Knowledge

Isoelectric focusing

Source πŸ“

215:
vessels with a capillary passing through each vessel. Part of the capillary in each vessel is replaced by a semipermeable membrane. The vessels contain buffer solutions with different pH values, so that a pH gradient is effectively established inside the capillary. The buffer solution in each vessel has an electrical contact with a voltage divider connected to a high-voltage power supply, which establishes an electrical field along the capillary. When a sample (a mixture of peptides or proteins) is injected in the capillary, the presence of the electrical field and the pH gradient separates these molecules according to their isoelectric points. The multi-junction IEF system has been used to separate tryptic peptide mixtures for two-dimensional proteomics and blood plasma proteins from
94:(pI) will be positively charged and so will migrate toward the cathode (negatively charged electrode). As it migrates through a gradient of increasing pH, however, the protein's overall charge will decrease until the protein reaches the pH region that corresponds to its pI. At this point it has no net charge and so migration ceases (as there is no electrical attraction toward either electrode). As a result, the proteins become focused into sharp stationary bands with each protein positioned at a point in the pH gradient corresponding to its pI. The technique is capable of extremely high resolution with proteins differing by a single charge being fractionated into separate bands. 20: 830: 842: 117:
which the pH of that molecule's isoelectric point is reached. At this point the molecule no longer has a net electric charge (due to the protonation or deprotonation of the associated functional groups) and as such will not proceed any further within the gel. The gradient is established before adding the particles of interest by first subjecting a solution of small molecules such as
116:
end. Negatively charged molecules migrate through the pH gradient in the medium toward the "positive" end while positively charged molecules move toward the "negative" end. As a particle moves toward the pole opposite of its charge it moves through the changing pH gradient until it reaches a point in
214:
The increased demand for faster and easy-to-use protein separation tools has accelerated the evolution of IEF towards in-solution separations. In this context, a multi-junction IEF system was developed to perform fast and gel-free IEF separations. The multi-junction IEF system utilizes a series of
188:
cells perform isoelectric focusing of proteins in their interior to overcome a limitation of the rate of metabolic reaction by diffusion of enzymes and their reactants, and to regulate the rate of particular biochemical processes. By concentrating the enzymes of particular metabolic pathways into
155:
where a pH gradient has been established. Gels with large pores are usually used in this process to eliminate any "sieving" effects, or artifacts in the pI caused by differing migration rates for proteins of differing sizes. Isoelectric focusing can resolve proteins that differ in
236:
Bjellqvist, Bengt; Ek, Kristina; Righetti, Pier Giorgio; Gianazza, Elisabetta; GΓΆrg, Angelika; Westermeier, Reiner; Postel, Wilhelm (1982). "Isoelectric focusing in immobilized pH gradients: Principle, methodology and some applications".
205:
since it has the potential to provide rapid protein analysis, straightforward integration with other microfluidic unit operations, whole channel detection, nitrocellulose films, smaller sample sizes and lower fabrication costs.
189:
distinct and small regions of its interior, the cell can increase the rate of particular biochemical pathways by several orders of magnitude. By modification of the isoelectric point (pI) of molecules of an enzyme by, e.g.,
82:
gel matrix co-polymerized with the pH gradient, which result in completely stable gradients except the most alkaline (>12) pH values. The immobilized pH gradient is obtained by the continuous change in the ratio of
562:
Pirmoradian, M.; Zhang, B.; Chingin, K.; Astorga-Wells, J.; Zubarev R.A. (2014). "Membrane-assisted isoelectric focusing device as a micro-preparative fractionator for two dimensional shotgun proteomics".
514:"Multijunction Capillary Isoelectric Focusing Device Combined with Online Membrane-Assisted Buffer Exchanger Enables Isoelectric Point Fractionation of Intact Human Plasma Proteins for Biomarker Discovery" 365:
Kastenholz, B (2004). "Preparative Native Continuous Polyacrylamide Gel Electrophoresis (PNC-PAGE): An Efficient Method for Isolating Cadmium Cofactors in Biological Systems".
193:
or dephosphorylation, the cell can transfer molecules of the enzyme between different parts of its interior, to switch on or switch off particular biochemical processes.
310: 616: 737: 890: 294: 768: 697: 763: 742: 513: 161: 727: 332: 846: 732: 773: 722: 662: 677: 880: 778: 682: 609: 657: 636: 58:
that takes advantage of the fact that overall charge on the molecule of interest is a function of the
815: 667: 202: 885: 875: 834: 652: 602: 140: 97:
Molecules to be focused are distributed over a medium that has a pH gradient (usually created by
75: 458:
Baskin E.F.; Bukshpan S; Zilberstein G V (2006). "pH-induced intracellular protein transport".
216: 707: 692: 280: 284: 853: 467: 424: 8: 794: 702: 55: 471: 428: 314: 164:, in which proteins are first separated by their pI value and then further separated by 491: 390: 672: 580: 544: 483: 440: 436: 382: 338: 328: 324: 290: 262: 254: 250: 157: 91: 43: 561: 495: 479: 394: 717: 572: 536: 528: 475: 432: 374: 320: 246: 165: 133: 105: 19: 687: 625: 532: 355:
Stryer, Lubert: "Biochemie", page 50. Spektrum Akademischer Verlag, 1996 (German)
190: 47: 144: 869: 758: 712: 386: 258: 584: 548: 511: 487: 409: 444: 342: 266: 378: 71: 139:, whose value is represented by the pI. Proteins are introduced into an 540: 185: 136: 79: 23:
Scheme of isoelectric focusing with immobilized pH gradient (IPG) gels.
576: 160:
value by as little as 0.01. Isoelectric focusing is the first step in
173: 118: 101: 98: 39: 457: 169: 594: 152: 125: 113: 51: 87:. An immobiline is a weak acid or base defined by its pK value. 172:. Isoelectric focusing, on the other hand, is the only step in 148: 129: 201:
Microchip based electrophoresis is a promising alternative to
109: 235: 319:. Methods in Enzymology. Vol. 182. pp. 459–77. 286:
Isoelectric Focusing: Theory, Methodology and Application
124:
The method is applied particularly often in the study of
512:
Pirmoradian M.; Astorga-Wells, J.; Zubarev, RA. (2015).
59: 279: 128:, which separate based on their relative content of 108:
is passed through the medium, creating a "positive"
309: 867: 229: 507: 505: 239:Journal of Biochemical and Biophysical Methods 610: 358: 502: 410:"Does a cell perform isoelectric focusing?" 273: 121:with varying pI values to electrophoresis. 90:A protein that is in a pH region below its 617: 603: 364: 196: 38:, is a technique for separating different 738:Temperature gradient gel electrophoresis 18: 407: 868: 598: 841: 769:Gel electrophoresis of nucleic acids 698:Electrophoretic mobility shift assay 764:DNA separation by silica adsorption 743:Two-dimensional gel electrophoresis 624: 184:According to some opinions, living 162:two-dimensional gel electrophoresis 13: 728:Polyacrylamide gel electrophoresis 373:(4). Informa UK Limited: 657–665. 219:patients for biomarker discovery. 14: 902: 209: 840: 829: 828: 733:Pulsed-field gel electrophoresis 313:(1990). "Isoelectric focusing". 774:Gel electrophoresis of proteins 723:Moving-boundary electrophoresis 663:Capillary electrochromatography 179: 678:Difference gel electrophoresis 555: 451: 401: 349: 303: 1: 779:Serum protein electrophoresis 683:Discontinuous electrophoresis 316:Guide to Protein Purification 222: 891:Molecular biology techniques 533:10.1021/acs.analchem.5b03344 437:10.1016/0303-2647(90)90005-L 325:10.1016/0076-6879(90)82037-3 251:10.1016/0165-022X(82)90013-6 65: 7: 658:Agarose gel electrophoresis 46:(pI). It is a type of zone 10: 907: 637:History of electrophoresis 824: 816:Electrophoresis (journal) 808: 787: 751: 668:Capillary electrophoresis 645: 632: 480:10.1088/1478-3975/3/2/002 203:capillary electrophoresis 78:(IPG) gels. IPGs are the 653:Affinity electrophoresis 42:by differences in their 197:Microfluidic chip based 174:preparative native PAGE 141:immobilized pH gradient 76:immobilized pH gradient 70:IEF involves adding an 16:Type of electrophoresis 24: 708:Immunoelectrophoresis 693:Electrochromatography 281:Pier Giorgio Righetti 62:of its surroundings. 50:usually performed on 22: 881:Industrial processes 854:Analytical Chemistry 800:Isoelectric focusing 565:Analytical Chemistry 521:Analytical Chemistry 379:10.1081/al-120029742 28:Isoelectric focusing 795:Electrical mobility 703:Gel electrophoresis 527:(23): 11840–11846. 472:2006PhBio...3..101B 429:1990BiSys..24..127F 311:David Edward Garfin 217:Alzheimer's disease 367:Analytical Letters 25: 863: 862: 673:Dielectrophoresis 577:10.1021/ac404180e 571:(12): 5728–5732. 296:978-0-08-085880-7 92:isoelectric point 44:isoelectric point 34:), also known as 898: 844: 843: 832: 831: 718:Isotachophoresis 619: 612: 605: 596: 595: 589: 588: 559: 553: 552: 518: 509: 500: 499: 460:Physical Biology 455: 449: 448: 414: 408:Flegr J (1990). 405: 399: 398: 362: 356: 353: 347: 346: 307: 301: 300: 283:(1 April 2000). 277: 271: 270: 233: 176:at constant pH. 166:molecular weight 143:gel composed of 106:electric current 906: 905: 901: 900: 899: 897: 896: 895: 886:Protein methods 876:Electrophoresis 866: 865: 864: 859: 820: 804: 783: 747: 688:Electroblotting 641: 628: 626:Electrophoresis 623: 593: 592: 560: 556: 516: 510: 503: 456: 452: 412: 406: 402: 363: 359: 354: 350: 335: 308: 304: 297: 278: 274: 234: 230: 225: 212: 199: 191:phosphorylation 182: 112:and "negative" 68: 48:electrophoresis 36:electrofocusing 17: 12: 11: 5: 904: 894: 893: 888: 883: 878: 861: 860: 858: 857: 850: 838: 825: 822: 821: 819: 818: 812: 810: 806: 805: 803: 802: 797: 791: 789: 785: 784: 782: 781: 776: 771: 766: 761: 755: 753: 749: 748: 746: 745: 740: 735: 730: 725: 720: 715: 710: 705: 700: 695: 690: 685: 680: 675: 670: 665: 660: 655: 649: 647: 643: 642: 640: 639: 633: 630: 629: 622: 621: 614: 607: 599: 591: 590: 554: 501: 466:(2): 101–106. 450: 423:(2): 127–133. 400: 357: 348: 333: 302: 295: 272: 245:(4): 317–339. 227: 226: 224: 221: 211: 210:Multi-junction 208: 198: 195: 181: 178: 145:polyacrylamide 119:polyampholytes 74:solution into 67: 64: 15: 9: 6: 4: 3: 2: 903: 892: 889: 887: 884: 882: 879: 877: 874: 873: 871: 856: 855: 851: 849: 848: 839: 837: 836: 827: 826: 823: 817: 814: 813: 811: 807: 801: 798: 796: 793: 792: 790: 786: 780: 777: 775: 772: 770: 767: 765: 762: 760: 759:DNA laddering 757: 756: 754: 750: 744: 741: 739: 736: 734: 731: 729: 726: 724: 721: 719: 716: 714: 713:Iontophoresis 711: 709: 706: 704: 701: 699: 696: 694: 691: 689: 686: 684: 681: 679: 676: 674: 671: 669: 666: 664: 661: 659: 656: 654: 651: 650: 648: 644: 638: 635: 634: 631: 627: 620: 615: 613: 608: 606: 601: 600: 597: 586: 582: 578: 574: 570: 566: 558: 550: 546: 542: 538: 534: 530: 526: 522: 515: 508: 506: 497: 493: 489: 485: 481: 477: 473: 469: 465: 461: 454: 446: 442: 438: 434: 430: 426: 422: 418: 411: 404: 396: 392: 388: 384: 380: 376: 372: 368: 361: 352: 344: 340: 336: 334:9780121820831 330: 326: 322: 318: 317: 312: 306: 298: 292: 288: 287: 282: 276: 268: 264: 260: 256: 252: 248: 244: 240: 232: 228: 220: 218: 207: 204: 194: 192: 187: 177: 175: 171: 167: 163: 159: 154: 150: 146: 142: 138: 135: 131: 127: 122: 120: 115: 111: 107: 103: 100: 95: 93: 88: 86: 81: 77: 73: 63: 61: 57: 53: 49: 45: 41: 37: 33: 29: 21: 852: 845: 833: 799: 752:Applications 568: 564: 557: 524: 520: 463: 459: 453: 420: 416: 403: 370: 366: 360: 351: 315: 305: 289:. Elsevier. 285: 275: 242: 238: 231: 213: 200: 183: 180:Living cells 123: 96: 89: 84: 69: 35: 31: 27: 26: 541:10616/44920 85:immobilines 870:Categories 646:Techniques 417:BioSystems 223:References 186:eukaryotic 102:ampholytes 80:acrylamide 387:0003-2719 259:0165-022X 99:aliphatic 72:ampholyte 66:Procedure 40:molecules 835:Category 809:Journals 585:24824042 549:26531800 496:41599078 488:16829696 395:97636537 170:SDS-PAGE 168:through 137:residues 126:proteins 52:proteins 847:Commons 468:Bibcode 445:2249006 425:Bibcode 343:2314254 267:7142660 153:agarose 114:cathode 788:Theory 583:  547:  494:  486:  443:  393:  385:  341:  331:  293:  265:  257:  149:starch 130:acidic 104:). An 517:(PDF) 492:S2CID 413:(PDF) 391:S2CID 151:, or 134:basic 110:anode 54:in a 581:PMID 545:PMID 484:PMID 441:PMID 383:ISSN 339:PMID 329:ISBN 291:ISBN 263:PMID 255:ISSN 132:and 573:doi 537:hdl 529:doi 476:doi 433:doi 375:doi 321:doi 247:doi 56:gel 32:IEF 872:: 579:. 569:86 567:. 543:. 535:. 525:87 523:. 519:. 504:^ 490:. 482:. 474:. 462:. 439:. 431:. 421:24 419:. 415:. 389:. 381:. 371:37 369:. 337:. 327:. 261:. 253:. 241:. 158:pI 147:, 60:pH 618:e 611:t 604:v 587:. 575:: 551:. 539:: 531:: 498:. 478:: 470:: 464:3 447:. 435:: 427:: 397:. 377:: 345:. 323:: 299:. 269:. 249:: 243:6 30:(

Index


molecules
isoelectric point
electrophoresis
proteins
gel
pH
ampholyte
immobilized pH gradient
acrylamide
isoelectric point
aliphatic
ampholytes
electric current
anode
cathode
polyampholytes
proteins
acidic
basic
residues
immobilized pH gradient
polyacrylamide
starch
agarose
pI
two-dimensional gel electrophoresis
molecular weight
SDS-PAGE
preparative native PAGE

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑