Knowledge

Histocompatibility

Source đź“ť

183:
host immune system to recognize and attack. The number and selection of MHC molecules to be considered when determining whether two individuals are histocompatible fluctuates based on application, however matching HLA-A, HLA-B, and HLA-DR has been shown to improve patient outcomes. Histocompatibility has a measurable effect on whole organ transplantation, increasing life expectancy of both the patient and organ. HLA similarity is therefore a relevant factor when choosing donors for tissue or organ transplant. This is especially important for pancreas and kidney transplants.
166:, with thousands of versions of the MHC receptors in the population, though any one individual can have no more than two versions for any one locus. MHC receptors are codominantly expressed, meaning all inherited alleles are expressed by the individual. The wide variety of potential alleles and multiple loci in the HLA allow for many unique combinations in individuals. 175: 72:, whose skin graft transplants in world war two victims showed that skin transplants between individuals had much higher rejection rates than self-transplants within an individual, and that suppressing the immune system delayed skin transplant rejection. Medawar shared the 1960 Nobel Prize in part for this work. 211:, and thus histocompatibility is not a factor in transplantation. Individual factors such as age sometimes factors into matching protocol, as the immune response of older transplant patients towards MHC proteins is slower and therefore less compatibility is necessary for positive results. Post-operative 194:
The degree of histocompatibility required is dependent on individual factors, including the type of tissue or organ and the medical condition of the recipient. While whole organ transplants can be successful between unmatched individuals, increased histocompatibility lowers rates of rejection, result
182:
After receiving a transplant, the recipient's T cells will become activated by foreign MHC molecules on the donor tissue and trigger the immune system to attack the donated tissue The more similar HLA alleles are between donor and recipient, the fewer foreign targets exist on the donor tissue for the
46:
recognize foreign HLA molecules and trigger an immune response to destroy the foreign cells. Histocompatibility testing is most relevant for topics related to whole organ, tissue, or stem cell transplants, where the similarity or difference between the donor's HLA alleles and the recipient's triggers
232:
Serological typing involves incubating lymphocytes from the recipient with serum containing known antibodies against the varying HLA alleles. If the serum contains an antibody specific for a HLA allele that is present on the recipient's lymphocyte, the antibodies will bind to the cell and activate a
186:
Due to the inherited nature of HLA genes, family members are more likely to be histocompatible. The odds of a sibling having received the same haplotypes from both parents is 25%, while there is a 50% chance that the sibling would share just one haplotype and a 25% chance they would share neither.
88:
in the 1950s, when he noticed that recipients of blood transfusions were producing antibodies directed against only the donor cells. The target of these antibodies, or the human leukocyte antigens (HLA), were discovered to be the human homologue of Snell and Gorer's mouse MHC. Snell, Dausset and
83:
individually isolated the genetic factors that when similar allowed transplantation between mouse strains, naming them H and antigen II respectively. These factors were in fact one and the same, and the locus was named H-2. Snell coined the term "histocompatibility" to describe the relationship
244:
Serological typing has the benefit of quickly identifying expressed HLA alleles, and ignores any non-expressed alleles that could be of little immunological significance. However, it does not recognize subclasses of alleles, which are sometimes necessary for matching.
195:
in longer lifespans, and overall lower associated hospital costs. The impact of HLA matching differs even among whole organ transplants, with some studies reporting less importance in liver transplants as compared to heart, lung, and other organs. In comparison,
215:
therapy is often used to lessen the immune response and prevent tissue rejection by dampening the immune system's response to the foreign HLA molecules, and can increase the likelihood of successful transplantation in non-identical transplant recipients.
257:
amplification, and direct sequencing can all be used to identify HLA alleles, often providing amino acid level resolution. Molecular methods can more accurately identify rare and unique alleles, but do not provide information about expression levels.
68:, which showed that tumors transplanted between genetically identical mice grew normally, but tumors transplanted between non-identical mice were rejected and failed to grow. The role of the immune system in transplant reject was proposed by 59:
The discovery of the MHC and role of histocompatibility in transplantation was a combined effort of many scientists in the 20th century. A genetic basis for transplantation rejection was proposed in a 1914 Nature paper by
42:(MHC). Each individual expresses many unique HLA proteins on the surface of their cells, which signal to the immune system whether a cell is part of the self or an invading organism. 645: 241:
allowing for identification. Comparing which serums triggers cell lysis allows identification of HLA alleles present on the cell surface of the recipients cells.
224:
Because of the clinical significance of histocompatibility in tissue transplants, several methods of typing are used to check for HLA allele expression.
253:
HLA alleles can be determined by directly analyzing the HLA loci on chromosome 6. Sequence specific oligonucleotide probes, sequence specific primer
159:—are only present on antigen presenting cells and are responsible for presenting molecules from invading organisms to cells of the immune system. 119:, one from each parent, each containing more than 200 genes relevant to helping the immune system recognize foreign invaders. These genes include 203:, in which the donor's immune system recognizes the recipient's MHC molecules as foreign and mounts an immune response. Some transplanted tissue 663:
Schwartz RH (1985-01-01). "T-lymphocyte recognition of antigen in association with gene products of the major histocompatibility complex".
1024:
Dreyer GJ, Hemke AC, Reinders ME, de Fijter JW (October 2015). "Transplanting the elderly: Balancing aging with histocompatibility".
939:"Haploidentical Hematopoietic Stem Cell Transplantation: A Global Overview Comparing Asia, the European Union, and the United States" 84:
between the H-2 cell-surface proteins and transplant acceptance. The human version of the histocompatibility complex was found by
51:
the transplant. The wide variety of potential HLA alleles lead to unique combinations in individuals and make matching difficult.
196: 766: 628: 408: 1088:"Role of major histocompatibility complex variation in graft-versus-host disease after hematopoietic cell transplantation" 981:. Niederkorn, J. Y. (Jerry Y.), 1946-, Kaplan, Henry J., Streilein, J. Wayne. (2nd, rev. ed.). Basel: Karger. 2007. 1151: 1059:
van Sandwijk MS, Bemelman FJ, Ten Berge IJ (July 2013). "Immunosuppressive drugs after solid organ transplantation".
986: 547: 272: 108: 102: 39: 595: 571: 514: 902:
Takemoto S, Port FK, Claas FH, Duquesnoy RJ (December 2004). "HLA matching for kidney transplantation".
1010: 254: 200: 1182: 267: 35: 143:—are present on all nucleated cells and are responsible for signaling to an immune cell that an 1198: 1178: 188: 283: 163: 112: 48: 937:
Apperley J, Niederwieser D, Huang XJ, Nagler A, Fuchs E, Szer J, Kodera Y (January 2016).
237:
signaling cascade resulting in cell lysis. A lysed cell will take up an added dye such as
8: 191:, haplotypes may rearrange between generations and siblings may be intermediate matches. 799: 676: 1114: 1087: 1004: 862: 835: 808: 783: 726: 699: 491: 474: 455: 376: 351: 208: 80: 76: 1157: 1147: 1119: 1068: 1041: 992: 982: 960: 919: 867: 813: 762: 731: 680: 624: 553: 543: 496: 447: 442: 425: 404: 381: 234: 212: 459: 1109: 1104: 1099: 1033: 950: 911: 857: 847: 803: 795: 721: 711: 672: 486: 437: 371: 363: 204: 90: 755: 697: 915: 886: 321: 1037: 955: 938: 836:"HLA Mismatching Strategies for Solid Organ Transplantation - A Balancing Act" 750: 426:"Clarence Cook Little (1888-1971): the genetic basis of transplant immunology" 367: 1192: 1161: 852: 557: 278: 69: 65: 996: 1123: 1072: 1045: 964: 923: 871: 817: 735: 698:
Ayala García MA, González Yebra B, López Flores AL, Guaní Guerra E (2012).
451: 385: 124: 85: 61: 716: 684: 500: 199:
are often require higher degrees of matching due to the increased risk of
238: 120: 888:
Major histocompatibility complex: Antigen processing and presentation
116: 621:
Major Histocompatibility Complex: Evolution, Structure, and Function
128: 93:
shared the 1980 Nobel Prize for the discovery of the MHC and HLA.
144: 1146:. New York: Springer Science+Business Media, LLC. p. 1960. 936: 156: 152: 148: 43: 27: 26:, is the property of having the same, or sufficiently similar, 748: 1058: 784:"Major histocompatibility complex genomics and human disease" 596:"The Nobel Prize in Physiology or Medicine 1980 - Speed Read" 572:"The Nobel Prize in Physiology or Medicine 1980 - Speed Read" 515:"The Nobel Prize in Physiology or Medicine 1960 - Speed Read" 140: 136: 132: 1023: 979:
Immune response and the eye: in memoriam J. Wayne Streilein
884: 31: 901: 700:"The major histocompatibility complex in transplantation" 96: 751:"The Major Histocompatibility Complex and Its Functions" 398: 757:
Immunobiology: The Immune System in Health and Disease
749:
Janeway CA, Travers P, Walport M, Shlomchik M (2001).
174: 885:
Cruz-Tapias P, Castiblanco J, Anaya JM (2013-07-18).
352:"Mechanism of cellular rejection in transplantation" 1137: 1135: 1133: 754: 691: 540:Immunology : understanding the immune system 399:Kindt TJ, Goldsby RA, Osborne BA, Kuby J (2006). 207:that could detect foreign MHC molecules, such as 115:at 6p21.3. Individuals inherit two different HLA 1190: 1141: 542:(2nd ed.). Hoboken, N.J.: Wiley-Blackwell. 475:"Peter Brian Medawar: father of transplantation" 1130: 829: 827: 781: 423: 833: 345: 343: 341: 824: 788:Annual Review of Genomics and Human Genetics 637: 178:HLA genes and their location on chromosome 6 943:Biology of Blood and Marrow Transplantation 479:Journal of the American College of Surgeons 338: 147:is inside the cell. MHC Class II molecules— 1085: 169: 1181:at the U.S. National Library of Medicine 1113: 1103: 954: 861: 851: 807: 725: 715: 490: 441: 375: 316: 314: 662: 618: 424:Auchincloss H, Winn HJ (February 2004). 173: 16:Tissue compatibility between individuals 349: 305:Dorlands Illustrated Medical Dictionary 1191: 1144:Core concepts in renal transplantation 646:"Human Leukocyte Antigen (HLA) System" 643: 537: 472: 311: 97:Major histocompatibility complex (MHC) 227: 1061:The Netherlands Journal of Medicine 800:10.1146/annurev-genom-091212-153455 677:10.1146/annurev.iy.03.040185.001321 430:American Journal of Transplantation 307:. Philadelphia, PA: Elsevier. 2012. 248: 197:hematopoietic stem cell transplants 127:cell-surface proteins. MHC Class I 13: 14: 1210: 1172: 761:(5th ed.). Elsevier España. 1142:Chandraker A, Sayegh MH (2012). 443:10.1046/j.1600-6143.2003.00324.x 273:Major histocompatibility complex 109:major histocompatibility complex 103:Major histocompatibility complex 40:major histocompatibility complex 1079: 1052: 1017: 971: 930: 895: 878: 834:Zachary AA, Leffell MS (2016). 782:Trowsdale J, Knight JC (2013). 775: 742: 656: 612: 588: 403:. W. H. Freeman & Company. 1105:10.12688/f1000research.10990.1 891:. El Rosario University Press. 564: 531: 507: 466: 417: 392: 296: 1: 289: 1086:Petersdorf EW (2017-05-03). 916:10.1016/j.humimm.2004.06.008 187:However, variability due to 54: 7: 665:Annual Review of Immunology 261: 107:HLA, the human form of the 10: 1215: 1038:10.1016/j.trre.2015.08.003 956:10.1016/j.bbmt.2015.11.001 704:Journal of Transplantation 644:Delves PJ (January 2017). 350:Ingulli E (January 2010). 322:"Human leukocyte antigens" 219: 100: 368:10.1007/s00467-008-1020-x 205:is not exposed to T cells 201:graft-versus-host disease 162:The MHC genes are highly 1183:Medical Subject Headings 853:10.3389/fimmu.2016.00575 473:Starzl TE (March 1995). 75:In the 1930s and 1940s, 36:human leukocyte antigens 1026:Transplantation Reviews 840:Frontiers in Immunology 326:Genetics Home Reference 268:Clonal selection theory 170:Role in transplantation 1009:: CS1 maint: others ( 623:. New York: Springer. 303:"Histocompatibility". 179: 177: 111:(MHC), is located on 47:the immune system to 356:Pediatric Nephrology 284:Transplant rejection 24:tissue compatibility 717:10.1155/2012/842141 619:Kasahara M (2000). 1179:Histocompatibility 600:www.nobelprize.org 576:www.nobelprize.org 538:Elgert KD (2009). 519:www.nobelprize.org 228:Serological Typing 180: 20:Histocompatibility 768:978-0-8153-3642-6 630:978-4-431-70276-4 410:978-1-4292-0211-4 213:immunosuppressant 1206: 1166: 1165: 1139: 1128: 1127: 1117: 1107: 1083: 1077: 1076: 1056: 1050: 1049: 1021: 1015: 1014: 1008: 1000: 975: 969: 968: 958: 934: 928: 927: 910:(12): 1489–505. 904:Human Immunology 899: 893: 892: 882: 876: 875: 865: 855: 831: 822: 821: 811: 779: 773: 772: 760: 746: 740: 739: 729: 719: 695: 689: 688: 660: 654: 653: 641: 635: 634: 616: 610: 609: 607: 606: 592: 586: 585: 583: 582: 568: 562: 561: 535: 529: 528: 526: 525: 511: 505: 504: 494: 470: 464: 463: 445: 421: 415: 414: 401:Kurby Immunology 396: 390: 389: 379: 347: 336: 335: 333: 332: 318: 309: 308: 300: 249:Molecular Typing 91:Baruj Benacerraf 1214: 1213: 1209: 1208: 1207: 1205: 1204: 1203: 1189: 1188: 1175: 1170: 1169: 1154: 1140: 1131: 1084: 1080: 1057: 1053: 1022: 1018: 1002: 1001: 989: 977: 976: 972: 935: 931: 900: 896: 883: 879: 832: 825: 780: 776: 769: 747: 743: 696: 692: 661: 657: 642: 638: 631: 617: 613: 604: 602: 594: 593: 589: 580: 578: 570: 569: 565: 550: 536: 532: 523: 521: 513: 512: 508: 471: 467: 422: 418: 411: 397: 393: 348: 339: 330: 328: 320: 319: 312: 302: 301: 297: 292: 264: 251: 230: 222: 172: 105: 99: 57: 17: 12: 11: 5: 1212: 1202: 1201: 1187: 1186: 1174: 1173:External links 1171: 1168: 1167: 1152: 1129: 1078: 1051: 1016: 987: 970: 929: 894: 877: 823: 774: 767: 741: 690: 655: 636: 629: 611: 587: 563: 548: 530: 506: 465: 416: 409: 391: 337: 310: 294: 293: 291: 288: 287: 286: 281: 276: 270: 263: 260: 250: 247: 229: 226: 221: 218: 171: 168: 101:Main article: 98: 95: 56: 53: 15: 9: 6: 4: 3: 2: 1211: 1200: 1199:Immune system 1197: 1196: 1194: 1184: 1180: 1177: 1176: 1163: 1159: 1155: 1153:9781461400073 1149: 1145: 1138: 1136: 1134: 1125: 1121: 1116: 1111: 1106: 1101: 1097: 1093: 1092:F1000Research 1089: 1082: 1074: 1070: 1066: 1062: 1055: 1047: 1043: 1039: 1035: 1032:(4): 205–11. 1031: 1027: 1020: 1012: 1006: 998: 994: 990: 988:9783805581875 984: 980: 974: 966: 962: 957: 952: 948: 944: 940: 933: 925: 921: 917: 913: 909: 905: 898: 890: 889: 881: 873: 869: 864: 859: 854: 849: 845: 841: 837: 830: 828: 819: 815: 810: 805: 801: 797: 793: 789: 785: 778: 770: 764: 759: 758: 752: 745: 737: 733: 728: 723: 718: 713: 709: 705: 701: 694: 686: 682: 678: 674: 671:(1): 237–61. 670: 666: 659: 651: 647: 640: 632: 626: 622: 615: 601: 597: 591: 577: 573: 567: 559: 555: 551: 549:9780470081570 545: 541: 534: 520: 516: 510: 502: 498: 493: 488: 484: 480: 476: 469: 461: 457: 453: 449: 444: 439: 435: 431: 427: 420: 412: 406: 402: 395: 387: 383: 378: 373: 369: 365: 361: 357: 353: 346: 344: 342: 327: 323: 317: 315: 306: 299: 295: 285: 282: 280: 279:Tissue typing 277: 274: 271: 269: 266: 265: 259: 256: 246: 242: 240: 236: 225: 217: 214: 210: 206: 202: 198: 192: 190: 189:crossing over 184: 176: 167: 165: 160: 158: 154: 150: 146: 142: 138: 134: 130: 126: 122: 118: 114: 110: 104: 94: 92: 87: 82: 78: 73: 71: 70:Peter Medawar 67: 66:Ernest Tyyzer 63: 52: 50: 45: 41: 37: 33: 29: 25: 21: 1143: 1095: 1091: 1081: 1067:(6): 281–9. 1064: 1060: 1054: 1029: 1025: 1019: 978: 973: 946: 942: 932: 907: 903: 897: 887: 880: 843: 839: 791: 787: 777: 756: 744: 707: 703: 693: 668: 664: 658: 650:Merck Manual 649: 639: 620: 614: 603:. Retrieved 599: 590: 579:. Retrieved 575: 566: 539: 533: 522:. Retrieved 518: 509: 485:(3): 332–6. 482: 478: 468: 436:(2): 155–9. 433: 429: 419: 400: 394: 362:(1): 61–74. 359: 355: 329:. Retrieved 325: 304: 298: 252: 243: 231: 223: 193: 185: 181: 161: 113:chromosome 6 106: 86:Jean Dausset 77:George Snell 74: 58: 30:of a set of 23: 19: 18: 949:(1): 23–6. 239:trypan blue 164:polymorphic 121:MHC class I 81:Peter Gorer 62:C.C. Little 794:: 301–23. 710:: 842141. 605:2018-02-26 581:2018-02-26 524:2018-02-26 331:2018-01-25 290:References 235:complement 117:haplotypes 38:(HLA), or 1162:768245800 1005:cite book 558:320494512 129:molecules 55:Discovery 1193:Category 1124:28529723 1073:23956308 1046:26411382 997:85243138 965:26551633 924:15603878 872:28003816 818:23875801 736:22778908 460:39596314 452:14974934 386:21476231 262:See also 125:class II 1115:5419254 1098:: 617. 863:5141243 846:: 575. 809:4426292 727:3388305 685:2415139 501:7874344 492:2681237 377:2778785 220:Testing 209:corneas 145:antigen 44:T cells 34:called 28:alleles 1185:(MeSH) 1160:  1150:  1122:  1112:  1071:  1044:  995:  985:  963:  922:  870:  860:  816:  806:  765:  734:  724:  683:  627:  556:  546:  499:  489:  458:  450:  407:  384:  374:  157:HLA-DP 153:HLA-DQ 151:, and 149:HLA-DR 139:, and 49:reject 456:S2CID 275:(MHC) 141:HLA-C 137:HLA-B 133:HLA-A 32:genes 22:, or 1158:OCLC 1148:ISBN 1120:PMID 1069:PMID 1042:PMID 1011:link 993:OCLC 983:ISBN 961:PMID 920:PMID 868:PMID 814:PMID 763:ISBN 732:PMID 708:2012 681:PMID 625:ISBN 554:OCLC 544:ISBN 497:PMID 448:PMID 405:ISBN 382:PMID 155:and 123:and 79:and 64:and 1110:PMC 1100:doi 1034:doi 951:doi 912:doi 858:PMC 848:doi 804:PMC 796:doi 722:PMC 712:doi 673:doi 487:PMC 483:180 438:doi 372:PMC 364:doi 255:PCR 1195:: 1156:. 1132:^ 1118:. 1108:. 1094:. 1090:. 1065:71 1063:. 1040:. 1030:29 1028:. 1007:}} 1003:{{ 991:. 959:. 947:22 945:. 941:. 918:. 908:65 906:. 866:. 856:. 842:. 838:. 826:^ 812:. 802:. 792:14 790:. 786:. 753:. 730:. 720:. 706:. 702:. 679:. 667:. 648:. 598:. 574:. 552:. 517:. 495:. 481:. 477:. 454:. 446:. 432:. 428:. 380:. 370:. 360:25 358:. 354:. 340:^ 324:. 313:^ 135:, 1164:. 1126:. 1102:: 1096:6 1075:. 1048:. 1036:: 1013:) 999:. 967:. 953:: 926:. 914:: 874:. 850:: 844:7 820:. 798:: 771:. 738:. 714:: 687:. 675:: 669:3 652:. 633:. 608:. 584:. 560:. 527:. 503:. 462:. 440:: 434:4 413:. 388:. 366:: 334:. 131:—

Index

alleles
genes
human leukocyte antigens
major histocompatibility complex
T cells
reject
C.C. Little
Ernest Tyyzer
Peter Medawar
George Snell
Peter Gorer
Jean Dausset
Baruj Benacerraf
Major histocompatibility complex
major histocompatibility complex
chromosome 6
haplotypes
MHC class I
class II
molecules
HLA-A
HLA-B
HLA-C
antigen
HLA-DR
HLA-DQ
HLA-DP
polymorphic

crossing over

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑