Knowledge

Kadomtsev–Petviashvili equation

Source 📝

686: 17: 693:
The KP equation was first written in 1970 by Soviet physicists Boris B. Kadomtsev (1928–1998) and Vladimir I. Petviashvili (1936–1993); it came as a natural generalization of the KdV equation (derived by Korteweg and De Vries in 1895). Whereas in the KdV equation waves are strictly one-dimensional,
502:. As a result, the solutions of their corresponding Cauchy problems share an intriguing and complex mathematical relationship. Aguilar et al. proved that the solution of the Cauchy problem for the BBM-KP model equation converges to the solution of the Cauchy problem associated to the 425: 200: 78: 1041: 303: 675: 646: 577: 977: 940: 914: 888: 847: 457: 229: 1073: 782: 753: 496: 603: 531: 467:, as the linearized dispersion relation of the BBM-KP is a good approximation to that of the KP but does not exhibit the unwanted limiting behavior as the 278: 989: 420:{\displaystyle \displaystyle \partial _{x}(\partial _{t}u+u\partial _{x}u+\epsilon ^{2}\partial _{xxt}u)+\lambda \partial _{yy}u=0} 195:{\displaystyle \displaystyle \partial _{x}(\partial _{t}u+u\partial _{x}u+\epsilon ^{2}\partial _{xxx}u)+\lambda \partial _{yy}u=0} 1868: 694:
in the KP equation this restriction is relaxed. Still, both in the KdV and the KP equation, waves have to travel in the positive
1118:
Wazwaz, A. M. (2007). "Multiple-soliton solutions for the KP equation by Hirota's bilinear method and by the tanh–coth method".
1836: 1619: 1268:
Deng, S. F.; Chen, D. Y.; Zhang, D. J. (2003). "The multisoliton solutions of the KP equation with self-consistent sources".
503: 499: 460: 1098: 1888: 24:, consisting of near-cnoidal wave trains. Photo taken from Phares des Baleines (Whale Lighthouse) at the western point of 792:-terms enter the equation, the waves described by the KP equation behave differently in the direction of propagation ( 1449: 263: 1873: 1747:
Xiao, T.; Zeng, Y. (2004). "Generalized Darboux transformations for the KP equation with self-consistent sources".
286: 72: 1145:
Cheng, Y.; Li, Y. S. (1991). "The constraint of the Kadomtsev-Petviashvili equation and its special solutions".
1575:
Kadomtsev, B. B.; Petviashvili, V. I. (1970). "On the stability of solitary waves in weakly dispersive media".
1076: 464: 293:), was introduced as an alternative model for small amplitude long waves in shallow water moving mainly in the 244: 651: 1740: 608: 539: 57: 956: 919: 893: 1088: 812: 259: 1878: 1735: 685: 1629:
Lou, S. Y.; Hu, X. B. (1997). "Infinitely many Lax pairs and symmetry constraints of the KP equation".
1597: 1821: 1805: 1680: 856: 826: 433: 205: 1840: 715: 1049: 459:. The BBM-KP equation provides an alternative to the usual KP equation, in a similar way that the 1730: 943: 758: 729: 478: 258:
Like the KdV equation, the KP equation is completely integrable. It can also be solved using the
1675: 1612:
KP Solitons and the Grassmannians: combinatorics and geometry of two-dimensional wave patterns
1465:
Strachan, I. A. (1995). "The Moyal bracket and the dispersionless limit of the KP hierarchy".
582: 247:. To be physically meaningful, the wave propagation direction has to be not-too-far from the 1766: 1706: 1667: 1638: 1584: 1537: 1484: 1414: 1334: 1277: 1234: 1189: 1154: 980: 509: 8: 1770: 1710: 1671: 1658:
Minzoni, A. A.; Smyth, N. F. (1996). "Evolution of lump solutions for the KP equation".
1642: 1588: 1541: 1488: 1440:
Zakharov, V. E. (1994). "Dispersionless limit of integrable systems in 2+1 dimensions".
1418: 1338: 1281: 1238: 1193: 1158: 1782: 1756: 1553: 1527: 1500: 1474: 1405:
Leblond, H. (2002). "KP lumps in ferromagnets: a three-dimensional KdV–Burgers model".
1375: 1323:"The Cauchy problem and stability of solitary-wave solutions for RLW-KP-type equations" 1250: 1224: 723: 1778: 1689: 1426: 1246: 1883: 1802: 1615: 1496: 1445: 1166: 1075:— in the dispersionless limit. Then the amplitude satisfies a mean-field equation of 232: 1786: 1557: 1518:
Takasaki, K.; Takebe, T. (1995). "Integrable hierarchies and dispersionless limit".
1504: 1844: 1774: 1714: 1685: 1646: 1545: 1492: 1422: 1385: 1342: 1285: 1254: 1242: 1201: 1197: 1162: 1127: 1093: 468: 269:
In 2002, the regularized version of the KP equation, naturally referred to as the
719: 282: 270: 68: 1215:
Kodama, Y. (2004). "Young diagrams and N-soliton solutions of the KP equation".
808: 29: 25: 1549: 1131: 1046:
Suppose the amplitude of oscillations of a solution is asymptotically small —
1862: 1726: 1390: 1363: 1318: 534: 498:. The BBM-KP equation can be viewed as a weak transverse perturbation of the 274: 21: 36:
in shallow water may be modeled through the Kadomtsev–Petviashvili equation.
1826: 1347: 1322: 1180:
Ma, W. X. (2015). "Lump solutions to the Kadomtsev–Petviashvili equation".
1697:
Nakamura, A. (1989). "A bilinear N-soliton formula for the KP equation".
1289: 64: 41: 1800: 1718: 231:. The above form shows that the KP equation is a generalization to two 1532: 1479: 711: 707: 1810: 1761: 1650: 1229: 61: 1380: 1595:"Об устойчивости уединенных волн в слабо диспергирующих средах". 45: 33: 16: 1819: 1364:"Convergence of solutions of the BBM and BBM-KP model equations" 1036:{\displaystyle \displaystyle \partial _{t}u+u\partial _{x}u=0.} 251:
direction, i.e. with only slow variations of solutions in the
605:, provided their corresponding initial data are close in 949:
If we also assume that the solutions are independent of
811:
media, as well as two-dimensional matter–wave pulses in
804:-direction tend to be smoother (be of small-deviation). 1574: 1052: 993: 992: 959: 922: 896: 859: 829: 761: 732: 654: 611: 585: 542: 512: 481: 436: 307: 306: 208: 82: 81: 1843:, Department of Applied Mathematics. Archived from 807:The KP equation can also be used to model waves in 1067: 1035: 971: 934: 908: 882: 841: 776: 747: 669: 640: 597: 571: 525: 490: 451: 419: 223: 194: 1860: 1749:Journal of Physics A: Mathematical and General 1517: 1467:Journal of Physics A: Mathematical and General 1407:Journal of Physics A: Mathematical and General 1217:Journal of Physics A: Mathematical and General 1834: 1305:Solitons and the inverse scattering transform 1302: 1267: 853:-dependent oscillations have a wavelength of 1820:Gioni Biondini and Dmitri Pelinovsky (ed.). 1657: 755:is used; if surface tension is strong, then 714:with weakly non-linear restoring forces and 1361: 1317: 1760: 1679: 1531: 1478: 1389: 1379: 1346: 1228: 701: 631: 562: 1746: 1725: 1699:Journal of the Physical Society of Japan 1696: 1464: 1439: 1270:Journal of the Physical Society of Japan 684: 670:{\displaystyle y\rightarrow \pm \infty } 75:, the KP equation is usually written as 15: 1404: 1144: 784:. Because of the asymmetry in the way 641:{\displaystyle H_{x}^{k}(\mathbb {R} )} 572:{\displaystyle H_{x}^{k}(\mathbb {R} )} 1861: 1609: 1444:. Boston: Springer. pp. 165–174. 1214: 1117: 979:, then they also satisfy the inviscid 972:{\displaystyle \epsilon \rightarrow 0} 935:{\displaystyle \epsilon \rightarrow 0} 909:{\displaystyle \epsilon \rightarrow 0} 1801: 1628: 890:giving a singular limiting regime as 706:The KP equation can be used to model 818: 1442:Singular limits of dispersive waves 1368:Differential and Integral Equations 1303:Ablowitz, M. J.; Segur, H. (1981). 1120:Applied Mathematics and Computation 13: 1568: 1362:Aguilar, J. B.; Tom, M.M. (2024). 1179: 1014: 995: 664: 485: 395: 367: 341: 322: 309: 170: 142: 116: 97: 84: 14: 1900: 1822:"Kadomtsev–Petviashvili equation" 1806:"Kadomtsev–Petviashvili equation" 1794: 1327:Journal of Differential Equations 800:) direction; oscillations in the 245:Korteweg–de Vries (KdV) equation 73:Vladimir Iosifovich Petviashvili 1631:Journal of Mathematical Physics 1520:Reviews in Mathematical Physics 1511: 1458: 1433: 50:Kadomtsev–Petviashvili equation 32:. The interaction of such near- 1869:Partial differential equations 1398: 1355: 1321:; Liu, Y.; Tom, M. M. (2002). 1311: 1296: 1261: 1208: 1202:10.1016/j.physleta.2015.06.061 1173: 1138: 1111: 1062: 1056: 963: 926: 900: 883:{\displaystyle O(1/\epsilon )} 877: 863: 842:{\displaystyle \epsilon \ll 1} 658: 635: 627: 566: 558: 452:{\displaystyle \lambda =\pm 1} 385: 318: 264:nonlinear Schrödinger equation 224:{\displaystyle \lambda =\pm 1} 160: 93: 28:(Isle of Rhé), France, in the 1: 1690:10.1016/S0165-2125(96)00023-6 1104: 504:Benjamin–Bona–Mahony equation 500:Benjamin–Bona–Mahony equation 461:Benjamin–Bona–Mahony equation 58:partial differential equation 1167:10.1016/0375-9601(91)90403-U 1068:{\displaystyle O(\epsilon )} 796:-direction) and transverse ( 463:is related to the classical 260:inverse scattering transform 7: 1889:Equations of fluid dynamics 1779:10.1088/0305-4470/37/28/006 1736:Encyclopedia of Mathematics 1427:10.1088/0305-4470/35/47/313 1247:10.1088/0305-4470/37/46/006 1082: 777:{\displaystyle \lambda =-1} 748:{\displaystyle \lambda =+1} 648:as the transverse variable 491:{\displaystyle \pm \infty } 10: 1905: 1598:Doklady Akademii Nauk SSSR 1497:10.1088/0305-4470/28/7/018 1099:Dispersionless KP equation 680: 465:Korteweg–de Vries equation 69:Boris Borisovich Kadomtsev 1550:10.1142/S0129055X9500030X 1132:10.1016/j.amc.2007.01.056 813:Bose–Einstein condensates 243:, of the one-dimensional 1841:University of Washington 1391:10.57262/die037-0304-187 1089:Novikov–Veselov equation 297:direction in 2+1 space. 289:equation (or simply the 1874:Exactly solvable models 598:{\displaystyle k\geq 1} 1348:10.1006/jdeq.2002.4171 1069: 1037: 973: 936: 910: 884: 843: 778: 749: 702:Connections to physics 690: 671: 642: 599: 573: 527: 492: 453: 421: 225: 196: 52:(often abbreviated as 37: 1070: 1038: 974: 937: 911: 885: 844: 779: 750: 688: 672: 643: 600: 574: 528: 526:{\displaystyle L^{2}} 493: 454: 422: 226: 197: 19: 1290:10.1143/JPSJ.72.2184 1050: 990: 957: 920: 894: 857: 827: 759: 730: 724:gravitational forces 722:is weak compared to 716:frequency dispersion 652: 609: 583: 540: 510: 479: 434: 304: 206: 79: 1835:Bernard Deconinck. 1771:2004JPhA...37.7143X 1719:10.1143/JPSJ.58.412 1711:1989JPSJ...58..412N 1672:1996WaMot..24..291M 1643:1997JMP....38.6401L 1610:Kodama, Y. (2017). 1589:1970SPhD...15..539K 1542:1995RvMaP...7..743T 1489:1995JPhA...28.1967S 1419:2002JPhA...3510149L 1413:(47): 10149–10161. 1339:2002JDE...185..437B 1282:2003JPSJ...72.2184D 1239:2004JPhA...3711169K 1223:(46): 11169–11190. 1194:2015PhLA..379.1975M 1159:1991PhLA..157...22C 626: 557: 1879:Integrable systems 1803:Weisstein, Eric W. 1065: 1033: 1032: 969: 932: 906: 880: 839: 774: 745: 691: 667: 638: 612: 595: 569: 543: 523: 488: 449: 417: 416: 233:spatial dimensions 221: 192: 191: 38: 1637:(12): 6401–6427. 1621:978-981-10-4093-1 1593:. Translation of 1188:(36): 1975–1978. 1182:Physics Letters A 1147:Physics Letters A 981:Burgers' equation 819:Limiting behavior 471:variable dual to 1896: 1855: 1853: 1852: 1831: 1816: 1815: 1790: 1764: 1743: 1722: 1693: 1683: 1654: 1651:10.1063/1.532219 1625: 1606: 1592: 1562: 1561: 1535: 1515: 1509: 1508: 1482: 1462: 1456: 1455: 1437: 1431: 1430: 1402: 1396: 1395: 1393: 1383: 1374:(3/4): 187–206. 1359: 1353: 1352: 1350: 1315: 1309: 1308: 1300: 1294: 1293: 1276:(9): 2184–2192. 1265: 1259: 1258: 1232: 1212: 1206: 1205: 1177: 1171: 1170: 1142: 1136: 1135: 1115: 1094:Schottky problem 1077:Davey–Stewartson 1074: 1072: 1071: 1066: 1042: 1040: 1039: 1034: 1022: 1021: 1003: 1002: 978: 976: 975: 970: 941: 939: 938: 933: 915: 913: 912: 907: 889: 887: 886: 881: 873: 848: 846: 845: 840: 783: 781: 780: 775: 754: 752: 751: 746: 689:Boris Kadomtsev. 676: 674: 673: 668: 647: 645: 644: 639: 634: 625: 620: 604: 602: 601: 596: 578: 576: 575: 570: 565: 556: 551: 532: 530: 529: 524: 522: 521: 497: 495: 494: 489: 458: 456: 455: 450: 426: 424: 423: 418: 406: 405: 381: 380: 365: 364: 349: 348: 330: 329: 317: 316: 230: 228: 227: 222: 201: 199: 198: 193: 181: 180: 156: 155: 140: 139: 124: 123: 105: 104: 92: 91: 1904: 1903: 1899: 1898: 1897: 1895: 1894: 1893: 1859: 1858: 1850: 1848: 1797: 1681:10.1.1.585.6470 1622: 1594: 1577:Sov. Phys. Dokl 1571: 1569:Further reading 1566: 1565: 1516: 1512: 1463: 1459: 1452: 1438: 1434: 1403: 1399: 1360: 1356: 1316: 1312: 1301: 1297: 1266: 1262: 1213: 1209: 1178: 1174: 1143: 1139: 1116: 1112: 1107: 1085: 1051: 1048: 1047: 1017: 1013: 998: 994: 991: 988: 987: 958: 955: 954: 921: 918: 917: 895: 892: 891: 869: 858: 855: 854: 828: 825: 824: 821: 760: 757: 756: 731: 728: 727: 720:surface tension 704: 683: 653: 650: 649: 630: 621: 616: 610: 607: 606: 584: 581: 580: 561: 552: 547: 541: 538: 537: 517: 513: 511: 508: 507: 480: 477: 476: 435: 432: 431: 398: 394: 370: 366: 360: 356: 344: 340: 325: 321: 312: 308: 305: 302: 301: 291:BBM-KP equation 207: 204: 203: 173: 169: 145: 141: 135: 131: 119: 115: 100: 96: 87: 83: 80: 77: 76: 12: 11: 5: 1902: 1892: 1891: 1886: 1881: 1876: 1871: 1857: 1856: 1832: 1817: 1796: 1795:External links 1793: 1792: 1791: 1744: 1727:Previato, Emma 1723: 1705:(2): 412–422. 1694: 1666:(3): 291–305. 1655: 1626: 1620: 1607: 1570: 1567: 1564: 1563: 1533:hep-th/9405096 1526:(5): 743–808. 1510: 1480:hep-th/9410048 1457: 1450: 1432: 1397: 1354: 1333:(2): 437–482. 1310: 1295: 1260: 1207: 1172: 1137: 1126:(1): 633–640. 1109: 1108: 1106: 1103: 1102: 1101: 1096: 1091: 1084: 1081: 1064: 1061: 1058: 1055: 1044: 1043: 1031: 1028: 1025: 1020: 1016: 1012: 1009: 1006: 1001: 997: 968: 965: 962: 944:dispersionless 942:is called the 931: 928: 925: 905: 902: 899: 879: 876: 872: 868: 865: 862: 838: 835: 832: 820: 817: 773: 770: 767: 764: 744: 741: 738: 735: 703: 700: 682: 679: 666: 663: 660: 657: 637: 633: 629: 624: 619: 615: 594: 591: 588: 568: 564: 560: 555: 550: 546: 520: 516: 487: 484: 448: 445: 442: 439: 428: 427: 415: 412: 409: 404: 401: 397: 393: 390: 387: 384: 379: 376: 373: 369: 363: 359: 355: 352: 347: 343: 339: 336: 333: 328: 324: 320: 315: 311: 262:much like the 220: 217: 214: 211: 190: 187: 184: 179: 176: 172: 168: 165: 162: 159: 154: 151: 148: 144: 138: 134: 130: 127: 122: 118: 114: 111: 108: 103: 99: 95: 90: 86: 67:. Named after 30:Atlantic Ocean 9: 6: 4: 3: 2: 1901: 1890: 1887: 1885: 1882: 1880: 1877: 1875: 1872: 1870: 1867: 1866: 1864: 1847:on 2006-02-06 1846: 1842: 1838: 1837:"The KP page" 1833: 1829: 1828: 1823: 1818: 1813: 1812: 1807: 1804: 1799: 1798: 1788: 1784: 1780: 1776: 1772: 1768: 1763: 1758: 1754: 1750: 1745: 1742: 1738: 1737: 1732: 1731:"KP-equation" 1728: 1724: 1720: 1716: 1712: 1708: 1704: 1700: 1695: 1691: 1687: 1682: 1677: 1673: 1669: 1665: 1661: 1656: 1652: 1648: 1644: 1640: 1636: 1632: 1627: 1623: 1617: 1613: 1608: 1604: 1600: 1599: 1590: 1586: 1582: 1578: 1573: 1572: 1559: 1555: 1551: 1547: 1543: 1539: 1534: 1529: 1525: 1521: 1514: 1506: 1502: 1498: 1494: 1490: 1486: 1481: 1476: 1472: 1468: 1461: 1453: 1451:0-306-44628-6 1447: 1443: 1436: 1428: 1424: 1420: 1416: 1412: 1408: 1401: 1392: 1387: 1382: 1377: 1373: 1369: 1365: 1358: 1349: 1344: 1340: 1336: 1332: 1328: 1324: 1320: 1314: 1306: 1299: 1291: 1287: 1283: 1279: 1275: 1271: 1264: 1256: 1252: 1248: 1244: 1240: 1236: 1231: 1226: 1222: 1218: 1211: 1203: 1199: 1195: 1191: 1187: 1183: 1176: 1168: 1164: 1160: 1156: 1152: 1148: 1141: 1133: 1129: 1125: 1121: 1114: 1110: 1100: 1097: 1095: 1092: 1090: 1087: 1086: 1080: 1078: 1059: 1053: 1029: 1026: 1023: 1018: 1010: 1007: 1004: 999: 986: 985: 984: 982: 966: 960: 952: 947: 945: 929: 923: 916:. The limit 903: 897: 874: 870: 866: 860: 852: 836: 833: 830: 816: 814: 810: 809:ferromagnetic 805: 803: 799: 795: 791: 787: 771: 768: 765: 762: 742: 739: 736: 733: 725: 721: 717: 713: 709: 699: 697: 687: 678: 661: 655: 622: 617: 613: 592: 589: 586: 553: 548: 544: 536: 535:Sobolev space 518: 514: 505: 501: 482: 474: 470: 466: 462: 446: 443: 440: 437: 413: 410: 407: 402: 399: 391: 388: 382: 377: 374: 371: 361: 357: 353: 350: 345: 337: 334: 331: 326: 313: 300: 299: 298: 296: 292: 288: 284: 280: 276: 272: 267: 265: 261: 256: 254: 250: 246: 242: 238: 234: 218: 215: 212: 209: 188: 185: 182: 177: 174: 166: 163: 157: 152: 149: 146: 136: 132: 128: 125: 120: 112: 109: 106: 101: 88: 74: 70: 66: 63: 59: 55: 51: 47: 43: 35: 31: 27: 23: 18: 1849:. Retrieved 1845:the original 1827:Scholarpedia 1825: 1809: 1762:nlin/0412070 1755:(28): 7143. 1752: 1748: 1734: 1702: 1698: 1663: 1659: 1634: 1630: 1614:. Springer. 1611: 1602: 1596: 1580: 1576: 1523: 1519: 1513: 1470: 1466: 1460: 1441: 1435: 1410: 1406: 1400: 1371: 1367: 1357: 1330: 1326: 1313: 1304: 1298: 1273: 1269: 1263: 1230:nlin/0406033 1220: 1216: 1210: 1185: 1181: 1175: 1153:(1): 22–26. 1150: 1146: 1140: 1123: 1119: 1113: 1045: 950: 948: 850: 822: 806: 801: 797: 793: 789: 785: 705: 698:-direction. 695: 692: 472: 429: 294: 290: 287:Petviashvili 268: 257: 252: 248: 240: 236: 60:to describe 53: 49: 39: 1660:Wave Motion 1583:: 539–541. 1473:(7): 1967. 1319:Bona, J. L. 708:water waves 475:approaches 255:direction. 65:wave motion 54:KP equation 42:mathematics 1863:Categories 1851:2006-02-27 1605:: 753–756. 1381:2204.06016 1105:References 849:, typical 712:wavelength 1811:MathWorld 1741:EMS Press 1729:(2001) , 1676:CiteSeerX 1060:ϵ 1015:∂ 996:∂ 964:→ 961:ϵ 927:→ 924:ϵ 901:→ 898:ϵ 875:ϵ 834:≪ 831:ϵ 769:− 763:λ 734:λ 665:∞ 662:± 659:→ 590:≥ 486:∞ 483:± 444:± 438:λ 396:∂ 392:λ 368:∂ 358:ϵ 342:∂ 323:∂ 310:∂ 283:Kadomtsev 216:± 210:λ 171:∂ 167:λ 143:∂ 133:ϵ 117:∂ 98:∂ 85:∂ 62:nonlinear 26:Île de Ré 20:Crossing 1884:Solitons 1787:18500877 1558:17351327 1505:15334780 1083:See also 710:of long 579:for all 271:Benjamin 34:solitons 1767:Bibcode 1707:Bibcode 1668:Bibcode 1639:Bibcode 1585:Bibcode 1538:Bibcode 1485:Bibcode 1415:Bibcode 1335:Bibcode 1307:. SIAM. 1278:Bibcode 1255:2071043 1235:Bibcode 1190:Bibcode 1155:Bibcode 946:limit. 681:History 533:-based 506:in the 469:Fourier 56:) is a 46:physics 1785:  1678:  1618:  1556:  1503:  1448:  1253:  1079:type. 788:- and 718:. If 430:where 279:Mahony 202:where 48:, the 22:swells 1783:S2CID 1757:arXiv 1554:S2CID 1528:arXiv 1501:S2CID 1475:arXiv 1376:arXiv 1251:S2CID 1225:arXiv 1616:ISBN 1446:ISBN 823:For 275:Bona 239:and 71:and 44:and 1775:doi 1715:doi 1686:doi 1647:doi 1603:192 1546:doi 1493:doi 1423:doi 1386:doi 1343:doi 1331:185 1286:doi 1243:doi 1198:doi 1186:379 1163:doi 1151:157 1128:doi 1124:190 953:as 40:In 1865:: 1839:. 1824:. 1808:. 1781:. 1773:. 1765:. 1753:37 1751:. 1739:, 1733:, 1713:. 1703:58 1701:. 1684:. 1674:. 1664:24 1662:. 1645:. 1635:38 1633:. 1601:. 1581:15 1579:. 1552:. 1544:. 1536:. 1522:. 1499:. 1491:. 1483:. 1471:28 1469:. 1421:. 1411:35 1409:. 1384:. 1372:37 1370:. 1366:. 1341:. 1329:. 1325:. 1284:. 1274:72 1272:. 1249:. 1241:. 1233:. 1221:37 1219:. 1196:. 1184:. 1161:. 1149:. 1122:. 1030:0. 983:: 815:. 726:, 677:. 266:. 235:, 1854:. 1830:. 1814:. 1789:. 1777:: 1769:: 1759:: 1721:. 1717:: 1709:: 1692:. 1688:: 1670:: 1653:. 1649:: 1641:: 1624:. 1591:. 1587:: 1560:. 1548:: 1540:: 1530:: 1524:7 1507:. 1495:: 1487:: 1477:: 1454:. 1429:. 1425:: 1417:: 1394:. 1388:: 1378:: 1351:. 1345:: 1337:: 1292:. 1288:: 1280:: 1257:. 1245:: 1237:: 1227:: 1204:. 1200:: 1192:: 1169:. 1165:: 1157:: 1134:. 1130:: 1063:) 1057:( 1054:O 1027:= 1024:u 1019:x 1011:u 1008:+ 1005:u 1000:t 967:0 951:y 930:0 904:0 878:) 871:/ 867:1 864:( 861:O 851:x 837:1 802:y 798:y 794:x 790:y 786:x 772:1 766:= 743:1 740:+ 737:= 696:x 656:y 636:) 632:R 628:( 623:k 618:x 614:H 593:1 587:k 567:) 563:R 559:( 554:k 549:x 545:H 519:2 515:L 473:x 447:1 441:= 414:0 411:= 408:u 403:y 400:y 389:+ 386:) 383:u 378:t 375:x 372:x 362:2 354:+ 351:u 346:x 338:u 335:+ 332:u 327:t 319:( 314:x 295:x 285:– 281:– 277:– 273:– 253:y 249:x 241:y 237:x 219:1 213:= 189:0 186:= 183:u 178:y 175:y 164:+ 161:) 158:u 153:x 150:x 147:x 137:2 129:+ 126:u 121:x 113:u 110:+ 107:u 102:t 94:( 89:x

Index


swells
Île de Ré
Atlantic Ocean
solitons
mathematics
physics
partial differential equation
nonlinear
wave motion
Boris Borisovich Kadomtsev
Vladimir Iosifovich Petviashvili
spatial dimensions
Korteweg–de Vries (KdV) equation
inverse scattering transform
nonlinear Schrödinger equation
Benjamin
Bona
Mahony
Kadomtsev
Petviashvili
Benjamin–Bona–Mahony equation
Korteweg–de Vries equation
Fourier
Benjamin–Bona–Mahony equation
Benjamin–Bona–Mahony equation
Sobolev space

water waves
wavelength

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.