Knowledge

Phase-change memory

Source 📝

1892: 2117:-based selectors allow higher densities, utilizing < 4 F cell area by stacking memory layers horizontally or vertically. Often the isolation capabilities are inferior to the use of transistors if the on/off ratio for the selector is not sufficient, limiting the ability to operate very large arrays in this architecture. Chalcogenide-based threshold switches have been demonstrated as a viable selector for high-density PCM arrays 4742: 2302:—an additional two distinct intermediate states represent different degrees of partial crystallization, allowing for twice as many bits to be stored in the same physical area. In June 2011, IBM announced that they had created stable, reliable, multi-bit phase-change memory with high performance and stability. 1832:
allowed the material state to be more carefully controlled, allowing it to be transformed into one of four distinct states: the previous amorphous or crystalline states, along with two new partially crystalline ones. Each of these states has different electrical properties that can be measured during
2002:
In addition, with flash, each burst of voltage across the cell causes degradation. As the size of the cells decreases, damage from programming grows worse because the voltage necessary to program the device does not scale with the lithography. Most flash devices are rated for, currently, only 5,000
2153:) per square inch will be possible if the technology can be perfected. The basic idea is to reduce the amount of wiring needed on-chip; instead of wiring every cell, the cells are placed closer together and read by current passing through the MEMS probes, acting like wires. This approach resembles 1809:, it will transform into a crystalline state with a much lower resistance. The time to complete this phase transition is temperature-dependent. Cooler portions of the chalcogenide take longer to crystallize, and overheated portions may be remelted. A crystallization time scale on the order of 100 1990:
PRAM can offer much higher performance in applications where writing quickly is important, both because the memory element can be switched more quickly, and also because single bits may be changed to either 1 or 0 without needing to first erase an entire block of cells. PRAM's high performance,
2431:(~t). This severely limits the ability for multilevel operation, since a lower intermediate state would be confused with a higher intermediate state at a later time, and could also jeopardize standard two-state operation if the threshold voltage increases beyond the design value. 2442:
PRAM chips. Although the NOR flash chips they intended to replace operated in the −40-85 °C range, the PRAM chips operated in the 0-70 °C range, indicating a smaller operating window compared to NOR flash. This is likely due to the use of highly temperature-sensitive
2213:
devices are only 4 Mb, for example. The high density of Samsung's prototype PRAM device suggested it could be a viable flash competitor, and not limited to niche roles as other devices have been. PRAM appeared to be particularly attractive as a potential
2403:
Phase-change memory is susceptible to a fundamental tradeoff of unintended vs. intended phase-change. This stems primarily from the fact that phase-change is a thermally driven process rather than an electronic process. Thermal conditions that allow for fast
4116: 2324:
In April 2010, Numonyx announced the Omneo line of 128-Mbit NOR-compatible phase-change memories. Samsung announced shipment of 512 Mb phase-change RAM (PRAM) in a multi-chip package (MCP) for use in mobile handsets by Fall 2010.
2105:-selected arrays, only the selected bit lines contribute reverse bias leakage current. The difference in leakage current is several orders of magnitude. A further concern with scaling below 40 nm is the effect of discrete 3837:
Khaddam-Aljameh, Riduan; Stanisavljevic, Milos; Mas, Jordi Fornt; Karunaratne, Geethan; Brändli, Matthias; Liu, Feng; Singh, Abhairaj; Müller, Silvia M.; Egger, Urs; Petropoulos, Anastasios; Antonakopoulos, Theodore (2022).
2014:
PRAM devices also degrade with use, for different reasons than flash, but degrade much more slowly. A PRAM device may endure around 100 million write cycles. PRAM lifetime is limited by mechanisms such as degradation due to
1797:, or Ge:Sb:Te element ratio, is 2:2:5 in GST. When GST is heated to a high temperature (over 600 °C), its chalcogenide crystallinity is lost. Once cooled, it is frozen into an amorphous glass-like state and its 3718:
Burr, Geoffrey W.; Shelby, Robert M.; Sidler, Severin; di Nolfo, Carmelo; Jang, Junwoo; Boybat, Irem; Shenoy, Rohit S.; Narayanan, Pritish; Virwani, Kumar; Giacometti, Emanuele U.; Kurdi, Bulent N. (November 2015).
1668:
has also argued that PCM should be considered a memristor. However, this terminology has been challenged, and the potential applicability of memristor theory to any physically realizable device is open to question.
2825:
Burr, Geoffrey W.; BrightSky, Matthew J.; Sebastian, Abu; Cheng, Huai-Yu; Wu, Jau-Yi; Kim, Sangbum; Sosa, Norma E.; Papandreou, Nikolaos; Lung, Hsiang-Lan; Pozidis, Haralampos; Eleftheriou, Evangelos (June 2016).
2294:) PRAM array prototype. The prototype stored two logical bits in each physical cell, in effect 256 Mb of memory stored in a 128 Mb physical array. This means that instead of the normal two states—fully 3375:
Zhou, X.; Wu, L.; Song, Z.; Rao, F.; Ren, K.; Peng, C.; Song, S.; Liu, B.; Xu, L.; Feng, S. (2013). "Phase transition characteristics of Al-Sb phase change materials for phase change memory application".
1884:
has three distinct resistance levels, offering the potential to store three bits of data in two cells as opposed to two (nine states possible for the pair of cells, using eight of those states yields log
3236:
Caravati, Sebastiano; Bernasconi, Marco; Kühne, Thomas D.; Krack, Matthias; Parrinello, Michele (2007). "Coexistence of tetrahedral- and octahedral-like sites in amorphous phase change materials".
1723:, published an article on the technology. However, material quality and power consumption issues prevented commercialization of the technology. More recently, interest and research have resumed as 2089:
for a given cell size. However, the concern with using a diode stems from parasitic currents to neighboring cells, as well as a higher voltage requirement, resulting in higher power consumption.
3534:
Karpov, I.V.; Kencke, D.; Kau, D.; Tang, S.; Spadini, G. (2010). "Phase Change Memory with Chalcogenide Selector (PCMS): Characteristic Behaviors, Physical Models and Key Material Properties".
2314:
Also in February 2008, Intel and STMicroelectronics shipped prototype samples of their first PRAM product to customers. The 90 nm, 128 Mb (16 MB) product was called Alverstone.
3141:"Electric-Field Induced Filament Formation in As-Te-Ge Semiconductor" C.H. Sie, R. Uttecht, H. Stevenson, J. D. Griener and K. Raghavan , Journal of Non-Crystalline Solids, 2, 358–370,1970 2045:
manufacturing requiring higher soldering temperatures. A manufacturer using PRAM parts must provide a mechanism to program the PRAM "in-system" after it has been soldered in place.
1957: 4268: 3634: 1908:. PRAM's temperature sensitivity is perhaps its most notable drawback, one that may require changes in the production process of manufacturers incorporating the technology. 3499:
Pirovano, A.; Redaelli, A.; Pellizzer, F.; Ottogalli, F.; Tosi, M.; Ielmini, D.; Lacaita, A.L.; Bez, R. (2004). "Reliability study of phase-change nonvolatile memories".
4008: 2055:
By carefully modulating the amount of charge stored on the gate, flash devices can store multiple (usually two) bits in each physical cell. In effect, this doubles the
4253: 2360:
which do not require very high computing precision. In 2021, IBM published a full-fledged in-memory computing core based on multi-level PCM integrated in 14 nm
2246:
in October. They showed a 128 Mb part that began manufacture at STMicroelectronics's research lab in Agrate, Italy. Intel stated that the devices were strictly
3177: 2226:
offers similar densities to Samsung's PRAM prototype and already offers bit addressability (unlike NAND where memory is accessed in banks of many bytes at a time).
1592:
in a single cell, but the difficulties in programming cells in this way has prevented these capabilities from being implemented in other technologies (most notably
615: 4324: 4479: 2345:
More recently, there is significant interest in the application of PCM for in-memory computing. The essential idea is to perform computational tasks such as
4098: 2033:, or even purchased pre-programmed. The contents of a PRAM, however, are lost because of the high temperatures needed to solder the device to a board (see 3895:
Karpov, I.V.; Mitra, M.; Kau, D.; Spadini, G.; Kryukov, Y.A.; Karpov, V.G. (2007). "Fundamental drift of parameters in chalcogenide phase change memory".
3721:"Experimental Demonstration and Tolerancing of a Large-Scale Neural Network (165 000 Synapses) Using Phase-Change Memory as the Synaptic Weight Element" 2205:, was just coming to market), other technologies competing to replace flash in general offered lower densities (larger cell sizes). The only production 2412:
for crystallization it is possible to have fast crystallization at programming conditions while having very slow crystallization at normal conditions.
4314: 2622:: Intel's chief technology officer Justin Rattner is set to give the first public demonstration of the company's PRAM (phase-change RAM) technology 4352: 2093:
resistance is necessarily larger than that of a diode, meaning operating voltage must exceed 1 V by a wide margin to guarantee adequate
2052:
of the memory element in PRAM is more stable; at the normal working temperature of 85 °C, it is projected to retain data for 300 years.
2042: 3673: 2097:
current from the diode. Perhaps the most severe consequence of using a diode-selected array, in particular for large arrays, is the total
1773:
Although PRAM has not yet reached the commercialization stage for consumer electronic devices, nearly all prototype devices make use of a
4269:"Western Digital's HGST division creates new phase-change SSD that's orders of magnitude faster than any NAND flash drive on the market" 2540:: PRAM-related patent applications filed by Toshiba, Hitachi, Macronix, Renesas, Elpida, Sony, Matsushita, Mitsubishi, Infineon and more 1895:
A cross-section of two PRAM memory cells. One cell is in low resistance crystalline state, the other in high resistance amorphous state.
4773: 3013:
Di Ventra, Massimiliano; Pershin, Yuriy V. (2013). "On the physical properties of memristive, memcapacitive and meminductive systems".
2408:
should not be too similar to standby conditions, e.g. room temperature, otherwise data retention cannot be sustained. With the proper
2333:
In December 2018 STMicroelectronics presented design and performance data for a 16 MB ePCM array for a 28 nm fully depleted
4377: 3586: 3638: 2306:
had a joint developmental agreement and a technology license agreement with IBM for the development of multi-level PRAM technology.
1766:). In those instances, the material's optical properties are manipulated, rather than its electrical resistivity, as chalcogenide's 1646:
pulse. This new Interfacial Phase-Change Memory (IPCM) has had many successes and continues to be the site of much active research.
4226: 4198: 610: 4319: 630: 4447: 4405: 2049: 1963:
state from 1 to 0 or 0 to 1. Changing the bit's state requires removing the accumulated charge, which demands a relatively large
1588:
state. PCM also has the ability to achieve a number of distinct intermediary states, thereby having the ability to hold multiple
4596: 1504: 2258:
PRAM is also a promising technology in the military and aerospace industries where radiation effects make the use of standard
4172: 4012: 2742: 2416: 1045: 4566: 4043: 3659: 3568: 3474: 4309: 3107:
Pohm, A.; Sie, C.; Uttecht, R.; Kao, V.; Agrawal, O. (1970). "Chalcogenide glass bistable resistivity (Ovonic) memories".
4685: 4425: 4345: 3215: 3190: 1701:
array. A cinematographic study in 1970 established that the phase-change-memory mechanism in chalcogenide glass involves
17: 2698:: Micron announces availability of Phase-Change Memory for mobile devices - the first PRAM solution in volume production 1254: 206: 251: 3306: 2274:
immunity. In addition, BAE claims a write cycle endurance of 10, which will allow it to be a contender for replacing
2048:
The special gates used in flash memory "leak" charge (electrons) over time, causing corruption and loss of data. The
1754:
0, while the crystalline, low resistance state represents a 1. Chalcogenide is the same material used in re-writable
1557: 993: 936: 256: 104: 4487: 4102: 3840:"HERMES-Core–A 1.59-TOPS/mm² PCM on 14-nm CMOS In-Memory Compute Core Using 300-ps/LSB Linearized CCO-Based ADCs" 2346: 2070:, making them unsuitable for many space and military applications. PRAM exhibits higher resistance to radiation. 1319: 979: 923: 4549: 4527: 4338: 2126: 1971:, which takes some time to build up power. General write times for common flash devices are on the order of 100 1005: 674: 486: 82: 3694: 3607: 2881:
Simpson, R.E.; P. Fons; A. V. Kolobov; T. Fukaya; et al. (July 2011). "Interfacial phase-change memory".
4746: 4712: 3556: 2479:: Charles H. Sie published a dissertation at Iowa State University on chalcogenide phase-change-memory device 2275: 2137:
is dragged beneath thousands or even millions of electrical probes that can read and write the chalcogenide.
1354: 4055: 3336: 1919:. The gate is constructed with a special "stack" designed to trap charges (either on a floating gate or in 1728: 705: 600: 501: 3354: 3289:
Horii, H.; et al. (2003). "A novel cell technology using N-doped GeSbTe films for phase change RAM".
2185:
switches. The announcement was something of a surprise, and it was especially notable for its fairly high
4069: 2350: 2078: 1980: 1929: 662: 2066:
Because flash devices trap electrons to store information, they are susceptible to data corruption from
1599:
Recent research on PCM has been directed towards attempting to find viable material alternatives to the
4717: 4653: 4070:"Intel and Numonyx Achieve Research Milestone with Stacked, Cross Point Phase Change Memory Technology" 2485:: US Patent 3,448,302 (Shanefield) licensed to Ovshinsky claims first reliable operation of PRAM device 2186: 2056: 1838: 1497: 1294: 1193: 1065: 695: 684: 793: 4700: 4660: 1682: 556: 491: 386: 4294: 3045: 2716:: Western Digital demonstrates prototype PCM storage with 3 million I/Os and 1.5 microsecond latency 2638:: Intel and STMicroelectronics announce four-state MLC PRAM and begin shipping samples to customers. 1693:
that both described and demonstrated the feasibility of a phase-change-memory device by integrating
4768: 4472: 2992:
Meuffels, P.; Soni, R. (2012). "Fundamental Issues and Problems in the Realization of Memristors".
2969: 1366: 1349: 838: 124: 3652: 1584:, or to hold it in its crystallization temperature range for some time, thereby switching it to a 4665: 4638: 4467: 4400: 4213: 4087:
Numonyx to Present Phase-Change Memory Research Results at Leading Technology Industry Conference
4086: 3155: 2662:: Intel and Numonyx announce they have found a way to stack phase-change memory arrays on one die 1361: 1178: 901: 306: 141: 119: 99: 52: 4289: 2098: 2094: 4675: 4670: 4643: 4561: 4141: 3774:
Sebastian, Abu; Le Gallo, Manuel; Khaddam-Aljameh, Riduan; Eleftheriou, Evangelos (July 2020).
3185: 3040: 2321:
announced a collaborative effort in the development of PRAM market-tailored hardware products.
1711: 1234: 451: 321: 261: 2564:: Samsung announces successful 256 Mbit PRAM array, touts 400 μA programming current 2022:
during programming, metal (and other material) migration, and other mechanisms still unknown.
583: 4601: 4462: 4361: 2439: 2357: 2243: 2215: 2030: 1798: 1751: 1690: 1678: 1600: 1490: 737: 655: 441: 246: 226: 216: 72: 37: 3695:"Phase-Change Memory (PCM) - Technology, Advantages & Applications - STMicroelectronics" 2372:
The greatest challenge for phase-change memory has been the requirement of high programming
4648: 4611: 4591: 4507: 4388: 4254:"IBM demonstrates next-gen phase-change memory that's up to 275 times faster than your SSD" 4155:
Chung, H.; et al. (2011). "A 58nm 1.8V 1 Gb PRAM with 6.4 MB/s program BW".
3982: 3939: 3904: 3851: 3787: 3732: 3432: 3385: 3255: 3116: 3032: 2941: 2890: 2839: 2781: 2496: 2334: 2206: 2114: 1874: 1821:
patent application indicates PRAM may achieve switching times as fast as five nanoseconds.
1433: 1301: 1080: 1040: 963: 576: 481: 371: 266: 129: 109: 92: 87: 8: 4705: 4680: 4492: 4410: 3054: 2259: 1996: 1829: 1818: 1661: 1653: 1339: 1030: 968: 820: 772: 625: 436: 134: 4304: 4195: 3986: 3943: 3908: 3855: 3791: 3736: 3436: 3389: 3259: 3120: 3036: 2945: 2894: 2843: 2785: 4722: 4435: 4420: 4393: 4178: 3955: 3877: 3819: 3756: 3538:. MRS Proceedings. Vol. 1250. Cambridge University Press. pp. G14-01–H07-01. 3516: 3456: 3312: 3271: 3245: 3066: 3022: 2993: 2914: 2863: 2807: 2748: 2470: 2460: 2239: 1817:, which have a switching time on the order of two nanoseconds. However, a January 2006 1813:
is commonly used. This is longer than conventional volatile memory devices like modern
1686: 1561: 1439: 1404: 1050: 476: 461: 406: 401: 391: 366: 291: 3572: 1967:
to "suck" the electrons off the floating gate. This burst of voltage is provided by a
4544: 4497: 4182: 4168: 4132: 3959: 3881: 3869: 3823: 3811: 3803: 3748: 3448: 3302: 3275: 3058: 2906: 2855: 2811: 2799: 2736: 2680:: Samsung releases 512 Mbit PRAM with 65 nm process, in Multi-Chip-Package. 2420: 2409: 2222:
flash devices. State-of-the-art capacities on NAND passed 512 Mb some time ago.
2219: 2130: 2019: 1924: 1920: 1116: 1111: 1035: 1000: 854: 832: 731: 690: 593: 431: 156: 3775: 3543: 3520: 3316: 3070: 2867: 2710:: IBM demonstrates combining PCM, conventional NAND, and DRAM on a single controller 2059:, reducing cost. PRAM devices originally stored only a single bit in each cell, but 1689:
as a potential memory technology. In 1969, Charles Sie published a dissertation at
4690: 4606: 4522: 4502: 4457: 4452: 4160: 3990: 3947: 3912: 3859: 3795: 3760: 3740: 3635:"Intel, STMicroelectronics Deliver Industry's First Phase Change Memory Prototypes" 3539: 3508: 3460: 3440: 3393: 3294: 3263: 3124: 3050: 2949: 2918: 2898: 2847: 2789: 2644:: Numonyx announces mass production 128 Mbit PRAM device to selected customer. 2576:; Hitachi and Renesas announce 1.5 V PRAM with 100 μA programming current 2444: 2393: 2291: 2247: 2189:. The prototype featured a cell size of only 46.7 nm, smaller than commercial 2110: 2086: 2034: 2004: 1861:
present manufacturing challenges, since etching and polishing of the material with
1767: 1639: 1573: 1565: 1451: 1445: 1371: 1334: 1324: 1289: 1101: 1055: 1023: 798: 781: 466: 426: 186: 171: 67: 57: 4202: 2424: 2405: 2373: 2295: 2138: 2129:(micro-electric-mechanical-systems) probe storage devices. These devices are not 1992: 1802: 1743: 1581: 1569: 1344: 1171: 1158: 849: 844: 700: 567: 546: 521: 381: 301: 231: 201: 176: 62: 33: 3478: 2851: 4695: 4415: 4299: 4164: 4099:"Numonyx Memory Solutions - Numonyx Introduces New Phase Change Memory Devices" 3720: 3298: 2827: 2794: 2769: 2038: 1706: 1702: 1463: 1381: 1224: 881: 743: 679: 551: 536: 516: 511: 456: 421: 376: 326: 316: 311: 296: 191: 181: 114: 3864: 3839: 3799: 3151: 3128: 2954: 2353:. PCM-based in-memory computing could be interesting for applications such as 2290:
In February 2008, Intel and STMicroelectronics revealed the first multilevel (
1617:(GST), with mixed success. Other research has focused on the development of a 4762: 4727: 4554: 3994: 3951: 3873: 3807: 3752: 3744: 3512: 2859: 2803: 2546:: Nanochip licenses PRAM technology from Ovonyx for use in MEMS probe storage 2354: 2349:
in the memory array itself by exploiting PCM's analog storage capability and
2158: 2008: 1806: 1794: 1469: 1096: 1091: 1060: 815: 725: 541: 531: 526: 506: 341: 331: 211: 196: 4631: 4430: 3836: 3815: 3773: 3452: 3062: 2910: 2726:
memory where phase-change alloy is used as a storage part of a memory cell.
2492: 2190: 2134: 2090: 1905: 1904:
PRAM's switching time and inherent scalability make it more appealing than
1774: 1755: 1731:
memory technologies are expected to encounter scaling difficulties as chip
1724: 1716: 1694: 1635: 1593: 1416: 1410: 1376: 1244: 1199: 1183: 1075: 871: 866: 826: 788: 471: 446: 346: 281: 236: 221: 2902: 2650:: Samsung's phase-change RAM will go into mass production starting in June 4626: 4621: 4442: 2263: 1972: 1968: 1747: 1732: 1475: 1427: 861: 396: 336: 241: 4330: 2415:
Probably the biggest challenge for phase-change memory is its long-term
4586: 4214:
Micron Announces Availability of Phase Change Memory for Mobile Devices
3411:
Simpson, R. E. (2010). "Toward the Ultimate Limit of Phase Change in Ge
2674:: Numonyx releases Omneo PRAM Series (P8P and P5Q), both in 90 nm. 2389: 2381: 2102: 1976: 1810: 1070: 896: 650: 416: 411: 286: 151: 77: 3916: 3444: 3397: 3267: 3093: 2656:: Samsung announces mass production start of 512 Mbit PRAM device 1999:
roles that are currently performance-limited by memory access timing.
1891: 4616: 2723: 2438:
released its Omneo line of parallel and serial interface 128 Mb
2428: 2388:). The contact between the hot phase-change region and the adjacent 2223: 2142: 2067: 1866: 1862: 1858: 1850: 1786: 1778: 1657: 1649: 1621: 1618: 1577: 1457: 1422: 1259: 1188: 1086: 957: 948: 645: 588: 356: 276: 3660:"Samsung Electronics and Numonyx Join Forces on Phase Change Memory" 2932:
Chua, L. O. (2011), "Resistance switching memories are memristors",
2880: 2832:
IEEE Journal on Emerging and Selected Topics in Circuits and Systems
4537: 4512: 2400:
when expanding at a different rate from the phase-change material.
2397: 2303: 2267: 2202: 2178: 2150: 1912: 1854: 1782: 1625: 1386: 1329: 1264: 1219: 1204: 974: 943: 916: 891: 749: 635: 361: 271: 166: 161: 3498: 3250: 3176:
Moore, Gordon E.; Neale, R.G.; Nelson, D.L. (September 28, 1970).
3027: 2998: 2510:: Lockheed Martin works with Ovonyx on PRAM for space applications 2141:'s micro-mover technology can accurately position the platter to 3 1923:). The presence of charge within the gate shifts the transistor's 1642:
by changing the co-ordination state of the germanium atoms with a
4026: 3557:
SAMSUNG Introduces the Next Generation of Nonvolatile Memory—PRAM
3086:
Memory cell using bistable resistivity in amorphous As-Te-Ge film
2613: 2504:: Ovonyx joint venture is formed to commercialize PRAM technology 2435: 2392:
is another fundamental concern. The dielectric may begin to leak
2318: 2299: 2271: 2198: 2174: 2170: 2146: 1964: 1739: 1665: 1585: 1284: 1274: 1269: 1229: 1131: 1126: 1106: 911: 886: 876: 667: 2266:, referred to as C-RAM, claiming excellent radiation tolerance ( 2262:
such as flash impractical. PRAM devices have been introduced by
2193:
devices available at the time. Although flash devices of higher
1801:
is high. By heating the chalcogenide to a temperature above its
3536:
Symposium G – Materials and Physics for Nonvolatile Memories II
3178:"Nonvolatile and reprogramable, the read-mostly memory is here" 2459:: Kolomiets and Gorunova revealed semiconducting properties of 2377: 2279: 2106: 2082: 2026: 2016: 1916: 1870: 1790: 1763: 1603: 1279: 1239: 1121: 1010: 808: 351: 4124: 2606:: IBM Research Labs demonstrate a prototype 3 by 20 nanometers 2528:: Macronix files a patent application for transistor-less PRAM 4532: 3587:"IBM develops 'instantaneous' memory, 100x faster than flash" 3291:
2003 Symposium on VLSI Technology. Digest of Technical Papers
2629: 2600:: Intel and STMicroelectronics show a 128 Mbit PRAM chip 2385: 2235: 2210: 2182: 2125:
In August 2004, Nanochip licensed PRAM technology for use in
2074: 2060: 1825: 1759: 1720: 1698: 1643: 1214: 1151: 1146: 1141: 803: 760: 754: 640: 620: 605: 3235: 2824: 2588:: BAE Systems begins selling the first commercial PRAM chip 2361: 1984: 1814: 1209: 496: 146: 3012: 2522:: ST Microelectronics licenses PRAM technology from Ovonyx 1865:
can change the material's composition. Materials based on
1750:
values. The amorphous, high resistance state represents a
4284: 3973:
Kolomiets, B. T. (1964). "Vitreous Semiconductors (II)".
3776:"Memory devices and applications for in-memory computing" 2154: 2085:. Using a diode or a BJT provides the greatest amount of 1960: 1959:
higher or lower, corresponding to a change in the cell's
1834: 1746:
states of chalcogenide glass have dramatically different
1589: 1249: 1136: 906: 3930:
Kolomiets, B. T. (1964). "Vitreous Semiconductors (I)".
3717: 3152:"A Cinematic Study of Mechanisms of Phase Change Memory" 2218:, where device capacities typically lag behind those of 1975:(for a block of data), about 10,000 times the typical 10 4157:
2011 IEEE International Solid-State Circuits Conference
2552:: Samsung announces successful 64 Mbit PRAM array 2242:, who demonstrated their own PRAM devices at the 2006 3894: 3501:
IEEE Transactions on Device and Materials Reliability
2970:"HP and Hynix to produce the memristor goods by 2013" 2447:
to provide the high currents needed for programming.
1932: 2632:
begins pursuing PRAM by licensing Ovonyx' technology
4044:
Engadget Samsung PRAM chips go into mass production
3608:"SK hynix and IBM Sign Joint Development for PCRAM" 3533: 2828:"Recent Progress in Phase-Change Memory Technology" 2770:"An overview of phase-change memory device physics" 2686:: Samsung presented 58 nm 1.8V 1 Gb PRAM. 4227:"Micron: Hot DRAM. We don't need no steenkin' PCM" 4196:A 20nm 1.8V 8Gb PRAM with 40MB/s Program Bandwidth 2692:: Samsung presented 20 nm 1.8V 8 Gb PRAM 2101:leakage current from the unselected bit lines. In 2041:). This was made worse by the requirement to have 1951: 4056:"Samsung moves phase-change memory to production" 3629: 3627: 3106: 2767: 2704:: Micron withdraws all PCM parts from the market. 2380:/cm, compared to 10...10 A/cm for a typical 4760: 4027:"IT news, careers, business technology, reviews" 3579: 3569:"Intel Previews Potential Replacement for Flash" 3355:"Will phase-change memory replace flash memory?" 3175: 2668:: Numonyx announces 1 Gb 45 nm product 2234:Samsung's announcement was followed by one from 3666: 3475:"Intel to Sample Phase Change Memory This Year" 2768:Le Gallo, Manuel; Sebastian, Abu (2020-03-30). 2011:to spread writes across many physical sectors. 1833:reads, allowing a single cell to represent two 4315:BAE C-RAM Radiation-Hardened NVM press release 3624: 2582:: Samsung licenses PRAM technology from Ovonyx 2516:: Intel invests in Ovonyx, licenses technology 2063:'s recent advances have removed this problem. 4346: 3374: 2594:: Samsung announces 512 Mbit PRAM device 2558:: Elpida licenses PRAM technology from Ovonyx 2473:files first patent on phase-change technology 2073:PRAM cell selectors can use various devices: 1770:also changes with the state of the material. 1656:devices, including PCM, should be considered 1564:. In PCM, heat produced by the passage of an 1498: 3006: 2991: 2985: 1991:thousands of times faster than conventional 1869:and antimony are more thermally stable than 4320:BAE C-RAM Radiation-Hardened NVM data sheet 4310:European\Phase Change and Ovonics Symposium 2025:Flash parts can be programmed before being 4741: 4353: 4339: 3216:"Is NAND flash memory a dying technology?" 2133:. Instead, a very small platter coated in 1505: 1491: 4360: 3972: 3929: 3863: 3467: 3330: 3328: 3326: 3249: 3044: 3026: 2997: 2961: 2953: 2793: 1933: 1911:Flash memory works by modulating charge ( 2534:: Samsung begins work on PRAM technology 2328: 1890: 1560:. PRAMs exploit the unique behaviour of 4448:Carbon nanotube field-effect transistor 4406:Applications of artificial intelligence 3674:"Samsung to ship MCP with phase-change" 3550: 3410: 3404: 2309: 2164: 1995:, makes it particularly interesting in 14: 4761: 4597:Differential technological development 4266: 4251: 4224: 3334: 3323: 3090:Retrospective Theses and Dissertations 2967: 2570:: Intel increases investment in Ovonyx 2427:state slowly increases according to a 2340: 2229: 4334: 4154: 3725:IEEE Transactions on Electron Devices 3637:. Numonyx. 2008-02-06. Archived from 3288: 2925: 2774:Journal of Physics D: Applied Physics 2743:Magnetoresistive random-access memory 1849:Phase-change memory devices based on 1046:Vision Electronic Recording Apparatus 4567:Three-dimensional integrated circuit 3844:IEEE Journal of Solid-State Circuits 2931: 2616:licenses PRAM technology from Ovonyx 1844: 4686:Future-oriented technology analysis 4426:Progress in artificial intelligence 3094:https://lib.dr.iastate.edu/rtd/3604 3092:(PhD). Iowa State University. 3604 3083: 2396:at higher temperature, or may lose 2285: 1952:{\displaystyle \,V_{\mathrm {th} }} 1576:is used to either quickly heat and 24: 1943: 1940: 1888: 8 = 3 bits). 207:Data validation and reconciliation 25: 4785: 4774:Non-volatile random-access memory 4278: 4225:Mellor, Chris (14 January 2014). 2968:Mellor, Chris (10 October 2011), 2347:matrix-vector-multiply operations 2120: 1899: 1709:. In the September 1970 issue of 1685:first explored the properties of 1652:has argued that all two-terminal 1558:non-volatile random-access memory 257:Distributed file system for cloud 4740: 4101:. April 25, 2010. Archived from 4009:"Phase Change to Replace Flash?" 3335:Greene, Kate (4 February 2008). 105:Areal density (computer storage) 4463:Fourth-generation optical discs 4295:Energy Conversion Devices, Inc. 4260: 4245: 4218: 4207: 4189: 4148: 4109: 4091: 4080: 4062: 4048: 4037: 4019: 4001: 3966: 3923: 3888: 3830: 3767: 3711: 3687: 3600: 3561: 3544:10.1557/PROC-1250-G14-01-H07-01 3527: 3492: 3368: 3347: 3282: 3229: 3208: 3169: 3158:from the original on 2021-12-21 3144: 3135: 924:Programmable metallization cell 4300:Hitachi/Renesas Low-Power PRAM 4267:Hruska, Joel (6 August 2014). 3109:IEEE Transactions on Magnetics 3100: 3077: 3055:10.1088/0957-4484/24/25/255201 2874: 2818: 2761: 1915:) stored within the gate of a 487:Persistence (computer science) 13: 1: 4713:Technology in science fiction 4305:Hewlett-Packard Probe Storage 2755: 2722:: Intel and Micron announced 2423:drift. The resistance of the 2367: 2253: 1672: 1355:Electronic quantum holography 2003:writes per sector, and many 1824:A 2008 advance pioneered by 1596:) with the same capability. 706:Video RAM (dual-ported DRAM) 502:Non-RAID drive architectures 7: 4252:Hruska, Joel (8 May 2014). 4121:Samsung Electronics America 2852:10.1109/JETCAS.2016.2547718 2730: 2450: 2145:so densities of more than 1 1707:crystalline filament growth 10: 4790: 4718:Technology readiness level 4654:Technological unemployment 4165:10.1109/ISSCC.2011.5746415 4117:"Page Not Found - SAMSUNG" 3299:10.1109/VLSIT.2003.1221143 2329:ST 28 nm, 16 MB array 2317:In June 2009, Samsung and 1295:Holographic Versatile Disc 1194:Compact Disc Digital Audio 1066:Magnetic-tape data storage 685:Content-addressable memory 27:Novel computer memory type 4736: 4701:Technological singularity 4661:Technological convergence 4579: 4375: 4368: 4140:Cite uses generic title ( 3865:10.1109/JSSC.2022.3140414 3800:10.1038/s41565-020-0655-z 3129:10.1109/TMAG.1970.1066920 2955:10.1007/s00339-011-6264-9 2337:automotive control unit. 2216:replacement for NOR flash 2173:announced a prototype 512 1683:Energy Conversion Devices 492:Persistent data structure 387:Digital rights management 4473:Holographic data storage 3995:10.1002/pssb.19640070302 3952:10.1002/pssb.19640070202 3745:10.1109/TED.2015.2439635 3513:10.1109/TDMR.2004.836724 2795:10.1088/1361-6463/ab7794 2351:Kirchhoff's circuit laws 1367:DNA digital data storage 1350:Holographic data storage 839:Solid-state hybrid drive 125:Network-attached storage 4666:Technological evolution 4639:Exploratory engineering 4468:3D optical data storage 4401:Artificial intelligence 3975:Physica Status Solidi B 3932:Physica Status Solidi B 3903:(12): 124503–124503–6. 3378:Applied Physics Letters 3337:"A Memory Breakthrough" 3238:Applied Physics Letters 3189:: 56–60. Archived from 3154:. YouTube. 2012-06-21. 1638:to achieve non-thermal 1362:5D optical data storage 1179:3D optical data storage 902:Universal Flash Storage 307:Replication (computing) 252:Distributed file system 142:Single-instance storage 120:Direct-attached storage 100:Continuous availability 4676:Technology forecasting 4671:Technological paradigm 4644:Proactionary principle 4562:Software-defined radio 4015:on September 27, 2007. 3676:. EE Times. 2010-04-28 3662:. Samsung. 2009-06-23. 3589:. engadget. 2011-06-30 2495:publishes research in 1953: 1896: 1748:electrical resistivity 1235:Nintendo optical discs 452:Storage virtualization 322:Information repository 262:Distributed data store 4602:Disruptive innovation 4362:Emerging technologies 4231:www.theregister.co.uk 3780:Nature Nanotechnology 2903:10.1038/nnano.2011.96 2883:Nature Nanotechnology 2440:NOR flash replacement 2260:non-volatile memories 2244:Intel Developer Forum 1954: 1894: 1803:crystallization point 1799:electrical resistance 1691:Iowa State University 1679:Stanford R. Ovshinsky 1601:phase-change material 1580:the glass, making it 1542:ovonic unified memory 738:Mellon optical memory 726:Williams–Kilburn tube 442:Locality of reference 247:Clustered file system 73:Memory access pattern 4649:Technological change 4592:Collingridge dilemma 4389:Ambient intelligence 2497:Electronics Magazine 2461:chalcogenide glasses 2335:silicon on insulator 2310:Intel's 90 nm device 2165:Samsung 46.7 nm cell 1930: 1687:chalcogenide glasses 1434:Magnetic-core memory 1081:Digital Data Storage 1041:Quadruplex videotape 482:In-memory processing 372:Information transfer 267:Distributed database 130:Storage area network 110:Block (data storage) 4706:Technology scouting 4681:Accelerating change 4411:Machine translation 4325:Introduction to PCM 4127:on August 21, 2010. 3987:1964PSSBR...7..713K 3944:1964PSSBR...7..359K 3909:2007JAP...102l4503K 3856:2022IJSSC..57.1027K 3792:2020NatNa..15..529S 3737:2015ITED...62.3498B 3437:2010NanoL..10..414S 3390:2013ApPhL.103g2114Z 3260:2007ApPhL..91q1906C 3121:1970ITM.....6..592P 3037:2013Nanot..24y5201D 2946:2011ApPhA.102..765C 2895:2011NatNa...6..501S 2844:2016IJEST...6..146B 2786:2020JPhD...53u3002L 2341:In-memory computing 2230:Intel's PRAM device 2169:In September 2006, 2113:width scales down. 1983:for example (for a 1830:ST Microelectronics 1819:Samsung Electronics 1654:non-volatile-memory 1518:Phase-change memory 1031:Phonograph cylinder 969:Electrochemical RAM 821:Solid-state storage 437:Memory segmentation 135:Block-level storage 18:Phase change memory 4723:Technology roadmap 4436:Speech recognition 4421:Mobile translation 4394:Internet of things 4327:by Numonyx (video) 4201:2012-01-31 at the 4159:. pp. 500–2. 3293:. pp. 177–8. 3084:Sie, C.H. (1969). 2749:Read-mostly memory 2471:Stanford Ovshinsky 2282:in space systems. 2240:STMicroelectronics 2197:were available (64 1997:nonvolatile memory 1949: 1897: 1572:generally made of 1562:chalcogenide glass 1440:Plated-wire memory 1405:Paper data storage 1051:Magnetic recording 477:In-memory database 462:Memory-mapped file 407:Volume boot record 402:Master boot record 392:Volume (computing) 367:Data communication 292:Data deduplication 4756: 4755: 4575: 4574: 4545:Optical computing 4174:978-1-61284-303-2 4105:on 25 April 2010. 3917:10.1063/1.2825650 3731:(11): 3498–3507. 3612:SK hynix Newsroom 3575:on June 29, 2012. 3445:10.1021/nl902777z 3398:10.1063/1.4818662 3341:Technology Review 3268:10.1063/1.2801626 2934:Applied Physics A 2737:Ferroelectric RAM 2538:2003 through 2005 2421:threshold voltage 2410:activation energy 2364:technology node. 2020:thermal expansion 2005:flash controllers 1925:threshold voltage 1921:insulator "traps" 1845:Aluminum/antimony 1515: 1514: 1112:8 mm video format 1036:Phonograph record 855:Flash Core Module 833:Solid-state drive 732:Delay-line memory 691:Computational RAM 594:Scratchpad memory 432:Disk partitioning 157:Unstructured data 83:Secondary storage 16:(Redirected from 4781: 4744: 4743: 4691:Horizon scanning 4607:Ephemeralization 4523:Racetrack memory 4458:Extended reality 4453:Cybermethodology 4373: 4372: 4355: 4348: 4341: 4332: 4331: 4273: 4272: 4264: 4258: 4257: 4249: 4243: 4242: 4240: 4238: 4222: 4216: 4211: 4205: 4193: 4187: 4186: 4152: 4146: 4145: 4138: 4136: 4128: 4123:. Archived from 4113: 4107: 4106: 4095: 4089: 4084: 4078: 4077: 4066: 4060: 4059: 4052: 4046: 4041: 4035: 4034: 4023: 4017: 4016: 4011:. Archived from 4005: 3999: 3998: 3970: 3964: 3963: 3927: 3921: 3920: 3892: 3886: 3885: 3867: 3850:(4): 1027–1038. 3834: 3828: 3827: 3771: 3765: 3764: 3715: 3709: 3708: 3706: 3705: 3691: 3685: 3684: 3682: 3681: 3670: 3664: 3663: 3656: 3650: 3649: 3647: 3646: 3631: 3622: 3621: 3619: 3618: 3604: 3598: 3597: 3595: 3594: 3583: 3577: 3576: 3571:. Archived from 3565: 3559: 3554: 3548: 3547: 3531: 3525: 3524: 3496: 3490: 3489: 3487: 3486: 3477:. Archived from 3471: 3465: 3464: 3408: 3402: 3401: 3372: 3366: 3365: 3363: 3362: 3351: 3345: 3344: 3332: 3321: 3320: 3286: 3280: 3279: 3253: 3233: 3227: 3226: 3224: 3223: 3212: 3206: 3205: 3203: 3201: 3195: 3182: 3173: 3167: 3166: 3164: 3163: 3148: 3142: 3139: 3133: 3132: 3104: 3098: 3097: 3081: 3075: 3074: 3048: 3030: 3010: 3004: 3003: 3001: 2989: 2983: 2982: 2981: 2980: 2965: 2959: 2958: 2957: 2929: 2923: 2922: 2878: 2872: 2871: 2822: 2816: 2815: 2797: 2765: 2286:Multi-level cell 2248:proof-of-concept 2035:reflow soldering 1958: 1956: 1955: 1950: 1948: 1947: 1946: 1805:, but below the 1768:refractive index 1719:, co-founder of 1574:titanium nitride 1566:electric current 1556:)) is a type of 1554:chalcogenide RAM 1507: 1500: 1493: 1452:Thin-film memory 1446:Core rope memory 1372:Universal memory 1335:Millipede memory 1325:Racetrack memory 1290:Ultra HD Blu-ray 1102:Linear Tape-Open 1056:Magnetic storage 1024:Analog recording 467:Software entropy 427:Disk aggregation 187:Data degradation 172:Data compression 68:Memory hierarchy 58:Memory coherence 30: 29: 21: 4789: 4788: 4784: 4783: 4782: 4780: 4779: 4778: 4769:Computer memory 4759: 4758: 4757: 4752: 4732: 4571: 4382: 4379: 4378:Information and 4364: 4359: 4281: 4276: 4265: 4261: 4250: 4246: 4236: 4234: 4223: 4219: 4212: 4208: 4203:Wayback Machine 4194: 4190: 4175: 4153: 4149: 4139: 4130: 4129: 4115: 4114: 4110: 4097: 4096: 4092: 4085: 4081: 4068: 4067: 4063: 4054: 4053: 4049: 4042: 4038: 4025: 4024: 4020: 4007: 4006: 4002: 3971: 3967: 3928: 3924: 3893: 3889: 3835: 3831: 3772: 3768: 3716: 3712: 3703: 3701: 3693: 3692: 3688: 3679: 3677: 3672: 3671: 3667: 3658: 3657: 3653: 3644: 3642: 3633: 3632: 3625: 3616: 3614: 3606: 3605: 3601: 3592: 3590: 3585: 3584: 3580: 3567: 3566: 3562: 3555: 3551: 3532: 3528: 3497: 3493: 3484: 3482: 3473: 3472: 3468: 3422: 3418: 3414: 3409: 3405: 3373: 3369: 3360: 3358: 3353: 3352: 3348: 3333: 3324: 3309: 3287: 3283: 3234: 3230: 3221: 3219: 3214: 3213: 3209: 3199: 3197: 3196:on July 7, 2022 3193: 3180: 3174: 3170: 3161: 3159: 3150: 3149: 3145: 3140: 3136: 3105: 3101: 3082: 3078: 3046:10.1.1.745.8657 3011: 3007: 2990: 2986: 2978: 2976: 2966: 2962: 2930: 2926: 2879: 2875: 2823: 2819: 2766: 2762: 2758: 2733: 2453: 2434:In April 2010, 2406:crystallization 2374:current density 2370: 2343: 2331: 2312: 2288: 2256: 2232: 2181:) device using 2167: 2139:Hewlett-Packard 2123: 1939: 1938: 1934: 1931: 1928: 1927: 1902: 1887: 1882: 1878: 1847: 1675: 1634: 1630: 1615: 1611: 1607: 1570:heating element 1520:(also known as 1511: 1482: 1481: 1400: 1392: 1391: 1345:Patterned media 1315: 1307: 1306: 1174: 1164: 1163: 1159:Hard disk drive 1026: 1016: 1015: 996: 985: 984: 939: 929: 928: 850:IBM FlashSystem 845:USB flash drive 784: 767: 766: 721: 713: 712: 701:Dual-ported RAM 579: 562: 561: 522:Cloud computing 382:Copy protection 302:Data redundancy 232:Shared resource 202:Data validation 177:Data corruption 152:Structured data 63:Cache coherence 48: 34:Computer memory 28: 23: 22: 15: 12: 11: 5: 4787: 4777: 4776: 4771: 4754: 4753: 4751: 4750: 4737: 4734: 4733: 4731: 4730: 4725: 4720: 4715: 4710: 4709: 4708: 4703: 4698: 4693: 4688: 4683: 4673: 4668: 4663: 4658: 4657: 4656: 4646: 4641: 4636: 4635: 4634: 4629: 4624: 4619: 4609: 4604: 4599: 4594: 4589: 4583: 4581: 4577: 4576: 4573: 4572: 4570: 4569: 4564: 4559: 4558: 4557: 4547: 4542: 4541: 4540: 4535: 4530: 4525: 4520: 4515: 4510: 4505: 4500: 4495: 4490: 4482: 4477: 4476: 4475: 4470: 4460: 4455: 4450: 4445: 4440: 4439: 4438: 4433: 4428: 4423: 4418: 4416:Machine vision 4413: 4408: 4398: 4397: 4396: 4385: 4383: 4380:communications 4376: 4370: 4366: 4365: 4358: 4357: 4350: 4343: 4335: 4329: 4328: 4322: 4317: 4312: 4307: 4302: 4297: 4292: 4287: 4280: 4279:External links 4277: 4275: 4274: 4271:. ExtremeTech. 4259: 4256:. ExtremeTech. 4244: 4233:. The Register 4217: 4206: 4188: 4173: 4147: 4108: 4090: 4079: 4061: 4047: 4036: 4018: 4000: 3981:(3): 713–731. 3965: 3938:(2): 359–372. 3922: 3887: 3829: 3786:(7): 529–544. 3766: 3710: 3686: 3665: 3651: 3623: 3599: 3578: 3560: 3549: 3526: 3491: 3466: 3420: 3416: 3412: 3403: 3367: 3346: 3322: 3307: 3281: 3244:(17): 171906. 3228: 3207: 3168: 3143: 3134: 3099: 3076: 3021:(25): 255201. 3015:Nanotechnology 3005: 2984: 2960: 2940:(4): 765–783, 2924: 2873: 2838:(2): 146–162. 2817: 2780:(21): 213002. 2759: 2757: 2754: 2753: 2752: 2746: 2740: 2732: 2729: 2728: 2727: 2717: 2711: 2705: 2699: 2693: 2687: 2681: 2675: 2669: 2663: 2657: 2654:September 2009 2651: 2645: 2639: 2633: 2623: 2617: 2607: 2601: 2595: 2592:September 2006 2589: 2583: 2577: 2571: 2565: 2562:September 2005 2559: 2553: 2547: 2541: 2535: 2529: 2523: 2517: 2511: 2505: 2499: 2489:September 1970 2486: 2480: 2474: 2467:September 1966 2464: 2452: 2449: 2369: 2366: 2342: 2339: 2330: 2327: 2311: 2308: 2287: 2284: 2255: 2252: 2231: 2228: 2187:memory density 2166: 2163: 2122: 2121:2000 and later 2119: 2057:memory density 2039:wave soldering 1979:read time for 1945: 1942: 1937: 1917:MOS transistor 1901: 1900:PRAM vs. Flash 1898: 1885: 1880: 1876: 1846: 1843: 1839:memory density 1703:electric-field 1677:In the 1960s, 1674: 1671: 1632: 1628: 1613: 1609: 1605: 1513: 1512: 1510: 1509: 1502: 1495: 1487: 1484: 1483: 1480: 1479: 1473: 1467: 1464:Twistor memory 1461: 1455: 1449: 1443: 1437: 1431: 1425: 1420: 1414: 1408: 1401: 1398: 1397: 1394: 1393: 1390: 1389: 1384: 1382:Quantum memory 1379: 1374: 1369: 1364: 1359: 1358: 1357: 1347: 1342: 1337: 1332: 1327: 1322: 1316: 1314:In development 1313: 1312: 1309: 1308: 1305: 1304: 1299: 1298: 1297: 1292: 1287: 1282: 1277: 1272: 1267: 1262: 1257: 1252: 1247: 1242: 1237: 1232: 1227: 1225:Super Video CD 1222: 1217: 1212: 1207: 1202: 1197: 1191: 1186: 1175: 1170: 1169: 1166: 1165: 1162: 1161: 1156: 1155: 1154: 1149: 1144: 1139: 1134: 1129: 1124: 1119: 1114: 1109: 1104: 1099: 1094: 1089: 1084: 1078: 1073: 1068: 1063: 1058: 1048: 1043: 1038: 1033: 1027: 1022: 1021: 1018: 1017: 1014: 1013: 1008: 1003: 997: 991: 990: 987: 986: 983: 982: 977: 972: 966: 961: 951: 946: 940: 935: 934: 931: 930: 927: 926: 921: 920: 919: 914: 909: 904: 899: 894: 889: 884: 882:MultiMediaCard 879: 874: 869: 859: 858: 857: 852: 847: 842: 836: 830: 818: 813: 812: 811: 806: 796: 791: 785: 780: 779: 776: 775: 769: 768: 765: 764: 758: 752: 747: 744:Selectron tube 741: 735: 729: 722: 719: 718: 715: 714: 711: 710: 709: 708: 698: 693: 688: 682: 677: 672: 671: 670: 660: 659: 658: 653: 648: 643: 638: 633: 628: 623: 618: 613: 608: 598: 597: 596: 591: 584:Hardware cache 580: 575: 574: 571: 570: 564: 563: 560: 559: 554: 549: 544: 539: 537:Edge computing 534: 529: 524: 519: 517:Grid computing 514: 512:Bank switching 509: 504: 499: 494: 489: 484: 479: 474: 469: 464: 459: 457:Virtual memory 454: 449: 444: 439: 434: 429: 424: 422:Disk mirroring 419: 414: 409: 404: 399: 394: 389: 384: 379: 377:Temporary file 374: 369: 364: 359: 354: 349: 344: 339: 334: 329: 327:Knowledge base 324: 319: 317:Storage record 314: 312:Memory refresh 309: 304: 299: 297:Data structure 294: 289: 284: 279: 274: 269: 264: 259: 254: 249: 244: 239: 234: 229: 224: 219: 214: 209: 204: 199: 194: 192:Data integrity 189: 184: 182:Data cleansing 179: 174: 169: 164: 159: 154: 149: 144: 139: 138: 137: 132: 122: 117: 115:Object storage 112: 107: 102: 97: 96: 95: 85: 80: 75: 70: 65: 60: 55: 49: 46: 45: 42: 41: 26: 9: 6: 4: 3: 2: 4786: 4775: 4772: 4770: 4767: 4766: 4764: 4749: 4748: 4739: 4738: 4735: 4729: 4728:Transhumanism 4726: 4724: 4721: 4719: 4716: 4714: 4711: 4707: 4704: 4702: 4699: 4697: 4694: 4692: 4689: 4687: 4684: 4682: 4679: 4678: 4677: 4674: 4672: 4669: 4667: 4664: 4662: 4659: 4655: 4652: 4651: 4650: 4647: 4645: 4642: 4640: 4637: 4633: 4630: 4628: 4625: 4623: 4620: 4618: 4615: 4614: 4613: 4610: 4608: 4605: 4603: 4600: 4598: 4595: 4593: 4590: 4588: 4585: 4584: 4582: 4578: 4568: 4565: 4563: 4560: 4556: 4555:Chipless RFID 4553: 4552: 4551: 4548: 4546: 4543: 4539: 4536: 4534: 4531: 4529: 4526: 4524: 4521: 4519: 4516: 4514: 4511: 4509: 4506: 4504: 4501: 4499: 4496: 4494: 4491: 4489: 4486: 4485: 4483: 4481: 4478: 4474: 4471: 4469: 4466: 4465: 4464: 4461: 4459: 4456: 4454: 4451: 4449: 4446: 4444: 4441: 4437: 4434: 4432: 4429: 4427: 4424: 4422: 4419: 4417: 4414: 4412: 4409: 4407: 4404: 4403: 4402: 4399: 4395: 4392: 4391: 4390: 4387: 4386: 4384: 4381: 4374: 4371: 4367: 4363: 4356: 4351: 4349: 4344: 4342: 4337: 4336: 4333: 4326: 4323: 4321: 4318: 4316: 4313: 4311: 4308: 4306: 4303: 4301: 4298: 4296: 4293: 4291: 4288: 4286: 4283: 4282: 4270: 4263: 4255: 4248: 4232: 4228: 4221: 4215: 4210: 4204: 4200: 4197: 4192: 4184: 4180: 4176: 4170: 4166: 4162: 4158: 4151: 4143: 4134: 4126: 4122: 4118: 4112: 4104: 4100: 4094: 4088: 4083: 4075: 4074:www.intel.com 4071: 4065: 4057: 4051: 4045: 4040: 4032: 4031:Computerworld 4028: 4022: 4014: 4010: 4004: 3996: 3992: 3988: 3984: 3980: 3976: 3969: 3961: 3957: 3953: 3949: 3945: 3941: 3937: 3933: 3926: 3918: 3914: 3910: 3906: 3902: 3898: 3897:J. Appl. Phys 3891: 3883: 3879: 3875: 3871: 3866: 3861: 3857: 3853: 3849: 3845: 3841: 3833: 3825: 3821: 3817: 3813: 3809: 3805: 3801: 3797: 3793: 3789: 3785: 3781: 3777: 3770: 3762: 3758: 3754: 3750: 3746: 3742: 3738: 3734: 3730: 3726: 3722: 3714: 3700: 3696: 3690: 3675: 3669: 3661: 3655: 3641:on 2008-06-09 3640: 3636: 3630: 3628: 3613: 3609: 3603: 3588: 3582: 3574: 3570: 3564: 3558: 3553: 3545: 3541: 3537: 3530: 3522: 3518: 3514: 3510: 3506: 3502: 3495: 3481:on 2007-03-23 3480: 3476: 3470: 3462: 3458: 3454: 3450: 3446: 3442: 3438: 3434: 3430: 3426: 3407: 3399: 3395: 3391: 3387: 3384:(7): 072114. 3383: 3379: 3371: 3356: 3350: 3342: 3338: 3331: 3329: 3327: 3318: 3314: 3310: 3308:4-89114-033-X 3304: 3300: 3296: 3292: 3285: 3277: 3273: 3269: 3265: 3261: 3257: 3252: 3247: 3243: 3239: 3232: 3217: 3211: 3192: 3188: 3187: 3179: 3172: 3157: 3153: 3147: 3138: 3130: 3126: 3122: 3118: 3114: 3110: 3103: 3095: 3091: 3087: 3080: 3072: 3068: 3064: 3060: 3056: 3052: 3047: 3042: 3038: 3034: 3029: 3024: 3020: 3016: 3009: 3000: 2995: 2988: 2975: 2971: 2964: 2956: 2951: 2947: 2943: 2939: 2935: 2928: 2920: 2916: 2912: 2908: 2904: 2900: 2896: 2892: 2888: 2884: 2877: 2869: 2865: 2861: 2857: 2853: 2849: 2845: 2841: 2837: 2833: 2829: 2821: 2813: 2809: 2805: 2801: 2796: 2791: 2787: 2783: 2779: 2775: 2771: 2764: 2760: 2750: 2747: 2744: 2741: 2738: 2735: 2734: 2725: 2721: 2718: 2715: 2712: 2709: 2706: 2703: 2700: 2697: 2694: 2691: 2690:February 2012 2688: 2685: 2684:February 2011 2682: 2679: 2676: 2673: 2670: 2667: 2666:December 2009 2664: 2661: 2658: 2655: 2652: 2649: 2646: 2643: 2642:December 2008 2640: 2637: 2636:February 2008 2634: 2631: 2627: 2624: 2621: 2618: 2615: 2611: 2608: 2605: 2604:December 2006 2602: 2599: 2596: 2593: 2590: 2587: 2584: 2581: 2580:December 2005 2578: 2575: 2574:December 2005 2572: 2569: 2566: 2563: 2560: 2557: 2556:February 2005 2554: 2551: 2548: 2545: 2542: 2539: 2536: 2533: 2530: 2527: 2524: 2521: 2520:December 2000 2518: 2515: 2514:February 2000 2512: 2509: 2508:November 1999 2506: 2503: 2500: 2498: 2494: 2490: 2487: 2484: 2481: 2478: 2475: 2472: 2468: 2465: 2462: 2458: 2455: 2454: 2448: 2446: 2445:p–n junctions 2441: 2437: 2432: 2430: 2426: 2422: 2418: 2413: 2411: 2407: 2401: 2399: 2395: 2391: 2387: 2383: 2379: 2375: 2365: 2363: 2359: 2356: 2355:deep learning 2352: 2348: 2338: 2336: 2326: 2322: 2320: 2315: 2307: 2305: 2301: 2297: 2293: 2283: 2281: 2277: 2273: 2269: 2265: 2261: 2251: 2249: 2245: 2241: 2237: 2227: 2225: 2221: 2217: 2212: 2208: 2204: 2200: 2196: 2192: 2188: 2184: 2180: 2176: 2172: 2162: 2160: 2156: 2152: 2148: 2144: 2140: 2136: 2132: 2128: 2118: 2116: 2112: 2108: 2104: 2100: 2096: 2092: 2088: 2084: 2080: 2076: 2071: 2069: 2064: 2062: 2058: 2053: 2051: 2046: 2044: 2040: 2036: 2032: 2028: 2023: 2021: 2018: 2012: 2010: 2009:wear leveling 2006: 2000: 1998: 1994: 1988: 1986: 1982: 1978: 1974: 1970: 1966: 1962: 1935: 1926: 1922: 1918: 1914: 1909: 1907: 1893: 1889: 1883: 1872: 1868: 1864: 1860: 1856: 1852: 1842: 1840: 1836: 1831: 1827: 1822: 1820: 1816: 1812: 1808: 1807:melting point 1804: 1800: 1796: 1795:stoichiometry 1792: 1788: 1784: 1780: 1776: 1771: 1769: 1765: 1761: 1757: 1756:optical media 1753: 1749: 1745: 1741: 1736: 1734: 1730: 1726: 1722: 1718: 1714: 1713: 1708: 1704: 1700: 1696: 1692: 1688: 1684: 1680: 1670: 1667: 1663: 1662:Stan Williams 1659: 1655: 1651: 1647: 1645: 1641: 1640:phase changes 1637: 1627: 1623: 1620: 1616: 1602: 1597: 1595: 1591: 1587: 1583: 1579: 1575: 1571: 1567: 1563: 1559: 1555: 1551: 1547: 1543: 1539: 1535: 1531: 1527: 1523: 1519: 1508: 1503: 1501: 1496: 1494: 1489: 1488: 1486: 1485: 1477: 1474: 1471: 1470:Bubble memory 1468: 1465: 1462: 1459: 1456: 1453: 1450: 1447: 1444: 1441: 1438: 1435: 1432: 1429: 1426: 1424: 1421: 1418: 1415: 1412: 1409: 1406: 1403: 1402: 1396: 1395: 1388: 1385: 1383: 1380: 1378: 1375: 1373: 1370: 1368: 1365: 1363: 1360: 1356: 1353: 1352: 1351: 1348: 1346: 1343: 1341: 1338: 1336: 1333: 1331: 1328: 1326: 1323: 1321: 1318: 1317: 1311: 1310: 1303: 1300: 1296: 1293: 1291: 1288: 1286: 1283: 1281: 1278: 1276: 1273: 1271: 1268: 1266: 1263: 1261: 1258: 1256: 1253: 1251: 1248: 1246: 1243: 1241: 1238: 1236: 1233: 1231: 1228: 1226: 1223: 1221: 1218: 1216: 1213: 1211: 1208: 1206: 1203: 1201: 1198: 1195: 1192: 1190: 1187: 1185: 1182: 1181: 1180: 1177: 1176: 1173: 1168: 1167: 1160: 1157: 1153: 1150: 1148: 1145: 1143: 1140: 1138: 1135: 1133: 1130: 1128: 1125: 1123: 1120: 1118: 1115: 1113: 1110: 1108: 1105: 1103: 1100: 1098: 1097:Cassette tape 1095: 1093: 1092:Videocassette 1090: 1088: 1085: 1082: 1079: 1077: 1074: 1072: 1069: 1067: 1064: 1062: 1061:Magnetic tape 1059: 1057: 1054: 1053: 1052: 1049: 1047: 1044: 1042: 1039: 1037: 1034: 1032: 1029: 1028: 1025: 1020: 1019: 1012: 1009: 1007: 1004: 1002: 999: 998: 995: 989: 988: 981: 978: 976: 973: 970: 967: 965: 962: 959: 955: 952: 950: 947: 945: 942: 941: 938: 933: 932: 925: 922: 918: 915: 913: 910: 908: 905: 903: 900: 898: 895: 893: 890: 888: 885: 883: 880: 878: 875: 873: 870: 868: 865: 864: 863: 860: 856: 853: 851: 848: 846: 843: 840: 837: 834: 831: 828: 825: 824: 822: 819: 817: 816:ROM cartridge 814: 810: 807: 805: 802: 801: 800: 797: 795: 792: 790: 787: 786: 783: 778: 777: 774: 771: 770: 762: 759: 756: 753: 751: 748: 745: 742: 739: 736: 733: 730: 727: 724: 723: 717: 716: 707: 704: 703: 702: 699: 697: 694: 692: 689: 686: 683: 681: 678: 676: 673: 669: 666: 665: 664: 661: 657: 654: 652: 649: 647: 644: 642: 639: 637: 634: 632: 629: 627: 624: 622: 619: 617: 614: 612: 609: 607: 604: 603: 602: 599: 595: 592: 590: 587: 586: 585: 582: 581: 578: 573: 572: 569: 566: 565: 558: 555: 553: 550: 548: 545: 543: 542:Dew computing 540: 538: 535: 533: 532:Fog computing 530: 528: 527:Cloud storage 525: 523: 520: 518: 515: 513: 510: 508: 507:Memory paging 505: 503: 500: 498: 495: 493: 490: 488: 485: 483: 480: 478: 475: 473: 470: 468: 465: 463: 460: 458: 455: 453: 450: 448: 445: 443: 440: 438: 435: 433: 430: 428: 425: 423: 420: 418: 415: 413: 410: 408: 405: 403: 400: 398: 395: 393: 390: 388: 385: 383: 380: 378: 375: 373: 370: 368: 365: 363: 360: 358: 355: 353: 350: 348: 345: 343: 342:File deletion 340: 338: 335: 333: 332:Computer file 330: 328: 325: 323: 320: 318: 315: 313: 310: 308: 305: 303: 300: 298: 295: 293: 290: 288: 285: 283: 280: 278: 275: 273: 270: 268: 265: 263: 260: 258: 255: 253: 250: 248: 245: 243: 240: 238: 235: 233: 230: 228: 225: 223: 220: 218: 215: 213: 212:Data recovery 210: 208: 205: 203: 200: 198: 197:Data security 195: 193: 190: 188: 185: 183: 180: 178: 175: 173: 170: 168: 165: 163: 160: 158: 155: 153: 150: 148: 145: 143: 140: 136: 133: 131: 128: 127: 126: 123: 121: 118: 116: 113: 111: 108: 106: 103: 101: 98: 94: 93:floating-gate 91: 90: 89: 86: 84: 81: 79: 76: 74: 71: 69: 66: 64: 61: 59: 56: 54: 51: 50: 44: 43: 39: 35: 32: 31: 19: 4745: 4632:Robot ethics 4517: 4431:Semantic Web 4290:Ovonyx, Inc. 4262: 4247: 4235:. Retrieved 4230: 4220: 4209: 4191: 4156: 4150: 4125:the original 4120: 4111: 4103:the original 4093: 4082: 4073: 4064: 4050: 4039: 4030: 4021: 4013:the original 4003: 3978: 3974: 3968: 3935: 3931: 3925: 3900: 3896: 3890: 3847: 3843: 3832: 3783: 3779: 3769: 3728: 3724: 3713: 3702:. Retrieved 3698: 3689: 3678:. Retrieved 3668: 3654: 3643:. Retrieved 3639:the original 3615:. Retrieved 3611: 3602: 3591:. Retrieved 3581: 3573:the original 3563: 3552: 3535: 3529: 3507:(3): 422–7. 3504: 3500: 3494: 3483:. Retrieved 3479:the original 3469: 3431:(2): 414–9. 3428: 3425:Nano Letters 3424: 3406: 3381: 3377: 3370: 3359:. Retrieved 3357:. KurzweilAI 3349: 3340: 3319:. 03CH37407. 3290: 3284: 3241: 3237: 3231: 3220:. Retrieved 3210: 3198:. Retrieved 3191:the original 3184: 3171: 3160:. Retrieved 3146: 3137: 3112: 3108: 3102: 3089: 3085: 3079: 3018: 3014: 3008: 2987: 2977:, retrieved 2974:The Register 2973: 2963: 2937: 2933: 2927: 2889:(8): 501–5. 2886: 2882: 2876: 2835: 2831: 2820: 2777: 2773: 2763: 2719: 2713: 2707: 2702:January 2014 2701: 2695: 2689: 2683: 2677: 2671: 2665: 2660:October 2009 2659: 2653: 2647: 2641: 2635: 2626:October 2007 2625: 2619: 2610:January 2007 2609: 2603: 2598:October 2006 2597: 2591: 2585: 2579: 2573: 2568:October 2005 2567: 2561: 2555: 2549: 2543: 2537: 2531: 2525: 2519: 2513: 2507: 2501: 2493:Gordon Moore 2488: 2482: 2477:January 1969 2476: 2466: 2457:January 1955 2456: 2433: 2414: 2402: 2371: 2344: 2332: 2323: 2319:Numonyx B.V. 2316: 2313: 2289: 2257: 2233: 2194: 2168: 2161:technology. 2135:chalcogenide 2124: 2111:p-n junction 2099:reverse bias 2095:forward bias 2091:Chalcogenide 2072: 2065: 2054: 2047: 2024: 2013: 2001: 1989: 1910: 1906:flash memory 1903: 1848: 1823: 1789:(Te) called 1775:chalcogenide 1772: 1737: 1717:Gordon Moore 1710: 1697:film with a 1695:chalcogenide 1676: 1648: 1636:superlattice 1598: 1594:flash memory 1553: 1549: 1545: 1541: 1537: 1533: 1529: 1525: 1521: 1517: 1516: 1417:Punched tape 1411:Punched card 1377:Time crystal 1245:Hyper CD-ROM 1184:Optical disc 1076:Tape library 1011:FeFET memory 992:Early-stage 953: 872:CompactFlash 867:Memory Stick 827:Flash memory 789:Diode matrix 773:Non-volatile 557:Kryder's law 547:Amdahl's law 472:Software rot 447:Logical disk 347:File copying 282:Data storage 237:File sharing 222:Data cluster 38:data storage 4696:Moore's law 4627:Neuroethics 4622:Cyberethics 4443:Atomtronics 3218:. Techworld 3186:Electronics 2714:August 2014 2550:August 2004 2544:August 2004 2300:crystalline 2264:BAE Systems 2131:solid state 2050:resistivity 1993:hard drives 1969:charge pump 1837:, doubling 1793:(GST). The 1740:crystalline 1733:lithography 1712:Electronics 1586:crystalline 1476:Floppy disk 1428:Drum memory 862:Memory card 829:is used in: 763:(2002–2010) 728:(1946–1947) 552:Moore's law 397:Boot sector 337:Object file 242:File system 53:Memory cell 4763:Categories 4587:Automation 4237:14 January 3704:2022-07-08 3699:www.st.com 3680:2010-05-03 3645:2008-08-15 3617:2022-02-05 3593:2011-06-30 3485:2007-06-30 3361:2013-09-17 3222:2010-02-04 3162:2013-09-17 3115:(3): 592. 2979:2012-03-07 2756:References 2678:April 2010 2672:April 2010 2620:April 2007 2526:March 2002 2417:resistance 2390:dielectric 2382:transistor 2368:Challenges 2298:and fully 2254:BAE device 2147: Tbit 2103:transistor 1863:chalcogens 1673:Background 1658:memristors 1568:through a 1399:Historical 1071:Tape drive 897:SmartMedia 720:Historical 417:Disk image 412:Disk array 287:Data store 88:MOS memory 78:Memory map 4617:Bioethics 4503:Millipede 4183:206996875 3960:222432031 3882:246417395 3874:1558-173X 3824:214704544 3808:1748-3395 3753:0018-9383 3276:119628572 3251:0708.1302 3200:April 22, 3041:CiteSeerX 3028:1302.7063 2999:1207.7319 2860:2156-3357 2812:213023359 2804:0022-3727 2724:3D Xpoint 2720:July 2015 2696:July 2012 2648:June 2009 2586:July 2006 2532:July 2003 2502:June 1999 2483:June 1969 2429:power law 2425:amorphous 2358:inference 2296:amorphous 2224:NOR flash 2159:Millipede 2115:Thin film 2068:radiation 2043:lead-free 1913:electrons 1859:tellurium 1851:germanium 1787:tellurium 1785:(Sb) and 1779:germanium 1777:alloy of 1758:(such as 1744:amorphous 1735:shrinks. 1705:-induced 1650:Leon Chua 1582:amorphous 1458:Disk pack 1423:Plugboard 1260:DVD-Video 1189:LaserDisc 1087:Videotape 958:3D XPoint 949:Memristor 589:CPU cache 357:Core dump 277:Data bank 227:Directory 4538:UltraRAM 4199:Archived 4133:cite web 3816:32231270 3521:22178768 3453:20041706 3317:40051862 3156:Archived 3071:14892809 3063:23708238 2911:21725305 2868:26729693 2731:See also 2708:May 2014 2451:Timeline 2398:adhesion 2304:SK Hynix 2268:rad-hard 2203: GB 2199: Gb 2195:capacity 2179: MB 2175: Mb 2151: GB 2143: nm 2027:soldered 2007:perform 1977: ns 1973: μs 1867:aluminum 1855:antimony 1811: ns 1783:antimony 1387:UltraRAM 1265:DVD card 1220:Video CD 1205:CD Video 975:Nano-RAM 944:Memistor 917:XQD card 892:SIM card 750:Dekatron 636:XDR DRAM 631:EDO DRAM 568:Volatile 362:Hex dump 272:Database 167:Metadata 162:Big data 4484:Memory 3983:Bibcode 3940:Bibcode 3905:Bibcode 3852:Bibcode 3788:Bibcode 3761:5243635 3733:Bibcode 3461:9585187 3433:Bibcode 3386:Bibcode 3256:Bibcode 3117:Bibcode 3033:Bibcode 2942:Bibcode 2919:6684244 2891:Bibcode 2840:Bibcode 2782:Bibcode 2614:Qimonda 2436:Numonyx 2394:current 2378: A 2376:(>10 2280:EEPROMs 2272:latchup 2171:Samsung 2109:as the 2107:dopants 2087:current 2083:MOSFETs 2029:onto a 1965:voltage 1666:HP Labs 1472:(~1970) 1466:(~1968) 1448:(1960s) 1285:Blu-ray 1275:MiniDVD 1270:DVD-RAM 1230:Mini CD 1172:Optical 1132:U-matic 1127:MicroMV 1107:Betamax 971:(ECRAM) 912:MicroP2 887:SD card 877:PC Card 668:1T-SRAM 626:QDRSRAM 217:Storage 47:General 4612:Ethics 4580:Topics 4369:Fields 4285:Micron 4181:  4171:  3958:  3880:  3872:  3822:  3814:  3806:  3759:  3751:  3519:  3459:  3451:  3315:  3305:  3274:  3069:  3061:  3043:  2917:  2909:  2866:  2858:  2810:  2802:  2745:(MRAM) 2739:(FRAM) 2270:) and 2201:, or 8 2075:diodes 1871:GeSbTe 1791:GeSbTe 1781:(Ge), 1764:DVD-RW 1752:binary 1578:quench 1544:) and 1478:(1971) 1460:(1962) 1454:(1962) 1442:(1957) 1436:(1949) 1430:(1932) 1419:(1725) 1413:(1725) 1407:(1725) 1280:HD DVD 1240:CD-ROM 1196:(CDDA) 1122:MiniDV 841:(SSHD) 823:(SSS) 809:EEPROM 757:(2009) 746:(1952) 740:(1951) 734:(1947) 352:Backup 4533:SONOS 4493:ECRAM 4488:CBRAM 4480:GPGPU 4179:S2CID 3956:S2CID 3878:S2CID 3820:S2CID 3757:S2CID 3517:S2CID 3457:S2CID 3313:S2CID 3272:S2CID 3246:arXiv 3194:(PDF) 3181:(PDF) 3067:S2CID 3023:arXiv 2994:arXiv 2915:S2CID 2864:S2CID 2808:S2CID 2751:(RMM) 2630:Hynix 2386:diode 2276:PROMs 2236:Intel 2211:FeRAM 2191:flash 2183:diode 2061:Intel 2031:board 1826:Intel 1760:CD-RW 1725:flash 1721:Intel 1699:diode 1644:laser 1546:C-RAM 1534:PCRAM 1340:ECRAM 1320:CBRAM 1255:DVD+R 1215:CD-RW 1152:D-VHS 1147:VHS-C 1142:S-VHS 1083:(DDS) 1006:ReRAM 1001:FeRAM 994:NVRAM 980:CBRAM 937:NVRAM 835:(SSD) 804:EPROM 761:Z-RAM 755:T-RAM 687:(CAM) 675:ReRAM 641:RDRAM 621:LPDDR 616:SGRAM 611:SDRAM 606:eDRAM 40:types 4747:List 4550:RFID 4528:RRAM 4518:PRAM 4513:NRAM 4508:MRAM 4498:FRAM 4239:2014 4169:ISBN 4142:help 3870:ISSN 3812:PMID 3804:ISSN 3749:ISSN 3449:PMID 3303:ISBN 3202:2022 3059:PMID 2907:PMID 2856:ISSN 2800:ISSN 2419:and 2362:CMOS 2278:and 2238:and 2220:NAND 2209:and 2207:MRAM 2149:(125 2127:MEMS 2081:and 2079:BJTs 1985:byte 1981:SRAM 1857:and 1835:bits 1828:and 1815:DRAM 1762:and 1742:and 1738:The 1729:DRAM 1727:and 1590:bits 1550:CRAM 1530:PRAM 1526:PCME 1330:NRAM 1302:WORM 1210:CD-R 964:MRAM 799:PROM 794:MROM 696:VRAM 680:QRAM 663:SRAM 651:GDDR 601:DRAM 497:RAID 147:Data 36:and 4161:doi 3991:doi 3948:doi 3913:doi 3901:102 3860:doi 3796:doi 3741:doi 3540:doi 3509:doi 3441:doi 3423:". 3394:doi 3382:103 3295:doi 3264:doi 3125:doi 3051:doi 2950:doi 2938:102 2899:doi 2848:doi 2790:doi 2384:or 2292:MLC 2177:(64 2157:'s 2155:IBM 2037:or 2017:GST 1987:). 1961:bit 1681:of 1664:of 1548:or 1538:OUM 1522:PCM 1250:DVD 1137:VHS 954:PCM 907:SxS 782:ROM 656:HBM 646:DDR 577:RAM 4765:: 4229:. 4177:. 4167:. 4137:: 4135:}} 4131:{{ 4119:. 4072:. 4029:. 3989:. 3977:. 3954:. 3946:. 3934:. 3911:. 3899:. 3876:. 3868:. 3858:. 3848:57 3846:. 3842:. 3818:. 3810:. 3802:. 3794:. 3784:15 3782:. 3778:. 3755:. 3747:. 3739:. 3729:62 3727:. 3723:. 3697:. 3626:^ 3610:. 3515:. 3503:. 3455:. 3447:. 3439:. 3429:10 3427:. 3419:Te 3415:Sb 3392:. 3380:. 3339:. 3325:^ 3311:. 3301:. 3270:. 3262:. 3254:. 3242:91 3240:. 3183:. 3123:. 3111:. 3088:. 3065:. 3057:. 3049:. 3039:. 3031:. 3019:24 3017:. 2972:, 2948:, 2936:, 2913:. 2905:. 2897:. 2885:. 2862:. 2854:. 2846:. 2834:. 2830:. 2806:. 2798:. 2788:. 2778:53 2776:. 2772:. 2628:: 2612:: 2491:: 2469:: 2250:. 2077:, 1881:50 1879:Sb 1877:50 1875:Al 1873:. 1853:, 1841:. 1715:, 1660:. 1631:Te 1626:Sb 1622:Te 1619:Ge 1612:Te 1608:Sb 1604:Ge 1536:, 1532:, 1528:, 1524:, 1200:CD 1117:DV 4354:e 4347:t 4340:v 4241:. 4185:. 4163:: 4144:) 4076:. 4058:. 4033:. 3997:. 3993:: 3985:: 3979:7 3962:. 3950:: 3942:: 3936:7 3919:. 3915:: 3907:: 3884:. 3862:: 3854:: 3826:. 3798:: 3790:: 3763:. 3743:: 3735:: 3707:. 3683:. 3648:. 3620:. 3596:. 3546:. 3542:: 3523:. 3511:: 3505:4 3488:. 3463:. 3443:: 3435:: 3421:5 3417:2 3413:2 3400:. 3396:: 3388:: 3364:. 3343:. 3297:: 3278:. 3266:: 3258:: 3248:: 3225:. 3204:. 3165:. 3131:. 3127:: 3119:: 3113:6 3096:. 3073:. 3053:: 3035:: 3025:: 3002:. 2996:: 2952:: 2944:: 2921:. 2901:: 2893:: 2887:6 2870:. 2850:: 2842:: 2836:6 2814:. 2792:: 2784:: 2463:. 1944:h 1941:t 1936:V 1886:2 1633:3 1629:2 1624:– 1614:5 1610:2 1606:2 1552:( 1540:( 1506:e 1499:t 1492:v 960:) 956:( 20:)

Index

Phase change memory
Computer memory
data storage
Memory cell
Memory coherence
Cache coherence
Memory hierarchy
Memory access pattern
Memory map
Secondary storage
MOS memory
floating-gate
Continuous availability
Areal density (computer storage)
Block (data storage)
Object storage
Direct-attached storage
Network-attached storage
Storage area network
Block-level storage
Single-instance storage
Data
Structured data
Unstructured data
Big data
Metadata
Data compression
Data corruption
Data cleansing
Data degradation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.