsch, M., Rempe, G. (2012).
7805:(Chapter 1 lecture notes on Solar Physics by Division of Theoretical Physics, Dept. of Physical Sciences, University of Helsinki). 3164: 7723:
A temperature of 450 ±80 pK in a Bose–Einstein condensate (BEC) of sodium atoms was achieved in 2003 by researchers at
7510: 3584: 3436:
at which the entropy of any system is at a minimum. Although this is the lowest absolute temperature described by the model, the
2361: 7739:, 12 Sept. 2003, p. 1515. This record's peak emittance black-body wavelength of 6,400 kilometers is roughly the radius of Earth. 3062:, then the reciprocal of the temperature is equal to the partial derivative of the entropy with respect to the internal energy: 709:
of water, the numerical value of which is defined by measurements using the aforementioned internationally agreed Kelvin scale.
11022: 7975: 10417:, MIT Press, Cambridge MA, page 96: "It is impossible to reach absolute zero as a result of a finite sequence of operations." 10353: 10074:, p. 23, "..., if a temperature gradient exists, ..., then a flow of heat, ..., must occur to achieve a uniform temperature." 7829: 6696:
as the highest energy states begin to fill. At the point of maximum entropy, the temperature function shows the behavior of a
5747:
where the negative sign indicates heat ejected from the system. This relationship suggests the existence of a state function,
5007: 11171: 10862: 10443: 9893: 9234: 9041: 8976: 8918: 8119: 7724: 7525: 5664:
nK, which was achieved in 1995 at NIST. Subtracting the right hand side of (5) from the middle portion and rearranging gives
3784:
In the United States, the Fahrenheit scale is the most widely used. On this scale the freezing point of water corresponds to
1931: 3706:
is better defined as the melting point of ice. In this scale, a temperature difference of 1 degree Celsius is the same as a
10575: 8280:
Turvey, K. (1990). 'Test of validity of Maxwellian statistics for electrons thermionically emitted from an oxide cathode',
8058: 4956: 4600:
is a device for converting thermal energy into mechanical energy, resulting in the performance of work. An analysis of the
3197: 2642: 2229: 1898: 1465: 1343: 4277:
on the temperature scale, because it only holds if the temperature is measured on an absolute scale such as Kelvin's. The
10994: 10902: 3801: 3488: 1281: 314:
scale (K), the latter being used predominantly for scientific purposes. The kelvin is one of the seven base units in the
17: 8899:, second edition, translated into English by M. Masius, Blakiston's Son & Co., Philadelphia, reprinted by Kessinger. 7880: 6366:
From the point of view of statistical mechanics, the total number of microstates in the combined system 1 + system 2 is
11770: 9294: 9256: 7943: 7569: 6677:(the temperature of the ideally coldest possible body) by any finite practicable process; this is a consequence of the 6025: 4305: 2864: 2856: 2413: 2387: 1908: 1362: 841: 655: 133: 6691:
Considering the subsystem to be in a temporary state of virtual thermodynamic equilibrium, it is possible to obtain a
5828: 5759: 3864:
nature that involve very high temperatures. It is customary to express temperature as energy in a unit related to the
682:(SI). The temperature of a body in a state of thermodynamic equilibrium is always positive relative to absolute zero. 11191: 11015: 10785: 10770: 10746: 10731: 10718: 10703: 10604: 10112: 10071: 9861: 9484:"The Space Environment: As man looks forward to flight into space, he finds the outer regions not completely unknown" 9178: 9153: 9132: 8951: 8835: 8710: 8686: 8665: 8592: 8567: 8540: 8516: 8477: 8435: 8423: 7536: 6717: 5993:
i.e. the reciprocal of the temperature is the rate of increase of entropy with respect to energy at constant volume.
3781:). Since 2019, there has been a new definition based on the Boltzmann constant, but the scales are scarcely changed. 3356:. This is a fundamental character of temperature and thermometers for bodies in their own thermodynamic equilibrium. 1314: 718: 542: 8035: 5622:{\displaystyle {\text{efficiency}}=1-{\frac {|q_{\text{C}}|}{q_{\text{H}}}}=1-{\frac {T_{\text{C}}}{T_{\text{H}}}}.} 2697:
The thermodynamic definition of temperature is due to Kelvin. It is framed in terms of an idealized device called a
586:
at sea level. It was called a centigrade scale because of the 100-degree interval. Since the standardization of the
11473: 11339: 10275: 8183: 7360: 6961: 5660:
K is the minimum possible temperature. In fact, the lowest temperature ever obtained in a macroscopic system was 20
4543:, in which heat transfer has ceased, and the bodies' respective state variables have settled to become unchanging. 3729: 3588: 2466: 1937: 1336: 190: 4106:, the kinetic energy is found exclusively in the purely translational motions of the particles. In other systems, 4032:
is based on a model that analyzes a system into its fundamental particles of matter or into a set of classical or
9836: 7495: 7293: 5921: 3624: 3404:
For the axiomatic treatment of thermodynamic equilibrium, since the 1930s, it has become customary to refer to a
3268: 2635: 10882: 6434:
and orthodicity, allows expressing the generalized temperature from the ratio of the average time of occupation
1014:
gas will require more energy input to increase its temperature by a certain amount, i.e. it will have a greater
693:, also with its numerical zero at the absolute zero of temperature, but directly relating to purely macroscopic 11386: 10895: 10336: 10227: 9593: 3393: 3381: 3316:
For experimental physics, hotness means that, when comparing any two given bodies in their respective separate
2566: 1098: 524: 8993: 7932: 6038: 2461: 1030:
distribution as the particles that remain in the bulk of the system, but sometimes a good sample is possible.
936:
of various species, the particles of a species being all alike. It explains macroscopic phenomena through the
11218: 11186: 11133: 9008:
Consequently we identify temperature as a driving force which causes something called heat to be transferred.
8050: 7520: 4512:. This direct proportionality between temperature and mean molecular kinetic energy is a special case of the 3720:
By international agreement, until May 2019, the Kelvin and Celsius scales were defined by two fixing points:
3676: 3341: 2541: 2314: 1291: 734: 679: 315: 10243: 4079:, meaning for large ensembles of states or particles, to fulfill the requirements of the statistical model. 11806: 11765: 8775:
Thermodynamics. An Introductory Treatise dealing mainly with First Principles and their Direct Applications
8724:
Thermodynamics. An Introductory Treatise dealing mainly with First Principles and their Direct Applications
7563: 6864: 4577: 4571: 4547: 4533: 3409: 3405: 3304: 1926: 1129: 1119: 873: 520: 31: 11466: 11447: 7903: 6928: 6678: 4501:{\textstyle v_{\text{rms}}={\sqrt {\langle v^{2}\rangle }}={\sqrt {\langle \mathbf {v\cdot v} \rangle }}} 3437: 3349: 1134: 1124: 619: 329: 242: 10512: 9534:"On the molecular picture and interfacial temperature discontinuity during evaporation and condensation" 9271: 8887: 7465: – Ability of an organism to keep its body temperature within certain boundaries (thermoregulation) 328:
scale. Experimentally, it can be approached very closely but not actually reached, as recognized in the
11820: 11381: 11138: 10534: 10523: 8826:
Serrin, J. (1986). Chapter 1, 'An Outline of Thermodynamical Structure', pp. 3–32, especially p. 6, in
7631: 6739: 2418: 2382: 1160: 1094: 865: 845: 622:. At this temperature, matter contains no macroscopic thermal energy, but still has quantum-mechanical 235: 9701: 9533: 8289: 6369: 6091: 5656:
K. Since an efficiency greater than 100% violates the first law of thermodynamics, this implies that 0
3806:
The following temperature scales are in use or have historically been used for measuring temperature:
2456: 717:
Many scientific measurements use the Kelvin temperature scale (unit symbol: K), named in honor of the
153: 11663: 11361: 11295: 11123: 7961: 7665:
The cited emission wavelengths are for black bodies in equilibrium. CODATA 2006 recommended value of
7607: 3999: 3896: 3861: 3601: 3417: 3317: 2211: 1959: 1405: 1218: 1208: 922:
The magnitude of the kelvin is now defined in terms of kinetic theory, derived from the value of the
755: 701:, though microscopically referable to the Gibbs statistical mechanical definition of entropy for the 686: 325: 7440:
For a true black-body (which the plasma was not). The Z machine's dominant emission originated from
6327: 5421:
is a function of a single temperature. A temperature scale can now be chosen with the property that
5228:{\displaystyle q_{13}=f\left(T_{1},T_{3}\right)=f\left(T_{1},T_{2}\right)f\left(T_{2},T_{3}\right).} 4126:
A theoretical understanding of temperature in a hard-sphere model of a gas can be obtained from the
4048:, of the particles, whether in solids, liquids, gases, or plasmas. The kinetic energy, a concept of 3230: 11228: 11080: 9992: 8215: 8018:
GK, the average neutron has a vibrational speed of 30% the speed of light and a relativistic mass (
7486: 6697: 6427: 6414:
It is possible to extend the definition of temperature even to systems of few particles, like in a
4309: 2860: 671: 670:
mechanisms. Apart from absolute zero, it does not have a reference temperature. It is known as the
10276:"Measuring the temperature of a mesoscopic electron system by means of single electron statistics" 11775: 11429: 11351: 7913: 7584: 7542: 7456: 7235: 7208: 7056: 6029: 4142: 4127: 4006: 3593: 3486: 3215: 2623: 2451: 2248: 2129: 2074: 2019: 1951: 1890: 1426: 1415: 1081: 929: 513: 436: 5521:
Substituting (6) back into (4) gives a relationship for the efficiency in terms of temperature:
1853: 1806: 1721: 1674: 1586: 1539: 11799: 11283: 11243: 11196: 11181: 11163: 9123:
Pitteri, M. (1984). On the axiomatic foundations of temperature, Appendix G6 on pp. 522–544 of
7590: 6464: 6437: 4937:{\displaystyle {\frac {|q_{\text{C}}|}{q_{\text{H}}}}=f\left(T_{\text{H}},T_{\text{C}}\right).} 4509: 4173: 4145:
that yields a fundamental understanding of temperature in gases. This theory also explains the
3296: 2725:
equilibrium. The successive processes of the cycle are thus imagined to run reversibly with no
2556: 2273: 1357: 1111: 1086: 376: 8943: 7789: 6132: 4164:
Plots of pressure vs temperature for three different gas samples extrapolated to absolute zero
2476: 1757: 1622: 11780: 11330: 11223: 11213: 11176: 9559: 8269: 8109: 6001: 4202: 4095: 4029: 3345: 3292: 2491: 2068: 1381: 1227: 1076: 941: 659: 627: 10400:, original publication 1957, reprint 1966, Cambridge University Press, Cambridge, page 51: " 7477: – Temperature of air as measured by a thermometer shielded from radiation and moisture 5737:{\displaystyle {\frac {q_{\text{H}}}{T_{\text{H}}}}+{\frac {q_{\text{C}}}{T_{\text{C}}}}=0,} 5502:{\displaystyle {\frac {|q_{\text{C}}|}{q_{\text{H}}}}={\frac {T_{\text{C}}}{T_{\text{H}}}}.} 2705:
that traverse a cycle of states of its working body. The engine takes in a quantity of heat
1979: 11850: 11523: 11409: 11376: 11278: 11273: 11238: 10918: 10811: 10649: 10543: 10371: 10297: 10211: 10199: 10124: 10083: 9918: 9812: 9717: 9663: 9483: 9456: 9360: 9080: 7826: 7695: 7637: 7578: 7474: 6692: 6652: 4406:{\displaystyle E_{\text{k}}={\frac {1}{2}}mv_{\text{rms}}^{2}={\frac {3}{2}}k_{\text{B}}T,} 4091: 4025:, a proportionality factor that scales temperature to the microscopic mean kinetic energy. 3886: 3612:. Fahrenheit's scale is still in use in the United States for non-scientific applications. 3413: 3300: 2868: 2571: 2496: 2486: 1286: 1148: 722: 583: 492: 448: 8260:
Germer, L.H. (1925). 'The distribution of initial velocities among thermionic electrons',
4604:
provides the necessary relationships. According to energy conservation and energy being a
8: 11690: 11371: 11356: 10484: 8779: 8728: 8617: 7625: 4555: 4540: 4134: 4076: 4049: 4010: 3977: 3702:
at sea level. Because liquid droplets commonly exist in clouds at sub-zero temperatures,
3543: 3285: 2516: 2278: 1300: 1266: 1261: 1174: 937: 859:
Measurement of the spectrum of electromagnetic radiation from an ideal three-dimensional
10815: 10653: 10301: 10203: 9951: 9922: 9816: 9667: 9651: 9460: 9364: 9314: 9084: 8005:
in diameter, and were orbiting around their barycenter (common center of mass) at about
2511: 1490: 11715: 11143: 10835: 10801: 10313: 10287: 10215: 10189: 9934: 9828: 9778: 9739: 9679: 9623: 9571: 9545: 9425: 8145: 7769: 7548: 7530: 7480: 6007: 4601: 4427: 4417: 4022: 3890: 3869: 3663:(a shifted Fahrenheit scale) when working in thermodynamic-related disciplines such as 3250: 3223: 2930: 2726: 2683: 2605: 2268: 2263: 2216: 1832: 1785: 1700: 1653: 1565: 1518: 1448: 1432: 1319: 1271: 1256: 1246: 1055: 1049: 971: 923: 830: 738: 702: 651: 4086:. The thermal energy may be partitioned into independent components attributed to the 3280:. Every valid temperature scale has its own one-to-one map into the hotness manifold. 729:, is at the absolute zero of temperature. Since May 2019, the kelvin has been defined 618:
of temperature, no energy can be removed from matter as heat, a fact expressed in the
11424: 11320: 11208: 11050: 10858: 10827: 10781: 10766: 10714: 10699: 10600: 10439: 10317: 10219: 10108: 10067: 9938: 9889: 9857: 9782: 9743: 9731: 9683: 9575: 9563: 9511: 9503: 9429: 9417: 9378: 9347:
Jha, Aditya; Campbell, Douglas; Montelle, Clemency; Wilson, Phillip L. (2023-07-30).
9252: 9230: 9174: 9149: 9128: 9037: 8972: 8947: 8936: 8914: 8831: 8706: 8682: 8661: 8588: 8563: 8536: 8512: 8473: 8146:"Scientists just broke the record for the coldest temperature ever recorded in a lab" 8115: 7691: 7595: 7468: 7367:) when calibrated strictly per the two-point definition of thermodynamic temperature. 6817: 4517: 4033: 4014: 3973: 3741: 3686:
For everyday applications, it is often convenient to use the Celsius scale, in which
3605: 3337: 3333: 2600: 2561: 2551: 2123: 1921: 1749: 1251: 1241: 1183: 1026: 797: 674:, widely used in science and technology. The kelvin (the unit name is spelled with a 623: 466: 459: 368: 295: 272: 11007: 10691:, original publication 1957, reprint 1966, Cambridge University Press, Cambridge UK. 10599:, (1st edition 1968), third edition 1983, Cambridge University Press, Cambridge UK, 9832: 9627: 5751:, whose change characteristically vanishes for a complete cycle if it is defined by 4160: 905:
A material on which a macroscopically defined temperature scale may be based is the
332:. It would be impossible to extract energy as heat from a body at that temperature. 11628: 10839: 10819: 10670: 10657: 10305: 10244:"Realizing Boltzmann's dream: computer simulations in modern statistical mechanics" 10207: 9926: 9820: 9770: 9721: 9713: 9671: 9613: 9605: 9555: 9495: 9464: 9444: 9409: 9368: 9088: 8447: 7572: – Measurements of atmospheric, land surface or sea temperature by satellites. 7462: 4301: 4193: 4138: 4021:
of units, the macroscopic and the microscopic descriptions are interrelated by the
3820: 3363: 3134:{\displaystyle {\frac {1}{T}}=\left({\frac {\partial S}{\partial U}}\right)_{V,N}.} 2679: 2521: 2506: 2446: 2441: 2258: 2253: 1903: 1371: 1236: 420: 404: 275:
that quantitatively expresses the attribute of hotness or coldness. Temperature is
10973: 3840: 1010:, the energy associated with vibrational and rotational modes to increase. Thus a 399:
Many physical processes are related to temperature; some of them are given below:
110: 11075: 10579: 10568: 10550: 10538: 10527: 10516: 10431: 10340: 10231: 9881: 9675: 9499: 9321: 9278: 8896: 8190: 8092: 8065: 8054: 8039: 8032:
Torus Formation in Neutron Star Mergers and Well-Localized Short Gamma-Ray Bursts
7908: 7898:
Core temperature of a high–mass (>8–11 solar masses) star after it leaves the
7887: 7858: 7833: 7796: 7389: 6920: 6746: 4431: 4293:
extrapolate to absolute zero by using the ideal gas law, as shown in the figure.
4289: 4282: 4188:), and was recognized long before the kinetic theory of gases was developed (see 4099: 4041: 3600:
and temperature scales goes back at least as far as the early 18th century, when
3425: 3421: 3360: 3255: 2880: 2471: 2319: 1973: 1614: 1437: 1198: 1165: 869: 744: 472: 336: 10572: 7979: 4094:. In general, the number of these degrees of freedom that are available for the 3374: 11366: 10983: 10427: 9963: 9877: 9373: 9348: 9315:
Definition agreed by the 26th General Conference on Weights and Measures (CGPM)
8698: 8653: 8580: 8555: 7174: 6779: 4605: 4313: 4297: 4189: 4083: 4045: 3981: 3857: 3749: 3691: 2663: 2526: 2296: 1396: 1276: 1213: 1203: 1071: 1041: 694: 482:, which in a gas is proportional to the square root of the absolute temperature 479: 432: 284: 126: 10978: 9413: 8705:, (first edition 1960), second edition 1985, John Wiley & Sons, New York, 8562:, (first edition 1960), second edition 1985, John Wiley & Sons, New York, 7824:
Nuclear Weapons Frequently Asked Questions, 3.2.5 Matter At High Temperatures.
7818:). Peak temperatures in Gadget-style fission bomb cores (commonly known as an 7598: – Electromagnetic radiation generated by the thermal motion of particles 5652:
K the efficiency is 100% and that efficiency becomes greater than 100% below 0
3845: 106: 46: 11844: 11834: 11148: 10968: 10938: 10684: 10393: 9735: 9567: 9507: 9421: 9382: 8752: 7601: 7557: 7106: 6999: 6756: 6426:
even less than 10) with a single/double-occupancy system. The finite quantum
4278: 4274: 4169: 4150: 4018: 3986: 3830: 3825: 3815: 3721: 3699: 3660: 3656: 3640: 3547: 3478: 3449: 3433: 2698: 2687: 2675: 2595: 1913: 1482: 1443: 1155: 1015: 1007: 910: 884:. If the value of the resistance is known then the temperature can be found. 881: 615: 348: 321: 118: 102: 9468: 9397: 9290: 11489: 11325: 11300: 11233: 11110: 10963: 10958: 10831: 9515: 7613: 7264: 7048: 6964: 6636: 4973:
must have the same efficiency as one consisting of two cycles, one between
4267: 3865: 3835: 3810: 3745: 3725: 3616: 2702: 2691: 2546: 2531: 2481: 1964: 851:
The speed of sound in a gas can be calculated theoretically from the gas's
759: 706: 122: 114: 10728:, (first edition 1928), fifth edition, Blackie & Son Limited, Glasgow. 10321: 7860:
Ion Viscous Heating in a Magnetohydrodynamically Unstable Z Pinch at Over
7849:
draws a distinction from collisions in particle accelerators wherein high
6409: 3713:
increment, but the scale is offset by the temperature at which ice melts (
3609: 11705: 11414: 11153: 9909:
Kondepudi, D.K. (1987). "Microscopic aspects implied by the second law".
9798:"Statistical mechanics of colloids and Boltzmann's definition of entropy" 9726: 9618: 9173:, edited by G.M. de La Penha, L.A.J. Medeiros, North-Holland, Amsterdam, 8620:(1929). The effect of collisions on monochromatic radiative equilibrium, 8030: 7619: 7140: 6415: 4597: 4521: 4062: 3620: 3597: 3453: 3440:
postulates that absolute zero cannot be attained by any physical system.
3368: 3325: 2501: 1309: 804: 690: 675: 667: 280: 276: 52: 10887: 10823: 8643:, translated by E. Gyarmati and W.F. Heinz, Springer, Berlin, pp. 63–66. 7489: – Heat transfer due to combined effects of advection and diffusion 3952:
one routinely encounters temperatures of the order of a few hundred MeV/
11419: 11391: 11305: 11100: 11085: 11065: 10943: 10461:"NASA Scientific Visualization Studio | A Guide to Cosmic Temperatures" 9930: 9774: 9702:"Comparison of kinetic theory evaporation models for liquid thin-films" 8641:
Non-equilibrium Thermodynamics. Field Theory and Variational Principles
7706: 7640: – Temperature read by a thermometer covered in water-soaked cloth 7459: – Physical quantity that expresses hot and cold in the atmosphere 6734: 6431: 4122: 3949: 3664: 2590: 2536: 860: 595: 527: in this section. Unsourced material may be challenged and removed. 428: 372: 307: 98: 10662: 10637: 10309: 9824: 9609: 9445:"Temperature measured close to the interface of an evaporating liquid" 9093: 9068: 6639:. This generalized temperature tends to the ordinary temperature when 2998:{\displaystyle T=\left({\frac {\partial U}{\partial S}}\right)_{V,N}.} 762:
of water as a second reference point, the first reference point being
741:, the value of which is defined as fixed by international convention. 391: 11646: 11458: 11261: 11090: 11070: 11055: 10689:
Elements of Classical Thermodynamics for Advanced Students of Physics
10398:
Elements of Classical Thermodynamics for Advanced Students of Physics
7918: 7788:
Measurement was made in 2002 and has an uncertainty of ±3 kelvins. A
7198: 7114: 6778:
Blackbody temperature of the black hole at the centre of our galaxy,
4559: 4320: 4317: 4245: 4154: 4146: 4107: 4103: 3328:, of thermodynamics, and of properties of particular materials, from 3321: 1188: 906: 837: 452: 380: 352: 344: 56: 10333: 10224: 9758: 7431:
difference between K and °C is within the precision of these values.
2714:
from a hot reservoir and passes out a lesser quantity of waste heat
1025:
It is possible to measure the average kinetic energy of constituent
816:
calibrating standards for practical empirically based thermometers.
502: 11618: 11439: 11401: 11315: 11060: 10948: 10460: 10379: 10132: 10091: 9550: 7924: 7077: 6990: 4281:
allows one to measure temperature on this absolute scale using the
4111: 3647:
scale, which is the Celsius scale offset so that its null point is
3571:
A typical Celsius thermometer measures a winter day temperature of
3556: 3432:
at constant volume. Its natural, intrinsic origin or null point is
3353: 3324:. A definite sense of greater hotness can be had, independently of 3288:. Such heat transfer occurs by conduction or by thermal radiation. 3277: 3210: 3170:
It makes good sense, for example, to say of the extensive variable
2304: 2221: 2013: 1421: 1193: 1011: 852: 440: 356: 324:, i.e., zero kelvin or −273.15 °C, is the lowest point in the 10806: 10354:"Frozen carbon dioxide (dry ice) sublimates directly into a vapor" 10292: 10194: 8585:
Modern Thermodynamics. From Heat Engines to Dissipative Structures
8047: 4308:
function for the velocity of particles in an ideal gas. From that
4102:
of its atoms or molecules about their equilibrium position. In an
3344:, by a universal constant, to the frequency of the maximum of its 848:
for thermometry, but perhaps that will be achieved in the future.
11829: 11735: 11510: 11310: 10933: 10402:
By no finite series of processes is the absolute zero attainable.
10376:
Thermodynamics. An Advanced Treatment for Chemists and Physicists
10129:
Thermodynamics. An Advanced Treatment for Chemists and Physicists
10088:
Thermodynamics. An Advanced Treatment for Chemists and Physicists
9398:"Continuity in nature and in mathematics: Boltzmann and Poincaré" 9349:"On the Continuum Fallacy: Is Temperature a Continuous Function?" 8242:
Truesdell, C.A. (1980), Sections 11 B, 11H, pp. 306–310, 320–332.
7925:"Stellar Evolution: The Life and Death of Our Luminous Neighbors" 7836:
All referenced data was compiled from publicly available sources.
7471: – Property of light sources related to black-body radiation 6658: 6419: 4581: 3636: 3632: 3429: 3243: 2889: 1410: 698: 685:
Besides the internationally agreed Kelvin scale, there is also a
663: 567: 555: 424: 364: 360: 340: 299: 94: 77: 30:
This article is about the physical quantity. For other uses, see
6024:
is defined (up to a constant) by the logarithm of the number of
11680: 11653: 11569: 11559: 10953: 7634: – Apparent temperature estimating how humans are affected 3680: 3644: 3628: 3552: 2819:{\displaystyle {\frac {T_{1}}{T_{2}}}=-{\frac {Q_{1}}{Q_{2}}}.} 2662:
Temperature is one of the principal quantities in the study of
587: 412: 311: 82: 10791: 8994:"Basic Principles of Classical and Statistical Thermodynamics" 8511:, translated by E.S. Halberstadt, Wiley–Interscience, London, 7148: 3348:; this frequency is always positive, but can have values that 598:
scale is in common use in the United States. Water freezes at
559:
Two thermometers showing temperature in Celsius and Fahrenheit
11593: 11118: 10509: 9650:
Chen, Jie; Xu, Xiangfan; Zhou, Jun; Li, Baowen (2022-04-22).
8812:
Die Principien der Wärmelehre. Historisch-kritisch entwickelt
8658:
Thermodynamic Theory of Structure, Stability and Fluctuations
7504: 7483: – Process by which heat is transferred within an object 7166: 4615:> 0, and the waste heat given off at the low temperature, 4057: 3375:
Bodies in a steady state but not in thermodynamic equilibrium
2872: 948:
of a freely moving particle has an average kinetic energy of
737:(SI), the magnitude of the kelvin is defined in terms of the 575: 408: 10531: 10034: 4788:
is the work done per cycle. The efficiency depends only on |
3972:
historical view associated with the continuity of classical
3416:, unique up to an arbitrary scale factor, whence called the 3367:
temperature remains constant as the system is supplied with
3017:
Likewise, when the body is described by stating its entropy
11633: 11603: 11544: 11095: 10778:
Fundamentals of Equilibrium and Steady-State Thermodynamics
10520: 9652:"Interfacial thermal resistance: Past, present, and future" 7560: – Absolute temperature scale using Fahrenheit degrees 7321: 7027: 6028:
of the system in the given macrostate (as specified in the
4273:
This relationship gives us our first hint that there is an
4053: 3889:
from temperature, is then calculated as the product of the
3581:
Timeline of temperature and pressure measurement technology
3567: 2867:
with respect to another, for a given body. It thus has the
1386: 819: 444: 288: 10855:
Inventing Temperature: Measurement and Scientific Progress
10438:(2nd ed.). W.H. Freeman Company. p. Appendix E. 10053:, third edition, Longman's, Green & Co, London, p. 32. 9111:, third edition, Longman's, Green & Co, London, p. 45. 5245:, this temperature must cancel on the right side, meaning 11128: 9346: 8877:, translated by A. Ogg, Longmans, Green, London, pp. 1–2. 8814:, Johann Ambrosius Barth, Leipzig, section 22, pp. 56–57. 7085: 4288:
Although it is not a particularly convenient device, the
2879:
In particular, when the body is described by stating its
933: 416: 9888:(2nd ed.). W.H. Freeman Company. pp. 391–397. 9207:, Macmillan, London, Chapter VII, Section 95, pp. 68–69. 7610: – Measure of temperature relative to absolute zero 5996: 5078:{\displaystyle q_{13}={\frac {q_{1}q_{2}}{q_{2}q_{3}}},} 2897:, also an extensive variable, and other state variables 1022:
more precise measurement of the temperature of the gas.
758:, by using the reliably reproducible temperature of the 9968:
The NIST Reference on Constants, Units, and Uncertainty
9952:
The Feynman Lectures on Physics. 39–5 The ideal gas law
7973:, and a concise treatise on stars by NASA is here 7574:
Pages displaying short descriptions of redirect targets
7553:
Pages displaying short descriptions of redirect targets
7500:
Pages displaying short descriptions of redirect targets
7491:
Pages displaying short descriptions of redirect targets
6410:
Generalized temperature from single-particle statistics
3399: 10681:, Longmans, Green & Co., London, pp. 175–177. 10426: 9876: 9759:"Untersuchungen über die Grundlagen der Thermodynamik" 9194:, third edition, Longmans, Green, London, pp. 155–158. 9168:
Serrin, J. (1978). The concepts of thermodynamics, in
8971:(5 ed.). John Wiley & Sons, Ltd. p. 14. 8966: 8703:
Thermodynamics and an Introduction to Thermostatistics
8560:
Thermodynamics and an Introduction to Thermostatistics
7729:
Cooling Bose–Einstein Condensates Below 500 Picokelvin
7587: – Water temperature close to the ocean's surface 4625:
The efficiency is the work divided by the heat input:
4440: 3311: 11818: 11037: 10763:
The Tragicomical History of Thermodynamics, 1822–1854
10630:
A History of the Thermometer and its Use in Metrology
9055:
Thermodynamics with Quantum Statistical Illustrations
9036:, Elsevier Scientific Publishing Company, Amsterdam, 8459:
Roberts, J.K., Miller, A.R. (1928/1960), pp. 321–322.
6497: 6467: 6440: 6372: 6330: 6161: 6135: 6094: 6041: 6010: 5924: 5831: 5762: 5673: 5532: 5432: 5097: 5010: 4855: 4636: 4332: 4205: 4090:
of the particles or to the modes of oscillators in a
3899: 3491: 3073: 2944: 2758: 2132: 2077: 2022: 1982: 1856: 1835: 1809: 1788: 1760: 1724: 1703: 1677: 1656: 1625: 1589: 1568: 1542: 1521: 1493: 245: 193: 156: 9854:
Equilibrium and Nonequilibrium Statistical Mechanics
9251:(8th ed.). McGraw-Hill Education. p. 660. 9249:
Perry's Chemical Engineers' Handbook, Eighth Edition
9184: 9127:, C. Truesdell, second edition, Springer, New York, 8201: 8199: 8179: 8177: 7581: – Method to measure temperature quantitatively 4082:
Kinetic energy is also considered as a component of
2933:
of the internal energy with respect to the entropy:
10617:Jaynes, E.T. (1965). Gibbs vs Boltzmann entropies, 10589: 9069:"A restatement of the zeroth law of thermodynamics" 8409:. Dover Publications (still in print). p. 48. 7822:) are in the range of 50 to 100 MK. Citation: 7616: – Infrared imaging used to reveal temperature 7444:
electrons (soft x-ray emissions) within the plasma.
6712:
An illustration of the range of cosmic temperatures
6669:. On the absolute Kelvin scale this temperature is 3531:{\displaystyle C_{V}={\frac {\Delta Q}{\Delta T}}.} 403:the physical properties of materials including the 11673: 9872: 9870: 9023:, Macmillan, London, Chapter VII, pp. 42, 103–117. 8935: 8167: 8165: 7799:produced a value of 5,777.0±2.5 K. Citation: 7539: – Comparison of a wide range of temperatures 7498: – Average temperature of the Earth's surface 6617: 6480: 6453: 6398: 6356: 6313: 6144: 6109: 6077: 6016: 5973: 5870: 5799: 5736: 5621: 5501: 5227: 5077: 4936: 4761: 4500: 4405: 4229: 3921: 3530: 3157: 3133: 2997: 2818: 2690:, made to be aligned with the Fahrenheit scale as 2168: 2113: 2058: 2003: 1865: 1841: 1818: 1794: 1769: 1733: 1709: 1686: 1662: 1637: 1598: 1574: 1551: 1527: 1502: 887: 255: 223: 179: 10107:, American Institute of Physics Press, New York, 10066:, American Institute of Physics Press, New York, 10039:(8 ed.). Oxford University Press. p. 9. 8681:, American Institute of Physics Press, New York, 8623:Monthly Notices of the Royal Astronomical Society 8551: 8549: 8535:, American Institute of Physics Press, New York, 8196: 8174: 7628: – Virtual temperature of a moist air parcel 395:Average daily variation in human body temperature 11842: 10351: 8851:, third edition, Longmans, Green, London, p. 32. 8527: 8525: 8503: 8501: 8499: 8238: 8236: 8234: 7566: – Model compatible with special relativity 7551: – Units defined only by physical constants 5871:{\displaystyle T={\frac {dq_{\text{rev}}}{dS}}.} 5800:{\displaystyle dS={\frac {dq_{\text{rev}}}{T}},} 4816:correspond to heat transfer at the temperatures 4524:. It does not hold exactly for most substances. 3542:If heat capacity is measured for a well-defined 10679:Fundamental Principles. The Properties of Gases 10025:, Oxford University Press, London, pp. 93, 655. 9867: 9756: 9538:International Journal of Heat and Mass Transfer 9197: 9119: 9117: 8938:Fundamentals of Statistical and Thermal Physics 8854: 8162: 8143: 7604: – Sensation and perception of temperature 4844:should be some function of these temperatures: 4565: 4527: 3387: 302:scale with the unit symbol °C (formerly called 10751:Transactions of the Royal Society of Edinburgh 10508:Results of research by Stefan Bathe using the 10165:. Dover Publications. p. §90 & §137. 9699: 9164: 9162: 8822: 8820: 8546: 8329:(4): S213–S216, BIPM & IOP Publishing Ltd 7418:to avoid false precision in the Celsius value. 6723:Comparisons of temperatures in various scales 3470:, divided by the observed temperature change, 3412:selects the definition of a single preferred, 2888:, an extensive variable, as a function of its 944:of kinetic theory asserts that each classical 11474: 11023: 10903: 10156: 10154: 8522: 8496: 8317: 8315: 8231: 6121:is the number of microstates with the energy 2643: 224:{\displaystyle {\frac {dq_{\text{rev}}}{dS}}} 11172:Convective available potential energy (CAPE) 9750: 9649: 9114: 8991: 8908: 8864:, Macmillan, London, Chapter VII, pp. 39–40. 8841: 8806: 8804: 8802: 8800: 8400: 8398: 8091:Agency, International Atomic Energy (1974). 4493: 4479: 4469: 4456: 4114:motions also contribute degrees of freedom. 2669:The thermodynamic temperature is said to be 730: 51:Thermal vibration of a segment of protein's 9956: 9700:Aursand, Eskil; Ytrehus, Tor (2019-07-01). 9159: 9057:, Interscience Publishers, New York, p. 17. 8867: 8817: 8057:, arXiv:astro-ph/0507099 v2, 22 Feb. 2006. 7922: 7717: 7421: 5974:{\displaystyle T^{-1}={\frac {d}{dE}}S(E),} 5890:For a constant-volume system where entropy 5238:Since the first function is independent of 4300:. Using a sophisticated symmetry argument, 2747:, of the reservoirs are defined such that 781: 11481: 11467: 11030: 11016: 10910: 10896: 10883:Current map of global surface temperatures 10675:An Advanced Treatise on Physical Chemistry 10370: 10267: 10151: 9395: 9246: 8969:Fundamentals of Engineering Thermodynamics 8967:M.J. Moran; H.N. Shapiro (2006). "1.6.1". 8312: 7414:difference between K and °C is rounded to 7384:difference between K and °C is rounded to 7370: 4306:Maxwell–Boltzmann probability distribution 4117: 4036:oscillators and considers the system as a 2855:In thermodynamic terms, temperature is an 2701:, imagined to run in a fictive continuous 2650: 2636: 1048: 917: 335:Temperature is important in all fields of 45: 10917: 10805: 10724:Roberts, J.K., Miller, A.R. (1928/1960). 10661: 10291: 10273: 10193: 10179: 9908: 9725: 9617: 9549: 9372: 9324:in November 2018, implemented 20 May 2019 9092: 8830:, edited by J. Serrin, Springer, Berlin, 8797: 8493:, M.I.T. Press, Cambridge MA, pp. 47, 57. 8395: 8107: 7937:More informative links can be found here 7768:Since 2019, Kelvin is now defined on the 3993: 3966: 3299:, found that there are indefinitely many 1033: 543:Learn how and when to remove this message 10638:"Cooling molecules the optoelectric way" 10614:, Cambridge University Press, Cambridge. 10612:The Concepts of Classical Thermodynamics 10146:The Concepts of Classical Thermodynamics 9795: 9706:International Journal of Multiphase Flow 9560:10.1016/j.ijheatmasstransfer.2022.122845 9442: 8780:"Thermodynamics by George Hartley Bryan" 8729:"Thermodynamics by George Hartley Bryan" 7677:used for Wien displacement law constant 6707: 6078:{\displaystyle S=k_{\mathrm {B} }\ln(W)} 4159: 4121: 3566: 3167:is said to prevail throughout the body. 2929:), then the temperature is equal to the 2850: 820:Microscopic statistical mechanical scale 554: 390: 10745: 10173: 10023:The Principles of Statistical Mechanics 9964:"2022 CODATA Value: molar gas constant" 9066: 8933: 8911:Entropy and its Physical Interpretation 8902: 7645: 7511:International Temperature Scale of 1990 7422: 7410:Effective photosphere temperature. The 6646: 6488:of the single/double-occupancy system: 3585:International Temperature Scale of 1990 678:'k') is the unit of temperature in the 582:as the boiling point of water, both at 574:being defined as the freezing point of 383:as well as most aspects of daily life. 294:Thermometers are calibrated in various 14: 11843: 11488: 10635: 10160: 10028: 9718:10.1016/j.ijmultiphaseflow.2019.04.007 9592:Cahill, D; et al. (27 Dec 2022). 9591: 9481: 8374:Adkins, C.J. (1968/1983), pp. 119–120. 8090: 8048:Max Planck Institute for Astrophysics. 7507: – ISO standard temperature, 20°C 7434: 7395: 7371: 4149:law and the observed heat capacity of 3885:). The corresponding energy, which is 248: 11462: 11011: 10891: 10035:Peter Atkins, Julio de Paula (2006). 9695: 9693: 9645: 9643: 9587: 9585: 9527: 9525: 9342: 9340: 9338: 9336: 9334: 9332: 9330: 9247:Green, Don; Perry, Robert H. (2008). 9227:Introduction to Modern Thermodynamics 9032:Beattie, J.A., Oppenheim, I. (1979). 8960: 8404: 8134:Middleton, W.E.K. (1966), pp. 89–105. 8097:. International Atomic Energy Agency. 7622: – Device to measure temperature 7526:List of cities by average temperature 5997:Definition from statistical mechanics 3675:The basic unit of temperature in the 3485: 3291:Experimental physicists, for example 3023:as a function of its internal energy 868:and has a theoretical explanation in 810: 469:emitted from the surface of an object 10477: 9531: 9443:Fang, G.; Ward, C. A. (1999-01-01). 9144:Truesdell, C., Bharatha, S. (1977). 8927: 8913:. Taylor & Francis. p. 13. 8608:, M.I.T. Press, Cambridge MA, p. 58. 7608:Thermodynamic (absolute) temperature 7517:) – Practical temperature scale 6673:. No body can be brought to exactly 5915: 5822: 5753: 5523: 5423: 4846: 4627: 3795: 3604:adapted a thermometer (switching to 3400:Thermodynamic equilibrium axiomatics 3064: 2935: 2847:international definition, as above. 2749: 733:, and statistical mechanics. In the 697:concepts, including the macroscopic 525:adding citations to reliable sources 496: 11134:Convective condensation level (CCL) 10870:Temperatures Very Low and Very High 10857:. Oxford: Oxford University Press. 10458: 8383:Buchdahl, H.A. (1966), pp. 137–138. 8365:Schooley, J.F. (1986), pp. 115–138. 8347:Schooley, J.F. (1986), pp. 138–143. 7353: 6430:, obtained under the hypothesis of 3987:thermal properties of the materials 3802:Conversion of scales of temperature 3627:. In most of the world (except for 3312:Bodies in thermodynamic equilibrium 790: 606:at sea-level atmospheric pressure. 256:{\displaystyle {\mathsf {\Theta }}} 24: 11771:International System of Quantities 11340:Equivalent potential temperature ( 10847: 10562:How do physicists study particles? 10485:"World record in low temperatures" 9690: 9640: 9582: 9522: 9327: 8828:New Perspectives in Thermodynamics 8392:Tschoegl, N.W. (2000), p. 88. 7714:. It is too faint to be observed. 7570:Satellite temperature measurements 7533: – Thought experiment of 1867 7435: 7396: 6956:(millimeter-wavelength microwave) 6305: 6249: 6207: 6162: 6136: 6101: 6054: 3516: 3508: 3103: 3095: 2967: 2959: 1857: 1810: 1725: 1678: 1590: 1543: 1363:Intensive and extensive properties 940:of the microscopic particles. The 645: 25: 11862: 11192:Conditional symmetric instability 11038:Meteorological data and variables 10876: 10632:, Johns Hopkins Press, Baltimore. 10380:North-Holland Publishing Company. 10133:North-Holland Publishing Company. 10092:North-Holland Publishing Company. 10003:from the original on 16 July 2017 9006:from the original on 2011-09-28. 8171:Jaynes, E.T. (1965), pp. 391–398. 8022:) 5% greater than its rest mass ( 7923:Holland, Arthur; Williams, Mark. 7748:The peak emittance wavelength of 7537:Orders of magnitude (temperature) 7404: 6718:Orders of magnitude (temperature) 6661:has a sublimation temperature of 4196:laws). The ideal gas law states: 3851: 3359:Except for a system undergoing a 725:scale. Its numerical zero point, 660:statistical mechanical definition 27:Physical quantity of hot and cold 11828: 11795: 11794: 11749: 11139:Lifting condensation level (LCL) 10590:Bibliography of cited references 10555: 10502: 10452: 10420: 10407: 10212:10.1088/1742-5468/2010/01/P01003 9396:van Strien, Marij (2015-10-01). 8764:Adkins, C.J. (1968/1983), p. 20. 7994: 7935:from the original on 2009-01-16. 7892: 7839: 7808: 7782: 7762: 7742: 7684: 7659: 7361:Vienna Standard Mean Ocean Water 6772: 6399:{\displaystyle N_{1}\cdot N_{2}} 6110:{\displaystyle k_{\mathrm {B} }} 4489: 4483: 3730:Vienna Standard Mean Ocean Water 3690:corresponds very closely to the 3608:) and a scale both developed by 3589:Comparison of temperature scales 3443: 2619: 2618: 1938:Table of thermodynamic equations 749:thermodynamic temperature scales 609: 501: 180:{\displaystyle {\frac {pV}{nR}}} 11124:Cloud condensation nuclei (CCN) 10521:Relativistic Heavy Ion Collider 10491:from the original on 2009-06-18 10387: 10364: 10345: 10274:Prati, E.; et al. (2010). 10256:from the original on 2014-04-13 10236: 10138: 10118: 10097: 10077: 10056: 10043: 10015: 9985: 9945: 9902: 9846: 9796:Swendsen, Robert (March 2006). 9789: 9482:Newell, Homer E. (1960-02-12). 9475: 9436: 9389: 9308: 9297:from the original on 2011-07-08 9283: 9265: 9240: 9219: 9210: 9138: 9101: 9060: 9047: 9026: 9013: 8985: 8880: 8786:from the original on 2011-11-18 8767: 8758: 8746: 8735:from the original on 2011-11-18 8726:, B.G. Teubner, Leipzig, p. 3. 8716: 8692: 8671: 8646: 8633: 8611: 8598: 8573: 8483: 8462: 8453: 8441: 8429: 8417: 8386: 8377: 8368: 8359: 8350: 8341: 8338:Quinn, T.J. (1983), pp. 98–107. 8332: 8303: 8294: 8274: 8254: 7940:"Chapter 21 Stellar Explosions" 7496:Instrumental temperature record 7354: 5001:. This can only be the case if 4304:deduced what is now called the 4028:The microscopic description in 3922:{\displaystyle E=k_{\text{B}}T} 3336:: the temperature of a bath of 3189: 3176:, or of the extensive variable 3165:local thermodynamic equilibrium 3158:Local thermodynamic equilibrium 2414:Maxwell's thermodynamic surface 888:Macroscopic thermodynamic scale 731:through particle kinetic theory 712: 687:thermodynamic temperature scale 512:needs additional citations for 287:of the vibrating and colliding 11387:Wet-bulb potential temperature 11229:Level of free convection (LFC) 10872:. Princeton, NJ: Van Nostrand. 10532:Brookhaven National Laboratory 8356:Quinn, T.J. (1983), pp. 61–83. 8245: 8144:Joanna Thompson (2021-10-14). 8137: 8128: 8101: 8084: 7881:Link to Sandia's news release. 7772:, so that the triple point is 6357:{\displaystyle T_{1}>T_{2}} 6237: 6216: 6195: 6174: 6152:from system 1 to system 2 is: 6117:is the Boltzmann constant and 6072: 6066: 5965: 5959: 5898:) is a function of its energy 5566: 5551: 5452: 5437: 4875: 4860: 4739: 4724: 3562: 3394:non-equilibrium thermodynamics 3382:non-equilibrium thermodynamics 3267:Temperature is a measure of a 2148: 2136: 2093: 2081: 2038: 2026: 1998: 1986: 842:Maxwell–Boltzmann distribution 719:physicist who first defined it 656:Maxwell–Boltzmann distribution 13: 1: 11430:Pressure-gradient force (PGF) 11352:Sea surface temperature (SST) 11187:Convective momentum transport 10868:Zemansky, Mark Waldo (1964). 10378:(fifth ed.), Amsterdam: 9594:"Nanoscale thermal transport" 9272:The kelvin in the SI Brochure 9216:Buchdahl, H.A. (1966), p. 73. 7521:Laser schlieren deflectometry 7405: 3677:International System of Units 3615:Temperature is measured with 2703:cycle of successive processes 2315:Mechanical equivalent of heat 735:International System of Units 680:International System of Units 465:the amount and properties of 458:the rate and extent to which 316:International System of Units 11766:History of the metric system 11244:Bulk Richardson number (BRN) 10757:(part II): 261–268, 289–298. 9676:10.1103/RevModPhys.94.025002 9500:10.1126/science.131.3398.385 9034:Principles of Thermodynamics 8889:The Theory of Heat Radiation 7564:Relativistic heat conduction 7363:at one standard atmosphere ( 6125:of the system (degeneracy). 4578:second law of thermodynamics 4572:Second law of thermodynamics 4566:Second law of thermodynamics 4548:zeroth law of thermodynamics 4534:Zeroth law of thermodynamics 4528:Zeroth law of thermodynamics 3410:second law of thermodynamics 3406:zeroth law of thermodynamics 3388:Bodies not in a steady state 3305:zeroth law of thermodynamics 3301:empirical temperature scales 3029:, and other state variables 1927:Onsager reciprocal relations 997:Molecules, such as oxygen (O 900: 475:affects all living organisms 32:Temperature (disambiguation) 7: 11448:Maximum potential intensity 11214:Free convective layer (FCL) 11177:Convective inhibition (CIN) 10619:American Journal of Physics 9805:American Journal of Physics 9237:, Section 32., pp. 106–108. 8282:European Journal of Physics 7904:Hertzsprung–Russell diagram 7449: 6968:(previously by definition) 6929:Cosmic microwave background 6703: 6679:third law of thermodynamics 3438:third law of thermodynamics 2419:Entropy as energy dispersal 2230:"Perpetual motion" machines 2169:{\displaystyle G(T,p)=H-TS} 2114:{\displaystyle A(T,V)=U-TS} 2059:{\displaystyle H(S,p)=U+pV} 620:third law of thermodynamics 330:third law of thermodynamics 59:increases with temperature. 10: 11867: 11382:Wet-bulb globe temperature 11239:Maximum parcel level (MPL) 10698:, Academic Press, London, 10628:Middleton, W.E.K. (1966). 10597:Equilibrium Thermodynamics 10595:Adkins, C.J. (1968/1983). 10415:Generalized Thermodynamics 10167:eqs.(39), (40), & (65) 10163:Treatise on Thermodynamics 10105:A Survey of Thermodynamics 10064:A Survey of Thermodynamics 9598:Journal of Applied Physics 9374:10.1007/s10701-023-00713-x 8875:Treatise on Thermodynamics 8679:A Survey of Thermodynamics 8606:Generalized Thermodynamics 8587:, John Wiley, Chichester, 8533:A Survey of Thermodynamics 8491:Generalized Thermodynamics 8472:, Academic Press, London, 7931:. University of Michigan. 7875:, Physical Review Letters 7827:Link to relevant Web page. 7632:Wet-bulb globe temperature 7380:value is approximate. The 6898:(precisely by definition) 6760:(precisely by definition) 6715: 6650: 4569: 4531: 3997: 3799: 3578: 3447: 1866:{\displaystyle \partial T} 1819:{\displaystyle \partial V} 1734:{\displaystyle \partial p} 1687:{\displaystyle \partial V} 1599:{\displaystyle \partial T} 1552:{\displaystyle \partial S} 490: 386: 283:. It reflects the average 29: 11789: 11758: 11747: 11664:thermodynamic temperature 11509: 11504: 11496: 11438: 11400: 11362:Thermodynamic temperature 11296:Forest fire weather index 11252: 11162: 11109: 11043: 10992: 10929: 10747:Thomson, W. (Lord Kelvin) 10732:Thomson, W. (Lord Kelvin) 10713:, CRC Press, Boca Raton, 9997:galileo.phys.virginia.edu 9656:Reviews of Modern Physics 9532:Chen, Gang (2022-08-01). 9414:10.1007/s11229-015-0701-9 8436:Thomson, W. (Lord Kelvin) 8424:Thomson, W. (Lord Kelvin) 8251:Quinn, T. J. (1983). 7912:(which lasts one day) of 7334:10 trillion °C 7277:350 billion °C 7186:350 million °C 6732: 6729: 6727: 6481:{\displaystyle \tau _{2}} 6454:{\displaystyle \tau _{1}} 4987:, and the second between 4000:Thermodynamic temperature 3788:and the boiling point to 3602:Daniel Gabriel Fahrenheit 3418:thermodynamic temperature 2859:because it is equal to a 2340:An Inquiry Concerning the 756:thermodynamic temperature 486: 326:thermodynamic temperature 234: 143: 132: 88: 76: 64: 44: 39: 11284:Equivalent temperature ( 11197:Convective temperature ( 11081:Surface weather analysis 10761:Truesdell, C.A. (1980). 9757:C. Carathéodory (1909). 9053:Landsberg, P.T. (1961). 8873:Planck, M. (1897/1903). 8509:Classical Thermodynamics 8114:. Taylor & Francis. 8111:The Art of Digital Audio 8108:Watkinson, John (2001). 7696:Schwarzschild black hole 7487:Convective heat transfer 7305:1 trillion °C 7158:16 million °C 6865:Bose–Einstein condensate 6428:grand canonical ensemble 6324:and is thus positive if 6145:{\displaystyle \Delta E} 4556:one-dimensional manifold 4516:, and holds only in the 4310:probability distribution 4056:of a particle times its 3860:deals with phenomena of 3670: 3596:using modern scientific 3318:thermodynamic equilibria 2861:differential coefficient 2353:Heterogeneous Substances 1770:{\displaystyle \alpha =} 1638:{\displaystyle \beta =-} 846:Fermi–Dirac distribution 782:Classification of scales 11331:Potential temperature ( 11076:Surface solar radiation 10780:, Elsevier, Amsterdam, 10776:Tschoegl, N.W. (2000). 10726:Heat and Thermodynamics 10709:Schooley, J.F. (1986). 10610:Buchdahl, H.A. (1966). 10280:Applied Physics Letters 10144:Buchdahl, H.A. (1966). 9469:10.1103/PhysRevE.59.417 9125:Rational Thermodynamics 8942:. McGraw-Hill. p.  7585:Sea surface temperature 7543:Outside air temperature 7457:Atmospheric temperature 7247:3 billion °C 7218:2 billion °C 6665:which is equivalent to 6030:microcanonical ensemble 4230:{\displaystyle pV=nRT,} 4174:empirical relationships 4118:Kinetic theory of gases 4007:kinetic theory of gases 3683:. It has the symbol K. 3594:Temperature measurement 3330:Wien's displacement law 918:Kinetic theory approach 911:entropy of an ideal gas 866:Wien's displacement law 745:Statistical mechanical 658:, and to the Boltzmann 437:electrical conductivity 291:making up a substance. 11781:Systems of measurement 11321:Relative humidity (RH) 11209:Equilibrium level (EL) 11182:Convective instability 10765:, Springer, New York, 10736:Proc. Camb. Phil. Soc. 10352:Water Science School. 10049:Maxwell, J.C. (1872). 9911:Foundations of Physics 9353:Foundations of Physics 9225:Kondepudi, D. (2008). 9190:Maxwell, J.C. (1872). 9148:, Springer, New York, 9107:Maxwell, J.C. (1872). 9067:Thomsen, J.S. (1962). 8847:Maxwell, J.C. (1872). 7591:Stagnation temperature 6713: 6619: 6482: 6455: 6400: 6358: 6315: 6146: 6111: 6079: 6018: 5975: 5872: 5801: 5738: 5623: 5503: 5229: 5079: 4938: 4763: 4510:root-mean-square speed 4502: 4407: 4312:function, the average 4231: 4165: 4131: 3994:Theoretical foundation 3967:Continuous or discrete 3959:, equivalent to about 3923: 3887:dimensionally distinct 3576: 3532: 3135: 2999: 2820: 2170: 2115: 2060: 2005: 2004:{\displaystyle U(S,V)} 1867: 1843: 1820: 1796: 1771: 1735: 1711: 1688: 1664: 1639: 1600: 1576: 1553: 1529: 1504: 1483:Specific heat capacity 1087:Quantum thermodynamics 1034:Thermodynamic approach 1018:than a monatomic gas. 634:, is exactly equal to 560: 396: 377:mechanical engineering 257: 225: 181: 10853:Chang, Hasok (2004). 10544:Link to news release. 10021:Tolman, R.C. (1938). 9763:Mathematische Annalen 9229:, Wiley, Chichester, 8909:J.S. Dugdale (1996). 8639:Gyarmati, I. (1970). 7545: – Aviation term 7392:in the Celsius value. 7206:Sandia National Labs' 6711: 6620: 6483: 6456: 6401: 6359: 6316: 6147: 6112: 6080: 6019: 6002:Statistical mechanics 5976: 5873: 5802: 5739: 5624: 5504: 5230: 5080: 4939: 4764: 4546:One statement of the 4514:equipartition theorem 4503: 4408: 4232: 4172:is based on observed 4163: 4125: 4030:statistical mechanics 3924: 3868:or kiloelectronvolt ( 3610:Ole Christensen Rømer 3570: 3533: 3136: 3000: 2851:Intensive variability 2821: 2351:On the Equilibrium of 2171: 2116: 2069:Helmholtz free energy 2061: 2006: 1868: 1844: 1821: 1797: 1772: 1736: 1712: 1689: 1665: 1640: 1601: 1577: 1554: 1530: 1505: 942:equipartition theorem 628:uncertainty principle 558: 394: 258: 226: 182: 11410:Atmospheric pressure 11377:Wet-bulb temperature 11279:Dry-bulb temperature 11274:Dew point depression 10694:Quinn, T.J. (1983). 9852:Balescu, R. (1975). 8773:Bryan, G.H. (1907). 8722:Bryan, G.H. (1907). 8507:Münster, A. (1970), 8468:Quinn, T.J. (1983). 8450:(1949), pp. 175–177. 7646:Notes and references 7638:Wet-bulb temperature 7579:Scale of temperature 7475:Dry-bulb temperature 7238:star on its last day 7175:Thermonuclear weapon 7022:(mid-wavelength IR) 6740:black-body radiation 6693:negative temperature 6653:Negative temperature 6647:Negative temperature 6495: 6465: 6438: 6370: 6328: 6159: 6133: 6092: 6039: 6008: 5922: 5829: 5760: 5671: 5530: 5430: 5095: 5008: 4853: 4634: 4438: 4330: 4316:(per particle) of a 4203: 4184:), and temperature ( 4092:thermodynamic system 4038:statistical ensemble 3897: 3744:. Matter is in its 3489: 3481:at constant volume: 3414:absolute temperature 3303:. Nevertheless, the 3071: 2942: 2756: 2364:Motive Power of Fire 2130: 2075: 2020: 1980: 1932:Bridgman's equations 1909:Fundamental relation 1854: 1833: 1807: 1786: 1758: 1722: 1701: 1675: 1654: 1623: 1587: 1566: 1540: 1519: 1491: 626:as predicted by the 584:atmospheric pressure 521:improve this article 493:Scale of temperature 453:corrosion resistance 449:thermal conductivity 310:scale (°F), and the 243: 191: 154: 11691:amount of substance 11372:Virtual temperature 11357:Temperature anomaly 11051:Adiabatic processes 10995:Conversion formulas 10824:10.1038/nature11595 10816:2012Natur.491..570Z 10654:2013PhT....66a..12M 10302:2010ApPhL..96k3109P 10204:2010JSMTE..01..003P 10161:Planck, M. (1945). 10103:Bailyn, M. (1994). 10062:Bailyn, M. (1994). 9923:1987FoPh...17..713K 9856:, Wiley, New York, 9817:2006AmJPh..74..187S 9668:2022RvMP...94b5002C 9461:1999PhRvE..59..417F 9365:2023FoPh...53...69J 9203:Tait, P.G. (1884). 9085:1962AmJPh..30..294T 9019:Tait, P.G. (1884). 8886:Planck, M. (1914), 8860:Tait, P.G. (1884). 8755:(1957/1966), p. 18. 8677:Bailyn, M. (1994). 8531:Bailyn, M. (1994). 7802:Overview of the Sun 7626:Virtual temperature 7326:nucleus collisions 7178:(peak temperature) 6932:(2013 measurement) 6724: 4541:thermal equilibrium 4373: 4104:ideal monatomic gas 4077:thermodynamic limit 4050:classical mechanics 4011:statistical physics 3974:physical quantities 3752:. The temperatures 3544:amount of substance 3286:thermal equilibrium 3198:Conjugate variables 2342:Source ... Friction 2274:Loschmidt's paradox 1466:Material properties 1344:Conjugate variables 938:classical mechanics 766:at absolute zero. 18:Kinetic temperature 11716:luminous intensity 11490:SI base quantities 11144:Precipitable water 10636:Miller, J (2013). 10578:2012-07-07 at the 10567:2007-10-11 at the 10549:2009-02-11 at the 10537:2012-06-24 at the 10526:2016-03-03 at the 10515:2008-11-20 at the 10459:SVS (2023-08-03). 10413:Tisza, L. (1966). 10339:2017-11-22 at the 10230:2017-11-22 at the 10037:Physical Chemistry 9931:10.1007/BF01889544 9775:10.1007/BF01450409 9320:2020-10-09 at the 9277:2007-09-26 at the 8895:2011-11-18 at the 8604:Tisza, L. (1966). 8489:Tisza, L. (1966). 8405:Fermi, E. (1956). 8309:Miller, J. (2013). 8189:2020-11-07 at the 8064:2010-11-09 at the 8053:2005-04-03 at the 8038:2017-11-22 at the 7886:2010-05-30 at the 7832:2007-05-03 at the 7795:2010-02-11 at the 7770:Boltzmann constant 7756:is a frequency of 7549:Planck temperature 7481:Thermal conduction 7294:Relativistic Heavy 6826:Lowest temperature 6722: 6714: 6643:goes to infinity. 6615: 6478: 6451: 6396: 6354: 6311: 6142: 6107: 6075: 6014: 5971: 5868: 5797: 5734: 5619: 5499: 5225: 5075: 4934: 4759: 4602:Carnot heat engine 4498: 4428:ideal gas constant 4418:Boltzmann constant 4403: 4359: 4227: 4176:between pressure ( 4166: 4132: 4088:degrees of freedom 4034:quantum-mechanical 4023:Boltzmann constant 3948:. In the study of 3919: 3891:Boltzmann constant 3748:, and contains no 3625:temperature scales 3577: 3528: 3346:frequency spectrum 3322:strictly monotonic 3251:Chemical potential 3131: 2995: 2931:partial derivative 2865:extensive variable 2857:intensive variable 2816: 2727:entropy production 2684:Boltzmann constant 2606:Order and disorder 2362:Reflections on the 2269:Heat death paradox 2166: 2111: 2056: 2001: 1863: 1839: 1816: 1792: 1767: 1731: 1707: 1684: 1660: 1635: 1596: 1572: 1549: 1525: 1503:{\displaystyle c=} 1500: 1473:Property databases 1449:Reduced properties 1433:Chemical potential 1397:Functions of state 1320:Thermal efficiency 1056:Carnot heat engine 1003:degrees of freedom 972:Boltzmann constant 924:Boltzmann constant 831:Boltzmann constant 811:Theoretical scales 739:Boltzmann constant 703:canonical ensemble 652:Boltzmann constant 561: 460:chemical reactions 397: 296:temperature scales 253: 221: 177: 11816: 11815: 11744: 11743: 11456: 11455: 11425:Pressure gradient 11234:Lifted index (LI) 11005: 11004: 10863:978-0-19-517127-3 10800:(7425): 570–573. 10663:10.1063/pt.3.1840 10445:978-0-7167-1088-2 10310:10.1063/1.3365204 9895:978-0-7167-1088-2 9825:10.1119/1.2174962 9610:10.1063/1.1524305 9494:(3398): 385–390. 9449:Physical Review E 9408:(10): 3275–3295. 9235:978-0-470-01598-8 9094:10.1119/1.1941991 9042:978-0-444-41806-7 8992:T.W. Leland, Jr. 8978:978-0-470-03037-0 8920:978-0-7484-0569-5 8810:Mach, E. (1900). 8660:, Wiley, London, 8543:, pp. 14–15, 214. 8184:Cryogenic Society 8121:978-0-240-51587-8 7914:fusing silicon–28 7731:, A.E. Leanhardt 7692:Hawking Radiation 7675:10 m K 7596:Thermal radiation 7469:Color temperature 7349: 7348: 7057:Incandescent lamp 6989:(long-wavelength 6610: 6602: 6563: 6547: 6520: 6298: 6278: 6017:{\displaystyle S} 5991: 5990: 5954: 5888: 5887: 5863: 5851: 5817: 5816: 5792: 5785: 5723: 5720: 5710: 5696: 5693: 5683: 5639: 5638: 5614: 5611: 5601: 5581: 5578: 5562: 5536: 5519: 5518: 5494: 5491: 5481: 5467: 5464: 5448: 5263:) is of the form 5070: 4954: 4953: 4923: 4910: 4890: 4887: 4871: 4830:, respectively, | 4779: 4778: 4754: 4751: 4735: 4709: 4706: 4695: 4682: 4667: 4664: 4654: 4640: 4580:which deals with 4496: 4472: 4448: 4394: 4385: 4366: 4354: 4340: 4252: =  4244:is the number of 4015:quantum mechanics 3913: 3893:and temperature, 3796:Historical scales 3742:zero-point energy 3523: 3428:with respect the 3338:thermal radiation 3334:thermal radiation 3265: 3264: 3261: 3260: 3200:of thermodynamics 3151: 3150: 3110: 3082: 3015: 3014: 2974: 2836: 2835: 2811: 2781: 2694:is with Celsius. 2660: 2659: 2601:Self-organization 2426: 2425: 2124:Gibbs free energy 1922:Maxwell relations 1880: 1879: 1876: 1875: 1842:{\displaystyle V} 1795:{\displaystyle 1} 1750:Thermal expansion 1744: 1743: 1710:{\displaystyle V} 1663:{\displaystyle 1} 1609: 1608: 1575:{\displaystyle N} 1528:{\displaystyle T} 1456: 1455: 1372:Process functions 1358:Property diagrams 1337:System properties 1327: 1326: 1292:Endoreversibility 1184:Equation of state 946:degree of freedom 874:Bose–Einstein law 650:Referring to the 624:zero-point energy 553: 552: 545: 467:thermal radiation 273:physical quantity 266: 265: 219: 207: 175: 16:(Redirected from 11858: 11833: 11832: 11824: 11798: 11797: 11753: 11752: 11727: 11697: 11675: 11670: 11648: 11643: 11639: 11637: 11629:electric current 11610: 11584: 11580: 11576: 11551: 11502: 11501: 11483: 11476: 11469: 11460: 11459: 11032: 11025: 11018: 11009: 11008: 10912: 10905: 10898: 10889: 10888: 10843: 10809: 10758: 10671:Partington, J.R. 10667: 10665: 10583: 10559: 10553: 10519:detector on the 10506: 10500: 10499: 10497: 10496: 10481: 10475: 10474: 10472: 10471: 10456: 10450: 10449: 10432:Kroemer, Herbert 10424: 10418: 10411: 10405: 10391: 10385: 10383: 10372:Guggenheim, E.A. 10368: 10362: 10361: 10349: 10343: 10332: 10330: 10329: 10320:. Archived from 10295: 10271: 10265: 10264: 10262: 10261: 10255: 10248: 10240: 10234: 10223: 10197: 10177: 10171: 10169: 10158: 10149: 10142: 10136: 10125:Guggenheim, E.A. 10122: 10116: 10101: 10095: 10084:Guggenheim, E.A. 10081: 10075: 10060: 10054: 10047: 10041: 10040: 10032: 10026: 10019: 10013: 10012: 10010: 10008: 9993:"Kinetic Theory" 9989: 9983: 9982: 9980: 9979: 9960: 9954: 9949: 9943: 9942: 9906: 9900: 9899: 9882:Kroemer, Herbert 9874: 9865: 9850: 9844: 9843: 9841: 9835:. Archived from 9802: 9793: 9787: 9786: 9754: 9748: 9747: 9729: 9697: 9688: 9687: 9647: 9638: 9637: 9635: 9634: 9621: 9589: 9580: 9579: 9553: 9529: 9520: 9519: 9479: 9473: 9472: 9440: 9434: 9433: 9393: 9387: 9386: 9376: 9344: 9325: 9312: 9306: 9305: 9303: 9302: 9287: 9281: 9269: 9263: 9262: 9244: 9238: 9223: 9217: 9214: 9208: 9201: 9195: 9188: 9182: 9166: 9157: 9142: 9136: 9121: 9112: 9105: 9099: 9098: 9096: 9064: 9058: 9051: 9045: 9030: 9024: 9017: 9011: 9010: 9005: 8998: 8989: 8983: 8982: 8964: 8958: 8957: 8941: 8934:F. Reif (1965). 8931: 8925: 8924: 8906: 8900: 8884: 8878: 8871: 8865: 8858: 8852: 8845: 8839: 8824: 8815: 8808: 8795: 8794: 8792: 8791: 8771: 8765: 8762: 8756: 8750: 8744: 8743: 8741: 8740: 8720: 8714: 8696: 8690: 8675: 8669: 8652:Glansdorff, P., 8650: 8644: 8637: 8631: 8615: 8609: 8602: 8596: 8577: 8571: 8553: 8544: 8529: 8520: 8505: 8494: 8487: 8481: 8466: 8460: 8457: 8451: 8448:Partington, J.R. 8445: 8439: 8433: 8427: 8421: 8415: 8413: 8402: 8393: 8390: 8384: 8381: 8375: 8372: 8366: 8363: 8357: 8354: 8348: 8345: 8339: 8336: 8330: 8319: 8310: 8307: 8301: 8298: 8292: 8278: 8272: 8258: 8252: 8249: 8243: 8240: 8229: 8228: 8227: 8226: 8220: 8214:, archived from 8213: 8203: 8194: 8181: 8172: 8169: 8160: 8159: 8157: 8156: 8141: 8135: 8132: 8126: 8125: 8105: 8099: 8098: 8088: 8069: 8017: 8012: 8008: 8004: 7998: 7992: 7990: 7988: 7987: 7978:. Archived from 7972: 7970: 7969: 7960:. Archived from 7954: 7952: 7951: 7942:. Archived from 7936: 7896: 7890: 7867: 7865: 7843: 7837: 7812: 7806: 7790:1989 measurement 7786: 7780: 7779: 7777: 7766: 7760: 7759: 7758:103.456 MHz 7755: 7753: 7746: 7740: 7721: 7715: 7705: 7703: 7688: 7682: 7676: 7674: 7670: 7663: 7575: 7554: 7516: 7501: 7492: 7463:Body temperature 7443: 7439: 7430: 7426: 7417: 7413: 7409: 7400: 7387: 7383: 7379: 7375: 7366: 7365:101.325 kPa 7358: 7343: 7341: 7331: 7314: 7312: 7302: 7286: 7284: 7274: 7256: 7254: 7244: 7227: 7225: 7215: 7195: 7193: 7183: 7163: 7155: 7137: 7132: 7130: 7123: 7107:green-blue light 7103: 7098: 7093: 7088:visible surface 7074: 7069: 7063: 7045: 7040: 7035: 7020: 7018: 7011: 7006: 6987: 6985: 6978: 6973: 6954: 6952: 6949: 6942: 6941:−270.424 °C 6937: 6917: 6915: 6908: 6907:−273.149 °C 6903: 6891: 6886: 6884: 6881: 6878: 6871: 6857: 6855: 6848: 6846: 6843: 6840: 6833: 6820: 6813: 6811: 6804: 6802: 6799: 6796: 6793: 6786: 6770: 6765: 6725: 6721: 6676: 6672: 6668: 6664: 6624: 6622: 6621: 6616: 6611: 6609: 6608: 6604: 6603: 6601: 6600: 6591: 6590: 6581: 6565: 6564: 6561: 6554: 6553: 6549: 6548: 6546: 6535: 6522: 6521: 6518: 6505: 6487: 6485: 6484: 6479: 6477: 6476: 6460: 6458: 6457: 6452: 6450: 6449: 6405: 6403: 6402: 6397: 6395: 6394: 6382: 6381: 6363: 6361: 6360: 6355: 6353: 6352: 6340: 6339: 6320: 6318: 6317: 6312: 6304: 6300: 6299: 6297: 6296: 6284: 6279: 6277: 6276: 6264: 6245: 6244: 6229: 6203: 6202: 6187: 6151: 6149: 6148: 6143: 6116: 6114: 6113: 6108: 6106: 6105: 6104: 6084: 6082: 6081: 6076: 6059: 6058: 6057: 6023: 6021: 6020: 6015: 5980: 5978: 5977: 5972: 5955: 5953: 5942: 5937: 5936: 5916: 5877: 5875: 5874: 5869: 5864: 5862: 5854: 5853: 5852: 5849: 5839: 5823: 5806: 5804: 5803: 5798: 5793: 5788: 5787: 5786: 5783: 5773: 5754: 5743: 5741: 5740: 5735: 5724: 5722: 5721: 5718: 5712: 5711: 5708: 5702: 5697: 5695: 5694: 5691: 5685: 5684: 5681: 5675: 5663: 5659: 5655: 5651: 5628: 5626: 5625: 5620: 5615: 5613: 5612: 5609: 5603: 5602: 5599: 5593: 5582: 5580: 5579: 5576: 5570: 5569: 5564: 5563: 5560: 5554: 5548: 5537: 5534: 5524: 5508: 5506: 5505: 5500: 5495: 5493: 5492: 5489: 5483: 5482: 5479: 5473: 5468: 5466: 5465: 5462: 5456: 5455: 5450: 5449: 5446: 5440: 5434: 5424: 5416: 5391: 5344: 5305: 5234: 5232: 5231: 5226: 5221: 5217: 5216: 5215: 5203: 5202: 5185: 5181: 5180: 5179: 5167: 5166: 5146: 5142: 5141: 5140: 5128: 5127: 5107: 5106: 5084: 5082: 5081: 5076: 5071: 5069: 5068: 5067: 5058: 5057: 5047: 5046: 5045: 5036: 5035: 5025: 5020: 5019: 4957:Carnot's theorem 4943: 4941: 4940: 4935: 4930: 4926: 4925: 4924: 4921: 4912: 4911: 4908: 4891: 4889: 4888: 4885: 4879: 4878: 4873: 4872: 4869: 4863: 4857: 4847: 4768: 4766: 4765: 4760: 4755: 4753: 4752: 4749: 4743: 4742: 4737: 4736: 4733: 4727: 4721: 4710: 4708: 4707: 4704: 4698: 4697: 4696: 4693: 4684: 4683: 4680: 4673: 4668: 4666: 4665: 4662: 4656: 4655: 4652: 4646: 4641: 4638: 4628: 4507: 4505: 4504: 4499: 4497: 4492: 4478: 4473: 4468: 4467: 4455: 4450: 4449: 4446: 4412: 4410: 4409: 4404: 4396: 4395: 4392: 4386: 4378: 4372: 4367: 4364: 4355: 4347: 4342: 4341: 4338: 4265: 4262: 4261:... J⋅mol⋅K 4260: 4257: 4236: 4234: 4233: 4228: 4096:equipartitioning 3962: 3947: 3945: 3932: 3928: 3926: 3925: 3920: 3915: 3914: 3911: 3821:Fahrenheit scale 3791: 3787: 3780: 3776: 3772: 3768: 3764: 3759: 3755: 3739: 3735: 3716: 3712: 3711: 3705: 3697: 3689: 3654: 3650: 3623:to a variety of 3574: 3538: 3535: 3534: 3529: 3524: 3522: 3514: 3506: 3501: 3500: 3477:, is the body's 3476: 3469: 3207: 3206: 3194: 3193: 3181: 3175: 3140: 3138: 3137: 3132: 3127: 3126: 3115: 3111: 3109: 3101: 3093: 3083: 3075: 3065: 3061: 3038: 3028: 3022: 3004: 3002: 3001: 2996: 2991: 2990: 2979: 2975: 2973: 2965: 2957: 2936: 2928: 2906: 2896: 2887: 2825: 2823: 2822: 2817: 2812: 2810: 2809: 2800: 2799: 2790: 2782: 2780: 2779: 2770: 2769: 2760: 2750: 2746: 2737: 2723: 2713: 2652: 2645: 2638: 2622: 2621: 2329:Key publications 2310: 2309:("living force") 2259:Brownian ratchet 2254:Entropy and life 2249:Entropy and time 2200: 2199: 2175: 2173: 2172: 2167: 2120: 2118: 2117: 2112: 2065: 2063: 2062: 2057: 2010: 2008: 2007: 2002: 1904:Clausius theorem 1899:Carnot's theorem 1872: 1870: 1869: 1864: 1848: 1846: 1845: 1840: 1825: 1823: 1822: 1817: 1801: 1799: 1798: 1793: 1780: 1779: 1776: 1774: 1773: 1768: 1740: 1738: 1737: 1732: 1716: 1714: 1713: 1708: 1693: 1691: 1690: 1685: 1669: 1667: 1666: 1661: 1648: 1647: 1644: 1642: 1641: 1636: 1605: 1603: 1602: 1597: 1581: 1579: 1578: 1573: 1558: 1556: 1555: 1550: 1534: 1532: 1531: 1526: 1513: 1512: 1509: 1507: 1506: 1501: 1479: 1478: 1352: 1351: 1171: 1170: 1052: 1038: 1037: 1008:equipartitioning 993: 979: 969: 960: 896: 791:Empirical scales 777: 773: 765: 728: 641: 637: 633: 605: 601: 581: 573: 548: 541: 537: 534: 528: 505: 497: 369:material science 262: 260: 259: 254: 252: 251: 230: 228: 227: 222: 220: 218: 210: 209: 208: 205: 195: 186: 184: 183: 178: 176: 174: 166: 158: 147:other quantities 145:Derivations from 72: 49: 37: 36: 21: 11866: 11865: 11861: 11860: 11859: 11857: 11856: 11855: 11841: 11840: 11839: 11827: 11819: 11817: 11812: 11785: 11754: 11750: 11745: 11726: 11720: 11695: 11668: 11647: I  11641: 11635: 11608: 11582: 11578: 11574: 11549: 11538: 11533: 11525: 11497:Base quantities 11492: 11487: 11457: 11452: 11434: 11396: 11346: 11290: 11268: 11248: 11203: 11158: 11105: 11039: 11036: 11006: 11001: 10988: 10925: 10916: 10879: 10850: 10848:Further reading 10742:, No. 5: 66–71. 10592: 10587: 10586: 10580:Wayback Machine 10569:Wayback Machine 10560: 10556: 10551:Wayback Machine 10539:Wayback Machine 10528:Wayback Machine 10517:Wayback Machine 10507: 10503: 10494: 10492: 10483: 10482: 10478: 10469: 10467: 10457: 10453: 10446: 10436:Thermal Physics 10428:Kittel, Charles 10425: 10421: 10412: 10408: 10392: 10388: 10369: 10365: 10350: 10346: 10341:Wayback Machine 10327: 10325: 10272: 10268: 10259: 10257: 10253: 10246: 10242: 10241: 10237: 10232:Wayback Machine 10178: 10174: 10159: 10152: 10143: 10139: 10123: 10119: 10102: 10098: 10082: 10078: 10061: 10057: 10048: 10044: 10033: 10029: 10020: 10016: 10006: 10004: 9991: 9990: 9986: 9977: 9975: 9962: 9961: 9957: 9950: 9946: 9907: 9903: 9896: 9886:Thermal Physics 9878:Kittel, Charles 9875: 9868: 9851: 9847: 9839: 9800: 9794: 9790: 9755: 9751: 9698: 9691: 9648: 9641: 9632: 9630: 9590: 9583: 9530: 9523: 9480: 9476: 9441: 9437: 9394: 9390: 9345: 9328: 9322:Wayback Machine 9313: 9309: 9300: 9298: 9293:. Calphad.com. 9291:"Absolute Zero" 9289: 9288: 9284: 9279:Wayback Machine 9270: 9266: 9259: 9245: 9241: 9224: 9220: 9215: 9211: 9202: 9198: 9189: 9185: 9167: 9160: 9143: 9139: 9122: 9115: 9106: 9102: 9065: 9061: 9052: 9048: 9031: 9027: 9018: 9014: 9003: 8996: 8990: 8986: 8979: 8965: 8961: 8954: 8932: 8928: 8921: 8907: 8903: 8897:Wayback Machine 8885: 8881: 8872: 8868: 8859: 8855: 8846: 8842: 8825: 8818: 8809: 8798: 8789: 8787: 8778: 8772: 8768: 8763: 8759: 8751: 8747: 8738: 8736: 8727: 8721: 8717: 8697: 8693: 8676: 8672: 8651: 8647: 8638: 8634: 8616: 8612: 8603: 8599: 8579:Kondepudi, D., 8578: 8574: 8554: 8547: 8530: 8523: 8506: 8497: 8488: 8484: 8467: 8463: 8458: 8454: 8446: 8442: 8434: 8430: 8422: 8418: 8403: 8396: 8391: 8387: 8382: 8378: 8373: 8369: 8364: 8360: 8355: 8351: 8346: 8342: 8337: 8333: 8320: 8313: 8308: 8304: 8299: 8295: 8279: 8275: 8259: 8255: 8250: 8246: 8241: 8232: 8224: 8222: 8218: 8211: 8205: 8204: 8197: 8191:Wayback Machine 8182: 8175: 8170: 8163: 8154: 8152: 8142: 8138: 8133: 8129: 8122: 8106: 8102: 8089: 8085: 8073: 8072: 8066:Wayback Machine 8059:An html summary 8055:Wayback Machine 8040:Wayback Machine 8028: 8015: 8010: 8006: 8002: 7999: 7995: 7985: 7983: 7974: 7967: 7965: 7956: 7949: 7947: 7938: 7906:and begins the 7897: 7893: 7888:Wayback Machine 7879:(2006) 075003. 7863: 7861: 7844: 7840: 7834:Wayback Machine 7813: 7809: 7797:Wayback Machine 7787: 7783: 7775: 7773: 7767: 7763: 7757: 7751: 7749: 7747: 7743: 7722: 7718: 7712: 7709: 7701: 7699: 7689: 7685: 7672: 7668: 7666: 7664: 7660: 7648: 7643: 7573: 7552: 7531:Maxwell's demon 7514: 7499: 7490: 7452: 7447: 7441: 7428: 7415: 7411: 7390:false precision 7385: 7381: 7377: 7364: 7344: 7339: 7337: 7329: 7325: 7315: 7310: 7308: 7300: 7295: 7287: 7282: 7280: 7272: 7266: 7263:Merging binary 7257: 7252: 7250: 7242: 7237: 7228: 7223: 7221: 7213: 7207: 7196: 7191: 7189: 7181: 7177: 7164: 7161: 7153: 7138: 7135: 7128: 7126: 7121: 7117: 7104: 7101: 7096: 7091: 7075: 7072: 7067: 7061: 7046: 7043: 7038: 7033: 7021: 7016: 7014: 7010:99.9839 °C 7009: 7005:373.1339 K 7004: 6988: 6983: 6981: 6976: 6971: 6967: 6955: 6950: 6947: 6945: 6940: 6935: 6931: 6918: 6913: 6911: 6906: 6901: 6897: 6896:One millikelvin 6889: 6882: 6879: 6876: 6874: 6869: 6863: 6853: 6851: 6844: 6841: 6838: 6836: 6831: 6827: 6815: 6809: 6807: 6800: 6797: 6794: 6791: 6789: 6784: 6769:−273.15 °C 6768: 6763: 6759: 6737: 6733:Peak emittance 6720: 6706: 6674: 6670: 6666: 6662: 6655: 6649: 6634: 6596: 6592: 6586: 6582: 6580: 6576: 6572: 6560: 6556: 6555: 6539: 6534: 6527: 6523: 6517: 6513: 6506: 6504: 6496: 6493: 6492: 6472: 6468: 6466: 6463: 6462: 6445: 6441: 6439: 6436: 6435: 6412: 6390: 6386: 6377: 6373: 6371: 6368: 6367: 6348: 6344: 6335: 6331: 6329: 6326: 6325: 6292: 6288: 6283: 6272: 6268: 6263: 6262: 6258: 6240: 6236: 6225: 6198: 6194: 6183: 6160: 6157: 6156: 6134: 6131: 6130: 6100: 6099: 6095: 6093: 6090: 6089: 6053: 6052: 6048: 6040: 6037: 6036: 6009: 6006: 6005: 5999: 5946: 5941: 5929: 5925: 5923: 5920: 5919: 5912: 5855: 5848: 5844: 5840: 5838: 5830: 5827: 5826: 5782: 5778: 5774: 5772: 5761: 5758: 5757: 5717: 5713: 5707: 5703: 5701: 5690: 5686: 5680: 5676: 5674: 5672: 5669: 5668: 5661: 5657: 5653: 5649: 5647: 5608: 5604: 5598: 5594: 5592: 5575: 5571: 5565: 5559: 5555: 5550: 5549: 5547: 5533: 5531: 5528: 5527: 5488: 5484: 5478: 5474: 5472: 5461: 5457: 5451: 5445: 5441: 5436: 5435: 5433: 5431: 5428: 5427: 5414: 5403: 5393: 5389: 5378: 5367: 5356: 5346: 5342: 5335: 5324: 5317: 5307: 5303: 5296: 5286: 5284: 5273: 5262: 5255: 5244: 5211: 5207: 5198: 5194: 5193: 5189: 5175: 5171: 5162: 5158: 5157: 5153: 5136: 5132: 5123: 5119: 5118: 5114: 5102: 5098: 5096: 5093: 5092: 5063: 5059: 5053: 5049: 5048: 5041: 5037: 5031: 5027: 5026: 5024: 5015: 5011: 5009: 5006: 5005: 5000: 4993: 4986: 4979: 4972: 4965: 4920: 4916: 4907: 4903: 4902: 4898: 4884: 4880: 4874: 4868: 4864: 4859: 4858: 4856: 4854: 4851: 4850: 4843: 4836: 4829: 4822: 4815: 4808: 4801: 4794: 4787: 4748: 4744: 4738: 4732: 4728: 4723: 4722: 4720: 4703: 4699: 4692: 4688: 4679: 4675: 4674: 4672: 4661: 4657: 4651: 4647: 4645: 4637: 4635: 4632: 4631: 4621: 4614: 4574: 4568: 4536: 4530: 4482: 4477: 4463: 4459: 4454: 4445: 4441: 4439: 4436: 4435: 4432:Avogadro number 4430:divided by the 4425: 4422: 4391: 4387: 4377: 4368: 4363: 4346: 4337: 4333: 4331: 4328: 4327: 4290:gas thermometer 4283:gas thermometer 4263: 4258: 4255: 4253: 4204: 4201: 4200: 4120: 4071: 4002: 3996: 3969: 3960: 3958: 3943: 3941: 3939: 3930: 3910: 3906: 3898: 3895: 3894: 3883: 3876: 3862:electromagnetic 3854: 3804: 3798: 3789: 3785: 3778: 3774: 3771:−273.15 °C 3770: 3766: 3762: 3757: 3753: 3738:−273.15 °C 3737: 3733: 3714: 3709: 3707: 3703: 3695: 3687: 3673: 3653:−273.15 °C 3652: 3648: 3591: 3572: 3565: 3515: 3507: 3505: 3496: 3492: 3490: 3487: 3471: 3464: 3456: 3446: 3426:internal energy 3422:internal energy 3402: 3390: 3377: 3314: 3256:Particle number 3199: 3192: 3177: 3171: 3160: 3116: 3102: 3094: 3092: 3088: 3087: 3074: 3072: 3069: 3068: 3040: 3030: 3024: 3018: 2980: 2966: 2958: 2956: 2952: 2951: 2943: 2940: 2939: 2908: 2898: 2892: 2883: 2881:internal energy 2853: 2805: 2801: 2795: 2791: 2789: 2775: 2771: 2765: 2761: 2759: 2757: 2754: 2753: 2745: 2739: 2736: 2730: 2721: 2715: 2712: 2706: 2656: 2611: 2610: 2586: 2578: 2577: 2576: 2436: 2428: 2427: 2406: 2392: 2367: 2363: 2356: 2352: 2345: 2341: 2308: 2301: 2283: 2264:Maxwell's demon 2226: 2197: 2196: 2180: 2179: 2178: 2131: 2128: 2127: 2126: 2076: 2073: 2072: 2071: 2021: 2018: 2017: 2016: 1981: 1978: 1977: 1976: 1974:Internal energy 1969: 1954: 1944: 1943: 1918: 1893: 1883: 1882: 1881: 1855: 1852: 1851: 1834: 1831: 1830: 1808: 1805: 1804: 1787: 1784: 1783: 1759: 1756: 1755: 1723: 1720: 1719: 1702: 1699: 1698: 1676: 1673: 1672: 1655: 1652: 1651: 1624: 1621: 1620: 1615:Compressibility 1588: 1585: 1584: 1567: 1564: 1563: 1541: 1538: 1537: 1520: 1517: 1516: 1492: 1489: 1488: 1468: 1458: 1457: 1438:Particle number 1391: 1350: 1339: 1329: 1328: 1287:Irreversibility 1199:State of matter 1166:Isolated system 1151: 1141: 1140: 1139: 1114: 1104: 1103: 1099:Non-equilibrium 1091: 1066: 1058: 1036: 1000: 988: 981: 975: 968: 962: 955: 949: 920: 903: 894: 890: 822: 813: 793: 784: 775: 771: 763: 751: 726: 715: 648: 646:Absolute scales 640:−459.67 °F 639: 636:−273.15 °C 635: 631: 612: 603: 599: 579: 571: 549: 538: 532: 529: 518: 506: 495: 489: 473:air temperature 445:wear resistance 389: 337:natural science 247: 246: 244: 241: 240: 211: 204: 200: 196: 194: 192: 189: 188: 167: 159: 157: 155: 152: 151: 148: 146: 91: 70: 67: 60: 35: 28: 23: 22: 15: 12: 11: 5: 11864: 11854: 11853: 11838: 11837: 11814: 11813: 11811: 11810: 11803: 11790: 11787: 11786: 11784: 11783: 11778: 11773: 11768: 11762: 11760: 11756: 11755: 11748: 11746: 11742: 11741: 11738: 11733: 11731: 11728: 11724: 11718: 11712: 11711: 11708: 11703: 11701: 11698: 11693: 11687: 11686: 11683: 11678: 11676: 11671: 11666: 11660: 11659: 11656: 11651: 11649: 11644: 11631: 11625: 11624: 11621: 11616: 11614: 11611: 11606: 11600: 11599: 11596: 11591: 11589: 11586: 11572: 11566: 11565: 11562: 11557: 11555: 11552: 11547: 11545:time, duration 11541: 11540: 11535: 11530: 11528: 11521: 11518: 11514: 11513: 11508: 11506: 11500: 11498: 11494: 11493: 11486: 11485: 11478: 11471: 11463: 11454: 11453: 11451: 11450: 11444: 11442: 11436: 11435: 11433: 11432: 11427: 11422: 11417: 11412: 11406: 11404: 11398: 11397: 11395: 11394: 11389: 11384: 11379: 11374: 11369: 11367:Vapor pressure 11364: 11359: 11354: 11349: 11344: 11337: 11328: 11323: 11318: 11313: 11308: 11303: 11298: 11293: 11288: 11281: 11276: 11271: 11266: 11258: 11256: 11250: 11249: 11247: 11246: 11241: 11236: 11231: 11226: 11221: 11216: 11211: 11206: 11201: 11194: 11189: 11184: 11179: 11174: 11168: 11166: 11160: 11159: 11157: 11156: 11151: 11146: 11141: 11136: 11131: 11126: 11121: 11115: 11113: 11107: 11106: 11104: 11103: 11098: 11093: 11088: 11083: 11078: 11073: 11068: 11063: 11058: 11053: 11047: 11045: 11041: 11040: 11035: 11034: 11027: 11020: 11012: 11003: 11002: 10993: 10990: 10989: 10987: 10986: 10981: 10976: 10971: 10966: 10961: 10956: 10951: 10946: 10941: 10936: 10930: 10927: 10926: 10915: 10914: 10907: 10900: 10892: 10886: 10885: 10878: 10877:External links 10875: 10874: 10873: 10866: 10849: 10846: 10845: 10844: 10789: 10774: 10759: 10743: 10729: 10722: 10707: 10692: 10682: 10668: 10633: 10626: 10615: 10608: 10591: 10588: 10585: 10584: 10554: 10501: 10476: 10451: 10444: 10419: 10406: 10386: 10363: 10344: 10286:(11): 113109. 10266: 10235: 10172: 10150: 10137: 10117: 10096: 10076: 10055: 10051:Theory of Heat 10042: 10027: 10014: 9984: 9955: 9944: 9917:(7): 713–722. 9901: 9894: 9866: 9864:, pp. 148–154. 9845: 9842:on 2020-02-28. 9811:(3): 187–190. 9788: 9769:(3): 355–386. 9749: 9689: 9639: 9604:(2): 793–818. 9581: 9521: 9474: 9455:(1): 417–428. 9435: 9388: 9326: 9307: 9282: 9264: 9258:978-0071422949 9257: 9239: 9218: 9209: 9196: 9192:Theory of Heat 9183: 9181:, pp. 411–451. 9158: 9137: 9113: 9109:Theory of Heat 9100: 9079:(4): 294–296. 9059: 9046: 9025: 9012: 8999:. p. 14. 8984: 8977: 8959: 8952: 8926: 8919: 8901: 8879: 8866: 8853: 8849:Theory of Heat 8840: 8816: 8796: 8766: 8757: 8745: 8715: 8713:, pp. 309–310. 8691: 8689:, pp. 133–135. 8670: 8645: 8632: 8610: 8597: 8595:, pp. 115–116. 8572: 8570:, pp. 146–148. 8545: 8521: 8495: 8482: 8480:, pp. 160–162. 8461: 8452: 8440: 8428: 8416: 8407:Thermodynamics 8394: 8385: 8376: 8367: 8358: 8349: 8340: 8331: 8311: 8302: 8293: 8273: 8253: 8244: 8230: 8195: 8173: 8161: 8136: 8127: 8120: 8100: 8082: 8081: 8080: 8079: 8077: 8071: 8070: 8042:, R. Oechslin 8026: 8011:1 to 7 km 7993: 7891: 7871:, M.G. Haines 7838: 7807: 7781: 7761: 7741: 7716: 7710: 7707: 7683: 7657: 7656: 7655: 7654: 7652: 7647: 7644: 7642: 7641: 7635: 7629: 7623: 7617: 7611: 7605: 7599: 7593: 7588: 7582: 7576: 7567: 7561: 7555: 7546: 7540: 7534: 7528: 7523: 7518: 7508: 7502: 7493: 7484: 7478: 7472: 7466: 7460: 7453: 7451: 7448: 7446: 7445: 7432: 7419: 7402: 7393: 7368: 7350: 7347: 7346: 7335: 7332: 7327: 7318: 7317: 7306: 7303: 7298: 7290: 7289: 7278: 7275: 7270: 7260: 7259: 7248: 7245: 7240: 7231: 7230: 7219: 7216: 7211: 7203: 7202: 7187: 7184: 7179: 7171: 7170: 7159: 7156: 7151: 7145: 7144: 7133: 7124: 7119: 7115:Lightning bolt 7111: 7110: 7099: 7094: 7089: 7082: 7081: 7070: 7064: 7059: 7053: 7052: 7041: 7036: 7031: 7030:melting point 7024: 7023: 7012: 7007: 7002: 6995: 6994: 6979: 6974: 6969: 6958: 6957: 6943: 6938: 6933: 6925: 6924: 6909: 6904: 6899: 6893: 6892: 6887: 6872: 6867: 6859: 6858: 6849: 6834: 6829: 6823: 6822: 6805: 6787: 6782: 6780:Sagittarius A* 6775: 6774: 6771: 6766: 6761: 6753: 6752: 6749: 6743: 6742: 6731: 6728: 6716:Main article: 6705: 6702: 6667:−109.3 °F 6651:Main article: 6648: 6645: 6632: 6626: 6625: 6614: 6607: 6599: 6595: 6589: 6585: 6579: 6575: 6571: 6568: 6559: 6552: 6545: 6542: 6538: 6533: 6530: 6526: 6516: 6512: 6509: 6503: 6500: 6475: 6471: 6448: 6444: 6411: 6408: 6393: 6389: 6385: 6380: 6376: 6351: 6347: 6343: 6338: 6334: 6322: 6321: 6310: 6307: 6303: 6295: 6291: 6287: 6282: 6275: 6271: 6267: 6261: 6257: 6254: 6251: 6248: 6243: 6239: 6235: 6232: 6228: 6224: 6221: 6218: 6215: 6212: 6209: 6206: 6201: 6197: 6193: 6190: 6186: 6182: 6179: 6176: 6173: 6170: 6167: 6164: 6141: 6138: 6103: 6098: 6086: 6085: 6074: 6071: 6068: 6065: 6062: 6056: 6051: 6047: 6044: 6013: 5998: 5995: 5989: 5988: 5983: 5981: 5970: 5967: 5964: 5961: 5958: 5952: 5949: 5945: 5940: 5935: 5932: 5928: 5913:and (9) gives 5910: 5886: 5885: 5880: 5878: 5867: 5861: 5858: 5847: 5843: 5837: 5834: 5815: 5814: 5809: 5807: 5796: 5791: 5781: 5777: 5771: 5768: 5765: 5745: 5744: 5733: 5730: 5727: 5716: 5706: 5700: 5689: 5679: 5645: 5637: 5636: 5631: 5629: 5618: 5607: 5597: 5591: 5588: 5585: 5574: 5568: 5558: 5553: 5546: 5543: 5540: 5517: 5516: 5511: 5509: 5498: 5487: 5477: 5471: 5460: 5454: 5444: 5439: 5412: 5401: 5387: 5376: 5365: 5354: 5340: 5333: 5322: 5315: 5301: 5294: 5282: 5271: 5260: 5253: 5242: 5236: 5235: 5224: 5220: 5214: 5210: 5206: 5201: 5197: 5192: 5188: 5184: 5178: 5174: 5170: 5165: 5161: 5156: 5152: 5149: 5145: 5139: 5135: 5131: 5126: 5122: 5117: 5113: 5110: 5105: 5101: 5088:which implies 5086: 5085: 5074: 5066: 5062: 5056: 5052: 5044: 5040: 5034: 5030: 5023: 5018: 5014: 4998: 4991: 4984: 4977: 4970: 4963: 4952: 4951: 4946: 4944: 4933: 4929: 4919: 4915: 4906: 4901: 4897: 4894: 4883: 4877: 4867: 4862: 4841: 4834: 4827: 4820: 4813: 4806: 4799: 4792: 4785: 4777: 4776: 4771: 4769: 4758: 4747: 4741: 4731: 4726: 4719: 4716: 4713: 4702: 4691: 4687: 4678: 4671: 4660: 4650: 4644: 4619: 4612: 4606:state function 4570:Main article: 4567: 4564: 4532:Main article: 4529: 4526: 4495: 4491: 4488: 4485: 4481: 4476: 4471: 4466: 4462: 4458: 4453: 4444: 4423: 4420: 4414: 4413: 4402: 4399: 4390: 4384: 4381: 4376: 4371: 4362: 4358: 4353: 4350: 4345: 4336: 4314:kinetic energy 4298:kinetic energy 4238: 4237: 4226: 4223: 4220: 4217: 4214: 4211: 4208: 4143:kinetic theory 4128:Kinetic theory 4119: 4116: 4084:thermal energy 4069: 4052:, is half the 4046:kinetic energy 3995: 3992: 3982:mean free path 3968: 3965: 3956: 3937: 3918: 3909: 3905: 3902: 3881: 3874: 3858:plasma physics 3853: 3852:Plasma physics 3850: 3849: 3848: 3843: 3838: 3833: 3828: 3823: 3818: 3813: 3797: 3794: 3750:thermal energy 3692:freezing point 3672: 3669: 3564: 3561: 3540: 3539: 3527: 3521: 3518: 3513: 3510: 3504: 3499: 3495: 3445: 3442: 3401: 3398: 3389: 3386: 3376: 3373: 3313: 3310: 3263: 3262: 3259: 3258: 3253: 3247: 3246: 3241: 3235: 3234: 3227: 3219: 3218: 3213: 3203: 3202: 3191: 3188: 3159: 3156: 3149: 3148: 3143: 3141: 3130: 3125: 3122: 3119: 3114: 3108: 3105: 3100: 3097: 3091: 3086: 3081: 3078: 3013: 3012: 3007: 3005: 2994: 2989: 2986: 2983: 2978: 2972: 2969: 2964: 2961: 2955: 2950: 2947: 2852: 2849: 2834: 2833: 2828: 2826: 2815: 2808: 2804: 2798: 2794: 2788: 2785: 2778: 2774: 2768: 2764: 2743: 2734: 2719: 2710: 2664:thermodynamics 2658: 2657: 2655: 2654: 2647: 2640: 2632: 2629: 2628: 2627: 2626: 2613: 2612: 2609: 2608: 2603: 2598: 2593: 2587: 2584: 2583: 2580: 2579: 2575: 2574: 2569: 2564: 2559: 2554: 2549: 2544: 2539: 2534: 2529: 2524: 2519: 2514: 2509: 2504: 2499: 2494: 2489: 2484: 2479: 2474: 2469: 2464: 2459: 2454: 2449: 2444: 2438: 2437: 2434: 2433: 2430: 2429: 2424: 2423: 2422: 2421: 2416: 2408: 2407: 2405: 2404: 2401: 2397: 2394: 2393: 2391: 2390: 2385: 2383:Thermodynamics 2379: 2376: 2375: 2371: 2370: 2369: 2368: 2359: 2357: 2348: 2346: 2337: 2332: 2331: 2325: 2324: 2323: 2322: 2317: 2312: 2300: 2299: 2297:Caloric theory 2293: 2290: 2289: 2285: 2284: 2282: 2281: 2276: 2271: 2266: 2261: 2256: 2251: 2245: 2242: 2241: 2235: 2234: 2233: 2232: 2225: 2224: 2219: 2214: 2208: 2205: 2204: 2198: 2195: 2194: 2191: 2187: 2186: 2185: 2182: 2181: 2177: 2176: 2165: 2162: 2159: 2156: 2153: 2150: 2147: 2144: 2141: 2138: 2135: 2121: 2110: 2107: 2104: 2101: 2098: 2095: 2092: 2089: 2086: 2083: 2080: 2066: 2055: 2052: 2049: 2046: 2043: 2040: 2037: 2034: 2031: 2028: 2025: 2011: 2000: 1997: 1994: 1991: 1988: 1985: 1970: 1968: 1967: 1962: 1956: 1955: 1950: 1949: 1946: 1945: 1942: 1941: 1934: 1929: 1924: 1917: 1916: 1911: 1906: 1901: 1895: 1894: 1889: 1888: 1885: 1884: 1878: 1877: 1874: 1873: 1862: 1859: 1849: 1838: 1827: 1826: 1815: 1812: 1802: 1791: 1777: 1766: 1763: 1753: 1746: 1745: 1742: 1741: 1730: 1727: 1717: 1706: 1695: 1694: 1683: 1680: 1670: 1659: 1645: 1634: 1631: 1628: 1618: 1611: 1610: 1607: 1606: 1595: 1592: 1582: 1571: 1560: 1559: 1548: 1545: 1535: 1524: 1510: 1499: 1496: 1486: 1477: 1476: 1475: 1469: 1464: 1463: 1460: 1459: 1454: 1453: 1452: 1451: 1446: 1441: 1430: 1419: 1400: 1399: 1393: 1392: 1390: 1389: 1384: 1378: 1375: 1374: 1368: 1367: 1366: 1365: 1360: 1341: 1340: 1335: 1334: 1331: 1330: 1325: 1324: 1323: 1322: 1317: 1312: 1304: 1303: 1297: 1296: 1295: 1294: 1289: 1284: 1279: 1277:Free expansion 1274: 1269: 1264: 1259: 1254: 1249: 1244: 1239: 1231: 1230: 1224: 1223: 1222: 1221: 1216: 1214:Control volume 1211: 1206: 1204:Phase (matter) 1201: 1196: 1191: 1186: 1178: 1177: 1169: 1168: 1163: 1158: 1152: 1147: 1146: 1143: 1142: 1138: 1137: 1132: 1127: 1122: 1116: 1115: 1110: 1109: 1106: 1105: 1102: 1101: 1090: 1089: 1084: 1079: 1074: 1068: 1067: 1064: 1063: 1060: 1059: 1054:The classical 1053: 1045: 1044: 1042:Thermodynamics 1035: 1032: 998: 986: 966: 953: 930:Kinetic theory 919: 916: 902: 899: 889: 886: 821: 818: 812: 809: 792: 789: 783: 780: 750: 743: 714: 711: 689:, invented by 647: 644: 611: 608: 551: 550: 509: 507: 500: 491:Main article: 488: 485: 484: 483: 480:speed of sound 476: 470: 463: 456: 433:vapor pressure 388: 385: 285:kinetic energy 264: 263: 250: 238: 232: 231: 217: 214: 203: 199: 173: 170: 165: 162: 149: 144: 141: 140: 137: 130: 129: 92: 89: 86: 85: 80: 74: 73: 68: 66:Common symbols 65: 62: 61: 50: 42: 41: 26: 9: 6: 4: 3: 2: 11863: 11852: 11849: 11848: 11846: 11836: 11831: 11826: 11825: 11822: 11809: 11808: 11804: 11802: 11801: 11792: 11791: 11788: 11782: 11779: 11777: 11776:2019 revision 11774: 11772: 11769: 11767: 11764: 11763: 11761: 11757: 11739: 11737: 11734: 11732: 11729: 11723: 11719: 11717: 11714: 11713: 11709: 11707: 11704: 11702: 11699: 11694: 11692: 11689: 11688: 11684: 11682: 11679: 11677: 11672: 11667: 11665: 11662: 11661: 11657: 11655: 11652: 11650: 11645: 11632: 11630: 11627: 11626: 11622: 11620: 11617: 11615: 11612: 11607: 11605: 11602: 11601: 11597: 11595: 11592: 11590: 11587: 11573: 11571: 11568: 11567: 11563: 11561: 11558: 11556: 11553: 11548: 11546: 11543: 11542: 11536: 11531: 11529: 11527: 11522: 11519: 11516: 11515: 11512: 11507: 11503: 11499: 11495: 11491: 11484: 11479: 11477: 11472: 11470: 11465: 11464: 11461: 11449: 11446: 11445: 11443: 11441: 11437: 11431: 11428: 11426: 11423: 11421: 11420:Barotropicity 11418: 11416: 11413: 11411: 11408: 11407: 11405: 11403: 11399: 11393: 11390: 11388: 11385: 11383: 11380: 11378: 11375: 11373: 11370: 11368: 11365: 11363: 11360: 11358: 11355: 11353: 11350: 11348: 11343: 11338: 11336: 11334: 11329: 11327: 11324: 11322: 11319: 11317: 11314: 11312: 11309: 11307: 11304: 11302: 11299: 11297: 11294: 11292: 11287: 11282: 11280: 11277: 11275: 11272: 11270: 11265: 11260: 11259: 11257: 11255: 11251: 11245: 11242: 11240: 11237: 11235: 11232: 11230: 11227: 11225: 11222: 11220: 11217: 11215: 11212: 11210: 11207: 11205: 11200: 11195: 11193: 11190: 11188: 11185: 11183: 11180: 11178: 11175: 11173: 11170: 11169: 11167: 11165: 11161: 11155: 11152: 11150: 11149:Precipitation 11147: 11145: 11142: 11140: 11137: 11135: 11132: 11130: 11127: 11125: 11122: 11120: 11117: 11116: 11114: 11112: 11108: 11102: 11099: 11097: 11094: 11092: 11089: 11087: 11084: 11082: 11079: 11077: 11074: 11072: 11069: 11067: 11064: 11062: 11059: 11057: 11054: 11052: 11049: 11048: 11046: 11042: 11033: 11028: 11026: 11021: 11019: 11014: 11013: 11010: 11000: 10996: 10991: 10985: 10982: 10980: 10977: 10975: 10972: 10970: 10967: 10965: 10962: 10960: 10957: 10955: 10952: 10950: 10947: 10945: 10942: 10940: 10937: 10935: 10932: 10931: 10928: 10924: 10920: 10913: 10908: 10906: 10901: 10899: 10894: 10893: 10890: 10884: 10881: 10880: 10871: 10867: 10864: 10860: 10856: 10852: 10851: 10841: 10837: 10833: 10829: 10825: 10821: 10817: 10813: 10808: 10803: 10799: 10795: 10790: 10787: 10786:0-444-50426-5 10783: 10779: 10775: 10772: 10771:0-387-90403-4 10768: 10764: 10760: 10756: 10752: 10748: 10744: 10741: 10737: 10733: 10730: 10727: 10723: 10720: 10719:0-8493-5833-7 10716: 10712: 10708: 10705: 10704:0-12-569680-9 10701: 10697: 10693: 10690: 10687:(1957/1966). 10686: 10685:Pippard, A.B. 10683: 10680: 10676: 10672: 10669: 10664: 10659: 10655: 10651: 10647: 10643: 10642:Physics Today 10639: 10634: 10631: 10627: 10625:(5), 391–398. 10624: 10620: 10616: 10613: 10609: 10606: 10605:0-521-25445-0 10602: 10598: 10594: 10593: 10581: 10577: 10574: 10570: 10566: 10563: 10558: 10552: 10548: 10545: 10540: 10536: 10533: 10529: 10525: 10522: 10518: 10514: 10511: 10505: 10490: 10486: 10480: 10466: 10462: 10455: 10447: 10441: 10437: 10433: 10429: 10423: 10416: 10410: 10403: 10399: 10396:(1957/1966). 10395: 10394:Pippard, A.B. 10390: 10382:, p. 157 10381: 10377: 10373: 10367: 10359: 10355: 10348: 10342: 10338: 10335: 10324:on 2016-05-14 10323: 10319: 10315: 10311: 10307: 10303: 10299: 10294: 10289: 10285: 10281: 10277: 10270: 10252: 10245: 10239: 10233: 10229: 10226: 10221: 10217: 10213: 10209: 10205: 10201: 10196: 10191: 10188:(1): P01003. 10187: 10183: 10182:J. Stat. Mech 10176: 10168: 10164: 10157: 10155: 10147: 10141: 10134: 10130: 10126: 10121: 10114: 10113:0-88318-797-3 10110: 10106: 10100: 10093: 10089: 10085: 10080: 10073: 10072:0-88318-797-3 10069: 10065: 10059: 10052: 10046: 10038: 10031: 10024: 10018: 10002: 9998: 9994: 9988: 9973: 9969: 9965: 9959: 9953: 9948: 9940: 9936: 9932: 9928: 9924: 9920: 9916: 9912: 9905: 9897: 9891: 9887: 9883: 9879: 9873: 9871: 9863: 9862:0-471-04600-0 9859: 9855: 9849: 9838: 9834: 9830: 9826: 9822: 9818: 9814: 9810: 9806: 9799: 9792: 9784: 9780: 9776: 9772: 9768: 9764: 9760: 9753: 9745: 9741: 9737: 9733: 9728: 9727:11250/2594950 9723: 9719: 9715: 9711: 9707: 9703: 9696: 9694: 9685: 9681: 9677: 9673: 9669: 9665: 9662:(2): 025002. 9661: 9657: 9653: 9646: 9644: 9629: 9625: 9620: 9619:2027.42/70161 9615: 9611: 9607: 9603: 9599: 9595: 9588: 9586: 9577: 9573: 9569: 9565: 9561: 9557: 9552: 9547: 9543: 9539: 9535: 9528: 9526: 9517: 9513: 9509: 9505: 9501: 9497: 9493: 9489: 9485: 9478: 9470: 9466: 9462: 9458: 9454: 9450: 9446: 9439: 9431: 9427: 9423: 9419: 9415: 9411: 9407: 9403: 9399: 9392: 9384: 9380: 9375: 9370: 9366: 9362: 9358: 9354: 9350: 9343: 9341: 9339: 9337: 9335: 9333: 9331: 9323: 9319: 9316: 9311: 9296: 9292: 9286: 9280: 9276: 9273: 9268: 9260: 9254: 9250: 9243: 9236: 9232: 9228: 9222: 9213: 9206: 9200: 9193: 9187: 9180: 9179:0-444-85166-6 9176: 9172: 9165: 9163: 9155: 9154:0-387-07971-8 9151: 9147: 9141: 9134: 9133:0-387-90874-9 9130: 9126: 9120: 9118: 9110: 9104: 9095: 9090: 9086: 9082: 9078: 9074: 9070: 9063: 9056: 9050: 9043: 9039: 9035: 9029: 9022: 9016: 9009: 9002: 8995: 8988: 8980: 8974: 8970: 8963: 8955: 8953:9780070518001 8949: 8945: 8940: 8939: 8930: 8922: 8916: 8912: 8905: 8898: 8894: 8891: 8890: 8883: 8876: 8870: 8863: 8857: 8850: 8844: 8837: 8836:3-540-15931-2 8833: 8829: 8823: 8821: 8813: 8807: 8805: 8803: 8801: 8785: 8781: 8776: 8770: 8761: 8754: 8753:Pippard, A.B. 8749: 8734: 8730: 8725: 8719: 8712: 8711:0-471-86256-8 8708: 8704: 8701:(1960/1985), 8700: 8695: 8688: 8687:0-88318-797-3 8684: 8680: 8674: 8667: 8666:0-471-30280-5 8663: 8659: 8655: 8654:Prigogine, I. 8649: 8642: 8636: 8629: 8625: 8624: 8619: 8614: 8607: 8601: 8594: 8593:0-471-97394-7 8590: 8586: 8582: 8581:Prigogine, I. 8576: 8569: 8568:0-471-86256-8 8565: 8561: 8558:(1960/1985), 8557: 8552: 8550: 8542: 8541:0-88318-797-3 8538: 8534: 8528: 8526: 8519:, pp. 49, 69. 8518: 8517:0-471-62430-6 8514: 8510: 8504: 8502: 8500: 8492: 8486: 8479: 8478:0-12-569680-9 8475: 8471: 8465: 8456: 8449: 8444: 8437: 8432: 8425: 8420: 8412: 8408: 8401: 8399: 8389: 8380: 8371: 8362: 8353: 8344: 8335: 8328: 8324: 8318: 8316: 8306: 8297: 8291: 8287: 8283: 8277: 8271: 8267: 8263: 8257: 8248: 8239: 8237: 8235: 8221:on 2018-04-29 8217: 8210: 8209: 8202: 8200: 8192: 8188: 8185: 8180: 8178: 8168: 8166: 8151: 8147: 8140: 8131: 8123: 8117: 8113: 8112: 8104: 8096: 8095: 8087: 8083: 8078: 8075: 8074: 8067: 8063: 8060: 8056: 8052: 8049: 8045: 8041: 8037: 8034: 8033: 8025: 8021: 7997: 7982:on 2010-10-24 7981: 7977: 7976:"NASA - Star" 7964:on 2011-08-14 7963: 7959: 7946:on 2013-04-11 7945: 7941: 7934: 7930: 7926: 7920: 7915: 7911: 7910: 7909:alpha process 7905: 7901: 7900:main sequence 7895: 7889: 7885: 7882: 7878: 7874: 7870: 7869: 7856: 7852: 7848: 7847:bulk quantity 7842: 7835: 7831: 7828: 7825: 7821: 7817: 7816:hydrogen bomb 7811: 7804: 7803: 7798: 7794: 7791: 7785: 7778:0.0001 K 7771: 7765: 7745: 7738: 7734: 7730: 7726: 7720: 7713: 7697: 7693: 7687: 7680: 7662: 7658: 7653: 7650: 7649: 7639: 7636: 7633: 7630: 7627: 7624: 7621: 7618: 7615: 7612: 7609: 7606: 7603: 7602:Thermoception 7600: 7597: 7594: 7592: 7589: 7586: 7583: 7580: 7577: 7571: 7568: 7565: 7562: 7559: 7558:Rankine scale 7556: 7550: 7547: 7544: 7541: 7538: 7535: 7532: 7529: 7527: 7524: 7522: 7519: 7512: 7509: 7506: 7503: 7497: 7494: 7488: 7485: 7482: 7479: 7476: 7473: 7470: 7467: 7464: 7461: 7458: 7455: 7454: 7438: 7437: 7433: 7429:273.15 K 7425: 7424: 7420: 7412:273.15 K 7408: 7407: 7403: 7399: 7398: 7394: 7391: 7382:273.15 K 7374: 7373: 7369: 7362: 7357: 7356: 7352: 7351: 7345:(gamma rays) 7336: 7333: 7328: 7323: 7320: 7319: 7316:(gamma rays) 7307: 7304: 7299: 7297: 7292: 7291: 7288:(gamma rays) 7279: 7276: 7271: 7268: 7262: 7261: 7258:(gamma rays) 7249: 7246: 7241: 7239: 7233: 7232: 7229:(gamma rays) 7220: 7217: 7212: 7210: 7205: 7204: 7200: 7188: 7185: 7180: 7176: 7173: 7172: 7168: 7160: 7157: 7152: 7150: 7147: 7146: 7142: 7134: 7125: 7120: 7116: 7113: 7112: 7108: 7102:501.5 nm 7100: 7095: 7090: 7087: 7084: 7083: 7079: 7071: 7065: 7060: 7058: 7055: 7054: 7050: 7042: 7037: 7032: 7029: 7026: 7025: 7013: 7008: 7003: 7001: 7000:boiling point 6997: 6996: 6992: 6980: 6975: 6972:273.16 K 6970: 6966: 6963: 6960: 6959: 6944: 6939: 6936:2.7260 K 6934: 6930: 6927: 6926: 6922: 6910: 6905: 6900: 6895: 6894: 6888: 6873: 6868: 6866: 6861: 6860: 6850: 6835: 6830: 6825: 6824: 6819: 6806: 6788: 6783: 6781: 6777: 6776: 6767: 6762: 6758: 6757:Absolute zero 6755: 6754: 6750: 6748: 6745: 6744: 6741: 6736: 6726: 6719: 6710: 6701: 6699: 6694: 6689: 6685: 6682: 6680: 6663:−78.5 °C 6660: 6654: 6644: 6642: 6638: 6631: 6612: 6605: 6597: 6593: 6587: 6583: 6577: 6573: 6569: 6566: 6557: 6550: 6543: 6540: 6536: 6531: 6528: 6524: 6514: 6510: 6507: 6501: 6498: 6491: 6490: 6489: 6473: 6469: 6446: 6442: 6433: 6429: 6425: 6421: 6417: 6407: 6391: 6387: 6383: 6378: 6374: 6364: 6349: 6345: 6341: 6336: 6332: 6308: 6301: 6293: 6289: 6285: 6280: 6273: 6269: 6265: 6259: 6255: 6252: 6246: 6241: 6233: 6230: 6226: 6222: 6219: 6213: 6210: 6204: 6199: 6191: 6188: 6184: 6180: 6177: 6171: 6168: 6165: 6155: 6154: 6153: 6139: 6126: 6124: 6120: 6096: 6069: 6063: 6060: 6049: 6045: 6042: 6035: 6034: 6033: 6031: 6027: 6011: 6003: 5994: 5987: 5984: 5982: 5968: 5962: 5956: 5950: 5947: 5943: 5938: 5933: 5930: 5926: 5918: 5917: 5914: 5909: 5905: 5901: 5897: 5893: 5884: 5881: 5879: 5865: 5859: 5856: 5845: 5841: 5835: 5832: 5825: 5824: 5821: 5813: 5810: 5808: 5794: 5789: 5779: 5775: 5769: 5766: 5763: 5756: 5755: 5752: 5750: 5731: 5728: 5725: 5714: 5704: 5698: 5687: 5677: 5667: 5666: 5665: 5644: 5635: 5632: 5630: 5616: 5605: 5595: 5589: 5586: 5583: 5572: 5556: 5544: 5541: 5538: 5526: 5525: 5522: 5515: 5512: 5510: 5496: 5485: 5475: 5469: 5458: 5442: 5426: 5425: 5422: 5420: 5411: 5407: 5400: 5396: 5386: 5382: 5375: 5371: 5364: 5360: 5353: 5349: 5339: 5332: 5328: 5321: 5314: 5310: 5300: 5293: 5289: 5281: 5277: 5270: 5266: 5259: 5252: 5248: 5241: 5222: 5218: 5212: 5208: 5204: 5199: 5195: 5190: 5186: 5182: 5176: 5172: 5168: 5163: 5159: 5154: 5150: 5147: 5143: 5137: 5133: 5129: 5124: 5120: 5115: 5111: 5108: 5103: 5099: 5091: 5090: 5089: 5072: 5064: 5060: 5054: 5050: 5042: 5038: 5032: 5028: 5021: 5016: 5012: 5004: 5003: 5002: 4997: 4990: 4983: 4976: 4969: 4962: 4958: 4950: 4947: 4945: 4931: 4927: 4917: 4913: 4904: 4899: 4895: 4892: 4881: 4865: 4849: 4848: 4845: 4840: 4833: 4826: 4819: 4812: 4805: 4798: 4791: 4784: 4775: 4772: 4770: 4756: 4745: 4729: 4717: 4714: 4711: 4700: 4689: 4685: 4676: 4669: 4658: 4648: 4642: 4630: 4629: 4626: 4623: 4618: 4611: 4607: 4603: 4599: 4593: 4591: 4585: 4583: 4579: 4573: 4563: 4561: 4557: 4551: 4549: 4544: 4542: 4535: 4525: 4523: 4519: 4515: 4511: 4486: 4474: 4464: 4460: 4451: 4442: 4433: 4429: 4419: 4400: 4397: 4388: 4382: 4379: 4374: 4369: 4360: 4356: 4351: 4348: 4343: 4334: 4326: 4325: 4324: 4322: 4319: 4315: 4311: 4307: 4303: 4299: 4294: 4291: 4286: 4284: 4280: 4279:ideal gas law 4276: 4275:absolute zero 4271: 4269: 4251: 4247: 4243: 4224: 4221: 4218: 4215: 4212: 4209: 4206: 4199: 4198: 4197: 4195: 4191: 4187: 4183: 4179: 4175: 4171: 4170:ideal gas law 4162: 4158: 4156: 4152: 4148: 4144: 4140: 4136: 4129: 4124: 4115: 4113: 4109: 4105: 4101: 4097: 4093: 4089: 4085: 4080: 4078: 4074: 4068: 4064: 4063:perfect gases 4059: 4055: 4051: 4047: 4043: 4039: 4035: 4031: 4026: 4024: 4020: 4019:metric system 4016: 4012: 4008: 4001: 3991: 3988: 3983: 3979: 3975: 3964: 3955: 3951: 3936: 3916: 3907: 3903: 3900: 3892: 3888: 3884: 3880: 3873: 3867: 3863: 3859: 3856:The field of 3847: 3844: 3842: 3841:Réaumur scale 3839: 3837: 3834: 3832: 3831:Delisle scale 3829: 3827: 3826:Rankine scale 3824: 3822: 3819: 3817: 3816:Celsius scale 3814: 3812: 3809: 3808: 3807: 3803: 3793: 3782: 3775:273.16 K 3763:273.15 K 3754:273.16 K 3751: 3747: 3743: 3731: 3727: 3723: 3722:absolute zero 3718: 3715:273.15 K 3701: 3700:boiling point 3694:of water and 3693: 3684: 3682: 3678: 3668: 3666: 3662: 3661:Rankine scale 3658: 3657:absolute zero 3646: 3642: 3641:United States 3638: 3634: 3630: 3626: 3622: 3618: 3613: 3611: 3607: 3603: 3599: 3595: 3590: 3586: 3582: 3569: 3560: 3558: 3554: 3549: 3548:specific heat 3545: 3537: 3525: 3519: 3511: 3502: 3497: 3493: 3484: 3483: 3482: 3480: 3479:heat capacity 3475: 3468: 3460: 3455: 3451: 3450:Heat capacity 3444:Heat capacity 3441: 3439: 3435: 3434:absolute zero 3431: 3427: 3423: 3419: 3415: 3411: 3407: 3397: 3395: 3385: 3383: 3372: 3370: 3365: 3362: 3357: 3355: 3351: 3347: 3343: 3339: 3335: 3331: 3327: 3323: 3319: 3309: 3306: 3302: 3298: 3294: 3289: 3287: 3281: 3279: 3274: 3270: 3257: 3254: 3252: 3249: 3248: 3245: 3242: 3240: 3237: 3236: 3232: 3228: 3225: 3221: 3220: 3217: 3214: 3212: 3209: 3208: 3205: 3204: 3201: 3196: 3195: 3187: 3183: 3180: 3174: 3168: 3166: 3155: 3147: 3144: 3142: 3128: 3123: 3120: 3117: 3112: 3106: 3098: 3089: 3084: 3079: 3076: 3067: 3066: 3063: 3059: 3055: 3051: 3047: 3043: 3037: 3033: 3027: 3021: 3011: 3008: 3006: 2992: 2987: 2984: 2981: 2976: 2970: 2962: 2953: 2948: 2945: 2938: 2937: 2934: 2932: 2927: 2923: 2919: 2915: 2911: 2905: 2901: 2895: 2891: 2886: 2882: 2877: 2874: 2870: 2866: 2862: 2858: 2848: 2844: 2840: 2832: 2829: 2827: 2813: 2806: 2802: 2796: 2792: 2786: 2783: 2776: 2772: 2766: 2762: 2752: 2751: 2748: 2742: 2733: 2728: 2718: 2709: 2704: 2700: 2699:Carnot engine 2695: 2693: 2689: 2688:Rankine scale 2685: 2681: 2677: 2672: 2667: 2665: 2653: 2648: 2646: 2641: 2639: 2634: 2633: 2631: 2630: 2625: 2617: 2616: 2615: 2614: 2607: 2604: 2602: 2599: 2597: 2596:Self-assembly 2594: 2592: 2589: 2588: 2582: 2581: 2573: 2570: 2568: 2567:van der Waals 2565: 2563: 2560: 2558: 2555: 2553: 2550: 2548: 2545: 2543: 2540: 2538: 2535: 2533: 2530: 2528: 2525: 2523: 2520: 2518: 2515: 2513: 2510: 2508: 2505: 2503: 2500: 2498: 2495: 2493: 2492:von Helmholtz 2490: 2488: 2485: 2483: 2480: 2478: 2475: 2473: 2470: 2468: 2465: 2463: 2460: 2458: 2455: 2453: 2450: 2448: 2445: 2443: 2440: 2439: 2432: 2431: 2420: 2417: 2415: 2412: 2411: 2410: 2409: 2402: 2399: 2398: 2396: 2395: 2389: 2386: 2384: 2381: 2380: 2378: 2377: 2373: 2372: 2366: 2365: 2358: 2355: 2354: 2347: 2344: 2343: 2336: 2335: 2334: 2333: 2330: 2327: 2326: 2321: 2318: 2316: 2313: 2311: 2307: 2303: 2302: 2298: 2295: 2294: 2292: 2291: 2287: 2286: 2280: 2277: 2275: 2272: 2270: 2267: 2265: 2262: 2260: 2257: 2255: 2252: 2250: 2247: 2246: 2244: 2243: 2240: 2237: 2236: 2231: 2228: 2227: 2223: 2220: 2218: 2215: 2213: 2210: 2209: 2207: 2206: 2202: 2201: 2192: 2189: 2188: 2184: 2183: 2163: 2160: 2157: 2154: 2151: 2145: 2142: 2139: 2133: 2125: 2122: 2108: 2105: 2102: 2099: 2096: 2090: 2087: 2084: 2078: 2070: 2067: 2053: 2050: 2047: 2044: 2041: 2035: 2032: 2029: 2023: 2015: 2012: 1995: 1992: 1989: 1983: 1975: 1972: 1971: 1966: 1963: 1961: 1958: 1957: 1953: 1948: 1947: 1940: 1939: 1935: 1933: 1930: 1928: 1925: 1923: 1920: 1919: 1915: 1914:Ideal gas law 1912: 1910: 1907: 1905: 1902: 1900: 1897: 1896: 1892: 1887: 1886: 1860: 1850: 1836: 1829: 1828: 1813: 1803: 1789: 1782: 1781: 1778: 1764: 1761: 1754: 1751: 1748: 1747: 1728: 1718: 1704: 1697: 1696: 1681: 1671: 1657: 1650: 1649: 1646: 1632: 1629: 1626: 1619: 1616: 1613: 1612: 1593: 1583: 1569: 1562: 1561: 1546: 1536: 1522: 1515: 1514: 1511: 1497: 1494: 1487: 1484: 1481: 1480: 1474: 1471: 1470: 1467: 1462: 1461: 1450: 1447: 1445: 1444:Vapor quality 1442: 1440: 1439: 1434: 1431: 1429: 1428: 1423: 1420: 1417: 1413: 1412: 1407: 1404: 1403: 1402: 1401: 1398: 1395: 1394: 1388: 1385: 1383: 1380: 1379: 1377: 1376: 1373: 1370: 1369: 1364: 1361: 1359: 1356: 1355: 1354: 1353: 1349: 1345: 1338: 1333: 1332: 1321: 1318: 1316: 1313: 1311: 1308: 1307: 1306: 1305: 1302: 1299: 1298: 1293: 1290: 1288: 1285: 1283: 1282:Reversibility 1280: 1278: 1275: 1273: 1270: 1268: 1265: 1263: 1260: 1258: 1255: 1253: 1250: 1248: 1245: 1243: 1240: 1238: 1235: 1234: 1233: 1232: 1229: 1226: 1225: 1220: 1217: 1215: 1212: 1210: 1207: 1205: 1202: 1200: 1197: 1195: 1192: 1190: 1187: 1185: 1182: 1181: 1180: 1179: 1176: 1173: 1172: 1167: 1164: 1162: 1159: 1157: 1156:Closed system 1154: 1153: 1150: 1145: 1144: 1136: 1133: 1131: 1128: 1126: 1123: 1121: 1118: 1117: 1113: 1108: 1107: 1100: 1096: 1093: 1092: 1088: 1085: 1083: 1080: 1078: 1075: 1073: 1070: 1069: 1062: 1061: 1057: 1051: 1047: 1046: 1043: 1040: 1039: 1031: 1028: 1023: 1019: 1017: 1016:heat capacity 1013: 1009: 1004: 1001:), have more 995: 991: 985: 978: 973: 965: 958: 952: 947: 943: 939: 935: 931: 927: 925: 915: 912: 908: 898: 895:273.16 K 885: 883: 882:Johnson noise 877: 875: 871: 867: 862: 857: 854: 849: 847: 843: 839: 834: 832: 826: 817: 808: 806: 801: 799: 788: 779: 772:273.15 K 767: 761: 757: 748: 742: 740: 736: 732: 724: 720: 710: 708: 704: 700: 696: 695:thermodynamic 692: 688: 683: 681: 677: 673: 669: 665: 661: 657: 653: 643: 629: 625: 621: 617: 616:absolute zero 610:Absolute zero 607: 602:and boils at 597: 592: 589: 585: 577: 569: 564: 557: 547: 544: 536: 526: 522: 516: 515: 510:This section 508: 504: 499: 498: 494: 481: 477: 474: 471: 468: 464: 461: 457: 454: 450: 446: 442: 438: 434: 430: 426: 422: 418: 414: 410: 406: 402: 401: 400: 393: 384: 382: 378: 374: 370: 366: 362: 358: 354: 350: 349:Earth science 346: 342: 338: 333: 331: 327: 323: 322:Absolute zero 319: 317: 313: 309: 305: 301: 297: 292: 290: 286: 282: 278: 274: 270: 239: 237: 233: 215: 212: 201: 197: 171: 168: 163: 160: 150: 142: 138: 135: 131: 128: 124: 120: 116: 112: 108: 104: 100: 96: 93: 87: 84: 81: 79: 75: 69: 63: 58: 54: 48: 43: 38: 33: 19: 11805: 11793: 11721: 11341: 11332: 11326:Mixing ratio 11301:Haines Index 11285: 11263: 11253: 11198: 11111:Condensation 10922: 10869: 10854: 10797: 10793: 10777: 10762: 10754: 10750: 10739: 10738:(1843/1863) 10735: 10725: 10710: 10695: 10688: 10678: 10677:, volume 1, 10674: 10648:(1): 12–14. 10645: 10641: 10629: 10622: 10618: 10611: 10596: 10557: 10504: 10493:. Retrieved 10479: 10468:. Retrieved 10464: 10454: 10435: 10422: 10414: 10409: 10401: 10397: 10389: 10375: 10366: 10357: 10347: 10326:. Retrieved 10322:the original 10283: 10279: 10269: 10258:. Retrieved 10238: 10185: 10181: 10175: 10166: 10162: 10145: 10140: 10128: 10120: 10104: 10099: 10087: 10079: 10063: 10058: 10050: 10045: 10036: 10030: 10022: 10017: 10005:. Retrieved 9996: 9987: 9976:. Retrieved 9967: 9958: 9947: 9914: 9910: 9904: 9885: 9853: 9848: 9837:the original 9808: 9804: 9791: 9766: 9762: 9752: 9709: 9705: 9659: 9655: 9631:. Retrieved 9601: 9597: 9541: 9537: 9491: 9487: 9477: 9452: 9448: 9438: 9405: 9401: 9391: 9356: 9352: 9310: 9299:. Retrieved 9285: 9267: 9248: 9242: 9226: 9221: 9212: 9204: 9199: 9191: 9186: 9169: 9145: 9140: 9124: 9108: 9103: 9076: 9072: 9062: 9054: 9049: 9033: 9028: 9020: 9015: 9007: 8987: 8968: 8962: 8937: 8929: 8910: 8904: 8888: 8882: 8874: 8869: 8861: 8856: 8848: 8843: 8827: 8811: 8788:. Retrieved 8774: 8769: 8760: 8748: 8737:. Retrieved 8723: 8718: 8702: 8699:Callen, H.B. 8694: 8678: 8673: 8668:, pp. 14–16. 8657: 8648: 8640: 8635: 8627: 8622: 8613: 8605: 8600: 8584: 8575: 8559: 8556:Callen, H.B. 8532: 8508: 8490: 8485: 8469: 8464: 8455: 8443: 8431: 8419: 8410: 8406: 8388: 8379: 8370: 8361: 8352: 8343: 8334: 8326: 8322: 8305: 8296: 8288:(1): 51–59. 8285: 8281: 8276: 8265: 8261: 8256: 8247: 8223:, retrieved 8216:the original 8207: 8153:. Retrieved 8150:Live Science 8149: 8139: 8130: 8110: 8103: 8093: 8086: 8043: 8031: 8023: 8019: 7996: 7984:. Retrieved 7980:the original 7966:. Retrieved 7962:the original 7948:. Retrieved 7944:the original 7928: 7921:. Citation: 7907: 7899: 7894: 7876: 7872: 7859: 7854: 7850: 7846: 7841: 7823: 7819: 7815: 7810: 7801: 7784: 7764: 7744: 7736: 7732: 7728: 7727:. Citation: 7719: 7698:of mass M = 7686: 7678: 7661: 7614:Thermography 7436: 7423: 7406: 7397: 7372: 7355: 7296:Ion Collider 7162:0.18 nm 7097:5505 °C 7073:1160 nm 7068:2200 °C 7049:far infrared 7044:1600 nm 7039:1538 °C 6977:0.01 °C 6965:triple point 6902:0.001 K 6890:6400 km 6730:Temperature 6690: 6686: 6683: 6671:194.6 K 6656: 6640: 6637:Fermi energy 6629: 6627: 6423: 6413: 6365: 6323: 6127: 6122: 6118: 6087: 6000: 5992: 5985: 5907: 5903: 5899: 5895: 5891: 5889: 5882: 5818: 5811: 5748: 5746: 5642: 5640: 5633: 5520: 5513: 5418: 5409: 5405: 5398: 5394: 5384: 5380: 5373: 5369: 5362: 5358: 5351: 5347: 5337: 5330: 5326: 5319: 5312: 5308: 5298: 5291: 5287: 5279: 5275: 5268: 5264: 5257: 5250: 5246: 5239: 5237: 5087: 4995: 4988: 4981: 4974: 4967: 4960: 4955: 4948: 4838: 4831: 4824: 4817: 4810: 4803: 4796: 4789: 4782: 4780: 4773: 4624: 4616: 4609: 4594: 4589: 4586: 4575: 4552: 4545: 4537: 4415: 4295: 4287: 4272: 4268:gas constant 4249: 4241: 4239: 4185: 4181: 4177: 4167: 4141:developed a 4133: 4081: 4072: 4066: 4027: 4003: 3970: 3953: 3934: 3878: 3871: 3866:electronvolt 3855: 3836:Newton scale 3811:Kelvin scale 3805: 3783: 3779:0.01 °C 3758:0.01 °C 3746:ground state 3726:triple point 3719: 3685: 3679:(SI) is the 3674: 3619:that may be 3617:thermometers 3614: 3598:thermometers 3592: 3541: 3473: 3466: 3461: 3457: 3403: 3391: 3378: 3364:phase change 3358: 3350:tend to zero 3342:proportional 3315: 3290: 3282: 3272: 3266: 3238: 3190:Basic theory 3184: 3178: 3172: 3169: 3161: 3152: 3145: 3057: 3053: 3049: 3045: 3041: 3035: 3031: 3025: 3019: 3016: 3009: 2925: 2921: 2917: 2913: 2909: 2903: 2899: 2893: 2884: 2878: 2854: 2845: 2841: 2837: 2830: 2740: 2731: 2716: 2707: 2696: 2670: 2668: 2661: 2457:Carathéodory 2388:Heat engines 2360: 2349: 2338: 2320:Motive power 2305: 1965:Free entropy 1936: 1436: 1435: / 1425: 1424: / 1416:introduction 1409: 1408: / 1347: 1310:Heat engines 1097: / 1024: 1020: 996: 989: 983: 976: 970:denotes the 963: 956: 950: 928: 921: 904: 891: 878: 870:Planck's law 858: 850: 835: 827: 823: 814: 802: 794: 785: 768: 760:triple point 752: 746: 716: 713:Kelvin scale 707:triple point 684: 672:Kelvin scale 649: 613: 593: 565: 562: 539: 533:January 2021 530: 519:Please help 514:verification 511: 398: 339:, including 334: 320: 303: 293: 268: 267: 78:SI unit 11851:Temperature 11415:Baroclinity 11262:Dew point ( 11254:Temperature 11154:Water vapor 10923:temperature 10711:Thermometry 10696:Temperature 9073:Am. J. Phys 8618:Milne, E.A. 8470:Temperature 8268:: 795–807. 8007:390 Hz 7955:, and here 7851:temperature 7820:atomic bomb 7735:., Science 7620:Thermometer 7378:2500 K 7273:350 GK 7182:350 MK 7141:ultraviolet 7136:100 nm 7092:5778 K 7062:2500 K 7034:1811 K 7019:.03 nm 6870:450 pK 6832:100 pK 6698:singularity 6416:quantum dot 6026:microstates 4598:heat engine 4522:perfect gas 4520:limit of a 4248:of gas and 4180:), volume ( 4108:vibrational 4042:microstates 3978:equilibrium 3846:Rømer scale 3790:212 °F 3696:100 °C 3573:−17 °C 3563:Measurement 3454:Calorimetry 3369:latent heat 3361:first-order 3326:calorimetry 3239:Temperature 2279:Synergetics 1960:Free energy 1406:Temperature 1267:Quasistatic 1262:Isenthalpic 1219:Instruments 1209:Equilibrium 1161:Open system 1095:Equilibrium 1077:Statistical 1027:microscopic 805:calorimetry 721:. It is an 691:Lord Kelvin 668:thermometer 604:212 °F 580:100 °C 281:thermometer 269:Temperature 90:Other units 53:alpha helix 40:Temperature 11392:Wind chill 11306:Heat index 11164:Convection 11101:Wind shear 11086:Visibility 11066:Lapse rate 10999:comparison 10944:Fahrenheit 10495:2009-05-05 10470:2023-08-06 10328:2022-03-02 10260:2014-04-11 10007:27 January 9978:2024-05-18 9974:. May 2024 9633:2023-08-02 9551:2201.07318 9544:: 122845. 9301:2010-09-16 8790:2011-10-02 8739:2011-10-02 8656:, (1971). 8630:: 493–502. 8323:Metrologia 8262:Phys. Rev. 8225:2019-10-20 8155:2023-04-28 8003:20 km 7986:2010-10-12 7968:2016-02-08 7950:2016-02-08 7855:shot Z1137 7442:40 MK 7416:273 K 7386:300 K 7342:10 nm 7330:10 TK 7313:10 nm 7285:10 nm 7255:10 nm 7234:Core of a 7226:10 nm 7199:gamma rays 7194:10 nm 7154:16 MK 7149:Sun's core 7122:28 kK 6986:.3 nm 6812:10 km 6785:15 fK 6735:wavelength 6432:ergodicity 5535:efficiency 4802:. Because 4639:efficiency 4590:disordered 4416:where the 4112:rotational 4100:vibrations 3998:See also: 3950:QCD matter 3800:See also: 3786:32 °F 3665:combustion 3621:calibrated 3579:See also: 3448:See also: 2869:dimensions 2680:Fahrenheit 2591:Nucleation 2435:Scientists 2239:Philosophy 1952:Potentials 1315:Heat pumps 1272:Polytropic 1257:Isentropic 1247:Isothermal 861:black body 676:lower-case 600:32 °F 596:Fahrenheit 455:, strength 429:solubility 373:metallurgy 308:Fahrenheit 304:centigrade 11524:Dimension 11505:Quantity 11091:Vorticity 11071:Lightning 11056:Advection 10807:1208.0046 10374:(1967) , 10334:arxiv.org 10318:119209143 10293:1002.0037 10225:arxiv.org 10220:118339343 10195:1001.2342 9939:120576357 9783:118230148 9744:146056093 9736:0301-9322 9712:: 67–79. 9684:248350864 9576:246036409 9568:0017-9310 9508:0036-8075 9430:255075377 9422:1573-0964 9383:1572-9516 9359:(4): 69. 8076:Citations 8029:).  7919:supernova 7690:This the 7388:to avoid 7324:proton vs 7301:1 TK 7243:3 GK 7236:high-mass 7214:2 GK 7209:Z machine 6828:achieved 6816:1.7  6773:Infinity 6704:Examples 6594:τ 6584:τ 6570:⁡ 6511:− 6470:τ 6443:τ 6384:⋅ 6306:Δ 6281:− 6250:Δ 6247:⋅ 6208:Δ 6205:⋅ 6172:− 6163:Δ 6137:Δ 6064:⁡ 5931:− 5590:− 5545:− 4718:− 4560:ideal gas 4518:classical 4494:⟩ 4487:⋅ 4480:⟨ 4470:⟩ 4457:⟨ 4321:ideal gas 4318:monatomic 4302:Boltzmann 4194:Charles's 4157:) gases. 4151:monatomic 4147:ideal gas 4139:Boltzmann 3961:10 K 3929:. Then, 1 3704:0 °C 3688:0 °C 3517:Δ 3509:Δ 3104:∂ 3096:∂ 2968:∂ 2960:∂ 2787:− 2572:Waterston 2522:von Mayer 2477:de Donder 2467:Clapeyron 2447:Boltzmann 2442:Bernoulli 2403:Education 2374:Timelines 2158:− 2103:− 1891:Equations 1858:∂ 1811:∂ 1762:α 1726:∂ 1679:∂ 1633:− 1627:β 1591:∂ 1544:∂ 1252:Adiabatic 1242:Isochoric 1228:Processes 1189:Ideal gas 1072:Classical 907:ideal gas 901:Ideal gas 853:molecular 838:ideal gas 776:0 °C 654:, to the 572:0 °C 381:geography 353:astronomy 345:chemistry 249:Θ 236:Dimension 134:Intensive 57:amplitude 11845:Category 11800:Category 11759:See also 11619:kilogram 11440:Velocity 11402:Pressure 11316:Humidity 11219:Helicity 11061:Buoyancy 10984:Wedgwood 10949:Gas mark 10832:23151480 10673:(1949). 10576:Archived 10565:Archived 10547:Archived 10535:Archived 10524:Archived 10513:Archived 10489:Archived 10434:(1980). 10337:Archived 10251:Archived 10228:Archived 10127:(1967). 10115:, p. 22. 10086:(1967). 10001:Archived 9884:(1980). 9833:59471273 9628:15327316 9516:14426791 9402:Synthese 9318:Archived 9295:Archived 9275:Archived 9156:, p. 20. 9044:, p. 29. 9001:Archived 8893:Archived 8784:Archived 8733:Archived 8583:(1998). 8187:Archived 8062:Archived 8051:Archived 8036:Archived 7933:Archived 7884:Archived 7830:Archived 7793:Archived 7711:☉ 7450:See also 7131: °C 7118:channel 7078:infrared 6919:(radio, 6885: °C 6875:−273.149 6856: km 6847: °C 6837:−273.149 6803: °C 6790:−273.149 6764:0 K 6751:Celsius 6675:0 K 6420:fermions 5417:, where 5285:) (i.e. 4622:< 0. 3767:0 K 3734:0 K 3724:and the 3649:0 K 3639:and the 3559:(J/kg). 3557:kilogram 3354:manifold 3278:manifold 3211:Pressure 2671:absolute 2624:Category 2562:Thompson 2472:Clausius 2452:Bridgman 2306:Vis viva 2288:Theories 2222:Gas laws 2014:Enthalpy 1422:Pressure 1237:Isobaric 1194:Real gas 1082:Chemical 1065:Branches 1012:diatomic 980:will be 872:and the 764:0 K 727:0 K 723:absolute 632:0 K 441:hardness 357:medicine 277:measured 11807:Outline 11736:candela 11638:  11634:  11585:, etc. 11539:symbol 11520:Symbol 11511:SI unit 11311:Humidex 11224:K Index 11044:General 10974:Réaumur 10969:Rankine 10939:Delisle 10934:Celsius 10840:4367940 10812:Bibcode 10650:Bibcode 10298:Bibcode 10200:Bibcode 9919:Bibcode 9813:Bibcode 9664:Bibcode 9488:Science 9457:Bibcode 9361:Bibcode 9081:Bibcode 8438:(1851). 8426:(1848). 8411:eq.(64) 8193:(2019). 7958:"Trans" 7902:on the 7754: m 7269:system 7265:neutron 7143:light) 6953: m 6921:FM band 6916: m 6862:Coldest 6659:dry ice 6635:is the 4582:entropy 4508:is the 4426:is the 4266:is the 4264:‍ 4190:Boyle's 4155:'noble' 4135:Maxwell 3946: K 3877:or keV/ 3698:is its 3637:Liberia 3633:Myanmar 3606:mercury 3430:entropy 3293:Galileo 3273:hotness 3269:quality 3244:Entropy 3039:, with 2907:, with 2890:entropy 2863:of one 2676:Celsius 2547:Smeaton 2542:Rankine 2532:Onsager 2517:Maxwell 2512:Massieu 2217:Entropy 2212:General 2203:History 2193:Culture 2190:History 1414: ( 1411:Entropy 1348:italics 1149:Systems 798:mercury 699:entropy 664:entropy 614:At the 568:Celsius 425:density 417:gaseous 387:Effects 365:ecology 361:biology 341:physics 306:), the 300:Celsius 279:with a 11835:Energy 11821:Portal 11681:kelvin 11674:Θ 11654:ampere 11570:length 11560:second 11526:symbol 10964:Newton 10959:Leiden 10954:Kelvin 10919:Scales 10861:  10838:  10830:  10794:Nature 10784:  10769:  10717:  10702:  10603:  10510:PHENIX 10442:  10316:  10218:  10111:  10070:  9937:  9892:  9860:  9831:  9781:  9742:  9734:  9682:  9626:  9574:  9566:  9514:  9506:  9428:  9420:  9381:  9255:  9233:  9177:  9152:  9131:  9040:  8975:  8950:  8917:  8834:  8709:  8685:  8664:  8591:  8566:  8539:  8515:  8476:  8118:  8016:  7873:et al. 7868:Kelvin 7774:273.16 7694:for a 7515:ITS-90 7322:CERN's 7167:X-rays 7076:(near 6998:Water 6747:Kelvin 6628:where 6088:where 5662:  5658:  5654:  5650:  4781:where 4434:, and 4240:where 3931:  3710:kelvin 3681:kelvin 3645:Kelvin 3629:Belize 3587:, and 3553:joules 3546:, the 3297:Newton 3231:Strain 3224:Stress 3216:Volume 2722:< 0 2692:Kelvin 2537:Planck 2527:Nernst 2502:Kelvin 2462:Carnot 1752:  1617:  1485:  1427:Volume 1342:Note: 1301:Cycles 1130:Second 1120:Zeroth 961:where 836:In an 747:versus 588:kelvin 578:, and 487:Scales 421:plasma 413:liquid 318:(SI). 312:Kelvin 55:. Its 11594:metre 11534:name 11517:Name 11119:Cloud 10979:Rømer 10836:S2CID 10802:arXiv 10314:S2CID 10288:arXiv 10254:(PDF) 10247:(PDF) 10216:S2CID 10190:arXiv 9935:S2CID 9840:(PDF) 9829:S2CID 9801:(PDF) 9779:S2CID 9740:S2CID 9680:S2CID 9624:S2CID 9572:S2CID 9546:arXiv 9426:S2CID 9004:(PDF) 8997:(PDF) 8219:(PDF) 8212:(PDF) 8046:. of 8044:et al 7929:GS265 7750:2.897 7733:et al 7700:4.145 7667:2.897 7651:Notes 7505:ISO 1 7139:(far 7086:Sun's 6962:Water 6946:0.001 6912:2.897 4254:8.314 4246:moles 4058:speed 3671:Units 3655:, or 3420:. If 2873:ratio 2871:of a 2585:Other 2552:Stahl 2507:Lewis 2497:Joule 2487:Gibbs 2482:Duhem 1175:State 1135:Third 1125:First 638:, or 576:water 462:occur 409:solid 405:phase 289:atoms 271:is a 11710:mol 11706:mole 11604:mass 11537:Unit 11532:Unit 11096:Wind 10997:and 10859:ISBN 10828:PMID 10782:ISBN 10767:ISBN 10715:ISBN 10700:ISBN 10601:ISBN 10573:CERN 10440:ISBN 10358:USGS 10109:ISBN 10068:ISBN 10009:2018 9972:NIST 9890:ISBN 9858:ISBN 9732:ISSN 9564:ISSN 9512:PMID 9504:ISSN 9418:ISSN 9379:ISSN 9253:ISBN 9231:ISBN 9205:Heat 9175:ISBN 9171:1977 9150:ISBN 9129:ISBN 9038:ISBN 9021:Heat 8973:ISBN 8948:ISBN 8915:ISBN 8862:Heat 8832:ISBN 8707:ISBN 8683:ISBN 8662:ISBN 8589:ISBN 8564:ISBN 8537:ISBN 8513:ISBN 8474:ISBN 8290:here 8270:here 8116:ISBN 7671:(51) 7669:7685 7427:The 7376:The 7359:For 7267:star 7028:Iron 6461:and 6342:> 6032:): 5986:(10) 5641:For 5368:) · 4994:and 4980:and 4966:and 4823:and 4809:and 4192:and 4168:The 4153:(or 4137:and 4110:and 4054:mass 4013:and 3773:and 3756:and 3736:and 3555:per 3452:and 3295:and 2738:and 2678:and 2557:Tait 1387:Heat 1382:Work 1112:Laws 934:ions 594:The 566:The 478:the 379:and 11740:cd 11623:kg 11129:Fog 10921:of 10820:doi 10798:491 10658:doi 10571:by 10530:at 10465:SVS 10306:doi 10208:doi 9927:doi 9821:doi 9771:doi 9722:hdl 9714:doi 9710:116 9672:doi 9614:hdl 9606:doi 9556:doi 9542:191 9496:doi 9492:131 9465:doi 9410:doi 9406:192 9369:doi 9089:doi 8944:102 8014:350 7737:301 7725:MIT 7222:1.4 7190:8.3 7129:000 7017:766 6984:608 6948:063 6880:999 6877:999 6854:000 6845:900 6842:999 6839:999 6808:2.5 6801:985 6798:999 6795:999 6792:999 6738:of 5911:rev 5906:= d 5902:, d 5883:(9) 5850:rev 5812:(8) 5784:rev 5648:= 0 5634:(7) 5514:(6) 4949:(5) 4774:(4) 4447:rms 4365:rms 4323:is 4259:618 4256:462 4040:of 3944:605 3940:is 3933:eV/ 3870:eV/ 3728:of 3717:). 3384:. 3340:is 3332:of 3146:(3) 3010:(2) 2831:(1) 2400:Art 1346:in 778:). 662:of 523:by 423:), 419:or 206:rev 139:Yes 111:°Ré 107:°Rø 11847:: 11730:J 11700:N 11685:K 11658:A 11640:, 11613:M 11598:m 11588:L 11581:, 11577:, 11564:s 11554:T 10834:. 10826:. 10818:. 10810:. 10796:. 10755:XX 10753:. 10656:. 10646:66 10644:. 10640:. 10623:33 10621:, 10487:. 10463:. 10430:; 10356:. 10312:. 10304:. 10296:. 10284:96 10282:. 10278:. 10249:. 10214:. 10206:. 10198:. 10184:. 10153:^ 10131:, 10090:, 9999:. 9995:. 9970:. 9966:. 9933:. 9925:. 9915:17 9913:. 9880:; 9869:^ 9827:. 9819:. 9809:74 9807:. 9803:. 9777:. 9767:67 9765:. 9761:. 9738:. 9730:. 9720:. 9708:. 9704:. 9692:^ 9678:. 9670:. 9660:94 9658:. 9654:. 9642:^ 9622:. 9612:. 9602:93 9600:. 9596:. 9584:^ 9570:. 9562:. 9554:. 9540:. 9536:. 9524:^ 9510:. 9502:. 9490:. 9486:. 9463:. 9453:59 9451:. 9447:. 9424:. 9416:. 9404:. 9400:. 9377:. 9367:. 9357:53 9355:. 9351:. 9329:^ 9161:^ 9116:^ 9087:. 9077:30 9075:. 9071:. 8946:. 8819:^ 8799:^ 8782:. 8731:. 8628:88 8626:, 8548:^ 8524:^ 8498:^ 8397:^ 8327:50 8325:, 8314:^ 8286:11 8284:, 8266:25 8264:, 8233:^ 8198:^ 8176:^ 8164:^ 8148:. 7927:. 7877:96 7866:10 7752:77 7704:10 7201:) 7169:) 7127:28 7109:) 7080:) 7051:) 6993:) 6991:IR 6982:10 6951:01 6923:) 6914:77 6883:55 6852:29 6821:) 6818:AU 6681:. 6567:ln 6061:ln 5415:)) 5404:)/ 5392:= 5379:)/ 5357:)/ 5345:= 5336:, 5318:, 5306:= 5297:, 5274:)/ 5256:, 5104:13 5017:13 4837:|/ 4795:|/ 4786:cy 4653:cy 4270:. 3963:. 3942:11 3777:= 3769:= 3667:. 3651:= 3635:, 3631:, 3583:, 3396:. 3056:, 3052:, 3044:= 3034:, 2924:, 2920:, 2912:= 2902:, 994:. 992:/2 959:/2 926:. 876:. 642:. 451:, 447:, 443:, 439:, 435:, 431:, 427:, 415:, 411:, 375:, 371:, 367:, 363:, 359:, 355:, 351:, 347:, 343:, 187:, 127:°W 125:, 123:°L 121:, 119:°D 117:, 115:°N 113:, 109:, 105:, 103:°R 101:, 99:°F 97:, 95:°C 11823:: 11725:v 11722:I 11696:n 11669:T 11642:i 11636:I 11609:m 11583:r 11579:x 11575:l 11550:t 11482:e 11475:t 11468:v 11347:) 11345:e 11342:θ 11335:) 11333:θ 11291:) 11289:e 11286:T 11269:) 11267:d 11264:T 11204:) 11202:c 11199:T 11031:e 11024:t 11017:v 10911:e 10904:t 10897:v 10865:. 10842:. 10822:: 10814:: 10804:: 10788:. 10773:. 10740:1 10721:. 10706:. 10666:. 10660:: 10652:: 10607:. 10582:. 10498:. 10473:. 10448:. 10404:" 10360:. 10331:. 10308:: 10300:: 10290:: 10263:. 10222:. 10210:: 10202:: 10192:: 10186:1 10170:. 10011:. 9981:. 9941:. 9929:: 9921:: 9898:. 9823:: 9815:: 9785:. 9773:: 9746:. 9724:: 9716:: 9686:. 9674:: 9666:: 9636:. 9616:: 9608:: 9578:. 9558:: 9548:: 9518:. 9498:: 9471:. 9467:: 9459:: 9432:. 9412:: 9385:. 9371:: 9363:: 9304:. 9261:. 9135:. 9097:. 9091:: 9083:: 8981:. 8956:. 8923:. 8838:. 8793:. 8742:. 8414:. 8158:. 8124:. 8068:. 8027:0 8024:m 8020:m 7991:. 7989:. 7971:. 7953:. 7864:× 7862:2 7776:± 7708:M 7702:× 7681:. 7679:b 7673:× 7513:( 7340:× 7338:3 7311:× 7309:3 7283:× 7281:8 7253:× 7251:1 7224:× 7197:( 7192:× 7165:( 7105:( 7066:≈ 7047:( 7015:7 6814:( 6810:× 6641:N 6633:F 6630:E 6613:, 6606:) 6598:1 6588:2 6578:2 6574:( 6562:B 6558:k 6551:) 6544:N 6541:2 6537:3 6532:+ 6529:1 6525:( 6519:F 6515:E 6508:E 6502:= 6499:T 6474:2 6447:1 6424:N 6422:( 6392:2 6388:N 6379:1 6375:N 6350:2 6346:T 6337:1 6333:T 6309:E 6302:) 6294:1 6290:T 6286:1 6274:2 6270:T 6266:1 6260:( 6256:= 6253:E 6242:2 6238:) 6234:E 6231:d 6227:/ 6223:S 6220:d 6217:( 6214:+ 6211:E 6200:1 6196:) 6192:E 6189:d 6185:/ 6181:S 6178:d 6175:( 6169:= 6166:S 6140:E 6123:E 6119:W 6102:B 6097:k 6073:) 6070:W 6067:( 6055:B 6050:k 6046:= 6043:S 6012:S 5969:, 5966:) 5963:E 5960:( 5957:S 5951:E 5948:d 5944:d 5939:= 5934:1 5927:T 5908:q 5904:E 5900:E 5896:E 5894:( 5892:S 5866:. 5860:S 5857:d 5846:q 5842:d 5836:= 5833:T 5795:, 5790:T 5780:q 5776:d 5770:= 5767:S 5764:d 5749:S 5732:, 5729:0 5726:= 5719:C 5715:T 5709:C 5705:q 5699:+ 5692:H 5688:T 5682:H 5678:q 5646:C 5643:T 5617:. 5610:H 5606:T 5600:C 5596:T 5587:1 5584:= 5577:H 5573:q 5567:| 5561:C 5557:q 5552:| 5542:1 5539:= 5497:. 5490:H 5486:T 5480:C 5476:T 5470:= 5463:H 5459:q 5453:| 5447:C 5443:q 5438:| 5419:g 5413:3 5410:T 5408:( 5406:g 5402:1 5399:T 5397:( 5395:g 5390:) 5388:3 5385:T 5383:( 5381:g 5377:2 5374:T 5372:( 5370:g 5366:2 5363:T 5361:( 5359:g 5355:1 5352:T 5350:( 5348:g 5343:) 5341:3 5338:T 5334:2 5331:T 5329:( 5327:f 5325:) 5323:2 5320:T 5316:1 5313:T 5311:( 5309:f 5304:) 5302:3 5299:T 5295:1 5292:T 5290:( 5288:f 5283:3 5280:T 5278:( 5276:g 5272:1 5269:T 5267:( 5265:g 5261:3 5258:T 5254:1 5251:T 5249:( 5247:f 5243:2 5240:T 5223:. 5219:) 5213:3 5209:T 5205:, 5200:2 5196:T 5191:( 5187:f 5183:) 5177:2 5173:T 5169:, 5164:1 5160:T 5155:( 5151:f 5148:= 5144:) 5138:3 5134:T 5130:, 5125:1 5121:T 5116:( 5112:f 5109:= 5100:q 5073:, 5065:3 5061:q 5055:2 5051:q 5043:2 5039:q 5033:1 5029:q 5022:= 5013:q 4999:3 4996:T 4992:2 4989:T 4985:2 4982:T 4978:1 4975:T 4971:3 4968:T 4964:1 4961:T 4932:. 4928:) 4922:C 4918:T 4914:, 4909:H 4905:T 4900:( 4896:f 4893:= 4886:H 4882:q 4876:| 4870:C 4866:q 4861:| 4842:H 4839:q 4835:C 4832:q 4828:H 4825:T 4821:C 4818:T 4814:H 4811:q 4807:C 4804:q 4800:H 4797:q 4793:C 4790:q 4783:w 4757:, 4750:H 4746:q 4740:| 4734:C 4730:q 4725:| 4715:1 4712:= 4705:H 4701:q 4694:C 4690:q 4686:+ 4681:H 4677:q 4670:= 4663:H 4659:q 4649:w 4643:= 4620:C 4617:q 4613:H 4610:q 4588:( 4490:v 4484:v 4475:= 4465:2 4461:v 4452:= 4443:v 4424:B 4421:k 4401:, 4398:T 4393:B 4389:k 4383:2 4380:3 4375:= 4370:2 4361:v 4357:m 4352:2 4349:1 4344:= 4339:k 4335:E 4250:R 4242:n 4225:, 4222:T 4219:R 4216:n 4213:= 4210:V 4207:p 4186:T 4182:V 4178:p 4130:. 4073:T 4070:B 4067:k 3957:B 3954:k 3938:B 3935:k 3917:T 3912:B 3908:k 3904:= 3901:E 3882:B 3879:k 3875:B 3872:k 3765:( 3708:1 3575:. 3526:. 3520:T 3512:Q 3503:= 3498:V 3494:C 3474:T 3472:Δ 3467:Q 3465:Δ 3233:) 3229:( 3226:) 3222:( 3179:S 3173:U 3129:. 3124:N 3121:, 3118:V 3113:) 3107:U 3099:S 3090:( 3085:= 3080:T 3077:1 3060:) 3058:N 3054:V 3050:U 3048:( 3046:S 3042:S 3036:N 3032:V 3026:U 3020:S 2993:. 2988:N 2985:, 2982:V 2977:) 2971:S 2963:U 2954:( 2949:= 2946:T 2926:N 2922:V 2918:S 2916:( 2914:U 2910:U 2904:N 2900:V 2894:S 2885:U 2814:. 2807:2 2803:Q 2797:1 2793:Q 2784:= 2777:2 2773:T 2767:1 2763:T 2744:2 2741:T 2735:1 2732:T 2720:2 2717:Q 2711:1 2708:Q 2651:e 2644:t 2637:v 2164:S 2161:T 2155:H 2152:= 2149:) 2146:p 2143:, 2140:T 2137:( 2134:G 2109:S 2106:T 2100:U 2097:= 2094:) 2091:V 2088:, 2085:T 2082:( 2079:A 2054:V 2051:p 2048:+ 2045:U 2042:= 2039:) 2036:p 2033:, 2030:S 2027:( 2024:H 1999:) 1996:V 1993:, 1990:S 1987:( 1984:U 1861:T 1837:V 1814:V 1790:1 1765:= 1729:p 1705:V 1682:V 1658:1 1630:= 1594:T 1570:N 1547:S 1523:T 1498:= 1495:c 1418:) 999:2 990:T 987:B 984:k 982:3 977:T 967:B 964:k 957:T 954:B 951:k 774:( 546:) 540:( 535:) 531:( 517:. 407:( 216:S 213:d 202:q 198:d 172:R 169:n 164:V 161:p 136:? 83:K 71:T 34:. 20:)

Index

Kinetic temperature
Temperature (disambiguation)

alpha helix
amplitude
SI unit
K
°C
°F
°R
°Rø
°Ré
°N
°D
°L
°W
Intensive
Dimension
physical quantity
measured
thermometer
kinetic energy
atoms
temperature scales
Celsius
Fahrenheit
Kelvin
International System of Units
Absolute zero
thermodynamic temperature

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.