Knowledge

Generalized complex structure

Source 📝

22: 944: 3768:
does not apply. However, about any point, a generalized complex manifold is, up to diffeomorphism and B-field, a product of a symplectic manifold with a generalized complex manifold which is of complex type at the point, much like Weinstein's theorem for the local structure of
4125:
Up to a shift of the B-field, which corresponds to multiplying the pure spinor by the exponential of a closed, real 2-form, symplectic manifolds are the only type 0 generalized complex manifolds. Manifolds which are symplectic up to a shift of the B-field are sometimes called
2217: 698: 3892:, 0)-forms are pure spinors, as they are annihilated by antiholomorphic tangent vectors and by holomorphic one-forms. Thus this line bundle can be used as a canonical bundle to define a generalized complex structure. Restricting the annihilator from 539: 1331: 455: 3314:, or more generally if its exterior derivative is equal to the action of a gamma matrix on itself, then the almost complex structure is integrable and so such pure spinors correspond to generalized complex structures. 2641:. In other words, the type of a maximal isotropic subbundle is the codimension of its projection onto the tangent bundle. In the complex case one uses the complex dimension and the type is sometimes referred to as the 1168:
In generalized complex geometry one is not interested in vector fields, but rather in the formal sums of vector fields and one-forms. A kind of Lie bracket for such formal sums was introduced in 1990 and is called the
4356: 3595: 3289: 3231: 3173: 2705: 4194: 3992: 3941: 3504: 3067: 2918: 807: 3830: 3000: 4086:
The above pure spinor is globally defined, and so the canonical bundle is trivial. This means that symplectic manifolds are not only generalized complex manifolds but in fact are generalized Calabi-Yau manifolds.
3645: 815: 2068: 2841:, which means that each point has an open neighborhood in which the type does not increase. In practice this means that subsets of greater type than the ambient type occur on submanifolds with positive 3119: 2817: 2760: 2060: 1632: 1459: 1060: 316: 3537: 3449: 3317:
If one further imposes that the canonical bundle is holomorphically trivial, meaning that it is global sections which are closed forms, then it defines a generalized Calabi-Yau structure and
592: 4491:
Notice that a generalized Calabi metric structure, which was introduced by Marco Gualtieri, is a stronger condition than a generalized Calabi–Yau structure, which was introduced by
2635: 2586: 2493: 2294: 2257: 1779: 1595: 4291: 3400: 1558: 1493: 3675:
Every regular point in a generalized complex manifold has an open neighborhood which, after a diffeomorphism and shift of the B-field, has the same generalized complex structure as the
1918: 1137:-eigenbundle of a unique generalized almost complex structure, so that the properties (i), (ii) can be considered as an alternative definition of generalized almost complex structure. 1100: 999: 4297: 2452: 600: 3773:. The remaining question of the local structure is: what does a generalized complex structure look like near a point of complex type? In fact, it will be induced by a holomorphic 3750: 4482: 4074: 2328: 1365: 2409: 4403: 3709: 1967: 1836: 1740: 1708: 474: 1865: 3855: 2538: 2353: 2515: 2373: 1521: 1135: 732: 1179: 4023: 3018:. Vectors have an action on differential forms given by the interior product. One-forms have an action on forms given by the wedge product. Thus sections of the bundle 2023: 1997: 1661: 4108: 1938: 1807: 4406: 756: 2945: 3295:
of the pure spinor and its complex conjugate contains a top-dimensional component. Such pure spinors determine generalized almost complex structures.
367: 115: 4645: 119: 5097: 4307: 3546: 3240: 3182: 3124: 2656: 4699: 4148: 3946: 3895: 3458: 3021: 2872: 761: 51: 4495:. In particular a generalized Calabi–Yau metric structure implies the existence of two commuting generalized almost complex structures. 3793: 2963: 3943:
to the complexified tangent bundle one gets the subspace of antiholomorphic vector fields. Therefore, this generalized complex structure on
939:{\displaystyle L=\{X+\xi \in (\mathbf {T} \oplus \mathbf {T} ^{*})\otimes \mathbb {C} \ :\ {\mathcal {J}}(X+\xi )={\sqrt {-1}}(X+\xi )\}} 4005:. In fact complex manifolds, and the manifolds obtained by multiplying the pure spinor bundle defining a complex manifold by a complex, 3603: 2212:{\displaystyle \langle X+\xi ,Y+\eta \rangle ={\frac {1}{2}}(\xi (Y)+\eta (X))={\frac {1}{2}}(\varepsilon (Y,X)+\varepsilon (X,Y))=0} 168:, which relate 10-dimensional physics to 4-dimensional worlds like ours, require (possibly twisted) generalized complex structures. 1388: 165: 3087: 4304:
generalized complex structures such that minus the product of the corresponding tensors is a positive definite metric on
3311: 3084:
if it is annihilated by half of a set of a set of generators of the Clifford algebra. Spinors are sections of our bundle
2936:. The complex line bundle corresponding to a particular generalized almost complex structure is often referred to as the 2932:
As in the case of ordinary complex geometry, there is a correspondence between generalized almost complex structures and
2768: 2728: 2028: 1600: 1427: 284: 3298:
Given a generalized almost complex structure, one can also determine a pure spinor up to multiplication by an arbitrary
4692: 4083:
defines a symplectic structure on the tangent space. Thus symplectic manifolds are also generalized complex manifolds.
3509: 3424: 547: 73: 3233:
Such subbundles are always isotropic, so to define an almost complex structure one must only impose that the sum of
1022: 44: 5887: 5064: 4510: 2603: 2554: 2461: 2262: 2225: 1747: 1563: 5294: 5029: 4226: 4110:
is related to a pure spinor which is just a number by an imaginary shift of the B-field, which is a shift of the
3360: 1529: 1464: 1870: 5882: 5656: 3885:, 0)-forms are related locally by multiplication by a complex function and so they form a complex line bundle. 3597:
However the intersection of their projections need not be trivial. In general this intersection is of the form
693:{\displaystyle \langle {\mathcal {J}}(X+\xi ),{\mathcal {J}}(Y+\eta )\rangle =\langle X+\xi ,Y+\eta \rangle .} 4742: 4685: 965: 5681: 5006: 4737: 4431:
Finally, a generalized almost Calabi-Yau metric structure is a further reduction of the structure group to
2414: 279: 3714: 735: 534:{\displaystyle {\mathcal {J}}:\mathbf {T} \oplus \mathbf {T} ^{*}\to \mathbf {T} \oplus \mathbf {T} ^{*}} 5261: 4434: 4043: 2299: 1339: 1065: 5182: 4887: 4834: 3654: 3014:
between differential forms and spinors. In particular even and odd forms map to the two chiralities of
2833:
The type of a generalized almost complex structure is in general not constant, it can jump by any even
2382: 4361: 4118:
pure spinor. A scalar is annihilated by the entire tangent space, and so these structures are of type
3685: 1943: 1812: 1713: 1684: 5476: 3539:
In the definition of a generalized almost complex structure we have imposed that the intersection of
2862: 1841: 150: 34: 5521: 1326:{\displaystyle =+{\mathcal {L}}_{X}\eta -{\mathcal {L}}_{Y}\xi -{\frac {1}{2}}d(i(X)\eta -i(Y)\xi )} 5701: 5621: 5436: 5370: 4732: 4114:. Therefore, these generalized complex structures are of the same type as those corresponding to a 3995: 3835: 3680: 3543:
and its conjugate contains only the origin, otherwise they would be unable to span the entirety of
2597: 2520: 2333: 1154: 1146: 704: 465: 126: 103: 38: 30: 5581: 4138:
Some of the almost structures in generalized complex geometry may be rephrased in the language of
2498: 2358: 1506: 1113: 710: 274:
of the cotangent bundle. Generalized geometry unites these two fields by treating sections of the
271: 5841: 5651: 5365: 5203: 5177: 5049: 4918: 4807: 4749: 2710: 2376: 5208: 5606: 5347: 5153: 5044: 5016: 4839: 4414: 4008: 4001:
As only half of a basis of vector fields are holomorphic, these complex structures are of type
3765: 3753: 125:
These structures first arose in Hitchin's program of characterizing geometrical structures via
55: 318:
of the tangent and cotangent bundles, which are formal sums of a vector field and a one-form.
5461: 5401: 5342: 5309: 5304: 5102: 5092: 5059: 4923: 4800: 4795: 4790: 4775: 4765: 4556: 4410: 4301: 2718: 2002: 1012: 99: 91: 5756: 1976: 1640: 5846: 5631: 4844: 4829: 4785: 4425: 4115: 4093: 3858: 3670: 3070: 1162: 154: 107: 4589:
Graña, Mariana (2006). "Flux compactifications in string theory: a comprehensive review".
1923: 1792: 8: 5761: 5646: 5299: 5198: 4824: 2933: 1380: 267: 4208:
structure. A generalized almost complex structure is a reduction of this structure to a
3302:. These choices of pure spinors are defined to be the sections of the canonical bundle. 5806: 5726: 5626: 5586: 5516: 5466: 5431: 5266: 5143: 5039: 4780: 4654: 4616: 4598: 4565: 4536: 741: 130: 5193: 5771: 5676: 5511: 5421: 5391: 5187: 5082: 5034: 4928: 4628: 4620: 3676: 1150: 959: 252: 134: 4405:
Generalized KĂ€hler manifolds, and their twisted counterparts, are equivalent to the
1403:
is a generalized almost complex structure such that the space of smooth sections of
220: 5781: 5716: 5686: 5566: 5506: 5471: 5416: 5406: 5319: 5271: 5229: 5134: 5127: 5120: 5113: 5106: 5024: 4814: 4722: 4664: 4608: 4575: 4519: 3774: 3770: 3299: 3074: 2941: 326: 263: 236: 5386: 4612: 3338:
Locally all pure spinors can be written in the same form, depending on an integer
5861: 5816: 5766: 5751: 5741: 5636: 5601: 5426: 4996: 4770: 3862: 2838: 2714: 1170: 5706: 4580: 4551: 1523:
is a 2-form. This correspondence extends straightforwardly to the complex case.
450:{\displaystyle \langle X+\xi ,Y+\eta \rangle ={\frac {1}{2}}(\xi (Y)+\eta (X)).} 5836: 5831: 5791: 5731: 5561: 5551: 5546: 5541: 5456: 5451: 5446: 5411: 5396: 5324: 5001: 4864: 4669: 4640: 4220:
structure. Therefore, the space of generalized complex structures is the coset
3007: 2645:. While the type of a subbundle can in principle be any integer between 0 and 2 1368: 1158: 212: 192: 142: 5721: 5641: 4111: 3175:
Therefore, a given pure spinor is annihilated by a half-dimensional subbundle
5876: 5826: 5811: 5786: 5776: 5746: 5691: 5666: 5596: 5591: 5556: 5531: 5491: 5281: 4933: 4849: 4727: 4708: 4505: 4492: 4422: 3406: 3292: 2827: 2458:. Gualtieri has proven that all maximal isotropic subbundles are of the form 468:
of the generalized tangent bundle which preserves the natural inner product:
322: 204: 162: 158: 111: 5611: 3015: 157:. Today generalized complex structures also play a leading role in physical 5856: 5696: 5576: 5526: 5496: 5481: 5289: 5256: 5148: 5074: 5054: 4991: 4854: 4632: 4523: 4418: 1664: 228: 138: 4351:{\displaystyle (\mathbf {T} \oplus \mathbf {T} ^{*})\otimes \mathbb {C} .} 3590:{\displaystyle (\mathbf {T} \oplus \mathbf {T} ^{*})\otimes \mathbb {C} .} 3284:{\displaystyle (\mathbf {T} \oplus \mathbf {T} ^{*})\otimes \mathbb {C} .} 3226:{\displaystyle (\mathbf {T} \oplus \mathbf {T} ^{*})\otimes \mathbb {C} .} 3168:{\displaystyle (\mathbf {T} \oplus \mathbf {T} ^{*})\otimes \mathbb {C} .} 3121:
and generators of the Clifford algebra are the fibers of our other bundle
2960:
The canonical bundle is a one complex dimensional subbundle of the bundle
2700:{\displaystyle (\mathbf {T} \oplus \mathbf {T} ^{*})\otimes \mathbb {C} .} 2653:
because the sum of the subbundle and its complex conjugate must be all of
5851: 5821: 5801: 5661: 5616: 5571: 5536: 5486: 5251: 5220: 4981: 4938: 4636: 4189:{\displaystyle (\mathbf {T} \oplus \mathbf {T} ^{*})\otimes \mathbb {C} } 4139: 3987:{\displaystyle (\mathbf {T} \oplus \mathbf {T} ^{*})\otimes \mathbb {C} } 3936:{\displaystyle (\mathbf {T} \oplus \mathbf {T} ^{*})\otimes \mathbb {C} } 3499:{\displaystyle (\mathbf {T} \oplus \mathbf {T} ^{*})\otimes \mathbb {C} } 3351: 3062:{\displaystyle (\mathbf {T} \oplus \mathbf {T} ^{*})\otimes \mathbb {C} } 3011: 2949: 2913:{\displaystyle (\mathbf {T} \oplus \mathbf {T} ^{*})\otimes \mathbb {C} } 2842: 802:{\displaystyle (\mathbf {T} \oplus \mathbf {T} ^{*})\otimes \mathbb {C} } 146: 87: 4541: 2649:, generalized almost complex structures cannot have a type greater than 5796: 5736: 5671: 5334: 5314: 5213: 5172: 4986: 4659: 4603: 4358:
Generalized KĂ€hler structures are reductions of the structure group to
3825:{\displaystyle \mathbf {\Lambda } ^{*}\mathbf {T} \otimes \mathbb {C} } 2995:{\displaystyle \mathbf {\Lambda } ^{*}\mathbf {T} \otimes \mathbb {C} } 1679: 1635: 707:, a generalized almost complex structure is uniquely determined by its 3657:
in which the dimension of the fibers of Δ is constant is said to be a
5711: 5501: 5441: 5087: 4961: 4882: 4877: 4872: 3354:Ί which generates the canonical bundle may always be put in the form 1421: 3832:
has a complex conjugation operation given by complex conjugation in
5357: 5246: 5241: 4971: 4966: 4903: 4819: 3873:)-forms, which are homogeneous polynomials in these one-forms with 3651: 3310:
If a pure spinor that determines a particular complex structure is
2722: 182: 4570: 4976: 4956: 4913: 4908: 4641:"Topological M-theory as unification of form theories of gravity" 3640:{\displaystyle E\cap {\overline {E}}=\Delta \otimes \mathbb {C} } 2834: 266:
one considers structures on the tangent bundles of manifolds. In
4677: 4142:. The word "almost" is removed if the structure is integrable. 3756:
of the two by two off-diagonal matrices with entries 1 and −1.
1420:
There is a one-to-one correspondence between maximal isotropic
4948: 2869:
with its complex conjugate. A maximal isotropic subspace of
1165:
subbundle is another section of the holomorphic subbundle.
4627: 2920:
is a generalized almost complex structure if and only if
2955: 2826:
is an arbitrary closed 2-form called the B-field in the
2588:
is the real dimension of the subbundle that annihilates
2944:
in the ordinary case. It is sometimes also called the
4437: 4364: 4310: 4229: 4151: 4096: 4046: 4011: 3949: 3898: 3838: 3796: 3717: 3688: 3606: 3549: 3512: 3461: 3427: 3363: 3305: 3243: 3185: 3127: 3090: 3024: 2966: 2875: 2771: 2731: 2659: 2606: 2557: 2523: 2501: 2464: 2417: 2385: 2361: 2336: 2302: 2265: 2228: 2071: 2031: 2005: 1979: 1946: 1926: 1873: 1844: 1815: 1795: 1750: 1716: 1687: 1643: 1603: 1566: 1532: 1509: 1467: 1430: 1342: 1182: 1116: 1068: 1025: 968: 818: 764: 744: 713: 603: 550: 477: 370: 287: 3114:{\displaystyle \mathbf {\Lambda } ^{*}\mathbf {T} ,} 110:. Generalized complex structures were introduced by 2812:{\displaystyle X+\xi \longrightarrow X+\xi +i_{X}B} 2755:{\displaystyle \mathbf {T} \oplus \mathbf {T} ^{*}} 2055:{\displaystyle \mathbf {T} \oplus \mathbf {T} ^{*}} 1627:{\displaystyle \mathbf {T} \oplus \mathbf {T} ^{*}} 1454:{\displaystyle \mathbf {T} \oplus \mathbf {T} ^{*}} 311:{\displaystyle \mathbf {T} \oplus \mathbf {T} ^{*}} 4486: 4476: 4397: 4350: 4285: 4188: 4102: 4068: 4017: 3986: 3935: 3849: 3824: 3744: 3703: 3639: 3589: 3531: 3498: 3451:to be the projection of the holomorphic subbundle 3443: 3394: 3283: 3225: 3167: 3113: 3061: 2994: 2912: 2811: 2754: 2699: 2629: 2580: 2532: 2509: 2487: 2446: 2403: 2367: 2347: 2322: 2288: 2251: 2211: 2054: 2017: 1991: 1961: 1932: 1912: 1859: 1830: 1801: 1773: 1734: 1702: 1655: 1634:as follows. The elements of the subbundle are the 1626: 1589: 1560:one can construct a maximally isotropic subbundle 1552: 1515: 1487: 1453: 1359: 1325: 1129: 1094: 1054: 993: 938: 801: 750: 726: 692: 586: 533: 449: 310: 3532:{\displaystyle \mathbf {T} \otimes \mathbb {C} .} 176: 5874: 4646:Advances in Theoretical and Mathematical Physics 3752:with the standard symplectic form, which is the 3444:{\displaystyle \mathbf {T} \otimes \mathbb {C} } 3350:-form Ω. In a local neighborhood of any point a 43:but its sources remain unclear because it lacks 1410: 758:of the complexified generalized tangent bundle 587:{\displaystyle {\mathcal {J}}^{2}=-{\rm {Id}},} 1055:{\displaystyle \langle \ell ,\ell '\rangle =0} 114:in 2002 and further developed by his students 4693: 3881:antiholomorphic factors. In particular, all ( 2709:The type of a maximal isotropic subbundle is 4508:(2003). "Generalized Calabi-Yau manifolds". 3069:act on differential forms. This action is a 2630:{\displaystyle L(\mathbf {E} ,\varepsilon )} 2581:{\displaystyle L(\mathbf {E} ,\varepsilon )} 2488:{\displaystyle L(\mathbf {E} ,\varepsilon )} 2289:{\displaystyle L(\mathbf {E} ,\varepsilon )} 2252:{\displaystyle L(\mathbf {E} ,\varepsilon )} 2096: 2072: 1774:{\displaystyle L(\mathbf {E} ,\varepsilon )} 1590:{\displaystyle L(\mathbf {E} ,\varepsilon )} 1043: 1026: 933: 825: 684: 660: 654: 604: 395: 371: 4286:{\displaystyle {\frac {O(2n,2n)}{U(n,n)}}.} 4133: 3650:for some subbundle Δ. A point which has an 3395:{\displaystyle \Phi =e^{B+i\omega }\Omega } 1553:{\displaystyle (\mathbf {E} ,\varepsilon )} 1488:{\displaystyle (\mathbf {E} ,\varepsilon )} 4700: 4686: 3346:, a nondegenerate symplectic form ω and a 1913:{\displaystyle \xi (Y)=\varepsilon (X,Y),} 4668: 4658: 4602: 4579: 4569: 4549: 4540: 4530: 4341: 4182: 3980: 3929: 3840: 3818: 3720: 3691: 3633: 3580: 3522: 3492: 3437: 3274: 3216: 3158: 3055: 2988: 2906: 2690: 870: 795: 133:, a connection which formed the basis of 74:Learn how and when to remove this message 3790:The space of complex differential forms 353:are one-forms then the inner product of 4504: 4032: 3759: 3328: 994:{\displaystyle L\cap {\overline {L}}=0} 5875: 4025:-closed (2,0)-form, are the only type 2454:Thus the total (complex) dimension in 321:The fibers are endowed with a natural 4681: 4588: 4487:Calabi versus Calabi–Yau metric 3333: 2956:Generalized almost complex structures 2447:{\displaystyle n-\dim(\mathbf {E} ).} 1407:is closed under the Courant bracket. 5098:Bogomol'nyi–Prasad–Sommerfield bound 4037:The pure spinor bundle generated by 3785: 3745:{\displaystyle \mathbb {R} ^{2n-2k}} 3664: 3237:and its complex conjugate is all of 2330:(complex) dimensions of choices for 953:satisfies the following properties: 462:generalized almost complex structure 15: 4298:generalized almost KĂ€hler structure 4196:with the above inner product is an 3764:Near non-regular points, the above 3421:of the complexified tangent bundle 2927: 13: 4477:{\displaystyle SU(n)\times SU(n).} 4069:{\displaystyle \phi =e^{i\omega }} 4012: 3711:and the standard symplectic space 3626: 3389: 3364: 3306:Integrability and other structures 2323:{\displaystyle \dim(\mathbf {E} )} 1360:{\displaystyle {\mathcal {L}}_{X}} 1346: 1254: 1234: 1140: 1095:{\displaystyle \ell ,\ell '\in L.} 885: 634: 609: 576: 573: 554: 480: 14: 5899: 4707: 3002:of complex differential forms on 2551:of a maximal isotropic subbundle 2404:{\displaystyle \mathbf {E} ^{*},} 1415: 1145:In ordinary complex geometry, an 102:that includes as special cases a 4511:Quarterly Journal of Mathematics 4421:in the context of 2-dimensional 4398:{\displaystyle U(n)\times U(n).} 4324: 4315: 4165: 4156: 3963: 3954: 3912: 3903: 3810: 3799: 3704:{\displaystyle \mathbb {C} ^{k}} 3563: 3554: 3514: 3475: 3466: 3429: 3412: 3257: 3248: 3199: 3190: 3141: 3132: 3104: 3093: 3038: 3029: 2980: 2969: 2889: 2880: 2861:is the complex dimension of the 2857:of a maximal isotropic subspace 2742: 2733: 2673: 2664: 2614: 2596:minus the real dimension of the 2565: 2503: 2472: 2434: 2411:which is of (complex) dimension 2388: 2338: 2313: 2273: 2236: 2042: 2033: 1962:{\displaystyle \mathbf {E} ^{*}} 1949: 1831:{\displaystyle \mathbf {E} ^{*}} 1818: 1758: 1735:{\displaystyle \varepsilon (X).} 1703:{\displaystyle \mathbf {E} ^{*}} 1690: 1614: 1605: 1574: 1537: 1472: 1441: 1432: 853: 844: 778: 769: 703:Like in the case of an ordinary 521: 512: 498: 489: 298: 289: 20: 5295:Eleven-dimensional supergravity 4029:generalized complex manifolds. 3405:where Ω is decomposable as the 3323:generalized Calabi-Yau manifold 1860:{\displaystyle \varepsilon (X)} 1394: 4552:"Generalized complex geometry" 4468: 4462: 4450: 4444: 4389: 4383: 4374: 4368: 4334: 4311: 4274: 4262: 4254: 4236: 4175: 4152: 3973: 3950: 3922: 3899: 3573: 3550: 3485: 3462: 3267: 3244: 3209: 3186: 3151: 3128: 3048: 3025: 2899: 2876: 2781: 2683: 2660: 2624: 2610: 2575: 2561: 2482: 2468: 2438: 2430: 2317: 2309: 2283: 2269: 2246: 2232: 2200: 2197: 2185: 2176: 2164: 2158: 2142: 2139: 2133: 2124: 2118: 2112: 1904: 1892: 1883: 1877: 1854: 1848: 1768: 1754: 1726: 1720: 1584: 1570: 1547: 1533: 1482: 1468: 1320: 1314: 1308: 1296: 1290: 1284: 1225: 1213: 1207: 1183: 930: 918: 902: 890: 863: 840: 788: 765: 651: 639: 626: 614: 508: 441: 438: 432: 423: 417: 411: 177:The generalized tangent bundle 1: 4743:Second superstring revolution 4613:10.1016/j.physrep.2005.10.008 4498: 4079:for a nondegenerate two-form 3850:{\displaystyle \mathbb {C} .} 2848: 2717:and also under shifts of the 2533:{\displaystyle \varepsilon .} 2348:{\displaystyle \mathbf {E} ,} 2296:is maximal because there are 1781:is isotropic, notice that if 1401:generalized complex structure 270:one is instead interested in 171: 96:generalized complex structure 5237:Generalized complex manifold 4738:First superstring revolution 4533:Generalized complex geometry 3618: 2510:{\displaystyle \mathbf {E} } 2368:{\displaystyle \varepsilon } 1516:{\displaystyle \varepsilon } 1411:Maximal isotropic subbundles 1130:{\displaystyle {\sqrt {-1}}} 1110:satisfying (i), (ii) is the 980: 727:{\displaystyle {\sqrt {-1}}} 247:, is the vector bundle over 211:whose fibers consist of all 7: 4581:10.4007/annals.2011.174.1.3 3780: 2259:is isotropic. Furthermore, 151:topological string theories 10: 5904: 4835:Non-critical string theory 4670:10.4310/ATMP.2005.v9.n4.a5 3857:This allows one to define 3668: 3291:This is true whenever the 1106:Vice versa, any subbundle 958:the intersection with its 276:generalized tangent bundle 5379: 5356: 5333: 5280: 5165: 5073: 5015: 4947: 4896: 4863: 4758: 4715: 4550:Gualtieri, Marco (2011). 4531:Gualtieri, Marco (2004). 4018:{\displaystyle \partial } 3080:A spinor is said to be a 1710:is equal to the one-form 5371:Introduction to M-theory 5065:Wess–Zumino–Witten model 5007:Hanany–Witten transition 4733:History of string theory 4134:Relation to G-structures 3877:holomorphic factors and 2940:, as it generalizes the 2637:onto the tangent bundle 1147:almost complex structure 705:almost complex structure 466:almost complex structure 199:, which will be denoted 29:This article includes a 5888:Structures on manifolds 5050:Vertex operator algebra 4750:String theory landscape 3998:on the tangent bundle. 2542: 2375:is unrestricted on the 2018:{\displaystyle Y+\eta } 1371:along the vector field 1161:of two sections of the 153:are special cases of a 58:more precise citations. 5348:AdS/CFT correspondence 5103:Exceptional Lie groups 5045:Superconformal algebra 5017:Conformal field theory 4888:Montonen–Olive duality 4840:Non-linear sigma model 4478: 4426:quantum field theories 4399: 4352: 4287: 4190: 4104: 4070: 4019: 3988: 3937: 3851: 3826: 3766:classification theorem 3746: 3705: 3641: 3591: 3533: 3500: 3445: 3396: 3285: 3227: 3169: 3115: 3063: 2996: 2948:, as its sections are 2914: 2837:. However it is upper 2813: 2756: 2701: 2631: 2592:. Equivalently it is 2 2582: 2534: 2511: 2489: 2448: 2405: 2369: 2349: 2324: 2290: 2253: 2213: 2056: 2019: 1993: 1992:{\displaystyle X+\xi } 1963: 1934: 1914: 1861: 1832: 1803: 1775: 1736: 1704: 1657: 1656:{\displaystyle X+\xi } 1628: 1591: 1554: 1517: 1489: 1455: 1361: 1327: 1131: 1096: 1056: 995: 940: 803: 752: 728: 694: 588: 535: 451: 345:are vector fields and 312: 166:flux compactifications 149:'s 2004 proposal that 5883:Differential geometry 5343:Holographic principle 5310:Type IIB supergravity 5305:Type IIA supergravity 5157:-form electrodynamics 4776:Bosonic string theory 4557:Annals of Mathematics 4479: 4411:Sylvester James Gates 4407:bihermitian manifolds 4400: 4353: 4288: 4191: 4105: 4103:{\displaystyle \phi } 4071: 4020: 3989: 3938: 3852: 3827: 3747: 3706: 3642: 3592: 3534: 3501: 3446: 3417:Define the subbundle 3397: 3342:, the B-field 2-form 3286: 3228: 3170: 3116: 3073:of the action of the 3064: 2997: 2915: 2814: 2757: 2702: 2632: 2583: 2535: 2512: 2490: 2449: 2406: 2370: 2350: 2325: 2291: 2254: 2214: 2057: 2020: 1994: 1964: 1935: 1915: 1862: 1833: 1804: 1776: 1737: 1705: 1658: 1629: 1592: 1555: 1518: 1490: 1456: 1362: 1328: 1132: 1097: 1057: 996: 962:is the zero section: 941: 804: 753: 729: 695: 589: 536: 452: 313: 100:differential manifold 92:differential geometry 5262:Hoƙava–Witten theory 5209:HyperkĂ€hler manifold 4897:Particles and fields 4845:Tachyon condensation 4830:Matrix string theory 4524:10.1093/qmath/hag025 4435: 4362: 4308: 4227: 4149: 4094: 4044: 4033:Symplectic manifolds 4009: 3994:defines an ordinary 3947: 3896: 3836: 3794: 3760:Local holomorphicity 3715: 3686: 3681:complex vector space 3604: 3547: 3510: 3459: 3425: 3361: 3329:Local classification 3241: 3183: 3125: 3088: 3022: 2964: 2934:complex line bundles 2873: 2769: 2729: 2657: 2604: 2555: 2521: 2499: 2462: 2415: 2383: 2359: 2334: 2300: 2263: 2226: 2069: 2029: 2003: 1977: 1944: 1933:{\displaystyle \xi } 1924: 1871: 1842: 1813: 1802:{\displaystyle \xi } 1793: 1748: 1714: 1685: 1641: 1601: 1564: 1530: 1507: 1465: 1428: 1340: 1180: 1173:which is defined by 1114: 1066: 1023: 966: 816: 762: 742: 711: 601: 548: 475: 368: 285: 155:topological M-theory 108:symplectic structure 5300:Type I supergravity 5204:Calabi–Yau manifold 5199:Ricci-flat manifold 5178:Kaluza–Klein theory 4919:Ramond–Ramond field 4825:String field theory 4635:; Neitzke, Andrew; 1381:exterior derivative 1157:if and only if the 1011:, i.e. its complex 738:, i.e. a subbundle 268:symplectic geometry 251:whose sections are 98:is a property of a 5267:K-theory (physics) 5144:ADE classification 4781:Superstring theory 4629:Dijkgraaf, Robbert 4474: 4395: 4348: 4283: 4186: 4100: 4066: 4015: 3984: 3933: 3847: 3822: 3742: 3701: 3637: 3587: 3529: 3496: 3441: 3392: 3281: 3223: 3165: 3111: 3059: 3006:. Recall that the 2992: 2946:pure spinor bundle 2910: 2809: 2752: 2697: 2627: 2578: 2530: 2507: 2485: 2444: 2401: 2365: 2345: 2320: 2286: 2249: 2209: 2052: 2015: 1989: 1959: 1930: 1910: 1857: 1828: 1799: 1771: 1732: 1700: 1678:restricted to the 1653: 1624: 1587: 1550: 1513: 1499:is a subbundle of 1485: 1451: 1357: 1323: 1127: 1092: 1052: 991: 936: 799: 748: 724: 690: 584: 531: 447: 308: 131:differential forms 31:list of references 5870: 5869: 5652:van Nieuwenhuizen 5188:Why 10 dimensions 5093:Chern–Simons form 5060:Kac–Moody algebra 5040:Conformal algebra 5035:Conformal anomaly 4929:Magnetic monopole 4924:Kalb–Ramond field 4766:Nambu–Goto action 4278: 3996:complex structure 3786:Complex manifolds 3775:Poisson structure 3771:Poisson manifolds 3677:Cartesian product 3671:Darboux's theorem 3665:Darboux's theorem 3621: 2156: 2110: 1674:and the one-form 1279: 1155:complex structure 1125: 1009:maximal isotropic 983: 960:complex conjugate 916: 882: 876: 751:{\displaystyle L} 722: 409: 135:Robbert Dijkgraaf 104:complex structure 84: 83: 76: 5895: 5380:String theorists 5320:Lie superalgebra 5272:Twisted K-theory 5230:Spin(7)-manifold 5183:Compactification 5025:Virasoro algebra 4808:Heterotic string 4702: 4695: 4688: 4679: 4678: 4674: 4672: 4662: 4624: 4606: 4585: 4583: 4573: 4546: 4544: 4527: 4483: 4481: 4480: 4475: 4404: 4402: 4401: 4396: 4357: 4355: 4354: 4349: 4344: 4333: 4332: 4327: 4318: 4292: 4290: 4289: 4284: 4279: 4277: 4257: 4231: 4219: 4207: 4195: 4193: 4192: 4187: 4185: 4174: 4173: 4168: 4159: 4109: 4107: 4106: 4101: 4090:The pure spinor 4075: 4073: 4072: 4067: 4065: 4064: 4024: 4022: 4021: 4016: 3993: 3991: 3990: 3985: 3983: 3972: 3971: 3966: 3957: 3942: 3940: 3939: 3934: 3932: 3921: 3920: 3915: 3906: 3856: 3854: 3853: 3848: 3843: 3831: 3829: 3828: 3823: 3821: 3813: 3808: 3807: 3802: 3751: 3749: 3748: 3743: 3741: 3740: 3723: 3710: 3708: 3707: 3702: 3700: 3699: 3694: 3646: 3644: 3643: 3638: 3636: 3622: 3614: 3596: 3594: 3593: 3588: 3583: 3572: 3571: 3566: 3557: 3538: 3536: 3535: 3530: 3525: 3517: 3505: 3503: 3502: 3497: 3495: 3484: 3483: 3478: 3469: 3450: 3448: 3447: 3442: 3440: 3432: 3401: 3399: 3398: 3393: 3388: 3387: 3334:Canonical bundle 3321:is said to be a 3300:complex function 3290: 3288: 3287: 3282: 3277: 3266: 3265: 3260: 3251: 3232: 3230: 3229: 3224: 3219: 3208: 3207: 3202: 3193: 3174: 3172: 3171: 3166: 3161: 3150: 3149: 3144: 3135: 3120: 3118: 3117: 3112: 3107: 3102: 3101: 3096: 3075:Clifford algebra 3068: 3066: 3065: 3060: 3058: 3047: 3046: 3041: 3032: 3001: 2999: 2998: 2993: 2991: 2983: 2978: 2977: 2972: 2942:canonical bundle 2938:canonical bundle 2928:Canonical bundle 2919: 2917: 2916: 2911: 2909: 2898: 2897: 2892: 2883: 2818: 2816: 2815: 2810: 2805: 2804: 2761: 2759: 2758: 2753: 2751: 2750: 2745: 2736: 2706: 2704: 2703: 2698: 2693: 2682: 2681: 2676: 2667: 2636: 2634: 2633: 2628: 2617: 2587: 2585: 2584: 2579: 2568: 2539: 2537: 2536: 2531: 2516: 2514: 2513: 2508: 2506: 2494: 2492: 2491: 2486: 2475: 2453: 2451: 2450: 2445: 2437: 2410: 2408: 2407: 2402: 2397: 2396: 2391: 2374: 2372: 2371: 2366: 2354: 2352: 2351: 2346: 2341: 2329: 2327: 2326: 2321: 2316: 2295: 2293: 2292: 2287: 2276: 2258: 2256: 2255: 2250: 2239: 2218: 2216: 2215: 2210: 2157: 2149: 2111: 2103: 2061: 2059: 2058: 2053: 2051: 2050: 2045: 2036: 2025:are sections of 2024: 2022: 2021: 2016: 1998: 1996: 1995: 1990: 1968: 1966: 1965: 1960: 1958: 1957: 1952: 1939: 1937: 1936: 1931: 1919: 1917: 1916: 1911: 1866: 1864: 1863: 1858: 1837: 1835: 1834: 1829: 1827: 1826: 1821: 1808: 1806: 1805: 1800: 1785:is a section of 1780: 1778: 1777: 1772: 1761: 1741: 1739: 1738: 1733: 1709: 1707: 1706: 1701: 1699: 1698: 1693: 1670:is a section of 1662: 1660: 1659: 1654: 1633: 1631: 1630: 1625: 1623: 1622: 1617: 1608: 1596: 1594: 1593: 1588: 1577: 1559: 1557: 1556: 1551: 1540: 1522: 1520: 1519: 1514: 1494: 1492: 1491: 1486: 1475: 1460: 1458: 1457: 1452: 1450: 1449: 1444: 1435: 1389:interior product 1366: 1364: 1363: 1358: 1356: 1355: 1350: 1349: 1332: 1330: 1329: 1324: 1280: 1272: 1264: 1263: 1258: 1257: 1244: 1243: 1238: 1237: 1136: 1134: 1133: 1128: 1126: 1118: 1101: 1099: 1098: 1093: 1082: 1061: 1059: 1058: 1053: 1042: 1000: 998: 997: 992: 984: 976: 945: 943: 942: 937: 917: 909: 889: 888: 880: 874: 873: 862: 861: 856: 847: 808: 806: 805: 800: 798: 787: 786: 781: 772: 757: 755: 754: 749: 733: 731: 730: 725: 723: 715: 699: 697: 696: 691: 638: 637: 613: 612: 593: 591: 590: 585: 580: 579: 564: 563: 558: 557: 540: 538: 537: 532: 530: 529: 524: 515: 507: 506: 501: 492: 484: 483: 456: 454: 453: 448: 410: 402: 317: 315: 314: 309: 307: 306: 301: 292: 264:complex geometry 237:cotangent bundle 86:In the field of 79: 72: 68: 65: 59: 54:this article by 45:inline citations 24: 23: 16: 5903: 5902: 5898: 5897: 5896: 5894: 5893: 5892: 5873: 5872: 5871: 5866: 5375: 5352: 5329: 5276: 5224: 5194:KĂ€hler manifold 5161: 5138: 5131: 5124: 5117: 5110: 5069: 5030:Mirror symmetry 5011: 4997:Brane cosmology 4943: 4892: 4859: 4815:N=2 superstring 4801:Type IIB string 4796:Type IIA string 4771:Polyakov action 4754: 4711: 4706: 4542:math.DG/0401221 4501: 4489: 4436: 4433: 4432: 4363: 4360: 4359: 4340: 4328: 4323: 4322: 4314: 4309: 4306: 4305: 4258: 4232: 4230: 4228: 4225: 4224: 4209: 4197: 4181: 4169: 4164: 4163: 4155: 4150: 4147: 4146: 4136: 4095: 4092: 4091: 4057: 4053: 4045: 4042: 4041: 4035: 4010: 4007: 4006: 3979: 3967: 3962: 3961: 3953: 3948: 3945: 3944: 3928: 3916: 3911: 3910: 3902: 3897: 3894: 3893: 3865:one-forms and ( 3863:antiholomorphic 3839: 3837: 3834: 3833: 3817: 3809: 3803: 3798: 3797: 3795: 3792: 3791: 3788: 3783: 3762: 3724: 3719: 3718: 3716: 3713: 3712: 3695: 3690: 3689: 3687: 3684: 3683: 3673: 3667: 3632: 3613: 3605: 3602: 3601: 3579: 3567: 3562: 3561: 3553: 3548: 3545: 3544: 3521: 3513: 3511: 3508: 3507: 3491: 3479: 3474: 3473: 3465: 3460: 3457: 3456: 3436: 3428: 3426: 3423: 3422: 3415: 3374: 3370: 3362: 3359: 3358: 3336: 3331: 3308: 3273: 3261: 3256: 3255: 3247: 3242: 3239: 3238: 3215: 3203: 3198: 3197: 3189: 3184: 3181: 3180: 3157: 3145: 3140: 3139: 3131: 3126: 3123: 3122: 3103: 3097: 3092: 3091: 3089: 3086: 3085: 3054: 3042: 3037: 3036: 3028: 3023: 3020: 3019: 2987: 2979: 2973: 2968: 2967: 2965: 2962: 2961: 2958: 2930: 2905: 2893: 2888: 2887: 2879: 2874: 2871: 2870: 2853:The real index 2851: 2839:semi-continuous 2800: 2796: 2770: 2767: 2766: 2746: 2741: 2740: 2732: 2730: 2727: 2726: 2715:diffeomorphisms 2689: 2677: 2672: 2671: 2663: 2658: 2655: 2654: 2613: 2605: 2602: 2601: 2564: 2556: 2553: 2552: 2545: 2522: 2519: 2518: 2502: 2500: 2497: 2496: 2471: 2463: 2460: 2459: 2433: 2416: 2413: 2412: 2392: 2387: 2386: 2384: 2381: 2380: 2360: 2357: 2356: 2337: 2335: 2332: 2331: 2312: 2301: 2298: 2297: 2272: 2264: 2261: 2260: 2235: 2227: 2224: 2223: 2148: 2102: 2070: 2067: 2066: 2046: 2041: 2040: 2032: 2030: 2027: 2026: 2004: 2001: 2000: 1978: 1975: 1974: 1973:. Thesefore if 1953: 1948: 1947: 1945: 1942: 1941: 1925: 1922: 1921: 1920:as the part of 1872: 1869: 1868: 1843: 1840: 1839: 1822: 1817: 1816: 1814: 1811: 1810: 1794: 1791: 1790: 1757: 1749: 1746: 1745: 1715: 1712: 1711: 1694: 1689: 1688: 1686: 1683: 1682: 1642: 1639: 1638: 1618: 1613: 1612: 1604: 1602: 1599: 1598: 1573: 1565: 1562: 1561: 1536: 1531: 1528: 1527: 1508: 1505: 1504: 1471: 1466: 1463: 1462: 1445: 1440: 1439: 1431: 1429: 1426: 1425: 1418: 1413: 1397: 1351: 1345: 1344: 1343: 1341: 1338: 1337: 1271: 1259: 1253: 1252: 1251: 1239: 1233: 1232: 1231: 1181: 1178: 1177: 1171:Courant bracket 1143: 1141:Courant bracket 1117: 1115: 1112: 1111: 1104: 1075: 1067: 1064: 1063: 1035: 1024: 1021: 1020: 975: 967: 964: 963: 949:Such subbundle 908: 884: 883: 869: 857: 852: 851: 843: 817: 814: 813: 794: 782: 777: 776: 768: 763: 760: 759: 743: 740: 739: 714: 712: 709: 708: 633: 632: 608: 607: 602: 599: 598: 572: 571: 559: 553: 552: 551: 549: 546: 545: 525: 520: 519: 511: 502: 497: 496: 488: 479: 478: 476: 473: 472: 401: 369: 366: 365: 302: 297: 296: 288: 286: 283: 282: 278:, which is the 272:exterior powers 213:tangent vectors 179: 174: 116:Marco Gualtieri 80: 69: 63: 60: 49: 35:related reading 25: 21: 12: 11: 5: 5901: 5891: 5890: 5885: 5868: 5867: 5865: 5864: 5859: 5854: 5849: 5844: 5839: 5834: 5829: 5824: 5819: 5814: 5809: 5804: 5799: 5794: 5789: 5784: 5779: 5774: 5769: 5764: 5759: 5754: 5749: 5744: 5739: 5734: 5729: 5724: 5719: 5714: 5709: 5704: 5702:Randjbar-Daemi 5699: 5694: 5689: 5684: 5679: 5674: 5669: 5664: 5659: 5654: 5649: 5644: 5639: 5634: 5629: 5624: 5619: 5614: 5609: 5604: 5599: 5594: 5589: 5584: 5579: 5574: 5569: 5564: 5559: 5554: 5549: 5544: 5539: 5534: 5529: 5524: 5519: 5514: 5509: 5504: 5499: 5494: 5489: 5484: 5479: 5474: 5469: 5464: 5459: 5454: 5449: 5444: 5439: 5434: 5429: 5424: 5419: 5414: 5409: 5404: 5399: 5394: 5389: 5383: 5381: 5377: 5376: 5374: 5373: 5368: 5362: 5360: 5354: 5353: 5351: 5350: 5345: 5339: 5337: 5331: 5330: 5328: 5327: 5325:Lie supergroup 5322: 5317: 5312: 5307: 5302: 5297: 5292: 5286: 5284: 5278: 5277: 5275: 5274: 5269: 5264: 5259: 5254: 5249: 5244: 5239: 5234: 5233: 5232: 5227: 5222: 5218: 5217: 5216: 5206: 5196: 5191: 5185: 5180: 5175: 5169: 5167: 5163: 5162: 5160: 5159: 5151: 5146: 5141: 5136: 5129: 5122: 5115: 5108: 5100: 5095: 5090: 5085: 5079: 5077: 5071: 5070: 5068: 5067: 5062: 5057: 5052: 5047: 5042: 5037: 5032: 5027: 5021: 5019: 5013: 5012: 5010: 5009: 5004: 5002:Quiver diagram 4999: 4994: 4989: 4984: 4979: 4974: 4969: 4964: 4959: 4953: 4951: 4945: 4944: 4942: 4941: 4936: 4931: 4926: 4921: 4916: 4911: 4906: 4900: 4898: 4894: 4893: 4891: 4890: 4885: 4880: 4875: 4869: 4867: 4865:String duality 4861: 4860: 4858: 4857: 4852: 4847: 4842: 4837: 4832: 4827: 4822: 4817: 4812: 4811: 4810: 4805: 4804: 4803: 4798: 4791:Type II string 4788: 4778: 4773: 4768: 4762: 4760: 4756: 4755: 4753: 4752: 4747: 4746: 4745: 4740: 4730: 4728:Cosmic strings 4725: 4719: 4717: 4713: 4712: 4705: 4704: 4697: 4690: 4682: 4676: 4675: 4660:hep-th/0411073 4653:(4): 603–665. 4625: 4604:hep-th/0509003 4586: 4547: 4535:(PhD Thesis). 4528: 4518:(3): 281–308. 4506:Hitchin, Nigel 4500: 4497: 4488: 4485: 4473: 4470: 4467: 4464: 4461: 4458: 4455: 4452: 4449: 4446: 4443: 4440: 4423:supersymmetric 4409:discovered by 4394: 4391: 4388: 4385: 4382: 4379: 4376: 4373: 4370: 4367: 4347: 4343: 4339: 4336: 4331: 4326: 4321: 4317: 4313: 4294: 4293: 4282: 4276: 4273: 4270: 4267: 4264: 4261: 4256: 4253: 4250: 4247: 4244: 4241: 4238: 4235: 4184: 4180: 4177: 4172: 4167: 4162: 4158: 4154: 4135: 4132: 4099: 4077: 4076: 4063: 4060: 4056: 4052: 4049: 4034: 4031: 4014: 3982: 3978: 3975: 3970: 3965: 3960: 3956: 3952: 3931: 3927: 3924: 3919: 3914: 3909: 3905: 3901: 3846: 3842: 3820: 3816: 3812: 3806: 3801: 3787: 3784: 3782: 3779: 3761: 3758: 3739: 3736: 3733: 3730: 3727: 3722: 3698: 3693: 3669:Main article: 3666: 3663: 3648: 3647: 3635: 3631: 3628: 3625: 3620: 3617: 3612: 3609: 3586: 3582: 3578: 3575: 3570: 3565: 3560: 3556: 3552: 3528: 3524: 3520: 3516: 3494: 3490: 3487: 3482: 3477: 3472: 3468: 3464: 3439: 3435: 3431: 3414: 3411: 3409:of one-forms. 3403: 3402: 3391: 3386: 3383: 3380: 3377: 3373: 3369: 3366: 3335: 3332: 3330: 3327: 3307: 3304: 3280: 3276: 3272: 3269: 3264: 3259: 3254: 3250: 3246: 3222: 3218: 3214: 3211: 3206: 3201: 3196: 3192: 3188: 3164: 3160: 3156: 3153: 3148: 3143: 3138: 3134: 3130: 3110: 3106: 3100: 3095: 3071:representation 3057: 3053: 3050: 3045: 3040: 3035: 3031: 3027: 3008:gamma matrices 2990: 2986: 2982: 2976: 2971: 2957: 2954: 2929: 2926: 2908: 2904: 2901: 2896: 2891: 2886: 2882: 2878: 2850: 2847: 2820: 2819: 2808: 2803: 2799: 2795: 2792: 2789: 2786: 2783: 2780: 2777: 2774: 2749: 2744: 2739: 2735: 2696: 2692: 2688: 2685: 2680: 2675: 2670: 2666: 2662: 2626: 2623: 2620: 2616: 2612: 2609: 2577: 2574: 2571: 2567: 2563: 2560: 2544: 2541: 2529: 2526: 2505: 2484: 2481: 2478: 2474: 2470: 2467: 2443: 2440: 2436: 2432: 2429: 2426: 2423: 2420: 2400: 2395: 2390: 2364: 2344: 2340: 2319: 2315: 2311: 2308: 2305: 2285: 2282: 2279: 2275: 2271: 2268: 2248: 2245: 2242: 2238: 2234: 2231: 2220: 2219: 2208: 2205: 2202: 2199: 2196: 2193: 2190: 2187: 2184: 2181: 2178: 2175: 2172: 2169: 2166: 2163: 2160: 2155: 2152: 2147: 2144: 2141: 2138: 2135: 2132: 2129: 2126: 2123: 2120: 2117: 2114: 2109: 2106: 2101: 2098: 2095: 2092: 2089: 2086: 2083: 2080: 2077: 2074: 2049: 2044: 2039: 2035: 2014: 2011: 2008: 1988: 1985: 1982: 1956: 1951: 1940:orthogonal to 1929: 1909: 1906: 1903: 1900: 1897: 1894: 1891: 1888: 1885: 1882: 1879: 1876: 1856: 1853: 1850: 1847: 1825: 1820: 1809:restricted to 1798: 1770: 1767: 1764: 1760: 1756: 1753: 1731: 1728: 1725: 1722: 1719: 1697: 1692: 1652: 1649: 1646: 1621: 1616: 1611: 1607: 1586: 1583: 1580: 1576: 1572: 1569: 1549: 1546: 1543: 1539: 1535: 1512: 1484: 1481: 1478: 1474: 1470: 1448: 1443: 1438: 1434: 1417: 1416:Classification 1414: 1412: 1409: 1396: 1393: 1369:Lie derivative 1354: 1348: 1334: 1333: 1322: 1319: 1316: 1313: 1310: 1307: 1304: 1301: 1298: 1295: 1292: 1289: 1286: 1283: 1278: 1275: 1270: 1267: 1262: 1256: 1250: 1247: 1242: 1236: 1230: 1227: 1224: 1221: 1218: 1215: 1212: 1209: 1206: 1203: 1200: 1197: 1194: 1191: 1188: 1185: 1142: 1139: 1124: 1121: 1103: 1102: 1091: 1088: 1085: 1081: 1078: 1074: 1071: 1051: 1048: 1045: 1041: 1038: 1034: 1031: 1028: 1002: 990: 987: 982: 979: 974: 971: 955: 947: 946: 935: 932: 929: 926: 923: 920: 915: 912: 907: 904: 901: 898: 895: 892: 887: 879: 872: 868: 865: 860: 855: 850: 846: 842: 839: 836: 833: 830: 827: 824: 821: 797: 793: 790: 785: 780: 775: 771: 767: 747: 721: 718: 701: 700: 689: 686: 683: 680: 677: 674: 671: 668: 665: 662: 659: 656: 653: 650: 647: 644: 641: 636: 631: 628: 625: 622: 619: 616: 611: 606: 583: 578: 575: 570: 567: 562: 556: 542: 541: 528: 523: 518: 514: 510: 505: 500: 495: 491: 487: 482: 458: 457: 446: 443: 440: 437: 434: 431: 428: 425: 422: 419: 416: 413: 408: 405: 400: 397: 394: 391: 388: 385: 382: 379: 376: 373: 361:is defined as 305: 300: 295: 291: 193:tangent bundle 178: 175: 173: 170: 163:supersymmetric 143:Andrew Neitzke 120:Gil Cavalcanti 82: 81: 39:external links 28: 26: 19: 9: 6: 4: 3: 2: 5900: 5889: 5886: 5884: 5881: 5880: 5878: 5863: 5860: 5858: 5855: 5853: 5850: 5848: 5847:Zamolodchikov 5845: 5843: 5842:Zamolodchikov 5840: 5838: 5835: 5833: 5830: 5828: 5825: 5823: 5820: 5818: 5815: 5813: 5810: 5808: 5805: 5803: 5800: 5798: 5795: 5793: 5790: 5788: 5785: 5783: 5780: 5778: 5775: 5773: 5770: 5768: 5765: 5763: 5760: 5758: 5755: 5753: 5750: 5748: 5745: 5743: 5740: 5738: 5735: 5733: 5730: 5728: 5725: 5723: 5720: 5718: 5715: 5713: 5710: 5708: 5705: 5703: 5700: 5698: 5695: 5693: 5690: 5688: 5685: 5683: 5680: 5678: 5675: 5673: 5670: 5668: 5665: 5663: 5660: 5658: 5655: 5653: 5650: 5648: 5645: 5643: 5640: 5638: 5635: 5633: 5630: 5628: 5625: 5623: 5620: 5618: 5615: 5613: 5610: 5608: 5605: 5603: 5600: 5598: 5595: 5593: 5590: 5588: 5585: 5583: 5580: 5578: 5575: 5573: 5570: 5568: 5565: 5563: 5560: 5558: 5555: 5553: 5550: 5548: 5545: 5543: 5540: 5538: 5535: 5533: 5530: 5528: 5525: 5523: 5520: 5518: 5515: 5513: 5510: 5508: 5505: 5503: 5500: 5498: 5495: 5493: 5490: 5488: 5485: 5483: 5480: 5478: 5475: 5473: 5470: 5468: 5465: 5463: 5460: 5458: 5455: 5453: 5450: 5448: 5445: 5443: 5440: 5438: 5435: 5433: 5430: 5428: 5425: 5423: 5420: 5418: 5415: 5413: 5410: 5408: 5405: 5403: 5400: 5398: 5395: 5393: 5390: 5388: 5385: 5384: 5382: 5378: 5372: 5369: 5367: 5366:Matrix theory 5364: 5363: 5361: 5359: 5355: 5349: 5346: 5344: 5341: 5340: 5338: 5336: 5332: 5326: 5323: 5321: 5318: 5316: 5313: 5311: 5308: 5306: 5303: 5301: 5298: 5296: 5293: 5291: 5288: 5287: 5285: 5283: 5282:Supersymmetry 5279: 5273: 5270: 5268: 5265: 5263: 5260: 5258: 5255: 5253: 5250: 5248: 5245: 5243: 5240: 5238: 5235: 5231: 5228: 5226: 5219: 5215: 5212: 5211: 5210: 5207: 5205: 5202: 5201: 5200: 5197: 5195: 5192: 5189: 5186: 5184: 5181: 5179: 5176: 5174: 5171: 5170: 5168: 5164: 5158: 5156: 5152: 5150: 5147: 5145: 5142: 5139: 5132: 5125: 5118: 5111: 5104: 5101: 5099: 5096: 5094: 5091: 5089: 5086: 5084: 5081: 5080: 5078: 5076: 5072: 5066: 5063: 5061: 5058: 5056: 5053: 5051: 5048: 5046: 5043: 5041: 5038: 5036: 5033: 5031: 5028: 5026: 5023: 5022: 5020: 5018: 5014: 5008: 5005: 5003: 5000: 4998: 4995: 4993: 4990: 4988: 4985: 4983: 4980: 4978: 4975: 4973: 4970: 4968: 4965: 4963: 4960: 4958: 4955: 4954: 4952: 4950: 4946: 4940: 4937: 4935: 4934:Dual graviton 4932: 4930: 4927: 4925: 4922: 4920: 4917: 4915: 4912: 4910: 4907: 4905: 4902: 4901: 4899: 4895: 4889: 4886: 4884: 4881: 4879: 4876: 4874: 4871: 4870: 4868: 4866: 4862: 4856: 4853: 4851: 4850:RNS formalism 4848: 4846: 4843: 4841: 4838: 4836: 4833: 4831: 4828: 4826: 4823: 4821: 4818: 4816: 4813: 4809: 4806: 4802: 4799: 4797: 4794: 4793: 4792: 4789: 4787: 4786:Type I string 4784: 4783: 4782: 4779: 4777: 4774: 4772: 4769: 4767: 4764: 4763: 4761: 4757: 4751: 4748: 4744: 4741: 4739: 4736: 4735: 4734: 4731: 4729: 4726: 4724: 4721: 4720: 4718: 4714: 4710: 4709:String theory 4703: 4698: 4696: 4691: 4689: 4684: 4683: 4680: 4671: 4666: 4661: 4656: 4652: 4648: 4647: 4642: 4638: 4634: 4633:Gukov, Sergei 4630: 4626: 4622: 4618: 4614: 4610: 4605: 4600: 4597:(3): 91–158. 4596: 4592: 4587: 4582: 4577: 4572: 4567: 4564:(1): 75–123. 4563: 4559: 4558: 4553: 4548: 4543: 4538: 4534: 4529: 4525: 4521: 4517: 4513: 4512: 4507: 4503: 4502: 4496: 4494: 4493:Nigel Hitchin 4484: 4471: 4465: 4459: 4456: 4453: 4447: 4441: 4438: 4429: 4427: 4424: 4420: 4416: 4412: 4408: 4392: 4386: 4380: 4377: 4371: 4365: 4345: 4337: 4329: 4319: 4303: 4300:is a pair of 4299: 4280: 4271: 4268: 4265: 4259: 4251: 4248: 4245: 4242: 4239: 4233: 4223: 4222: 4221: 4217: 4213: 4205: 4201: 4178: 4170: 4160: 4143: 4141: 4131: 4129: 4123: 4121: 4117: 4113: 4097: 4088: 4084: 4082: 4061: 4058: 4054: 4050: 4047: 4040: 4039: 4038: 4030: 4028: 4004: 3999: 3997: 3976: 3968: 3958: 3925: 3917: 3907: 3891: 3886: 3884: 3880: 3876: 3872: 3868: 3864: 3860: 3844: 3814: 3804: 3778: 3776: 3772: 3767: 3757: 3755: 3737: 3734: 3731: 3728: 3725: 3696: 3682: 3678: 3672: 3662: 3660: 3659:regular point 3656: 3653: 3629: 3623: 3615: 3610: 3607: 3600: 3599: 3598: 3584: 3576: 3568: 3558: 3542: 3526: 3518: 3488: 3480: 3470: 3454: 3433: 3420: 3413:Regular point 3410: 3408: 3407:wedge product 3384: 3381: 3378: 3375: 3371: 3367: 3357: 3356: 3355: 3353: 3349: 3345: 3341: 3326: 3324: 3320: 3315: 3313: 3303: 3301: 3296: 3294: 3293:wedge product 3278: 3270: 3262: 3252: 3236: 3220: 3212: 3204: 3194: 3178: 3162: 3154: 3146: 3136: 3108: 3098: 3083: 3078: 3076: 3072: 3051: 3043: 3033: 3017: 3013: 3009: 3005: 2984: 2974: 2953: 2951: 2947: 2943: 2939: 2935: 2925: 2923: 2902: 2894: 2884: 2868: 2864: 2860: 2856: 2846: 2844: 2840: 2836: 2831: 2829: 2828:string theory 2825: 2806: 2801: 2797: 2793: 2790: 2787: 2784: 2778: 2775: 2772: 2765: 2764: 2763: 2747: 2737: 2724: 2720: 2716: 2712: 2707: 2694: 2686: 2678: 2668: 2652: 2648: 2644: 2640: 2621: 2618: 2607: 2599: 2595: 2591: 2572: 2569: 2558: 2550: 2540: 2527: 2524: 2479: 2476: 2465: 2457: 2441: 2427: 2424: 2421: 2418: 2398: 2393: 2378: 2362: 2342: 2306: 2303: 2280: 2277: 2266: 2243: 2240: 2229: 2206: 2203: 2194: 2191: 2188: 2182: 2179: 2173: 2170: 2167: 2161: 2153: 2150: 2145: 2136: 2130: 2127: 2121: 2115: 2107: 2104: 2099: 2093: 2090: 2087: 2084: 2081: 2078: 2075: 2065: 2064: 2063: 2047: 2037: 2012: 2009: 2006: 1986: 1983: 1980: 1972: 1954: 1927: 1907: 1901: 1898: 1895: 1889: 1886: 1880: 1874: 1851: 1845: 1823: 1796: 1788: 1784: 1765: 1762: 1751: 1742: 1729: 1723: 1717: 1695: 1681: 1677: 1673: 1669: 1666: 1650: 1647: 1644: 1637: 1619: 1609: 1581: 1578: 1567: 1544: 1541: 1526:Given a pair 1524: 1510: 1502: 1498: 1479: 1476: 1446: 1436: 1423: 1408: 1406: 1402: 1392: 1390: 1386: 1382: 1378: 1374: 1370: 1352: 1317: 1311: 1305: 1302: 1299: 1293: 1287: 1281: 1276: 1273: 1268: 1265: 1260: 1248: 1245: 1240: 1228: 1222: 1219: 1216: 1210: 1204: 1201: 1198: 1195: 1192: 1189: 1186: 1176: 1175: 1174: 1172: 1166: 1164: 1160: 1156: 1152: 1148: 1138: 1122: 1119: 1109: 1089: 1086: 1083: 1079: 1076: 1072: 1069: 1049: 1046: 1039: 1036: 1032: 1029: 1018: 1014: 1010: 1006: 1003: 988: 985: 977: 972: 969: 961: 957: 956: 954: 952: 927: 924: 921: 913: 910: 905: 899: 896: 893: 877: 866: 858: 848: 837: 834: 831: 828: 822: 819: 812: 811: 810: 791: 783: 773: 745: 737: 719: 716: 706: 687: 681: 678: 675: 672: 669: 666: 663: 657: 648: 645: 642: 629: 623: 620: 617: 597: 596: 595: 581: 568: 565: 560: 526: 516: 503: 493: 485: 471: 470: 469: 467: 463: 444: 435: 429: 426: 420: 414: 406: 403: 398: 392: 389: 386: 383: 380: 377: 374: 364: 363: 362: 360: 356: 352: 348: 344: 340: 336: 332: 328: 324: 323:inner product 319: 303: 293: 281: 277: 273: 269: 265: 260: 258: 254: 250: 246: 242: 238: 234: 230: 226: 222: 218: 214: 210: 206: 205:vector bundle 202: 198: 194: 190: 187: 185: 169: 167: 164: 160: 159:string theory 156: 152: 148: 144: 140: 136: 132: 128: 123: 121: 117: 113: 112:Nigel Hitchin 109: 105: 101: 97: 93: 89: 78: 75: 67: 57: 53: 47: 46: 40: 36: 32: 27: 18: 17: 5392:Arkani-Hamed 5290:Supergravity 5257:Moduli space 5236: 5154: 5149:Dirac string 5075:Gauge theory 5055:Loop algebra 4992:Black string 4855:GS formalism 4650: 4644: 4637:Vafa, Cumrun 4594: 4590: 4561: 4555: 4532: 4515: 4509: 4490: 4430: 4419:Martin Roček 4295: 4215: 4211: 4203: 4199: 4144: 4140:G-structures 4137: 4128:B-symplectic 4127: 4124: 4119: 4089: 4085: 4080: 4078: 4036: 4026: 4002: 4000: 3889: 3887: 3882: 3878: 3874: 3870: 3866: 3789: 3763: 3674: 3658: 3655:neighborhood 3649: 3540: 3452: 3418: 3416: 3404: 3347: 3343: 3339: 3337: 3322: 3318: 3316: 3309: 3297: 3234: 3176: 3081: 3079: 3077:on spinors. 3016:Weyl spinors 3003: 2959: 2950:pure spinors 2937: 2931: 2921: 2866: 2863:intersection 2858: 2854: 2852: 2832: 2830:literature. 2823: 2821: 2762:of the form 2721:, which are 2708: 2650: 2646: 2643:complex type 2642: 2638: 2593: 2589: 2548: 2546: 2455: 2221: 1970: 1969:annihilates 1786: 1782: 1744:To see that 1743: 1675: 1671: 1667: 1665:vector field 1525: 1500: 1496: 1419: 1404: 1400: 1398: 1384: 1376: 1372: 1335: 1167: 1144: 1107: 1105: 1016: 1008: 1004: 950: 948: 702: 543: 461: 459: 358: 354: 350: 346: 342: 338: 334: 330: 320: 275: 261: 256: 248: 244: 240: 232: 229:vector field 224: 216: 208: 200: 196: 188: 183: 181:Consider an 180: 139:Sergei Gukov 124: 95: 85: 70: 61: 50:Please help 42: 5752:Silverstein 5252:Orientifold 4987:Black holes 4982:Black brane 4939:Dual photon 4145:The bundle 4112:KĂ€hler form 3859:holomorphic 3352:pure spinor 3082:pure spinor 3012:isomorphism 2843:codimension 1636:formal sums 1163:holomorphic 1159:Lie bracket 736:eigenbundle 464:is just an 147:Cumrun Vafa 127:functionals 88:mathematics 56:introducing 5877:Categories 5772:Strominger 5767:Steinhardt 5762:Staudacher 5677:Polchinski 5627:Nanopoulos 5587:Mandelstam 5567:Kontsevich 5407:Berenstein 5335:Holography 5315:Superspace 5214:K3 surface 5173:Worldsheet 5088:Instantons 4716:Background 4499:References 4415:Chris Hull 3754:direct sum 3010:define an 2849:Real index 2723:isometries 2598:projection 2377:complement 1680:dual space 1663:where the 1461:and pairs 1395:Definition 1151:integrable 544:such that 280:direct sum 243:, denoted 172:Definition 5807:Veneziano 5687:Rajaraman 5582:Maldacena 5472:Gopakumar 5422:Dijkgraaf 5417:Curtright 5083:Anomalies 4962:NS5-brane 4883:U-duality 4878:S-duality 4873:T-duality 4621:119508517 4591:Phys. Rep 4571:0911.0993 4454:× 4428:in 1984. 4378:× 4338:⊗ 4330:∗ 4320:⊕ 4302:commuting 4179:⊗ 4171:∗ 4161:⊕ 4098:ϕ 4062:ω 4048:ϕ 4013:∂ 3977:⊗ 3969:∗ 3959:⊕ 3926:⊗ 3918:∗ 3908:⊕ 3815:⊗ 3805:∗ 3800:Λ 3732:− 3630:⊗ 3627:Δ 3619:¯ 3611:∩ 3577:⊗ 3569:∗ 3559:⊕ 3519:⊗ 3489:⊗ 3481:∗ 3471:⊕ 3434:⊗ 3390:Ω 3385:ω 3365:Φ 3271:⊗ 3263:∗ 3253:⊕ 3213:⊗ 3205:∗ 3195:⊕ 3155:⊗ 3147:∗ 3137:⊕ 3099:∗ 3094:Λ 3052:⊗ 3044:∗ 3034:⊕ 2985:⊗ 2975:∗ 2970:Λ 2903:⊗ 2895:∗ 2885:⊕ 2791:ξ 2782:⟶ 2779:ξ 2748:∗ 2738:⊕ 2711:invariant 2687:⊗ 2679:∗ 2669:⊕ 2622:ε 2573:ε 2525:ε 2495:for some 2480:ε 2428:⁡ 2422:− 2394:∗ 2363:ε 2307:⁡ 2281:ε 2244:ε 2183:ε 2162:ε 2131:η 2116:ξ 2097:⟩ 2094:η 2082:ξ 2073:⟨ 2048:∗ 2038:⊕ 2013:η 1987:ξ 1955:∗ 1928:ξ 1890:ε 1875:ξ 1846:ε 1824:∗ 1797:ξ 1766:ε 1718:ε 1696:∗ 1651:ξ 1620:∗ 1610:⊕ 1582:ε 1545:ε 1511:ε 1480:ε 1447:∗ 1437:⊕ 1422:subbundle 1318:ξ 1303:− 1300:η 1269:− 1266:ξ 1249:− 1246:η 1205:η 1193:ξ 1120:− 1084:∈ 1077:ℓ 1070:ℓ 1044:⟩ 1037:ℓ 1030:ℓ 1027:⟨ 981:¯ 973:∩ 928:ξ 911:− 900:ξ 867:⊗ 859:∗ 849:⊕ 838:∈ 835:ξ 809:given by 792:⊗ 784:∗ 774:⊕ 717:− 685:⟩ 682:η 670:ξ 661:⟨ 655:⟩ 649:η 624:ξ 605:⟨ 569:− 527:∗ 517:⊕ 509:→ 504:∗ 494:⊕ 430:η 415:ξ 396:⟩ 393:η 381:ξ 372:⟨ 327:signature 304:∗ 294:⊕ 253:one-forms 203:, is the 186:-manifold 90:known as 64:June 2020 5862:Zwiebach 5817:Verlinde 5812:Verlinde 5787:Townsend 5782:Susskind 5717:Sagnotti 5682:Polyakov 5637:Nekrasov 5602:Minwalla 5597:Martinec 5562:Knizhnik 5557:Klebanov 5552:Kapustin 5517:'t Hooft 5452:Fischler 5387:Aganagić 5358:M-theory 5247:Conifold 5242:Orbifold 5225:manifold 5166:Geometry 4972:M5-brane 4967:M2-brane 4904:Graviton 4820:F-theory 4639:(2005). 3781:Examples 1080:′ 1062:for all 1040:′ 5792:Trivedi 5777:Sundrum 5742:Shenker 5732:Seiberg 5727:Schwarz 5697:Randall 5657:Novikov 5647:Nielsen 5632:Năstase 5542:Kallosh 5527:Gibbons 5467:Gliozzi 5457:Friedan 5447:Ferrara 5432:Douglas 5427:Distler 4977:S-brane 4957:D-brane 4914:Tachyon 4909:Dilaton 4723:Strings 4560:. (2). 3679:of the 2835:integer 2719:B-field 2222:and so 1387:is the 1379:is the 1367:is the 1015:equals 333:,  221:section 52:improve 5857:Zumino 5852:Zaslow 5837:Yoneya 5827:Witten 5747:Siegel 5722:Scherk 5692:Ramond 5667:Ooguri 5592:Marolf 5547:Kaluza 5532:Kachru 5522:Hoƙava 5512:Harvey 5507:Hanson 5492:Gubser 5482:Greene 5412:Bousso 5397:Atiyah 4949:Branes 4759:Theory 4619:  4116:scalar 3312:closed 2822:where 2713:under 1495:where 1336:where 881:  875:  337:). If 235:. The 191:. The 106:and a 5797:Turok 5707:Roček 5672:Ovrut 5662:Olive 5642:Neveu 5622:Myers 5617:Mukhi 5607:Moore 5577:Linde 5572:Klein 5497:Gukov 5487:Gross 5477:Green 5462:Gates 5442:Dvali 5402:Banks 4655:arXiv 4617:S2CID 4599:arXiv 4566:arXiv 4537:arXiv 2924:= 0. 2062:then 1867:then 1153:to a 594:and 325:with 227:is a 207:over 161:, as 37:, or 5822:Wess 5802:Vafa 5712:Rohm 5612:Motl 5537:Kaku 5502:Guth 5437:Duff 4417:and 3861:and 3652:open 2549:type 2547:The 2543:Type 2517:and 2355:and 1999:and 1789:and 1503:and 1383:and 1019:and 1013:rank 357:and 349:and 341:and 219:. A 145:and 118:and 94:, a 5832:Yau 5757:SÆĄn 5737:Sen 4665:doi 4609:doi 4595:423 4576:doi 4562:174 4520:doi 4202:, 2 4198:O(2 3506:to 3455:of 3179:of 2865:of 2725:of 2600:of 2425:dim 2379:of 2304:dim 1838:is 1597:of 1424:of 1149:is 1007:is 359:Y+η 355:X+Ο 262:In 255:on 239:of 231:on 223:of 215:to 195:of 129:of 5879:: 5133:, 5126:, 5119:, 5112:, 4663:. 4649:. 4643:. 4631:; 4615:. 4607:. 4593:. 4574:. 4554:. 4516:54 4514:. 4413:, 4296:A 4214:, 4210:U( 4130:. 4122:. 3869:, 3777:. 3661:. 3325:. 2952:. 2845:. 1399:A 1391:. 1375:, 460:A 259:. 141:, 137:, 122:. 41:, 33:, 5223:2 5221:G 5190:? 5155:p 5140:) 5137:8 5135:E 5130:7 5128:E 5123:6 5121:E 5116:4 5114:F 5109:2 5107:G 5105:( 4701:e 4694:t 4687:v 4673:. 4667:: 4657:: 4651:9 4623:. 4611:: 4601:: 4584:. 4578:: 4568:: 4545:. 4539:: 4526:. 4522:: 4472:. 4469:) 4466:n 4463:( 4460:U 4457:S 4451:) 4448:n 4445:( 4442:U 4439:S 4393:. 4390:) 4387:n 4384:( 4381:U 4375:) 4372:n 4369:( 4366:U 4346:. 4342:C 4335:) 4325:T 4316:T 4312:( 4281:. 4275:) 4272:n 4269:, 4266:n 4263:( 4260:U 4255:) 4252:n 4249:2 4246:, 4243:n 4240:2 4237:( 4234:O 4218:) 4216:n 4212:n 4206:) 4204:n 4200:n 4183:C 4176:) 4166:T 4157:T 4153:( 4120:0 4081:ω 4059:i 4055:e 4051:= 4027:N 4003:N 3981:C 3974:) 3964:T 3955:T 3951:( 3930:C 3923:) 3913:T 3904:T 3900:( 3890:n 3888:( 3883:n 3879:n 3875:m 3871:n 3867:m 3845:. 3841:C 3819:C 3811:T 3738:k 3735:2 3729:n 3726:2 3721:R 3697:k 3692:C 3634:C 3624:= 3616:E 3608:E 3585:. 3581:C 3574:) 3564:T 3555:T 3551:( 3541:L 3527:. 3523:C 3515:T 3493:C 3486:) 3476:T 3467:T 3463:( 3453:L 3438:C 3430:T 3419:E 3382:i 3379:+ 3376:B 3372:e 3368:= 3348:k 3344:B 3340:k 3319:M 3279:. 3275:C 3268:) 3258:T 3249:T 3245:( 3235:E 3221:. 3217:C 3210:) 3200:T 3191:T 3187:( 3177:E 3163:. 3159:C 3152:) 3142:T 3133:T 3129:( 3109:, 3105:T 3056:C 3049:) 3039:T 3030:T 3026:( 3004:M 2989:C 2981:T 2922:r 2907:C 2900:) 2890:T 2881:T 2877:( 2867:L 2859:L 2855:r 2824:B 2807:B 2802:X 2798:i 2794:+ 2788:+ 2785:X 2776:+ 2773:X 2743:T 2734:T 2695:. 2691:C 2684:) 2674:T 2665:T 2661:( 2651:N 2647:N 2639:T 2625:) 2619:, 2615:E 2611:( 2608:L 2594:N 2590:E 2576:) 2570:, 2566:E 2562:( 2559:L 2528:. 2504:E 2483:) 2477:, 2473:E 2469:( 2466:L 2456:n 2442:. 2439:) 2435:E 2431:( 2419:n 2399:, 2389:E 2343:, 2339:E 2318:) 2314:E 2310:( 2284:) 2278:, 2274:E 2270:( 2267:L 2247:) 2241:, 2237:E 2233:( 2230:L 2207:0 2204:= 2201:) 2198:) 2195:Y 2192:, 2189:X 2186:( 2180:+ 2177:) 2174:X 2171:, 2168:Y 2165:( 2159:( 2154:2 2151:1 2146:= 2143:) 2140:) 2137:X 2134:( 2128:+ 2125:) 2122:Y 2119:( 2113:( 2108:2 2105:1 2100:= 2091:+ 2088:Y 2085:, 2079:+ 2076:X 2043:T 2034:T 2010:+ 2007:Y 1984:+ 1981:X 1971:Y 1950:E 1908:, 1905:) 1902:Y 1899:, 1896:X 1893:( 1887:= 1884:) 1881:Y 1878:( 1855:) 1852:X 1849:( 1819:E 1787:E 1783:Y 1769:) 1763:, 1759:E 1755:( 1752:L 1730:. 1727:) 1724:X 1721:( 1691:E 1676:Ο 1672:E 1668:X 1648:+ 1645:X 1615:T 1606:T 1585:) 1579:, 1575:E 1571:( 1568:L 1548:) 1542:, 1538:E 1534:( 1501:T 1497:E 1483:) 1477:, 1473:E 1469:( 1442:T 1433:T 1405:L 1385:i 1377:d 1373:X 1353:X 1347:L 1321:) 1315:) 1312:Y 1309:( 1306:i 1297:) 1294:X 1291:( 1288:i 1285:( 1282:d 1277:2 1274:1 1261:Y 1255:L 1241:X 1235:L 1229:+ 1226:] 1223:Y 1220:, 1217:X 1214:[ 1211:= 1208:] 1202:+ 1199:Y 1196:, 1190:+ 1187:X 1184:[ 1123:1 1108:L 1090:. 1087:L 1073:, 1050:0 1047:= 1033:, 1017:N 1005:L 1001:; 989:0 986:= 978:L 970:L 951:L 934:} 931:) 925:+ 922:X 919:( 914:1 906:= 903:) 897:+ 894:X 891:( 886:J 878:: 871:C 864:) 854:T 845:T 841:( 832:+ 829:X 826:{ 823:= 820:L 796:C 789:) 779:T 770:T 766:( 746:L 734:- 720:1 688:. 679:+ 676:Y 673:, 667:+ 664:X 658:= 652:) 646:+ 643:Y 640:( 635:J 630:, 627:) 621:+ 618:X 615:( 610:J 582:, 577:d 574:I 566:= 561:2 555:J 522:T 513:T 499:T 490:T 486:: 481:J 445:. 442:) 439:) 436:X 433:( 427:+ 424:) 421:Y 418:( 412:( 407:2 404:1 399:= 390:+ 387:Y 384:, 378:+ 375:X 351:η 347:Ο 343:Y 339:X 335:N 331:N 329:( 299:T 290:T 257:M 249:M 245:T 241:M 233:M 225:T 217:M 209:M 201:T 197:M 189:M 184:N 77:) 71:( 66:) 62:( 48:.

Index

list of references
related reading
external links
inline citations
improve
introducing
Learn how and when to remove this message
mathematics
differential geometry
differential manifold
complex structure
symplectic structure
Nigel Hitchin
Marco Gualtieri
Gil Cavalcanti
functionals
differential forms
Robbert Dijkgraaf
Sergei Gukov
Andrew Neitzke
Cumrun Vafa
topological string theories
topological M-theory
string theory
supersymmetric
flux compactifications
N-manifold
tangent bundle
vector bundle
tangent vectors

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑