Knowledge

Gallium lanthanum sulfide glass

Source 📝

372:
required for melting in an ampoule. The melt is normally quenched to glass by pushing it into a water cooled jacket. An advantage of melting in an open atmosphere is the ability of volatile impurities to boil off and be carried away, a significant advantage over sealed systems. For example, no SH- impurity is observed in the absorption spectra of Ga-La-S glasses, compared to very significant quantities in sulphide glasses melted by the sealed ampoule technique.
322:
atmosphere can result in large compositional changes or complete removal of components with low vapour pressures. This process also has the effect of trapping any impurities in the precursors within the glass as thus the precursor purity limits the ultimate quality of the glass that is produced. In addition, impurities can be transferred to the glass from the ampoule walls.
371:
The molten gallium sulfides fluxed the lanthanum compounds and incorporated them into the melt at temperatures much lower than their respective melting points. The viscosity of the melt is low enough, at approximately 1 poise, to allow full mixing without the need for a rocking furnace which is
251:
molecule to the crystal is to break one of the Ga-S dative bonds and replace it with a S anion. This anion links the gallium atom such that its tetrahedral environment is not altered, but what was a tricoordinated S atom now becomes a dicoordinated bridging atom. This process creates a negative
321:
melting. In this technique the required glass precursor materials are sealed under vacuum in a silica ampoule, melted, and then quenched to form a glass within the ampoule. The requirement for the sealed atmosphere is dictated by the volatile nature of many of the precursors which if melted in open
164:; consequently Ga-La-S glass takes a deep orange colour. As with all chalcogenides the phase of the bulk is determined by two key factors; the material composition and the rate at which the molten material is cooled. These variables can be controlled to manipulate the final phase of the material. 211:
crystal shown in (figure 2 below) it should be noticed that two out of three sulfur atoms (S1 and S2) are each bound to three gallium atoms. These sulfur atoms have two normal covalent bonds to two of the gallium atoms. The third Ga-S bond is dative or coordinate covalent (one of the atoms
293:
Although high purity raw elements are now commercially available, with 99.9999% purity routine for many metals, even this level of purity is often not sufficient, particularly for optical fiber applications. More of a concern are commercially available chalcogenide compounds such as
212:
provides both electrons). The third sulfur atom, S3, is bound to just two gallium atoms and is thought to be a bridging atom. The average sulfur coordination number is greater than two; sulfide glasses usually have coordination numbers less than two. Experimentally, Ga
196:. It has been reported that the Ga-S bond lengths in the glassy state are identical to those in the crystalline state. Therefore, it is only necessary to change the bond angles and, thus, it is hypothesised that Ga-La-S has the potential to be a fast switching 273:
behavior of a glass. Similarly, impurities are a major concern for optical components. Impurities in the raw materials and hence in the resulting glass, contribute to the loss of power through an optical component, whether it is in the form of a long
268:
For both the practical application and scientific study of chalcogenide glasses, glass purity is of utmost importance. Varying levels of trace impurities, even at levels of a few parts per million can alter the
526:
Hewak, D.W.; Brady, D.; Curry, R.J.; Elliott, G.; Huang, C.C.; Hughes, M.; et al. (2010). "Chalcogenide glasses for photonics device applications". In Ganapathy, Senthil Murugan (ed.).
173: 80:
mixture, and readily accept other modifier materials into their structure. This means that Ga-La-S composition can be adjusted to give a wide variety of optical and physical properties.
224:
unit within the Ga-S crystal which has been noted as the glass former. The La-S bond is ionic and likely to be a network modifier. By adding an ionic sulfide to the crystal, like La
554:
Benazeth, S.; Tuilier, M.H.; Loireau-Lozac'h, A.M.; Dexpert, H.; Lagarde, P.; Flahaut, J. (1989). "An EXAFS structural approach of the lanthanum-gallium-sulfur glasses".
61:, which form the basic glass with other glass modifiers added as needed. Gallium-lanthanum-sulfide glasses have a wide range of vitreous formation centered around a 96: 243:
Of all the rare-earth sulfides, lanthanum gives the largest range of vitreous composites. The effect of adding an ionic sulfide modifier such as a La
318: 360:
to form the basic glass with glass modifiers added as needed. This allows melting in an open atmosphere, under a flowing inert gas, typically
125:
temperature of Ga-La-S makes it resistant to thermal damage, it has good chemical durability and unlike many chalcogenides which are based on
1087: 117:
Thermally, the refractive index of Ga-La-S glasses has a strong temperature dependence and low thermal conductivity, which results in strong
686: 17: 325:
The closed nature of the process leads to tightly controlled quality. In addition to the open and closed systems for glass melting,
310:, water or organic impurities. It is not unheard of to find for example, commercial gallium sulphide contaminated with 45% or more 326: 283: 368:
crucible and transferred to a silica tube furnace in a sealed vessel. Melting is typically at 1150 °C for 24 hours.
535: 306:. Although these may have been synthesized from high purity elements, the conversion process itself can readily introduce 1474: 1080: 679: 1479: 1168: 1557: 1073: 410:
Loireau-Lozac'h, Anne-Marie; Guittard, Micheline; Flahaut, Jean (1976). "Verres formes par les sulfures L
140:
solubility and dispersion of the ions in the glass matrix for active devices. Ga-La-S can exist in both
1567: 1552: 672: 391:
Flahaut, J.; Guittard M.; Loireau-Lozac'h, A.M. (1983). "Rare earth sulphide and oxysulphide glasses".
793: 1456: 1132: 1444: 709: 1189: 1008: 1001: 1522: 1335: 1319: 1173: 984: 874: 479:"Spectroscopy of potential mid-infrared laser transitions in gallium lanthanum sulphide glass" 1517: 1401: 1326: 1298: 1286: 1262: 1254: 960: 853: 777: 746: 741: 295: 37:
glasses, referred to as gallium lanthanum sulfide (Ga-La-S) glasses. They are mixtures of La
1406: 1160: 948: 902: 882: 837: 772: 625: 563: 489: 92: 8: 1439: 1431: 1311: 1213: 1197: 1152: 861: 845: 767: 197: 629: 567: 493: 252:
void which can then be filled by a La cation. Electrically, the effect of adding La
1484: 936: 931: 751: 107: 501: 1562: 1347: 1306: 1270: 1221: 1181: 1108: 926: 918: 695: 651: 643: 579: 575: 531: 505: 459: 455: 1028: 812: 732: 633: 571: 497: 451: 364:. Batches of the compounds are prepared in a nitrogen-purged glovebox, placed in a 188:
The structure of Ga-La-S glass consists of Ga-S bonds, with a length of 0.226 
122: 103: 1389: 1040: 972: 890: 869: 365: 317:
The conventional method for producing chalcogenide glasses is through the use of
303: 299: 279: 118: 614:"Deposition and characterization of germanium sulphide glass planar waveguides" 478: 390: 1546: 647: 583: 509: 463: 311: 270: 149: 336:
Gallium lanthanum sulfide glasses use essentially non-volatile components La
329:
is emerging as a method to produce high quality chalcogenide glass, in both
1469: 655: 638: 613: 141: 34: 525: 553: 275: 145: 287: 172: 157: 137: 1065: 1096: 825: 330: 193: 189: 161: 133: 664: 220:
has not been observed in a glassy state. There exists however a GaS
409: 817: 314:
through incomplete reaction of the precursors during production.
153: 126: 99:
was discovered in 1976 by Loireau-Lozac’h, Guittard, and Flahut.
477:
Schweizer, T.; Hewak, D.W.; Samson, B.N.; Payne, D.N. (1997).
361: 307: 596: 290:
as well as serving as nucleation sites for crystallization.
111: 1464: 1000: 282:. These impurities contribute to the optical loss through 476: 132:
A clear advantage over other chalcogenides is its high
114:
and a low maximum phonon energy, approx. 450 cm.
260:
is to give the glass an essentially ionic character.
86: 611: 1544: 612:Huang, C.C.; Hewak, D.W.; Badding, J.V. (2004). 426:" [Glasses formed by rare earth sulphides La 418:des terres rares avec le sulfure de gallium Ga 1081: 680: 597:Sanghera, J.S.; Aggarwal, I.D., eds. (1998). 232:, it is possible to modify the crystalline Ga 106:, a transmission window covering most of the 1088: 1074: 687: 673: 637: 549: 547: 171: 1095: 521: 519: 327:chalcogenide chemical vapour deposition 14: 1545: 544: 386: 384: 192:, and La-S bonds of length 0.293  129:, its glass components are non-toxic. 1069: 694: 668: 516: 528:Photonic glasses and glass-ceramics 381: 148:phases, in a glassy phase, it is a 24: 156:of 2.6 eV corresponding to a 25: 1579: 556:Journal of Non-Crystalline Solids 263: 136:content which allows excellent 110:and extending to about 10  87:History and physical properties 31:Gallium lanthanum sulfide glass 605: 590: 470: 403: 102:Optically, Ga-La-S has a high 13: 1: 502:10.1016/s0022-2313(96)00387-0 375: 91:The glass forming ability of 1002:Organogallium(III) compounds 601:. Boca Raton, FL: CRC Press. 576:10.1016/0022-3093(89)90186-5 456:10.1016/0025-5408(76)90099-4 167: 7: 444:Materials Research Bulletin 240:into a vitreous structure. 33:is the name of a family of 10: 1584: 18:Gallium lanthanum sulphide 1104: 805: 786: 760: 725: 702: 176:Figure 2. The covalent Ga 434:with gallium sulphide Ga 486:Journal of Luminescence 639:10.1364/opex.12.002501 185: 599:Infrared Fiber Optics 530:. Research Signpost. 333:and bulk glass form. 175: 184:crystalline network. 121:. However, the high 93:gallium(III) sulfide 1558:Lanthanum compounds 630:2004OExpr..12.2501H 568:1989JNCS..110...89B 494:1997JLum...72..419S 198:phase change memory 108:visible wavelengths 488:. 72–74: 419–421. 186: 1568:Non-oxide glasses 1553:Gallium compounds 1540: 1539: 1063: 1062: 1059: 1058: 696:Gallium compounds 624:(11): 2501–2505. 537:978-81-308-0375-3 450:(12): 1489–1496. 296:germanium sulfide 97:lanthanum sulfide 16:(Redirected from 1575: 1532: 1513: 1512: 1511: 1503: 1502: 1494: 1493: 1427: 1425: 1424: 1416: 1415: 1385: 1384: 1383: 1375: 1374: 1366: 1365: 1357: 1356: 1250: 1249: 1248: 1240: 1239: 1231: 1230: 1128: 1127: 1126: 1118: 1117: 1090: 1083: 1076: 1067: 1066: 998: 997: 689: 682: 675: 666: 665: 660: 659: 641: 609: 603: 602: 594: 588: 587: 551: 542: 541: 523: 514: 513: 483: 474: 468: 467: 407: 401: 400: 393:Glass Technology 388: 123:glass transition 104:refractive index 79: 21: 1583: 1582: 1578: 1577: 1576: 1574: 1573: 1572: 1543: 1542: 1541: 1536: 1531: 1527: 1523: 1510: 1507: 1506: 1505: 1501: 1498: 1497: 1496: 1492: 1489: 1488: 1487: 1485: 1460: 1452: 1448: 1435: 1423: 1420: 1419: 1418: 1414: 1411: 1410: 1409: 1407: 1397: 1393: 1382: 1379: 1378: 1377: 1373: 1370: 1369: 1368: 1364: 1361: 1360: 1359: 1355: 1352: 1351: 1350: 1348: 1343: 1339: 1330: 1323: 1315: 1302: 1294: 1290: 1282: 1278: 1274: 1266: 1258: 1247: 1244: 1243: 1242: 1238: 1235: 1234: 1233: 1229: 1226: 1225: 1224: 1222: 1217: 1209: 1205: 1201: 1193: 1185: 1177: 1164: 1156: 1148: 1144: 1140: 1136: 1125: 1122: 1121: 1120: 1116: 1113: 1112: 1111: 1109: 1100: 1094: 1064: 1055: 1052: 1048: 1044: 1036: 1032: 1024: 1020: 1016: 1012: 996: 992: 988: 980: 976: 968: 964: 956: 952: 944: 940: 922: 914: 910: 906: 898: 894: 886: 878: 865: 857: 849: 841: 833: 829: 821: 801: 797: 782: 756: 736: 721: 717: 713: 698: 693: 663: 610: 606: 595: 591: 552: 545: 538: 524: 517: 481: 475: 471: 441: 437: 433: 429: 425: 421: 417: 413: 408: 404: 389: 382: 378: 366:vitreous carbon 359: 355: 351: 347: 343: 339: 304:arsenic sulfide 300:gallium sulfide 280:infrared window 266: 259: 255: 250: 246: 239: 235: 231: 227: 223: 219: 215: 210: 206: 183: 179: 170: 119:thermal lensing 89: 83: 78: 74: 70: 66: 62: 60: 56: 52: 48: 44: 40: 28: 23: 22: 15: 12: 11: 5: 1581: 1571: 1570: 1565: 1560: 1555: 1538: 1537: 1535: 1534: 1529: 1525: 1520: 1515: 1508: 1499: 1490: 1482: 1477: 1472: 1467: 1462: 1458: 1454: 1450: 1446: 1442: 1437: 1433: 1429: 1421: 1412: 1404: 1399: 1395: 1391: 1387: 1380: 1371: 1362: 1353: 1345: 1341: 1337: 1333: 1328: 1321: 1317: 1313: 1309: 1304: 1300: 1296: 1292: 1288: 1284: 1280: 1276: 1272: 1268: 1264: 1260: 1256: 1252: 1245: 1236: 1227: 1219: 1215: 1211: 1207: 1203: 1199: 1195: 1191: 1187: 1183: 1179: 1175: 1171: 1166: 1162: 1158: 1154: 1150: 1146: 1142: 1138: 1134: 1130: 1123: 1114: 1105: 1102: 1101: 1093: 1092: 1085: 1078: 1070: 1061: 1060: 1057: 1056: 1054: 1050: 1046: 1042: 1038: 1034: 1030: 1026: 1022: 1018: 1014: 1010: 1006: 1004: 995: 994: 990: 986: 982: 978: 974: 970: 966: 962: 958: 954: 950: 946: 942: 938: 934: 929: 924: 920: 916: 912: 908: 904: 900: 896: 892: 888: 884: 880: 876: 872: 867: 863: 859: 855: 851: 847: 843: 839: 835: 831: 827: 823: 819: 815: 809: 807: 803: 802: 800: 799: 795: 790: 788: 787:Gallium(I,III) 784: 783: 781: 780: 775: 770: 764: 762: 758: 757: 755: 754: 749: 744: 739: 734: 729: 727: 723: 722: 720: 719: 715: 711: 706: 704: 700: 699: 692: 691: 684: 677: 669: 662: 661: 618:Optics Express 604: 589: 543: 536: 515: 469: 439: 435: 431: 427: 423: 419: 415: 411: 402: 379: 377: 374: 357: 353: 349: 345: 341: 337: 319:sealed ampoule 265: 262: 257: 253: 248: 244: 237: 233: 229: 225: 221: 217: 213: 208: 204: 181: 177: 169: 166: 88: 85: 76: 72: 71: : 30% La 68: 64: 58: 54: 50: 46: 42: 38: 26: 9: 6: 4: 3: 2: 1580: 1569: 1566: 1564: 1561: 1559: 1556: 1554: 1551: 1550: 1548: 1533: 1521: 1519: 1516: 1514: 1483: 1481: 1478: 1476: 1473: 1471: 1468: 1466: 1463: 1461: 1455: 1453: 1443: 1441: 1438: 1436: 1430: 1428: 1405: 1403: 1400: 1398: 1388: 1386: 1346: 1344: 1334: 1331: 1324: 1318: 1316: 1310: 1308: 1305: 1303: 1297: 1295: 1285: 1283: 1269: 1267: 1261: 1259: 1253: 1251: 1220: 1218: 1212: 1210: 1196: 1194: 1188: 1186: 1180: 1178: 1172: 1170: 1167: 1165: 1159: 1157: 1151: 1149: 1131: 1129: 1107: 1106: 1103: 1098: 1091: 1086: 1084: 1079: 1077: 1072: 1071: 1068: 1053: 1039: 1037: 1027: 1025: 1007: 1005: 1003: 999: 993: 983: 981: 971: 969: 959: 957: 947: 945: 935: 933: 930: 928: 925: 923: 917: 915: 901: 899: 889: 887: 881: 879: 873: 871: 868: 866: 860: 858: 852: 850: 844: 842: 836: 834: 824: 822: 816: 814: 811: 810: 808: 804: 798: 792: 791: 789: 785: 779: 776: 774: 771: 769: 766: 765: 763: 759: 753: 750: 748: 745: 743: 740: 738: 731: 730: 728: 724: 718: 708: 707: 705: 701: 697: 690: 685: 683: 678: 676: 671: 670: 667: 657: 653: 649: 645: 640: 635: 631: 627: 623: 619: 615: 608: 600: 593: 585: 581: 577: 573: 569: 565: 562:(1): 89–100. 561: 557: 550: 548: 539: 533: 529: 522: 520: 511: 507: 503: 499: 495: 491: 487: 480: 473: 465: 461: 457: 453: 449: 446:(in French). 445: 406: 398: 394: 387: 385: 380: 373: 369: 367: 363: 334: 332: 328: 323: 320: 315: 313: 312:gallium oxide 309: 305: 301: 297: 291: 289: 285: 281: 277: 272: 271:spectroscopic 264:Manufacturing 261: 241: 201: 199: 195: 191: 174: 165: 163: 159: 155: 151: 150:semiconductor 147: 143: 139: 135: 130: 128: 124: 120: 115: 113: 109: 105: 100: 98: 94: 84: 81: 36: 32: 27:Type of glass 19: 806:Gallium(III) 621: 617: 607: 598: 592: 559: 555: 527: 485: 472: 447: 443: 405: 396: 392: 370: 335: 324: 316: 292: 267: 242: 202: 187: 160:of 475  131: 116: 101: 90: 82: 35:chalcogenide 30: 29: 761:Gallium(II) 703:Gallium(-V) 276:glass fiber 146:crystalline 1547:Categories 726:Gallium(I) 399:: 149–156. 376:References 288:scattering 284:absorption 200:material. 158:wavelength 138:rare-earth 1099:compounds 1097:Lanthanum 648:1094-4087 584:0022-3093 510:0022-2313 464:0025-5408 331:thin film 203:In the Ga 168:Chemistry 134:lanthanum 1563:Sulfides 656:19475087 53:, and Ga 626:Bibcode 564:Bibcode 490:Bibcode 442:]. 154:bandgap 152:with a 127:arsenic 1432:La(OH) 883:Ga(CN) 875:Ga(OH) 654:  646:  582:  534:  508:  462:  352:and Ga 278:or an 142:glassy 63:70% Ga 1457:LaYbO 1336:La(NO 1312:LaMnO 1287:La(IO 1214:LaCoO 1153:LaAlO 1110:La(CH 1029:Ga(CH 973:Ga(CH 891:Ga(NO 482:(PDF) 362:argon 308:oxide 1475:LSCF 1470:LSAT 1465:LLZO 1402:LaOF 1327:LaNi 1320:LaNi 1190:LaCl 1174:LaBr 1169:LBCO 1133:La(C 1119:COO) 1041:Ga(C 1009:Ga(C 977:COO) 932:GaSb 919:GaPO 846:GaCl 838:GaBr 813:GaAs 794:GaCl 778:GaTe 773:GaSe 747:GaBr 742:GaCl 652:PMID 644:ISSN 580:ISSN 532:ISBN 506:ISSN 460:ISSN 344:, La 286:and 144:and 95:and 45:, La 1518:LaS 1504:LaO 1500:105 1480:LSM 1440:LaP 1307:LaN 1299:LaI 1263:LaH 1255:LaF 1241:LaO 1202:(CO 1182:LaC 1161:LaB 927:GaP 907:(SO 870:GaN 862:GaI 854:GaF 818:GaH 768:GaS 752:GaI 634:doi 572:doi 560:110 498:doi 452:doi 302:or 1549:: 1524:La 1491:54 1449:Te 1445:La 1408:La 1390:La 1358:(C 1349:La 1275:Hf 1271:La 1265:10 1237:72 1228:36 1198:La 989:Te 985:Ga 965:Se 961:Ga 949:Ga 937:Ga 903:Ga 826:Ga 733:Ga 714:Ga 710:Mg 650:. 642:. 632:. 622:12 620:. 616:. 578:. 570:. 558:. 546:^ 518:^ 504:. 496:. 484:. 458:. 448:11 397:24 395:. 383:^ 298:, 194:nm 190:nm 162:nm 112:μm 1530:3 1528:S 1526:2 1509:6 1495:H 1486:C 1459:3 1451:3 1447:2 1434:3 1426:S 1422:2 1417:O 1413:2 1396:3 1394:O 1392:2 1381:3 1376:) 1372:4 1367:O 1363:2 1354:2 1342:3 1340:) 1338:3 1332:) 1329:5 1325:( 1322:x 1314:3 1301:3 1293:3 1291:) 1289:3 1281:7 1279:O 1277:2 1273:2 1257:3 1246:6 1232:H 1223:C 1216:3 1208:3 1206:) 1204:3 1200:2 1192:3 1184:2 1176:3 1163:6 1155:3 1147:3 1145:) 1143:2 1141:O 1139:7 1137:H 1135:5 1124:3 1115:3 1089:e 1082:t 1075:v 1051:3 1049:) 1047:5 1045:H 1043:2 1035:3 1033:) 1031:3 1023:3 1021:) 1019:2 1017:O 1015:7 1013:H 1011:5 991:3 987:2 979:3 975:3 967:3 963:2 955:3 953:S 951:2 943:3 941:O 939:2 921:4 913:3 911:) 909:4 905:2 897:3 895:) 893:3 885:3 877:3 864:3 856:3 848:3 840:3 832:6 830:H 828:2 820:3 796:2 737:O 735:2 716:2 712:5 688:e 681:t 674:v 658:. 636:: 628:: 586:. 574:: 566:: 540:. 512:. 500:: 492:: 466:. 454:: 440:3 438:S 436:2 432:3 430:S 428:2 424:3 422:S 420:2 416:3 414:S 412:2 358:3 356:S 354:2 350:3 348:O 346:2 342:3 340:S 338:2 258:3 256:S 254:2 249:3 247:S 245:2 238:3 236:S 234:2 230:3 228:S 226:2 222:4 218:3 216:S 214:2 209:3 207:S 205:2 182:3 180:S 178:2 77:3 75:S 73:2 69:3 67:S 65:2 59:3 57:S 55:2 51:3 49:O 47:2 43:3 41:S 39:2 20:)

Index

Gallium lanthanum sulphide
chalcogenide
gallium(III) sulfide
lanthanum sulfide
refractive index
visible wavelengths
μm
thermal lensing
glass transition
arsenic
lanthanum
rare-earth
glassy
crystalline
semiconductor
bandgap
wavelength
nm

nm
nm
phase change memory
spectroscopic
glass fiber
infrared window
absorption
scattering
germanium sulfide
gallium sulfide
arsenic sulfide

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.