Knowledge

Formation and evolution of the Solar System

Source 📝

976:, after the formation of the Solar System, the orbits of all the giant planets continued to change slowly, influenced by their interaction with the large number of remaining planetesimals. After 500–600 million years (about 4 billion years ago) Jupiter and Saturn fell into a 2:1 resonance: Saturn orbited the Sun once for every two Jupiter orbits. This resonance created a gravitational push against the outer planets, possibly causing Neptune to surge past Uranus and plough into the ancient Kuiper belt. The planets scattered the majority of the small icy bodies inwards, while themselves moving outwards. These planetesimals then scattered off the next planet they encountered in a similar manner, moving the planets' orbits outwards while they moved inwards. This process continued until the planetesimals interacted with Jupiter, whose immense gravity sent them into highly elliptical orbits or even ejected them outright from the Solar System. This caused Jupiter to move slightly inward. Those objects scattered by Jupiter into highly elliptical orbits formed the Oort cloud; those objects scattered to a lesser degree by the migrating Neptune formed the current Kuiper belt and scattered disc. This scenario explains the Kuiper belt's and scattered disc's present low mass. Some of the scattered objects, including 969:. At their distance from the Sun, accretion was too slow to allow planets to form before the solar nebula dispersed, and thus the initial disc lacked enough mass density to consolidate into a planet. The Kuiper belt lies between 30 and 55 AU from the Sun, while the farther scattered disc extends to over 100 AU, and the distant Oort cloud begins at about 50,000 AU. Originally, however, the Kuiper belt was much denser and closer to the Sun, with an outer edge at approximately 30 AU. Its inner edge would have been just beyond the orbits of Uranus and Neptune, which were in turn far closer to the Sun when they formed (most likely in the range of 15–20 AU), and in 50% of simulations ended up in opposite locations, with Uranus farther from the Sun than Neptune. 995:), proposes that Jupiter had migrated inward to 1.5 AU. After Saturn formed, migrated inward, and established the 2:3 mean motion resonance with Jupiter, the study assumes that both planets migrated back to their present positions. Jupiter thus would have consumed much of the material that would have created a bigger Mars. The same simulations also reproduce the characteristics of the modern asteroid belt, with dry asteroids and water-rich objects similar to comets. However, it is unclear whether conditions in the solar nebula would have allowed Jupiter and Saturn to move back to their current positions, and according to current estimates this possibility appears unlikely. Moreover, alternative explanations for the small mass of Mars exist. 795:" of this residual gas would have eventually lowered the planets' energy, smoothing out their orbits. However, such gas, if it existed, would have prevented the terrestrial planets' orbits from becoming so eccentric in the first place. Another hypothesis is that gravitational drag occurred not between the planets and residual gas but between the planets and the remaining small bodies. As the large bodies moved through the crowd of smaller objects, the smaller objects, attracted by the larger planets' gravity, formed a region of higher density, a "gravitational wake", in the larger objects' path. As they did so, the increased gravity of the wake slowed the larger objects down into more regular orbits. 11022: 1460: 1695:), respectively. They and the other remaining planets will become dark, frigid husks, completely devoid of life. They will continue to orbit their star, their speed slowed due to their increased distance from the Sun and the Sun's reduced gravity. Two billion years later, when the Sun has cooled to the 6,000–8,000 K (5,730–7,730 °C; 10,340–13,940 °F) range, the carbon and oxygen in the Sun's core will freeze, with over 90% of its remaining mass assuming a crystalline structure. Eventually, after roughly one quadrillion years, the Sun will finally cease to shine altogether, becoming a 1120: 30: 1010: 2385:
some of its own orbital energy and moves inwards. When Neptune, Uranus and Saturn perturb planetesimals outwards, those planetesimals end up in highly eccentric but still bound orbits, and so can return to the perturbing planet and possibly return its lost energy. On the other hand, when Neptune, Uranus and Saturn perturb objects inwards, those planets gain energy by doing so and therefore move outwards. More importantly, an object being perturbed inwards stands a greater chance of encountering Jupiter and being
1833: 836:. Some of those massive embryos too were ejected by Jupiter, while others may have migrated to the inner Solar System and played a role in the final accretion of the terrestrial planets. During this primary depletion period, the effects of the giant planets and planetary embryos left the asteroid belt with a total mass equivalent to less than 1% that of the Earth, composed mainly of small planetesimals. This is still 10–20 times more than the current mass in the main belt, which is now about 0.0005  1372: 1708: 1640:, which the Sun is too small to undergo as part of its evolution. Any observer present to witness this occurrence would see a massive increase in the speed of the solar wind, but not enough to destroy a planet completely. However, the star's loss of mass could send the orbits of the surviving planets into chaos, causing some to collide, others to be ejected from the Solar System, and others to be torn apart by tidal interactions. Afterwards, all that will remain of the Sun is a 11567: 11484: 9383: 190: 1625: 1889: 1150:, which may have originated from discs around each giant planet in much the same way that the planets formed from the disc around the Sun. This origin is indicated by the large sizes of the moons and their proximity to the planet. These attributes are impossible to achieve via capture, while the gaseous nature of the primaries also makes formation from collision debris unlikely. The outer moons of the giant planets tend to be small and have 11504: 11418: 11543: 1511: 1617:. Here the luminosity of the Sun will increase again, reaching about 2,090 present luminosities, and it will cool to about 3,500 K (3,230 °C; 5,840 °F). This phase lasts about 30 million years, after which, over the course of a further 100,000 years, the Sun's remaining outer layers will fall away, ejecting a vast stream of matter into space and forming a halo known (misleadingly) as a 10998: 11494: 11010: 366: 11555: 911: 11531: 779:. Further growth was possible only because these bodies collided and merged, which took less than 100 million years. These objects would have gravitationally interacted with one another, tugging at each other's orbits until they collided, growing larger until the four terrestrial planets we know today took shape. One such giant collision is thought to have formed the Moon (see 1785:. If this initial disruption occurs, astronomers calculate a 12% chance that the Solar System will be pulled outward into the Milky Way's tidal tail and a 3% chance that it will become gravitationally bound to Andromeda and thus a part of that galaxy. After a further series of glancing blows, during which the likelihood of the Solar System's ejection rises to 30%, the galaxies' 696:
material, it created a region of lower pressure that increased the speed of orbiting dust particles and halted their motion toward the Sun. In effect, the frost line acted as a barrier that caused the material to accumulate rapidly at ~5 AU from the Sun. This excess material coalesced into a large embryo (or core) on the order of 10 
1578:'s fate is less clear; although the Sun will envelop Earth's current orbit, the star's loss of mass (and thus weaker gravity) will cause the planets' orbits to move farther out. If it were only for this, Venus and Earth would probably escape incineration, but a 2008 study suggests that Earth will likely be swallowed up as a result of 703:, which began to accumulate an envelope via accretion of gas from the surrounding disc at an ever-increasing rate. Once the envelope mass became about equal to the solid core mass, growth proceeded very rapidly, reaching about 150 Earth masses ~10 years thereafter and finally topping out at 318  1613:, burning helium in its core in a stable fashion, much like it burns hydrogen today. The helium-fusing stage will last only 100 million years. Eventually, it will have to again resort to the reserves of hydrogen and helium in its outer layers. It will expand a second time, becoming what is known as an 2399:
the movement of the tidal bulge through the body of the primary. If the primary were a frictionless ideal fluid, the tidal bulge would be centered under the satellite, and no transfer would occur. It is the loss of dynamical energy through friction that makes the transfer of angular momentum possible.
2384:
The reason that Saturn, Uranus and Neptune all moved outward whereas Jupiter moved inward is that Jupiter is massive enough to eject planetesimals from the Solar System, while the other three outer planets are not. To eject an object from the Solar System, Jupiter transfers energy to it, and so loses
2398:
In all of these cases of transfer of angular momentum and energy, the angular momentum of the two-body system is conserved. In contrast, the summed energy of the moon's revolution plus the primary's rotation is not conserved but decreases over time due to dissipation via frictional heat generated by
1820:
scenarios for the end of the Universe do not occur, calculations suggest that the gravity of passing stars will have completely stripped the dead Sun of its remaining planets within 1 quadrillion (10) years. This point marks the end of the Solar System. Although the Sun and planets may survive,
1804:
It is a common misconception that this collision will disrupt the orbits of the planets in the Solar System. Although it is true that the gravity of passing stars can detach planets into interstellar space, distances between stars are so great that the likelihood of the Milky Way–Andromeda collision
1609:; the Sun will shrink from around 250 to 11 times its present (main-sequence) radius. Consequently, its luminosity will decrease from around 3,000 to 54 times its current level, and its surface temperature will increase to about 4,770 K (4,500 °C; 8,130 °F). The Sun will become a 790:
One unresolved issue with this model is that it cannot explain how the initial orbits of the proto-terrestrial planets, which would have needed to be highly eccentric in order to collide, produced the remarkably stable and nearly circular orbits they have today. One hypothesis for this "eccentricity
758:
The planets were originally thought to have formed in or near their current orbits. This has been questioned during the last 20 years. Currently, many planetary scientists think that the Solar System might have looked very different after its initial formation: several objects at least as massive as
401:
from a supernova may have triggered the formation of the Sun by creating relatively dense regions within the cloud, causing these regions to collapse. The highly homogeneous distribution of iron-60 in the Solar System points to the occurrence of this supernova and its injection of iron-60 being well
9439: 1343:
in the object it orbits (the primary) due to the differential gravitational force across diameter of the primary. If a moon is revolving in the same direction as the planet's rotation and the planet is rotating faster than the orbital period of the moon, the bulge will constantly be pulled ahead of
1318:
Ultimately, the Solar System is stable in that none of the planets are likely to collide with each other or be ejected from the system in the next few billion years. Beyond this, within five billion years or so, Mars's eccentricity may grow to around 0.2, such that it lies on an Earth-crossing
819:
with Jupiter and Saturn are particularly strong in the asteroid belt, and gravitational interactions with more massive embryos scattered many planetesimals into those resonances. Jupiter's gravity increased the velocity of objects within these resonances, causing them to shatter upon collision with
1393:
A different scenario occurs when the moon is either revolving around the primary faster than the primary rotates or is revolving in the direction opposite the planet's rotation. In these cases, the tidal bulge lags behind the moon in its orbit. In the former case, the direction of angular momentum
1306:
The outer planets' orbits are chaotic over longer timescales, with a Lyapunov time in the range of 2–230 million years. In all cases, this means that the position of a planet along its orbit ultimately becomes impossible to predict with any certainty (so, for example, the timing of winter and
1086:
The evolution of the asteroid belt after Late Heavy Bombardment was mainly governed by collisions. Objects with large mass have enough gravity to retain any material ejected by a violent collision. In the asteroid belt this usually is not the case. As a result, many larger objects have been broken
1020:
Gravitational disruption from the outer planets' migration would have sent large numbers of asteroids into the inner Solar System, severely depleting the original belt until it reached today's extremely low mass. This event may have triggered the Late Heavy Bombardment that is hypothesised to have
850:
10 kg) from the early asteroid belt. Water is too volatile to have been present at Earth's formation and must have been subsequently delivered from outer, colder parts of the Solar System. The water was probably delivered by planetary embryos and small planetesimals thrown out of the asteroid
827:
below), resonances would have swept across the asteroid belt, dynamically exciting the region's population and increasing their velocities relative to each other. The cumulative action of the resonances and the embryos either scattered the planetesimals away from the asteroid belt or excited their
731:
each. Uranus and Neptune are sometimes referred to as failed cores. The main problem with formation theories for these planets is the timescale of their formation. At the current locations it would have taken millions of years for their cores to accrete. This means that Uranus and Neptune may have
470:
is made of the same elements as the Sun (hydrogen and helium), it has been suggested that the Solar System might have been early in its formation a protostar system with Jupiter being the second but failed protostar, but Jupiter has far too little mass to trigger fusion in its core and so became a
695:
within about 3 million years. Today, the four giant planets comprise just under 99% of all the mass orbiting the Sun. Theorists believe it is no accident that Jupiter lies just beyond the frost line. Because the frost line accumulated large amounts of water via evaporation from infalling icy
1746:
However, others argue that the Sun is currently close to the galactic plane, and yet the last great extinction event was 15 million years ago. Therefore, the Sun's vertical position cannot alone explain such periodic extinctions, and that extinctions instead occur when the Sun passes through the
1194:
probably had a mass comparable to that of Mars, and the impact probably occurred near the end of the period of giant impacts. The collision kicked into orbit some of the impactor's mantle, which then coalesced into the Moon. The impact was probably the last in a series of mergers that formed the
1875:
Studies of discs around other stars have also done much to establish a time frame for Solar System formation. Stars between one and three million years old have discs rich in gas, whereas discs around stars more than 10 million years old have little to no gas, suggesting that giant planets
200:
Ideas concerning the origin and fate of the world date from the earliest known writings; however, for almost all of that time, there was no attempt to link such theories to the existence of a "Solar System", simply because it was not generally thought that the Solar System, in the sense we now
1485:
to the point where trees and forests (C3 photosynthetic plant life) will no longer be able to survive; and in around 800 million years, the Sun will have killed all complex life on the Earth's surface and in the oceans. In 1.1 billion years, the Sun's increased radiation output will cause its
1394:
transfer is reversed, so the rotation of the primary speeds up while the satellite's orbit shrinks. In the latter case, the angular momentum of the rotation and revolution have opposite signs, so transfer leads to decreases in the magnitude of each (that cancel each other out). In both cases,
505:
such as the Orion Nebula—and are rather cool, reaching a surface temperature of only about 1,000 K (730 °C; 1,340 °F) at their hottest. Within 50 million years, the temperature and pressure at the core of the Sun became so great that its hydrogen began to fuse, creating an
1480:
In the long term, the greatest changes in the Solar System will come from changes in the Sun itself as it ages. As the Sun burns through its hydrogen fuel supply, it gets hotter and burns the remaining fuel even faster. As a result, the Sun is growing brighter at a rate of ten percent every
653:, and as a result the planets gradually migrated to new orbits. Models show that density and temperature variations in the disk governed this rate of migration, but the net trend was for the inner planets to migrate inward as the disk dissipated, leaving the planets in their current orbits. 1256:
phase. The Solar System will continue to evolve until then. Eventually, the Sun will likely expand sufficiently to overwhelm the inner planets (Mercury, Venus, and possibly Earth) but not the outer planets, including Jupiter and Saturn. Afterward, the Sun would be reduced to the size of a
1355:
to the Earth; one of its revolutions around the Earth (currently about 29 days) is equal to one of its rotations about its axis, so it always shows one face to the Earth. The Moon will continue to recede from Earth, and Earth's spin will continue to slow gradually. Other examples are the
419:. This cluster began to break apart between 135 million and 535 million years after formation. Several simulations of our young Sun interacting with close-passing stars over the first 100 million years of its life produced anomalous orbits observed in the outer Solar System, such as 134:
has evolved considerably since its initial formation. Many moons have formed from circling discs of gas and dust around their parent planets, while other moons are thought to have formed independently and later to have been captured by their planets. Still others, such as Earth's
1087:
apart, and sometimes newer objects have been forged from the remnants in less violent collisions. Moons around some asteroids currently can only be explained as consolidations of material flung away from the parent object without enough energy to entirely escape its gravity.
1021:
occurred approximately 4 billion years ago, 500–600 million years after the formation of the Solar System. However, a recent re-appraisal of the cosmo-chemical constraints indicates that there was likely no late spike (“terminal cataclysm”) in the bombardment rate.
389:, thought to trace the first solid material to form in the presolar nebula, are 4,568.2 million years old, which is one definition of the age of the Solar System. Studies of ancient meteorites reveal traces of stable daughter nuclei of short-lived isotopes, such as 1518:
Around 5.4 billion years from now, the core of the Sun will become hot enough to trigger hydrogen fusion in its surrounding shell. This will cause the outer layers of the star to expand greatly, and the star will enter a phase of its life in which it is called a
3628:
M. Momose; Y. Kitamura; S. Yokogawa; R. Kawabe; M. Tamura; S. Ida (2003). "Investigation of the Physical Properties of Protoplanetary Disks around T Tauri Stars by a High-resolution Imaging Survey at lambda = 2 mm". In Ikeuchi, S.; Hearnshaw, J.; Hanawa, T. (eds.).
1597:, the habitable zone will abruptly shrink to roughly the space between Jupiter and Saturn's present-day orbits, but toward the end of the 200 million-year duration of the asymptotic giant phase, it will expand outward to about the same distance as before. 1600:
Gradually, the hydrogen burning in the shell around the solar core will increase the mass of the core until it reaches about 45% of the present solar mass. At this point, the density and temperature will become so high that the fusion of helium into
1658:
As the Sun dies, its gravitational pull on orbiting bodies, such as planets, comets, and asteroids, will weaken due to its mass loss. All remaining planets' orbits will expand; if Venus, Earth, and Mars still exist, their orbits will lie roughly at
1024:
If it occurred, this period of heavy bombardment lasted several hundred million years and is evident in the cratering still visible on geologically dead bodies of the inner Solar System such as the Moon and Mercury. The oldest known evidence for
1319:
orbit, leading to a potential collision. In the same timescale, Mercury's eccentricity may grow even further, and a close encounter with Venus could theoretically eject it from the Solar System altogether or send it on a collision course with
595:, the region of the Solar System inside 4 AU, was too warm for volatile molecules like water and methane to condense, so the planetesimals that formed there could only form from compounds with high melting points, such as metals (like 1734:. One hypothesis supposes that vertical oscillations made by the Sun as it orbits the Galactic Centre cause it to regularly pass through the galactic plane. When the Sun's orbit takes it outside the galactic disc, the influence of the 899:") exist in a region where the reduced density of the solar nebula and longer orbital times render their formation there highly implausible. The two are instead thought to have formed in orbits near Jupiter and Saturn (known as the " 1506:
that will heat the planet until it achieves conditions parallel to Earth today, providing a potential future abode for life. By 3.5 billion years from now, Earth's surface conditions will be similar to those of Venus today.
402:
before the accretion of nebular dust into planetary bodies. Because only massive, short-lived stars produce supernovae, the Sun must have formed in a large star-forming region that produced massive stars, possibly similar to the
240:
when compared to the planets. However, since the early 1980s studies of young stars have shown them to be surrounded by cool discs of dust and gas, exactly as the nebular hypothesis predicts, which has led to its re-acceptance.
147:
have been observed. Unlike the planets, these trans-Neptunian objects mostly move on eccentric orbits, inclined to the plane of the planets. The positions of the planets might have shifted due to gravitational interactions.
1154:
orbits with arbitrary inclinations. These are the characteristics expected of captured bodies. Most such moons orbit in the direction opposite to the rotation of their primary. The largest irregular moon is Neptune's moon
533:. There are several indications that hint at the cluster environment having had some influence over the young, still-forming solar system. For example, the decline in mass beyond Neptune and the extreme eccentric-orbit of 521:'s center on its own. The Sun likely drifted from its original orbital distance from the center of the galaxy. The chemical history of the Sun suggests it may have formed as much as 3 kpc closer to the galaxy core. 4812:(1). Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo: 43–56. 1425:
to each other. In that case, the tidal bulge stays directly under the moon, there is no angular momentum transfer, and the orbital period will not change. Pluto and Charon are an example of this type of configuration.
749:
After between three and ten million years, the young Sun's solar wind would have cleared away all the gas and dust in the protoplanetary disc, blowing it into interstellar space, thus ending the growth of the planets.
642:) and ceased accumulating matter about 100,000 years after the formation of the Sun; subsequent collisions and mergers between these planet-sized bodies allowed terrestrial planets to grow to their present sizes. 1621:. The ejected material will contain the helium and carbon produced by the Sun's nuclear reactions, continuing the enrichment of the interstellar medium with heavy elements for future generations of stars and planets. 1738:
is weaker; as it re-enters the galactic disc, as it does every 20–25 million years, it comes under the influence of the far stronger "disc tides", which, according to mathematical models, increase the flux of
987:
In contrast to the outer planets, the inner planets are not thought to have migrated significantly over the age of the Solar System, because their orbits have remained stable following the period of giant impacts.
1429:
There is no consensus on the mechanism of the formation of the rings of Saturn. Although theoretical models indicated that the rings were likely to have formed early in the Solar System's history, data from the
1232:) may also have formed by means of a large collision: the Pluto–Charon, Orcus–Vanth and Earth–Moon systems are unusual in the Solar System in that the satellite's mass is at least 1% that of the larger body. 143:. Collisions between bodies have occurred continually up to the present day and have been central to the evolution of the Solar System. Beyond Neptune, many sub-planet sized objects formed. Several thousand 575:
The various planets are thought to have formed from the solar nebula, the disc-shaped cloud of gas and dust left over from the Sun's formation. The currently accepted method by which the planets formed is
410:
and of anomalous materials within it suggest that the Sun formed within a cluster of between 1,000 and 10,000 stars with a diameter of between 6.5 and 19.5 light years and a collective mass of 3,000 
1793:. During the merger, if there is enough gas, the increased gravity will force the gas to the centre of the forming elliptical galaxy. This may lead to a short period of intensive star formation called a 6948:"Astronomers Found a Planet That Survived Its Star's Death - The Jupiter-size planet orbits a type of star called a white dwarf, and hints at what our solar system could be like when the sun burns out" 5824:
Izidoro, A.; Haghighipour, N.; Winter, O. C.; Tsuchida, M. (2014). "Terrestrial Planet Formation in a Protoplanetary Disk with a Local Mass Depletion: A Successful Scenario for the Formation of Mars".
4575:
Levison, Harold F.; Morbidelli, Alessandro; Van Laerhoven, Christa; et al. (2007). "Origin of the Structure of the Kuiper Belt during a Dynamical Instability in the Orbits of Uranus and Neptune".
843:. A secondary depletion period that brought the asteroid belt down close to its present mass is thought to have followed when Jupiter and Saturn entered a temporary 2:1 orbital resonance (see below). 684:
planets were more abundant than the metals and silicates that formed the terrestrial planets, allowing the giant planets to grow massive enough to capture hydrogen and helium, the lightest and most
1644:, an extraordinarily dense object, 54% of its original mass but only the size of Earth. Initially, this white dwarf may be 100 times as luminous as the Sun is now. It will consist entirely of 645:
When terrestrial planets were forming, they remained immersed in a disk of gas and dust. Pressure partially supported the gas and so did not orbit the Sun as rapidly as the planets. The resulting
631:). These compounds are quite rare in the Universe, comprising only 0.6% of the mass of the nebula, so the terrestrial planets could not grow very large. The terrestrial embryos grew to about 0.05 1805:
causing such disruption to any individual star system is negligible. Although the Solar System as a whole could be affected by these events, the Sun and planets are not expected to be disturbed.
1490:
to move outwards, making the Earth's surface too hot for liquid water to exist there naturally. At this point, all life will be reduced to single-celled organisms. Evaporation of water, a potent
1075:, passing stars and giant molecular clouds began to deplete the cloud, sending comets into the inner Solar System. The evolution of the outer Solar System also appears to have been influenced by 1593:, but as they were too small to hold a dense atmosphere like Earth, they would experience extreme day–night temperature differences. When the Sun leaves the red-giant branch and enters the 3247:
Martin Bizzarro; David Ulfbeck; Anne Trinquier; Kristine Thrane; James N. Connelly; Bradley S. Meyer (2007). "Evidence for a Late Supernova Injection of Fe into the Protoplanetary Disk".
1287:
over million- and billion-year timescales, with the orbits of the planets open to long-term variations. One notable example of this chaos is the Neptune–Pluto system, which lies in a 3:2
1348:
is transferred from the rotation of the primary to the revolution of the satellite. The moon gains energy and gradually spirals outward, while the primary rotates more slowly over time.
2358:
An astronomical unit, or AU, is the average distance between the Earth and the Sun, or about 150 million kilometres. It is the standard unit of measurement for interplanetary distances.
588:) of ~10 km (6.2 mi) in size. These gradually increased through further collisions, growing at the rate of centimetres per year over the course of the next few million years. 1071:, a spherical outer swarm of cometary nuclei at the farthest extent of the Sun's gravitational pull. Eventually, after about 800 million years, the gravitational disruption caused by 3516:"I have heard people call Jupiter a "failed star" that just did not get big enough to shine. Does that make our sun a kind of double star? And why didn't Jupiter become a real star?" 5117:
Raymond, Sean N.; Quinn, Thomas; Lunine, Jonathan I. (2007). "High-resolution simulations of the final assembly of Earth-like planets 2: water delivery and planetary habitability".
1240:
Astronomers estimate that the current state of the Solar System will not change drastically until the Sun has fused almost all the hydrogen fuel in its core into helium, beginning
1585:
Additionally, the Sun's habitable zone will move into the outer Solar System and eventually beyond the Kuiper belt at the end of the red-giant phase, causing icy bodies such as
7553:
Iess, L.; Militzer, B.; Kaspi, Y.; Nicholson, P.; Durante, D.; Racioppa, P.; Anabtawi, A.; Galanti, E.; Hubbard, W.; Mariani, M. J.; Tortora, P.; Wahl, S.; Zannoni, M. (2019).
1291:. Although the resonance itself will remain stable, it becomes impossible to predict the position of Pluto with any degree of accuracy more than 10–20 million years (the 545:
can be interpreted as a sign of a birth cluster containing massive stars is still under debate. If the Sun was part of a star cluster, it might have been influenced by close
3769:
Sukyoung Yi; Pierre Demarque; Yong-Cheol Kim; Young-Wook Lee; Chang H. Ree; Thibault Lejeune; Sydney Barnes (2001). "Toward Better Age Estimates for Stellar Populations: The
3656:
Deborah L. Padgett; Wolfgang Brandner; Karl R. Stapelfeldt; et al. (March 1999). "Hubble Space Telescope/NICMOS Imaging of Disks and Envelopes around Very Young Stars".
1801:. The force of these interactions will likely push the Solar System into the new galaxy's outer halo, leaving it relatively unscathed by the radiation from these collisions. 10925: 10499: 10895: 5657: 2183:
Sun has fused all of the hydrogen in the core and starts to burn hydrogen in a shell surrounding its core, thus ending its main sequence life. Sun begins to ascend the
274:
heavier than hydrogen and helium in their cores. When a red giant finally casts off its outer layers, these elements would then be recycled to form other star systems.
213:
had suggested it as early as 250 BC), but was not widely accepted until the end of the 17th century. The first recorded use of the term "Solar System" dates from 1704.
1032:
Impacts are thought to be a regular (if currently infrequent) part of the evolution of the Solar System. That they continue to happen is evidenced by the collision of
184: 10696: 3794: 991:
Another question is why Mars came out so small compared with Earth. A study by Southwest Research Institute, San Antonio, Texas, published June 6, 2011 (called the
8220:
T. S. Metcalfe; M. H. Montgomery; A. Kanaan (2004). "Testing White Dwarf Crystallization Theory with Asteroseismology of the Massive Pulsating DA Star BPM 37093".
6434: 4348:
D'Angelo, G.; Bodenheimer, P. (2013). "Three-dimensional Radiation-hydrodynamics Calculations of the Envelopes of Young Planets Embedded in Protoplanetary Disks".
2389:
from the Solar System, in which case the energy gains of Neptune, Uranus and Saturn obtained from their inwards deflections of the ejected object become permanent.
1261:, and the outer planets and their moons would continue orbiting this diminutive solar remnant. This future development may be similar to the observed detection of 680:, which is the point between the orbits of Mars and Jupiter where the material is cool enough for volatile icy compounds to remain solid. The ices that formed the 2640:"Birth of the planets: The Earth and its fellow planets may be survivors from a time when planets ricocheted around the Sun like ball bearings on a pinball table" 167:. In the distant future, the gravity of passing stars will gradually reduce the Sun's retinue of planets. Some planets will be destroyed, and others ejected into 1547:, as a result of the vastly increased surface area, the Sun's surface will be much cooler (about 2,600 K (2,330 °C; 4,220 °F)) than now, and its 2214:
phases, losing a total of ~30% of its mass in all post-main-sequence phases. The asymptotic-giant-branch phase ends with the ejection of its outer layers as a
5675:
Walsh, K. J.; Morbidelli, Alessandro; Raymond, S. N.; O'Brien, D. P.; Mandell, A. M. (2011). "A low mass for Mars from Jupiter's early gas-driven migration".
5389:
Florence Raulin-Cerceau; Marie-Christine Maurel; Jean Schneider (1998). "From Panspermia to Bioastronomy, the Evolution of the Hypothesis of Universal Life".
1751:. Spiral arms are home not only to larger numbers of molecular clouds, whose gravity may distort the Oort cloud, but also to higher concentrations of bright 1494:, from the oceans' surface could accelerate temperature increase, potentially ending all life on Earth even sooner. During this time, it is possible that as 3180: 6651: 5254: 5073: 3710: 2956:
Charles H. Lineweaver (2001). "An Estimate of the Age Distribution of Terrestrial Planets in the Universe: Quantifying Metallicity as a Selection Effect".
2191:, growing dramatically more luminous (by a factor of up to 2,700), larger (by a factor of up to 250 in radius), and cooler (down to 2600 K): Sun is now a 6482: 3986:
A. P. Boss; R. H. Durisen (2005). "Chondrule-forming Shock Fronts in the Solar Nebula: A Possible Unified Scenario for Planet and Chondrite Formation".
815:; however, the proximity of Jupiter meant that after this planet formed, 3 million years after the Sun, the region's history changed dramatically. 746:
has suggested that materials from the early formation of the Solar System migrated from the warmer inner Solar System to the region of the Kuiper belt.
450:. The center, where most of the mass collected, became increasingly hotter than the surrounding disc. Over about 100,000 years, the competing forces of 7437:
Marc Buie; William Grundy; Eliot Young; Leslie Young; Alan Stern (2006). "Orbits and Photometry of Pluto's Satellites: Charon, S/2005 P1, and S/2005".
1777:
of galaxies, is heading toward it at about 120 km/s. In 4 billion years, Andromeda and the Milky Way will collide, causing both to deform as
710:. Saturn may owe its substantially lower mass simply to having formed a few million years after Jupiter, when there was less gas available to consume. 6920:"A Crystal Ball Into Our Solar System's Future - Giant Gas Planet Orbiting a Dead Star Gives Glimpse Into the Predicted Aftermath of our Sun's Demise" 4401:
Lissauer, J. J.; Hubickyj, O.; D'Angelo, G.; Bodenheimer, P. (2009). "Models of Jupiter's growth incorporating thermal and hydrodynamic constraints".
1016:
in Arizona. Created 50,000 years ago by an impactor about 50 metres (160 ft) across, it shows that the accretion of the Solar System is not over.
4983: 6791:
Brown, M. E.; Ragozzine, D.; Stansberry, J.; Fraser, W. C. (2010). "The Size, Density, and Formation of the Orcus-Vanth System in the Kuiper Belt".
1971:-like star-forming region, the most massive stars are formed, live their lives, die, and explode in supernova. One particular supernova, called the 260:
reactions in its core, fusing hydrogen into helium. In 1935, Eddington went further and suggested that other elements also might form within stars.
10932: 8340: 4149: 3110:
Dauphas, Nicolas; Cook, D. L.; Sacarabany, A.; Fröhlich, C.; Davis, A. M.; Wadhwa, M.; Pourmand, A.; Rauscher, T.; Gallino, A. (10 October 2008).
2850: 2367:
The combined mass of Jupiter, Saturn, Uranus and Neptune is 445.6 Earth masses. The mass of remaining material is ~5.26 Earth masses or 1.1% (see
1471:
Formation of the Solar System after gas and dust coalesced into a protoplanetary disk. The vast majority of this material was sourced from a past
1307:
summer becomes uncertain). Still, in some cases, the orbits themselves may change dramatically. Such chaos manifests most strongly as changes in
6947: 4681: 1655:
but will never reach temperatures hot enough to fuse these elements. Thus, the white dwarf Sun will gradually cool, growing dimmer and dimmer.
537:
have been interpreted as a signature of the solar system having been influenced by its birth environment. Whether the presence of the isotopes
517:
As the early Solar System continued to evolve, it eventually drifted away from its siblings in the stellar nursery, and continued orbiting the
4933: 10484: 6116: 2725:
Thierry Montmerle; Jean-Charles Augereau; Marc Chaussidon (2006). "Solar System Formation and Early Evolution: the First 100 Million Years".
17: 4746: 4250: 6512: 6065: 1773:
Although the vast majority of galaxies in the Universe are moving away from the Milky Way, the Andromeda Galaxy, the largest member of the
8432: 949:
The migration of the outer planets is also necessary to account for the existence and properties of the Solar System's outermost regions.
7760: 1719:. Its speed is about 220 km/s. The period required for the Solar System to complete one revolution around the Galactic Center, the 759:
Mercury may have been present in the inner Solar System, the outer Solar System may have been much more compact than it is now, and the
514:. Main-sequence stars derive energy from the fusion of hydrogen into helium in their cores. The Sun remains a main-sequence star today. 8763: 1468: 236:
in the 18th century. The most significant criticism of the hypothesis was its apparent inability to explain the Sun's relative lack of
9450: 7188: 10395: 5044:
E. R. D. Scott (2006). "Constraints on Jupiter's Age and Formation Mechanism and the Nebula Lifetime from Chondrites and Asteroids".
3583:
Caffe, M. W.; Hohenberg, C. M.; Swindle, T. D.; Goswami, J. N. (February 1, 1987). "Evidence in meteorites for an active early sun".
7727: 5340:
Morbidelli, Alessandro; Chambers, J.; Lunine, Jonathan I.; Petit, Jean-Marc; Robert, F.; Valsecchi, Giovanni B.; Cyr, K. E. (2000).
5179: 724:
had blown away much of the disc material. As a result, those planets accumulated little hydrogen and helium—not more than 1 
2076: 11604: 10550: 10195: 10180: 10160: 9472: 9419: 807:. The asteroid belt initially contained more than enough matter to form 2–3 Earth-like planets, and, indeed, a large number of 486:. Studies of T Tauri stars show that they are often accompanied by discs of pre-planetary matter with masses of 0.001–0.1  423:. A recent study suggests that such a passing star is not only responsible for the orbits of the detached objects but also the 9468: 9453: 7893: 7306:
R. Bevilacqua; O. Menchi; A. Milani; et al. (April 1980). "Resonances and close approaches. I. The Titan-Hyperion case".
1723:, is in the range of 220–250 million years. Since its formation, the Solar System has completed at least 20 such revolutions. 10494: 10227: 10190: 10185: 9462: 8682: 8188: 7523: 6347: 4484: 2700: 2672: 1789:
will merge. Eventually, in roughly 6 billion years, the Milky Way and Andromeda will complete their merger into a giant
201:
understand it, existed. The first step toward a theory of Solar System formation and evolution was the general acceptance of
4457:
D'Angelo, Gennaro; Durisen, Richard H.; Lissauer, Jack J. (December 2010). "Giant Planet Formation". In Seager, Sara (ed.).
1067:
were ejected out of the inner Solar System by the gravity of the giant planets and sent thousands of AU outward to form the
584:, these grains formed into clumps up to 200 m (660 ft) in diameter, which in turn collided to form larger bodies ( 313:) across. The further collapse of the fragments led to the formation of dense cores 0.01–0.1 parsec (2,000–20,000  10920: 10857: 10511: 10232: 10170: 10165: 9461: 9358: 8669: 8097: 6260: 4804:
Junko Kominami; Shigeru Ida (2001). "The Effect of Tidal Interaction with a Gas Disk on Formation of Terrestrial Planets".
2372: 863:
hypothesis holds that life itself may have been deposited on Earth in this way, although this idea is not widely accepted.
720:
than more stable, older stars. Uranus and Neptune are thought to have formed after Jupiter and Saturn did, when the strong
386: 9459: 9456: 9452: 9448: 4505:
Thommes, E. W.; Duncan, M. J.; Levison, Harold F. (2002). "The Formation of Uranus and Neptune among Jupiter and Saturn".
1852:
are approximately 4.4 billion years old. Rocks this old are rare, as Earth's surface is constantly being reshaped by
811:
formed there. As with the terrestrials, planetesimals in this region later coalesced and formed 20–30 Moon- to Mars-sized
11074: 10175: 6555: 1812:
of a chance encounter with a star increases, and disruption of the planets becomes all but inevitable. Assuming that the
1398:
causes the moon to spiral in towards the primary until it either is torn apart by tidal stresses, potentially creating a
9466: 9458: 1743:
comets into the Solar System by a factor of 4, leading to a massive increase in the likelihood of a devastating impact.
1715:
The Solar System travels alone through the Milky Way in a circular orbit approximately 30,000 light years from the
846:
The inner Solar System's period of giant impacts probably played a role in Earth acquiring its current water content (~6
9455: 5877:
Fischer, R. A.; Ciesla, F. J. (2014). "Dynamics of the terrestrial planets from a large number of N-body simulations".
1897: 685: 9473: 9469: 8126:
B. T. Gänsicke; T. R. Marsh; J. Southworth; A. Rebassa-Mansergas (2006). "A Gaseous Metal Disk Around a White Dwarf".
6205: 1327:. This could happen within a billion years, according to numerical simulations in which Mercury's orbit is perturbed. 11160: 10323: 10296: 9464: 8747: 8613: 7770: 7554: 7171: 6531: 2166: 1768: 1726:
Various scientists have speculated that the Solar System's path through the galaxy is a factor in the periodicity of
244:
Understanding of how the Sun is expected to continue to evolve required an understanding of the source of its power.
155:
In roughly 5 billion years, the Sun will cool and expand outward to many times its current diameter (becoming a
2639: 1551:
much higher—up to 2,700 current solar luminosities. For part of its red-giant life, the Sun will have a strong
10711: 9474: 8633: 7497: 1809: 443: 1872:) are found to have an age of 4.6 billion years, suggesting that the Solar System must be at least this old. 1195:
Earth. It has been further hypothesized that the Mars-sized object may have formed at one of the stable Earth–Sun
9088: 8806: 3227: 2188: 1249: 10239: 8773: 6690: 5301: 3749: 981: 11445: 10890: 10306: 10140: 8917: 4291:"Gas accretion on to planetary cores: three-dimensional self-gravitating radiation hydrodynamical calculations" 2291: 984:. Eventually, friction within the planetesimal disc made the orbits of Uranus and Neptune near-circular again. 732:
formed closer to the Sun—near or even between Jupiter and Saturn—later migrating or being ejected outward (see
436: 432: 6599:
R. M. Canup; E. Asphaug (2001). "Origin of the Moon in a giant impact near the end of the Earth's formation".
2195:. Mercury, Venus and possibly Earth are swallowed. During this time Saturn's moon Titan may become habitable. 580:, in which the planets began as dust grains in orbit around the central protostar. Through direct contact and 11308: 10415: 10311: 6490: 6066:"The Risk to Civilization From Extraterrestrial Objects and Implications of the Shoemaker-Levy 9 Comet Crash" 5789:
Chambers, J. E. (2013). "Late-stage planetary accretion including hit-and-run collisions and fragmentation".
4275: 2854: 2768:
Dwarkadas, Vikram V.; Dauphas, Nicolas; Meyer, Bradley; Boyajian, Peter; Bojazi, Michael (22 December 2017).
1278: 321:) formed what became the Solar System. The composition of this region with a mass just over that of the Sun ( 10828: 8778: 1487: 462:(a star in which hydrogen fusion has not yet begun) at the centre. Since about half of all known stars form 11244: 10915: 10470: 10450: 10345: 8548:"Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago" 5469:
Morbidelli, Alessandro (3 February 2008). "Origin and dynamical evolution of comets and their reservoirs".
10833: 9471: 8519: 4653:
B. G. Elmegreen (1979). "On the disruption of a protoplanetary disc nebula by a T Tauri like solar wind".
2329: – Formation of galaxies, galaxy clusters and larger structures from small early density fluctuations 1579: 1411: 1395: 11262: 10990: 10516: 10445: 10410: 9449: 9443: 9259: 9181: 4163:
D'Angelo, G.; Lubow, S. H. (2010). "Three-dimensional Disk-Planet Torques in a Locally Isothermal Disk".
3010: 2169:. Slight chance the Solar System could be captured by Andromeda before the two galaxies fuse completely. 1481:
1.1 billion years. In about 600 million years, the Sun's brightness will have disrupted the Earth's
354:
in earlier generations of stars. Late in the life of these stars, they ejected heavier elements into the
10430: 8348: 3922: 11614: 11599: 11594: 11521: 11451: 10905: 10706: 10589: 10572: 10538: 9470: 9412: 9186: 3515: 2338: 2267: 2236:
Sun cools to 5 K. Gravity of passing stars detaches planets from orbits. Solar System ceases to exist.
1033: 550: 454:, gas pressure, magnetic fields, and rotation caused the contracting nebula to flatten into a spinning 172: 7398:
C. F. Chyba; D. G. Jankowski; P. D. Nicholson (1989). "Tidal evolution in the Neptune-Triton system".
6183:
Morbidelli, Alessandro (2008-02-03). "Origin and dynamical evolution of comets and their reservoirs".
5736:
D'Angelo, G.; Marzari, F. (2012). "Outward Migration of Jupiter and Saturn in Evolved Gaseous Disks".
3112:"Iron 60 Evidence for Early Injection and Efficient Mixing of Stellar Debris in the Protosolar Nebula" 1868:, which were formed during the early condensation of the solar nebula. Almost all meteorites (see the 1262: 1060:. The process of accretion, therefore, is not complete, and may still pose a threat to life on Earth. 175:
of years, it is likely that the Sun will be left with none of the original bodies in orbit around it.
11439: 10748: 10723: 10533: 9191: 8369:
Erik M. Leitch; Gautam Vasisht (1998). "Mass Extinctions and The Sun's Encounters with Spiral Arms".
7079:
O. Neron de Surgy; J. Laskar (February 1997). "On the long term evolution of the spin of the Earth".
6958: 5551:
R. Malhotra (1995). "The Origin of Pluto's Orbit: Implications for the Solar System Beyond Neptune".
5339: 4934:"Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion" 3374:
Nathan A. Kaib; Thomas Quinn (2008). "The formation of the Oort cloud in open cluster environments".
3116: 1041: 677: 649:
and, more importantly, gravitational interactions with the surrounding material caused a transfer of
77: 9467: 8547: 8196: 7921: 6043: 4688: 2770:"Triggered Star Formation inside the Shell of a Wolf–Rayet Bubble as the Origin of the Solar System" 1498:'s surface temperature gradually rises, carbon dioxide and water currently frozen under the surface 1029:
dates to 3.8 billion years ago—almost immediately after the end of the Late Heavy Bombardment.
965:, three sparse populations of small icy bodies thought to be the points of origin for most observed 771:
At the end of the planetary formation epoch, the inner Solar System was populated by 50–100 Moon-to-
11039: 10644: 8993: 8907: 7351:"Improved estimate of tidal dissipation within Mars from MOLA observations of the shadow of Phobos" 5604:
M. J. Fogg; R. P. Nelson (2007). "On the formation of terrestrial planets in hot-Jupiter systems".
4874:
Peter Goldreich; Yoram Lithwick; Re'em Sari (10 October 2004). "Final Stages of Planet Formation".
2425:(2010). "The age of the solar system redefined by the oldest Pb-Pb age of a meteoritic inclusion". 2249: 577: 343: 245: 8709:
Duncan, Martin J.; Lissauer, Jack J. (1997). "Orbital Stability of the Uranian Satellite System".
6363:
D'Angelo, G.; Podolak, M. (2015). "Capture and Evolution of Planetesimals in Circumjovian Disks".
6163: 5674: 1514:
Relative size of the Sun as it is now (inset) compared to its estimated future size as a red giant
11497: 11434: 11429: 10728: 10555: 10202: 10106: 10019: 9719: 9569: 9460: 9451: 8674: 4777: 2918:
W. M. Irvine (1983). "The chemical composition of the pre-solar nebula". In T. I. Gombosi (ed.).
2252: – Accumulation of particles into a massive object by gravitationally attracting more matter 2211: 1869: 1798: 1786: 1614: 1594: 1187: 1124: 1096: 507: 447: 271: 140: 6537: 6088: 5203: 4716: 2335: – Situation in which an astronomical object's orbital period matches its rotational period 1797:. In addition, the infalling gas will feed the newly formed black hole, transforming it into an 855:
discovered in 2006 has also been suggested as a possible source for Earth's water. In contrast,
11298: 10733: 10671: 10619: 10609: 10594: 10545: 10405: 10335: 9757: 9445: 7916: 7012: 2094: 1214: 1119: 1004: 950: 882: 859:
from the Kuiper belt or farther regions delivered not more than about 6% of Earth's water. The
498: 294: 144: 49: 29: 10654: 9465: 9457: 9454: 5494: 803:
The outer edge of the terrestrial region, between 2 and 4 AU from the Sun, is called the
127:
in the 1990s, the model has been both challenged and refined to account for new observations.
11589: 11293: 11288: 11252: 11230: 11153: 11099: 11026: 10900: 10753: 10716: 10604: 10599: 9405: 8960: 7804: 4143: 4100: 2474: 992: 918:
b) Scattering of Kuiper belt objects into the Solar System after the orbital shift of Neptune
876: 738: 309:(65 light years) across, while the fragments were roughly 1 parsec (three and a quarter 10768: 7411: 7348: 7319: 7092: 6997: 6957: 6734: 5913: 5890: 5627: 5357: 5319: 4852: 4666: 3948: 2888: 2738: 10661: 10614: 10271: 9729: 9694: 9689: 9583: 9534: 9507: 9463: 9442: 9121: 9073: 8854: 8718: 8562: 8482: 8388: 8286: 8239: 8145: 8057: 8008: 7908: 7849: 7690: 7627: 7569: 7456: 7407: 7362: 7315: 7278: 7231: 7128: 7088: 7027: 6993: 6869: 6810: 6749: 6666: 6608: 6445: 6382: 6335: 6219: 6131: 5963: 5886: 5843: 5798: 5755: 5694: 5623: 5570: 5509: 5398: 5388: 5353: 5269: 5220: 5204: 5136: 5088: 5049: 5002: 4948: 4893: 4848: 4813: 4761: 4662: 4594: 4524: 4472: 4420: 4367: 4312: 4231: 4182: 4115: 4052: 4005: 3944: 3884: 3815: 3772: 3725: 3675: 3638: 3592: 3549: 3473: 3393: 3340: 3299: 3256: 3195: 3178: 3135: 3076: 3024: 2975: 2923: 2884: 2791: 2734: 2604: 2567: 2541: 2488: 2434: 2273: 1523:. Within 7.5 billion years, the Sun will have expanded to a radius of 1.2 AU (180 1308: 1299:, which, due to friction raised within Earth's mantle by tidal interactions with the Moon ( 1217: 1151: 833: 428: 253: 233: 210: 193: 96: 11503: 9446: 9444: 8545: 8125: 7999:
K. R. Rybicki; C. Denis (2001). "On the Final Destiny of the Earth and the Solar System".
6419: 5071: 4975: 791:
dumping" is that terrestrials formed in a disc of gas still not expelled by the Sun. The "
99:. Its subsequent development has interwoven a variety of scientific disciplines including 8: 11364: 11113: 11002: 10840: 10813: 10763: 10567: 10031: 9724: 9576: 9264: 9221: 9055: 8998: 8849: 8841: 8799: 7735: 3246: 3111: 2326: 2028: 1950: 1432: 1402:
system, or crashes into the planet's surface or atmosphere. Such a fate awaits the moons
1207: 1200: 1080: 904: 829: 566: 510:
was achieved. This marked the Sun's entry into the prime phase of its life, known as the
455: 370: 355: 149: 61: 34: 9927: 9806: 8722: 8566: 8486: 8392: 8290: 8243: 8149: 8061: 8012: 7912: 7853: 7694: 7573: 7460: 7366: 7282: 7235: 7132: 7031: 6873: 6814: 6753: 6708: 6678: 6670: 6612: 6449: 6386: 6339: 6223: 6135: 5967: 5847: 5802: 5759: 5698: 5574: 5513: 5402: 5273: 5224: 5183: 5140: 5092: 5053: 5006: 4952: 4897: 4817: 4765: 4598: 4528: 4476: 4424: 4371: 4316: 4235: 4186: 4119: 4056: 4009: 3956: 3888: 3819: 3729: 3679: 3642: 3596: 3582: 3553: 3477: 3397: 3344: 3260: 3199: 3139: 3080: 3028: 2979: 2927: 2795: 2608: 2545: 2492: 2438: 1009: 887:
According to the nebular hypothesis, the outer two planets may be in the "wrong place".
11609: 11559: 11547: 11347: 11326: 11093: 10963: 10910: 10788: 10758: 10666: 10479: 9616: 9447: 9133: 8586: 8500: 8472: 8404: 8378: 8315: 8255: 8229: 8169: 8135: 8075: 8047: 7942: 7708: 7680: 7603: 7529: 7501: 7472: 7446: 7380: 7331: 7247: 7221: 7144: 7118: 7061: 6952: 6893: 6859: 6826: 6822: 6800: 6773: 6682: 6632: 6469: 6398: 6372: 6325: 6184: 6155: 5992: 5953: 5941: 5859: 5833: 5771: 5745: 5718: 5684: 5639: 5613: 5586: 5560: 5533: 5470: 5422: 5366: 5341: 5293: 5160: 5126: 5020: 4992: 4909: 4883: 4610: 4584: 4540: 4514: 4462: 4436: 4410: 4383: 4357: 4330: 4302: 4221: 4198: 4172: 4021: 3995: 3968: 3934: 3902: 3874: 3831: 3805: 3741: 3691: 3665: 3497: 3409: 3383: 3356: 3330: 3280: 3219: 3151: 3125: 3092: 3066: 2991: 2965: 2900: 2814: 2781: 2769: 2750: 2620: 2386: 2314: 1907: 1906:
Note: All dates and times in this chronology are approximate and should be taken as an
1841: 1160: 1101:
Moons have come to exist around most planets and many other Solar System bodies. These
1049: 792: 612: 592: 446:, the nebula spun faster as it collapsed. As the material within the nebula condensed, 283: 225: 221: 168: 88: 84: 9900: 9863: 8400: 6394: 4860: 4194: 4127: 3768: 3655: 3352: 2045:
Terrestrial planets and the Moon form. Giant impacts occur. Water delivered to Earth.
11321: 11220: 11203: 10953: 10523: 10465: 10256: 10145: 10071: 10012: 9741: 9363: 9345: 9249: 9216: 8743: 8688: 8678: 8609: 8578: 8495: 8460: 8259: 8161: 8079: 7934: 7891: 7766: 7703: 7668: 7595: 7533: 7519: 7491: 7476: 7335: 7167: 7053: 6897: 6885: 6845: 6765: 6624: 6527: 6473: 6461: 6402: 6343: 6147: 6080: 5997: 5979: 5863: 5855: 5775: 5767: 5710: 5643: 5525: 5414: 5371: 5285: 5152: 5015: 4480: 4387: 4379: 4325: 4290: 4269: 4202: 4131: 3972: 3960: 3906: 3835: 3565: 3489: 3446: 3428: 3272: 3223: 3211: 3096: 3036: 2904: 2819: 2754: 2724: 2696: 2668: 2624: 2506: 2320: 2207: 1790: 1684: 1672: 1660: 1645: 1610: 1555:
that will carry away around 33% of its mass. During these times, it is possible that
1503: 1445: 1288: 1266: 1241: 1166:
Moons of solid Solar System bodies have been created by both collisions and capture.
1102: 816: 581: 546: 494: 479: 314: 116: 69: 9983: 8504: 8408: 8070: 8035: 7946: 7712: 7607: 7212:
Batygin, K.; Laughlin, G. (2008). "On the Dynamical Stability of the Solar System".
7148: 6777: 6686: 5590: 5444: 5297: 5164: 5024: 4913: 4544: 4440: 4334: 4025: 3745: 3695: 3637:. Vol. 289. Astronomical Society of the Pacific Conference Series. p. 85. 3501: 3413: 3360: 3284: 3155: 2995: 2477:"Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets" 2282: – Scientific study of the origin, evolution, and eventual fate of the universe 1459: 11487: 11421: 11406: 11316: 11198: 11146: 11014: 10818: 10808: 10701: 10676: 10086: 10056: 9907: 9781: 9621: 9486: 9276: 9143: 9128: 9005: 8985: 8927: 8831: 8826: 8726: 8590: 8570: 8490: 8396: 8294: 8247: 8173: 8153: 8065: 8016: 7975: 7950: 7926: 7857: 7698: 7587: 7577: 7511: 7490:
Tiscareno, M. S. (2012-07-04). "Planetary Rings". In Kalas, P.; French, L. (eds.).
7464: 7384: 7370: 7323: 7286: 7251: 7239: 7136: 7065: 7043: 7035: 6924: 6877: 6850: 6830: 6818: 6757: 6674: 6636: 6616: 6453: 6390: 6271: 6227: 6159: 6139: 5987: 5971: 5894: 5851: 5806: 5763: 5722: 5702: 5631: 5578: 5537: 5517: 5426: 5406: 5361: 5277: 5228: 5208: 5144: 5096: 5010: 4956: 4901: 4856: 4821: 4769: 4712: 4614: 4602: 4532: 4428: 4400: 4375: 4320: 4190: 4123: 4060: 4013: 3952: 3892: 3823: 3733: 3683: 3608: 3600: 3557: 3481: 3436: 3401: 3348: 3264: 3203: 3143: 3084: 3032: 3015: 2983: 2892: 2809: 2799: 2742: 2612: 2592: 2549: 2496: 2442: 2422: 2296: 2215: 2184: 2162: 1794: 1618: 1590: 1567: 1544: 1415: 1345: 1196: 1076: 812: 784: 650: 616: 359: 237: 160: 6919: 5211:; M. V. Vasilyev; E. I. Yagudina (July 2002). "Hidden Mass in the Asteroid Belt". 4629: 3464:
Jane S. Greaves (2005). "Disks Around Stars and the Growth of Planetary Systems".
1112:
Formation from impact debris (given a large enough impact at a shallow angle); and
1109:
Co-formation from a circumplanetary disc (only in the cases of the giant planets);
393:, that only form in exploding, short-lived stars. This indicates that one or more 11390: 11357: 11352: 11225: 11193: 10885: 10783: 10691: 10582: 10560: 10357: 10301: 10291: 10081: 10061: 10036: 10024: 9978: 9966: 9870: 9853: 9813: 9791: 9786: 9271: 9254: 9211: 9201: 9093: 8664: 7039: 6519: 6270:. Dynamics of Populations of Planetary Systems. Vol. 197. pp. 357–374. 6117:"Neptune's capture of its moon Triton in a binary-planet gravitational encounter" 5937: 5810: 5635: 5100: 4960: 4931: 4606: 4432: 3863:"Keeping It Cool: Much Orbit Migration, yet Little Heating, in the Galactic Disk" 3405: 3179:
J. Jeff Hester; Steven J. Desch; Kevin R. Healy; Laurie A. Leshin (21 May 2004).
2368: 2285: 2093:
Resonance in Jupiter and Saturn's orbits moves Neptune out into the Kuiper belt.
1861: 1727: 1716: 1449: 1351:
The Earth and its Moon are one example of this configuration. Today, the Moon is
1143: 852: 420: 378: 351: 302: 298: 249: 53: 8105: 7515: 5823: 5116: 2288: – Long-term extrapolated geological and biological changes of planet Earth 475:; it is in fact younger than the Sun and the oldest planet of the Solar System. 11571: 11385: 11188: 10869: 10649: 10639: 10577: 10440: 10367: 10328: 10249: 10222: 10076: 9946: 9917: 9895: 9885: 9875: 9828: 9386: 9304: 9294: 9158: 9153: 8912: 8902: 8792: 8774:
QuickTime animation of the future collision between the Milky Way and Andromeda
8660: 6881: 5898: 3897: 3862: 3441: 2804: 2143: 1844:. Scientists estimate that the Solar System is 4.6 billion years old. The 1491: 1422: 1399: 1371: 1357: 1352: 1303:), is incomputable from some point between 1.5 and 4.5 billion years from now. 1191: 1045: 958: 646: 529:
Like most stars, the Sun likely formed not in isolation but as part of a young
502: 257: 11507: 7436: 7291: 7266: 6563: 6276: 5975: 5410: 3861:
Frankel, Neige; Sanders, Jason; Ting, Yuan-Sen; Rix, Hans-Walter (June 2020).
3088: 3057:
Williams, J. (2010). "The astrophysical environment of the solar birthplace".
2746: 2553: 1589:
and Pluto to thaw. During this time, these worlds could support a water-based
736:
below). Motion in the planetesimal era was not all inward toward the Sun; the
11583: 11468: 10968: 10948: 10528: 10261: 10244: 10065: 9988: 9951: 9922: 9912: 9880: 9858: 9838: 9801: 9774: 9769: 9764: 9314: 9244: 9196: 9163: 9035: 9025: 9015: 8975: 8970: 8638: 6918:
Blackman, Joshua; Bennett, David; Beaulieu, Jean-Philippe (13 October 2021).
6210: 6084: 5983: 5495:"Origin of the orbital architecture of the giant planets of the Solar System" 5375: 5148: 4504: 3964: 3569: 3450: 2846: 2529: 2332: 1735: 1731: 1720: 1407: 1403: 1376: 1364:(as well as many of Jupiter's smaller moons) and most of the larger moons of 1292: 1245: 1221: 1175: 1171: 1156: 1139: 1072: 1053: 1013: 804: 585: 511: 229: 202: 92: 8157: 7582: 6761: 6457: 5942:"Cataclysm No More: New Views on the Timing and Delivery of Lunar Impactors" 5281: 3613: 3485: 3268: 3207: 2475:
Gomes, R.; Levison, Harold F.; Tsiganis, K.; Morbidelli, Alessandro (2005).
362:
to a hypothetical star that went supernova and created the presolar nebula.
11535: 11283: 11267: 11208: 11046: 11032: 10823: 10778: 10435: 10318: 10212: 10152: 10135: 9961: 9939: 9890: 9848: 9833: 9818: 9684: 9643: 9608: 9428: 9368: 9319: 9309: 9299: 9239: 9020: 8874: 8864: 8730: 8582: 8165: 8020: 7938: 7599: 7349:
Bruce G. Bills; Gregory A. Neumann; David E. Smith; Maria T. Zuber (2006).
7057: 6889: 6769: 6628: 6465: 6235: 6151: 6001: 5714: 5529: 5418: 5289: 5250: 5232: 5156: 4932:
Bottke, William F.; Durda, Daniel D.; Nesvorny, David; et al. (2005).
4873: 4825: 4773: 4135: 3493: 3276: 3215: 2987: 2823: 2616: 2510: 2308: 2255: 2007: 1968: 1707: 1606: 1560: 1552: 1482: 1284: 1229: 1147: 808: 743: 717: 713: 681: 657: 542: 530: 483: 403: 374: 346:, forming about 98% of its mass. The remaining 2% of the mass consisted of 131: 41: 7835: 6292: 6044:"UCLA scientists strengthen case for life more than 3.8 billion years ago" 6016: 2875:
J. J. Rawal (1986). "Further Considerations on Contracting Solar Nebula".
2532:(July 1979). "Time Without End: Physics and Biology in an open universe". 152:
may have been responsible for much of the Solar System's early evolution.
11331: 11257: 11213: 11183: 11087: 11081: 10864: 10852: 10847: 10798: 10773: 10743: 10738: 10686: 10681: 10506: 10420: 10379: 10340: 10217: 10048: 9971: 9934: 9823: 9116: 8922: 8859: 8546:
Simon A. Wilde; John W. Valley; William H. Peck; Colin M. Graham (2001).
8383: 8234: 8140: 7451: 7397: 7375: 7350: 7123: 6317: 6189: 5618: 5565: 5475: 5131: 4997: 4888: 4519: 4000: 3810: 3670: 2970: 2302: 2299: – Development of planet Earth from its formation to the present day 2219: 2146:
moves outside of the Earth's orbit, possibly shifting onto Mars's orbit.
2111: 1946: 1845: 1840:
The time frame of the Solar System's formation has been determined using
1782: 1778: 1774: 1748: 1696: 1641: 1629: 1386: 1340: 1258: 1225: 954: 776: 760: 534: 506:
internal source of energy that countered gravitational contraction until
463: 424: 407: 347: 164: 7591: 6143: 5706: 5521: 3627: 2501: 2476: 1755:, which live for relatively short periods and then explode violently as 1079:
from the solar wind, micrometeorites, and the neutral components of the
381:
probably very similar to the primordial nebula from which the Sun formed
11369: 11106: 11053: 10793: 10372: 9956: 9206: 9173: 9148: 9030: 8950: 8869: 8219: 7327: 7048: 6258: 5074:"The primordial excitation and clearing of the asteroid belt—Revisited" 4216:
Lubow, S. H.; Ida, S. (2011). "Planet Migration". In S. Seager. (ed.).
3631:
The Proceedings of the IAU 8th Asian-Pacific Regional Meeting, Volume I
3427:
Pfalzner, Susanne; Govind, Amith; Portegies Zwart, Simon (2024-09-04).
2896: 2115: 1813: 1756: 1752: 1740: 1548: 1296: 1068: 973: 962: 872: 860: 721: 688:
elements. Planetesimals beyond the frost line accumulated up to 4 
632: 501:
has observed protoplanetary discs of up to 1000 AU in diameter in
411: 398: 322: 310: 264: 261: 189: 11566: 7930: 7555:"Measurement and implications of Saturn's gravity field and ring mass" 6231: 5342:"Source regions and timescales for the delivery of water to the Earth" 1624: 11067: 11060: 10489: 10455: 10286: 10207: 10130: 10125: 10096: 9843: 9796: 9665: 9648: 9138: 9083: 9068: 9040: 9010: 8937: 8879: 8574: 7140: 6620: 4630:"Stardust Results in a Nutshell: The Solar Nebula was Like a Blender" 3561: 3300:"Slow-Moving Rocks Better Odds That Life Crashed to Earth from Space" 2317: – Idea that long-term human presence requires to be spacefaring 2279: 2192: 2158: 2010: 1865: 1857: 1688: 1676: 1664: 1637: 1586: 1520: 1472: 1381: 1253: 1135: 900: 896: 604: 554: 518: 472: 459: 394: 268: 156: 124: 120: 104: 100: 10091: 7506: 7267:"Tidal Heating of Io and orbital evolution of the Jovian satellites" 3429:"Trajectory of the stellar flyby that shaped the outer Solar System" 2883:(1). Nehru Planetarium, Bombay India: Springer Netherlands: 93–100. 2446: 2031:
has been blown away, and outer planet formation is likely complete.
980:, became gravitationally tied to Neptune's orbit, forcing them into 11120: 10958: 10425: 10281: 10266: 10007: 9714: 9562: 8299: 8274: 8251: 8052: 7862: 7837: 7468: 7243: 6864: 6377: 6046:(Press release). University of California-Los Angeles. 21 July 2006 5958: 5582: 5072:
O'Brien, David; Morbidelli, Alessandro; Bottke, William F. (2007).
4905: 4839:
Sean C. Solomon (2003). "Mercury: the enigmatic innermost planet".
4536: 4065: 4040: 4017: 3879: 3827: 3737: 3687: 3604: 3147: 2786: 2261: 1992:
Pre-solar nebula forms and begins to collapse. Sun begins to form.
1832: 1499: 1179: 608: 331: 209:
in orbit around it. This concept had been developed for millennia (
73: 56:. Most of the collapsing mass collected in the center, forming the 8477: 8433:"When Our Galaxy Smashes Into Andromeda, What Happens to the Sun?" 7892:
Ralph D. Lorenz; Jonathan I. Lunine; Christopher P. McKay (1997).
7685: 7226: 6805: 6330: 5838: 5750: 5689: 4589: 4467: 4415: 4362: 4307: 4226: 4177: 3939: 3388: 3335: 3130: 3071: 2851:"Lecture 13: The Nebular Theory of the origin of the Solar System" 2540:(3). Institute for Advanced Study, Princeton New Jersey: 447–460. 293:
The nebular hypothesis says that the Solar System formed from the
10362: 10350: 10276: 9675: 9653: 9528: 9513: 9231: 9108: 9078: 8894: 8884: 8767: 8520:"NASA's Hubble Shows Milky Way is Destined for Head-On Collision" 8272: 7785: 7666: 6416:
N. Takato; S. J. Bus; et al. (2004). "Detection of a Deep 3-
6259:
Bottke, William F.; Durba, D.; Nesvorny, D.; et al. (2005).
6114: 5492: 3321:
Simon F. Portegies Zwart (2009). "The Lost Siblings of the Sun".
2311: – Distance over which a quantity decreases by a factor of e 1853: 1817: 1361: 1312: 1057: 1037: 892: 673: 661: 538: 467: 451: 390: 339: 306: 112: 108: 8692: 8604:
Gary Ernst Wallace (2000). "Earth's Place in the Solar System".
6577: 5493:
Tsiganis, K.; Gomes, R.; Morbidelli, A.; F. Levison, H. (2005).
3540:
DROBYSHEVSKI, E. M. (1974). "Was Jupiter the protosun's core?".
1821:
the Solar System, in any meaningful sense, will cease to exist.
1510: 1311:, with some planets' orbits becoming significantly more—or less— 11169: 10803: 10000: 9995: 9709: 9704: 9670: 9658: 9603: 9555: 9548: 9523: 9518: 9397: 9098: 8965: 8945: 7305: 6510: 6316: 1652: 1648: 1602: 1556: 1365: 1265:, a Jupiter-sized exoplanet orbiting its host white dwarf star 907:
to their current positions over hundreds of millions of years.
888: 669: 665: 600: 335: 217: 65: 6790: 6203: 5046:
Proceedings 37th Annual Lunar and Planetary Science Conference
4976:"Pumping of a Planetesimal Disc by a Rapidly Migrating Planet" 4574: 2420: 1914:
Chronology of the formation and evolution of the Solar System
1762: 1563:
could achieve surface temperatures necessary to support life.
783:
below), while another removed the outer envelope of the young
365: 10120: 9699: 9631: 9626: 9541: 9496: 9491: 9286: 9063: 9045: 8815: 7894:"Titan under a red giant sun: A new kind of "habitable" moon" 7870: 7109:
Wayne B. Hayes (2007). "Is the outer Solar System chaotic?".
7010: 4747:"The Primordial Excitation and Clearing of the Asteroid Belt" 4220:. University of Arizona Press, Tucson, AZ. pp. 347–371. 3635:
The Proceedings of the IAU 8th Asian-Pacific Regional Meeting
3508: 3426: 3109: 2767: 1849: 1575: 1571: 1324: 1320: 1064: 977: 966: 856: 624: 620: 224:, has fallen into and out of favour since its formulation by 206: 8368: 5658:"Jupiter may have robbed Mars of mass, new report indicates" 3708: 2934: 2305: – Large area of molten rock on the surface of a planet 910: 9752: 9636: 9501: 9335: 8955: 8316:"Period of the Sun's Orbit around the Galaxy (Cosmic Year)" 7732:
Centre for International Climate and Environmental Research
7418: 6984:
J. Laskar (1994). "Large-scale chaos in the solar system".
6206:"Interplanetary Weathering: Surface Erosion in Outer Space" 4456: 4347: 3533: 1936:
Billions of years before the formation of the Solar System
1692: 1680: 1668: 1495: 1336: 1183: 1167: 1128: 1026: 772: 628: 596: 458:
with a diameter of about 200 AU and form a hot, dense
317:) in size. One of these collapsing fragments (known as the 205:, which placed the Sun at the centre of the system and the 136: 11530: 11138: 7552: 7078: 5248: 3711:"Magnetic Star-Disk Coupling in Classical T Tauri Systems" 3373: 1864:. To estimate the age of the Solar System, scientists use 1389:, tearing it apart and possibly forming a new ring system. 1385:. Triton's orbit will eventually take it within Neptune's 185:
History of Solar System formation and evolution hypotheses
9481: 6652:"Origin of the moon – The collision hypothesis" 4803: 3011:"The supernova trigger for formation of the solar system" 2106: 2088: 2071: 2057: 2040: 2022: 2001: 1987: 1962: 1940: 57: 45: 8784: 7725: 7013:"Numerical evidence that the motion of Pluto is chaotic" 6436:
m Absorption Feature in the Spectrum of Amalthea (JV)".
4341: 4162: 3548:(5461). Springer Science and Business Media LLC: 35–36. 3320: 2691:
Simon Mitton (2005). "Origin of the Chemical Elements".
1958:~ 50 million years before formation of the Solar System 1632:, a planetary nebula similar to what the Sun will become 1543: mi)—256 times its current size. At the tip of the 1406:
of Mars (within 30 to 50 million years),
823:
As Jupiter migrated inward following its formation (see
256:
led to his realisation that the Sun's energy comes from
8279:
Publications of the Astronomical Society of the Pacific
7836:
I. J. Sackmann; A. I. Boothroyd; K. E. Kraemer (1993).
7189:"The solar system could go haywire before the sun dies" 6917: 6362: 5735: 3985: 2341: – Scientific projections regarding the far future 1975:, possibly triggers the formation of the Solar System. 1636:
This is a relatively peaceful event, nothing akin to a
8770:
showing the early evolution of the outer Solar System.
8098:"Planetary nebulae and the future of the Solar System" 5603: 4038: 1945:
Previous generations of stars live and die, injecting
1421:
A third possibility is where the primary and moon are
11519: 8458: 8034:
Ramirez, Ramses M.; Kaltenegger, Lisa (16 May 2016).
7998: 7758: 6598: 6422: 6290: 4973: 3860: 3775: 2955: 2591: 1879: 1439: 1134:
Jupiter and Saturn have several large moons, such as
267:
on this premise by arguing that evolved stars called
6356: 5876: 5729: 1418:
may even collide with one of its neighboring moons.
330:) was about the same as that of the Sun today, with 8461:"The Collision Between The Milky Way And Andromeda" 6268:
Proceedings of the International Astronomical Union
5048:. League City, Texas: Lunar and Planetary Society. 998: 903:"), where more material was available, and to have 8603: 8033: 6715:. Hawaii Institute of Geophysics & Planetology 6522:; Timothy E. Dowling; William B. McKinnon (eds.). 6428: 6415: 5451:. Hawaii Institute of Geophysics & Planetology 5255:"A Population of Comets in the Main Asteroid Belt" 4288: 4156: 3788: 920:c) After ejection of Kuiper belt bodies by Jupiter 196:, one of the originators of the nebular hypothesis 8465:Monthly Notices of the Royal Astronomical Society 8347:. The Scientific Research Society. Archived from 7673:Monthly Notices of the Royal Astronomical Society 7546: 7271:Monthly Notices of the Royal Astronomical Society 7166:(2nd ed.). Penguin Books. pp. 246–249. 6706: 6524:Jupiter. The Planet, Satellites and Magnetosphere 6178: 6176: 5442: 4984:Monthly Notices of the Royal Astronomical Society 4745:Petit, Jean-Marc; Morbidelli, Alessandro (2001). 4461:. University of Arizona Press. pp. 319–346. 4295:Monthly Notices of the Royal Astronomical Society 4282: 4098: 3002: 2951: 2949: 1711:Location of the Solar System within the Milky Way 1436:spacecraft suggests they formed relatively late. 1063:Over the course of the Solar System's evolution, 914:Simulation showing outer planets and Kuiper belt: 524: 11581: 8738:Zeilik, Michael A.; Gregory, Stephen A. (1998). 8186: 7662: 7660: 7658: 7656: 7654: 7652: 7650: 7648: 6844:Blackman, J. W.; et al. (13 October 2021). 6526:. Cambridge University Press. pp. 263–280. 6073:Abhandlungen der Geologischen Bundeanstalt, Wien 6063: 5662:Southwest Research Institute, San Antonio, Texas 5445:"Uranus, Neptune, and the Mountains of the Moon" 4627: 2662: 2218:, leaving the dense core of the Sun behind as a 1566:As the Sun expands, it will swallow the planets 1410:of Neptune (in 3.6 billion years), and at least 1105:originated by one of three possible mechanisms: 163:and leaving behind a stellar remnant known as a 9441: 8779:How the Sun Will Die: And What Happens to Earth 8627: 8625: 7669:"Distant future of the Sun and Earth revisited" 7211: 6846:"A Jovian analogue orbiting a white dwarf star" 6843: 6649: 4838: 4744: 4652: 3463: 3009:Cameron, A. G. W.; Truran, J. W. (March 1977). 2720: 2718: 2716: 2714: 2712: 2597:Philosophical Transactions of the Royal Society 549:of other stars, the strong radiation of nearby 8708: 8608:. Cambridge University Press. pp. 45–58. 8275:"The Potential of White Dwarf Cosmochronology" 8273:G. Fontaine; P. Brassard; P. Bergeron (2001). 7831: 7829: 7827: 7825: 7424: 7108: 6732: 6261:"The origin and evolution of stony meteorites" 6254: 6252: 6173: 5911: 5177: 5112: 5110: 5043: 4570: 4568: 4566: 4564: 4562: 4560: 4558: 4556: 4554: 2946: 2276: – Accumulation of matter around a planet 1295:) into the future. Another example is Earth's 1213:) and drifted from its position. The moons of 11154: 9602: 9413: 8800: 8742:(4th ed.). Saunders College Publishing. 8737: 8266: 8036:"Habitable Zones of Post-Main Sequence Stars" 7876: 7805:"Introduction to Cataclysmic Variables (CVs)" 7791: 7645: 7621: 7619: 7617: 6939: 6837: 6726: 6659:Annual Review of Earth and Planetary Sciences 6583: 6553: 6211:Eos, Transactions, American Geophysical Union 5488: 5486: 5438: 5436: 5317: 5197: 5067: 5065: 5063: 4927: 4925: 4923: 4032: 3848: 3008: 2940: 2845: 2637: 2528: 2323: – Changes to stars over their lifespans 2258: – Scientific dating of the age of Earth 1502:will release into the atmosphere, creating a 493:. These discs extend to several hundred  87:, was first developed in the 18th century by 8659: 8622: 7992: 7667:K. P. Schroder; Robert Connon Smith (2008). 7155: 6979: 6977: 6911: 6594: 6592: 6511:D. C. Jewitt; S. Sheppard; C. Porco (2004). 6322:Origin of Europa and the Galilean Satellites 6115:Craig B. Agnor; Hamilton P. Douglas (2006). 6110: 6108: 5782: 5544: 5244: 5242: 4740: 4738: 4736: 4215: 4148:: CS1 maint: DOI inactive as of June 2024 ( 3539: 2917: 2709: 2690: 1582:with the Sun's weakly-bound outer envelope. 159:), before casting off its outer layers as a 40:There is evidence that the formation of the 8430: 8313: 8180: 7822: 7264: 7186: 7104: 7102: 6480: 6324:. University of Arizona Press. p. 59. 6249: 5946:Origins of Life and Evolution of Biospheres 5870: 5817: 5597: 5550: 5391:Origins of Life and Evolution of Biospheres 5107: 4832: 4799: 4797: 4551: 3927:Annual Review of Astronomy and Astrophysics 3923:"The Birth Environment of the Solar System" 2911: 2874: 2686: 2684: 1763:Galactic collision and planetary disruption 1335:The evolution of moon systems is driven by 1186:is thought to have formed as a result of a 560: 11417: 11161: 11147: 9420: 9406: 8807: 8793: 8091: 8089: 7973: 7625: 7614: 7483: 7342: 6556:"The Giant Planet Satellite and Moon Page" 6182: 5483: 5468: 5433: 5060: 4920: 4500: 4498: 4496: 4452: 4450: 4257:. Archived from the original on 2010-04-12 2841: 2839: 2837: 2835: 2833: 2761: 2270: – History and future of the universe 8740:Introductory Astronomy & Astrophysics 8631: 8541: 8539: 8494: 8476: 8382: 8298: 8233: 8139: 8069: 8051: 7920: 7887: 7885: 7861: 7702: 7684: 7581: 7505: 7489: 7450: 7374: 7290: 7225: 7122: 7047: 6983: 6974: 6863: 6804: 6589: 6376: 6329: 6310: 6275: 6204:Beth E. Clark; Robert E. Johnson (1996). 6188: 6105: 5991: 5957: 5837: 5749: 5688: 5617: 5564: 5474: 5365: 5239: 5130: 5014: 4996: 4887: 4733: 4588: 4518: 4466: 4414: 4361: 4324: 4306: 4225: 4176: 4064: 3999: 3938: 3896: 3878: 3809: 3764: 3762: 3709:M. Küker; T. Henning; G. Rüdiger (2003). 3669: 3612: 3440: 3387: 3334: 3174: 3172: 3129: 3070: 2969: 2813: 2803: 2785: 2500: 2416: 2414: 2233:~ 1 quadrillion years in the future 1888: 10933:Interstellar and circumstellar molecules 8426: 8424: 8422: 8420: 8418: 8095: 7754: 7752: 7628:"Science: Fiery future for planet Earth" 7205: 7099: 7011:Gerald Jay Sussman; Jack Wisdom (1988). 6945: 6513:"Jupiter's outer satellites and Trojans" 5914:"Orbital shuffle for early solar system" 5788: 4794: 4679: 4394: 4094: 4092: 4090: 4088: 4086: 4084: 4082: 4080: 4078: 4076: 3842: 3621: 3576: 3297: 3056: 2681: 2595:(1984). "Rotation in the Solar System". 1706: 1623: 1509: 1370: 1118: 1008: 909: 824: 733: 570: 364: 188: 28: 11129:) may be read as "within" or "part of". 10157:Planetary orbit-crossing minor planets 8454: 8452: 8314:Stacy Leong (2002). Glenn Elert (ed.). 8307: 8086: 7161: 6735:"A Giant Impact Origin of Pluto-Charon" 6038: 6036: 6014: 5936: 5905: 4493: 4447: 3242: 3240: 2830: 2524: 2522: 2520: 2470: 2468: 2466: 2464: 2462: 2460: 2458: 2456: 1702: 753: 14: 11582: 8536: 7882: 6713:Planetary Science Research Discoveries 6707:G. Jeffrey Taylor (31 December 1998). 5449:Planetary Science Research Discoveries 5397:(4/6). Springer Netherlands: 597–612. 4711: 4209: 3759: 3169: 2411: 1953:out of which the Solar System formed. 1300: 1272: 953:, the Solar System continues into the 916:a) Before Jupiter/Saturn 2:1 resonance 866: 766: 763:may have been much closer to the Sun. 611:. These rocky bodies would become the 358:. Some scientists have given the name 11142: 9401: 8788: 8415: 8320:The Physics Factbook (self-published) 7749: 5320:"New comet class in Earth's backyard" 4248: 4073: 3920: 2203:~ 7 billion years in the future 2180:5–7 billion years in the future 2154:2.4 billion years in the future 2139:1.4 billion years in the future 2084:500 million – 600 million years 716:like the young Sun have far stronger 387:oldest inclusions found in meteorites 11493: 9359:Geology of solar terrestrial planets 8670:The Anthropic Cosmological Principle 8517: 8449: 6297:SP–345 Evolution of the Solar System 6033: 5443:G. Jeffrey Taylor (21 August 2001). 4687:. Harvard University. Archived from 3237: 2517: 2453: 2373:List of Solar System objects by mass 1894:A graphical timeline is available at 1330: 1159:, which is thought to be a captured 482:, the Sun is thought to have been a 8606:Earth Systems: Processes and Issues 7976:"Sun, the solar system's only star" 7726:Knut Jørgen; Røed Ødegaard (2004). 6946:Ferreira, Becky (13 October 2021). 6679:10.1146/annurev.ea.15.050187.001415 6483:"Jovian Moon Was Probably Captured" 5879:Earth and Planetary Science Letters 5346:Meteoritics & Planetary Science 4841:Earth and Planetary Science Letters 3957:10.1146/annurev-astro-081309-130830 2177:10 billion – 12 billion years 1898:Graphical timeline of Earth and Sun 1781:distort their outer arms into vast 820:other bodies, rather than accrete. 425:hot and cold Kuiper belt population 24: 9437: 8632:Courtland, Rachel (July 2, 2008). 7838:"Our Sun. III. Present and Future" 7493:Planets, Stars and Stellar Systems 6733:Robin M. Canup (28 January 2005). 6017:"Chronology of Planetary surfaces" 5367:10.1111/j.1945-5100.2000.tb01518.x 2206:Sun passes through helium-burning 2131:Sun remains a main-sequence star. 2097:occurs in the inner Solar System. 2062:Sun becomes a main-sequence star. 1880:Timeline of Solar System evolution 1440:The Sun and planetary environments 406:. Studies of the structure of the 288: 123:in the 1950s and the discovery of 60:, while the rest flattened into a 25: 11626: 8757: 8634:"Did newborn Earth harbour life?" 8338: 6320:; Ward, William R. (2008-12-30). 4289:Ayliffe, B.; Bate, M. R. (2009). 4128:10.1038/scientificamerican0508-50 4039:P. Goldreich; W. R. Ward (1973). 2572:Merriam Webster Online Dictionary 2230:~ 1 quadrillion years (10 years) 1967:If the Solar System formed in an 1876:within them have ceased forming. 851:belt by Jupiter. A population of 676:) formed further out, beyond the 171:. Ultimately, over the course of 11565: 11553: 11541: 11529: 11502: 11492: 11483: 11482: 11416: 11020: 11008: 10996: 9427: 9382: 9381: 8653: 8597: 8511: 8496:10.1111/j.1365-2966.2008.13048.x 8459:J. T. Cox; Abraham Loeb (2007). 8362: 8332: 8213: 8119: 8027: 7967: 7797: 7719: 7704:10.1111/j.1365-2966.2008.13022.x 7430: 7391: 7299: 7258: 7180: 7072: 7004: 6784: 6481:Fraser Cain (24 December 2004). 6291:H. Alfvén; G. Arrhenius (1976). 5016:10.1111/j.1365-2966.2004.08238.x 4974:R. Edgar; P. Artymowicz (2004). 4326:10.1111/j.1365-2966.2008.14184.x 4041:"The Formation of Planetesimals" 3798:Astrophysical Journal Supplement 3181:"The Cradle of the Solar System" 2392: 2027:By 10 million years, gas in the 1997:100,000 – 50 million years 1887: 1831: 1458: 1414:of Uranus and Neptune. Uranus's 999:Late Heavy Bombardment and after 798: 444:conservation of angular momentum 220:for Solar System formation, the 10896:Gravitationally rounded objects 9089:Human impact on the environment 8702: 7355:Journal of Geophysical Research 6700: 6643: 6547: 6504: 6409: 6284: 6197: 6057: 6008: 5930: 5668: 5650: 5462: 5382: 5333: 5311: 5180:"Mysteries of the Solar Nebula" 5178:Susan Watanabe (20 July 2001). 5171: 5037: 4967: 4867: 4705: 4682:"Disc-Protoplanet interactions" 4673: 4646: 4621: 4242: 3979: 3914: 3854: 3796:Isochrones for Solar Mixture". 3702: 3649: 3457: 3420: 3367: 3314: 3291: 3103: 3050: 2868: 2378: 2361: 2352: 2198: 2172: 2149: 2134: 2121: 2100: 2082: 2065: 2048: 2036:10 million – 100 million years 2034: 2016: 1995: 1978: 1956: 1931: 1925:Time from present (approximate) 1922:Time since formation of the Sun 1188:single, large head-on collision 301:, most likely at the edge of a 8918:Climate variability and change 7759:Jeffrey Stuart Kargel (2004). 6709:"Origin of the Earth and Moon" 5664:(Press release). June 6, 2011. 4099:Douglas N. C. Lin (May 2008). 2922:. Vol. 1. pp. 3–12. 2656: 2631: 2585: 2560: 2292:Galaxy formation and evolution 525:Solar system birth environment 305:. The cloud was about 20  13: 1: 11605:Solar System dynamic theories 9354:Evolution of the Solar System 8401:10.1016/S1384-1076(97)00044-4 7762:Mars: A Warmer, Wetter Planet 7193:NewScientist.com News Service 7187:David Shiga (23 April 2008). 4861:10.1016/S0012-821X(03)00546-6 4680:Heng Hao (24 November 2004). 3921:Adams, Fred C. (2010-08-01). 3585:Astrophysical Journal Letters 2693:Fred Hoyle: A Life in Science 2405: 1824: 1769:Andromeda–Milky Way collision 1344:the moon. In this situation, 1279:Stability of the Solar System 1178:, are thought to be captured 18:Formation of the Solar System 9094:Evolutionary history of life 7901:Geophysical Research Letters 7400:Astronomy & Astrophysics 7040:10.1126/science.241.4864.433 6823:10.1088/0004-6256/139/6/2700 6015:Veverka, J. (January 1984). 5811:10.1016/j.icarus.2013.02.015 5606:Astronomy & Astrophysics 5101:10.1016/j.icarus.2007.05.005 4961:10.1016/j.icarus.2005.05.017 4717:"Dysnomia, the moon of Eris" 4655:Astronomy & Astrophysics 4607:10.1016/j.icarus.2007.11.035 4433:10.1016/j.icarus.2008.10.004 3406:10.1016/j.icarus.2008.03.020 3037:10.1016/0019-1035(77)90101-4 1488:circumstellar habitable zone 1115:Capture of a passing object. 1052:and the impact that created 277: 7: 11263:Evaporating gaseous globule 11168: 10991:Outline of the Solar System 10754:Interplanetary medium/space 8341:"Perturbing the Oort Cloud" 8189:"The Once & Future Sun" 7728:"Our changing solar system" 7634:. No. 1919. p. 14 7626:Jeff Hecht (2 April 1994). 7516:10.1007/978-94-007-5606-9_7 6395:10.1088/0004-637X/806/2/203 4195:10.1088/0004-637X/724/1/730 3353:10.1088/0004-637X/696/1/L13 2695:. Aurum. pp. 197–222. 2242: 2189:Hertzsprung–Russell diagram 2018:100,000 – 10 million years 1893: 1846:oldest known mineral grains 1250:Hertzsprung–Russell diagram 1127:thought to have formed the 1123:Artist's conception of the 478:At this point in the Sun's 52:of a small part of a giant 10: 11631: 10707:Extraterrestrial materials 7425:Duncan & Lissauer 1997 7081:Astronomy and Astrophysics 6986:Astronomy and Astrophysics 6882:10.1038/s41586-021-03869-6 5899:10.1016/j.epsl.2014.02.011 5856:10.1088/0004-637X/782/1/31 5768:10.1088/0004-637X/757/1/50 5636:10.1051/0004-6361:20066171 4380:10.1088/0004-637X/778/1/77 4251:"How Earth Survived Birth" 3442:10.1038/s41550-024-02349-x 2339:Timeline of the far future 2268:Chronology of the universe 1766: 1443: 1276: 1094: 1002: 880: 870: 780: 571:§ Terrestrial planets 564: 281: 182: 178: 11477: 11461: 11415: 11399: 11378: 11340: 11307: 11276: 11243: 11176: 11027:Earth sciences portal 10986: 10941: 10878: 10749:Interplanetary dust cloud 10628: 10464: 10394: 10105: 10047: 9740: 9593: 9435: 9377: 9344: 9328: 9285: 9230: 9172: 9107: 9054: 8984: 8936: 8893: 8840: 8822: 8814: 8187:Richard W. Pogge (1997). 8071:10.3847/0004-637X/823/1/6 8040:The Astrophysical Journal 7877:Zeilik & Gregory 1998 7809:NASA Goddard Space Center 7792:Zeilik & Gregory 1998 7214:The Astrophysical Journal 6584:Zeilik & Gregory 1998 6365:The Astrophysical Journal 6277:10.1017/S1743921304008865 6064:Clark R. Chapman (1996). 5976:10.1007/s11084-017-9536-3 5826:The Astrophysical Journal 5738:The Astrophysical Journal 4876:The Astrophysical Journal 4628:Emily Lakdawalla (2006). 4350:The Astrophysical Journal 4274:: CS1 maint: unfit URL ( 4249:Staff (12 January 2010). 4165:The Astrophysical Journal 3988:The Astrophysical Journal 3867:The Astrophysical Journal 3849:Zeilik & Gregory 1998 3117:The Astrophysical Journal 3089:10.1080/00107511003764725 2941:Zeilik & Gregory 1998 2774:The Astrophysical Journal 2747:10.1007/s11038-006-9087-5 2663:David Whitehouse (2005). 2554:10.1103/RevModPhys.51.447 2534:Reviews of Modern Physics 2173: 2049: 1979: 1932: 1605:will begin, leading to a 1235: 1042:2009 Jupiter impact event 464:systems of multiple stars 297:of a fragment of a giant 83:This model, known as the 78:small Solar System bodies 33:Artist's conception of a 11040:Local Interstellar Cloud 9758:other near-Earth objects 9364:Location in the Universe 9295:Antarctic/Southern Ocean 8994:List of sovereign states 7439:The Astronomical Journal 7308:Earth, Moon, and Planets 6793:The Astronomical Journal 6650:D. J. Stevenson (1987). 5149:10.1089/ast.2006.06-0126 4101:"The Genesis of Planets" 3898:10.3847/1538-4357/ab910c 3658:The Astronomical Journal 2877:Earth, Moon, and Planets 2805:10.3847/1538-4357/aa992e 2733:(1–4). Springer: 39–95. 2727:Earth, Moon, and Planets 2346: 1808:However, over time, the 1787:supermassive black holes 1730:observed in the Earth's 1691:; 260 million  1679:; 180 million  1667:; 130 million  1090: 561:Formation of the planets 344:Big Bang nucleosynthesis 246:Arthur Stanley Eddington 119:. Since the dawn of the 11003:Solar System portal 10729:Giant-impact hypothesis 10336:Trans-Neptunian objects 8675:Oxford University Press 8193:New Vistas in Astronomy 8158:10.1126/science.1135033 7583:10.1126/science.aat2965 7412:1989A&A...219L..23C 7320:1980M&P....22..141B 7292:10.1093/mnras/201.2.415 7093:1997A&A...318..975N 6998:1994A&A...287L...9L 6762:10.1126/science.1106818 6458:10.1126/science.1105427 5912:Kathryn Hansen (2005). 5891:2014E&PSL.392...28F 5628:2007A&A...461.1195F 5411:10.1023/A:1006566518046 5358:2000M&PS...35.1309M 5282:10.1126/science.1125150 4853:2003E&PSL.216..441S 4667:1979A&A....80...77E 4130:(inactive 2024-06-18). 3949:2010ARA&A..48...47A 3486:10.1126/science.1101979 3269:10.1126/science.1141040 3208:10.1126/science.1096808 2889:1986EM&P...34...93R 2739:2006EM&P...98...39M 2667:. John Wiley and Sons. 2264: – Physical theory 2212:asymptotic-giant-branch 1941:billion years ago (bya) 1870:Canyon Diablo meteorite 1799:active galactic nucleus 1687:(420 million  1675:(280 million  1663:(210 million  1595:asymptotic giant branch 1215:trans-Neptunian objects 1097:Giant-impact hypothesis 508:hydrostatic equilibrium 145:trans-Neptunian objects 139:, may be the result of 11299:Integrated Flux Nebula 10891:Possible dwarf planets 10734:Gravitational collapse 10672:Circumstellar envelope 9477: 8731:10.1006/icar.1996.5568 8021:10.1006/icar.2001.6591 6430: 5938:Zellner, Nicolle E. B. 5318:Francis Reddy (2006). 5233:10.1006/icar.2002.6837 5182:. NASA. Archived from 4826:10.1006/icar.2001.6811 4774:10.1006/icar.2001.6702 3790: 2988:10.1006/icar.2001.6607 2638:Nigel Henbest (1991). 2617:10.1098/rsta.1984.0078 2118:reaches maximum mass. 2095:Late Heavy Bombardment 1810:cumulative probability 1712: 1633: 1515: 1390: 1339:. A moon will raise a 1131: 1034:Comet Shoemaker–Levy 9 1017: 1005:Late Heavy Bombardment 982:mean-motion resonances 946: 944: Orbit of Neptune 926: Orbit of Jupiter 883:Five-planet Nice model 499:Hubble Space Telescope 382: 295:gravitational collapse 197: 50:gravitational collapse 37: 11289:Protoplanetary nebula 11253:Giant molecular cloud 11231:Protoplanetary nebula 11100:Laniakea Supercluster 10717:Sample-return mission 9476: 9074:Biogeochemical cycles 8999:dependent territories 8222:Astrophysical Journal 7842:Astrophysical Journal 7162:Stewart, Ian (1997). 6431: 6021:NASA History Division 4634:The Planetary Society 4255:Astrobiology Magazine 4045:Astrophysical Journal 3791: 3789:{\displaystyle Y^{2}} 3718:Astrophysical Journal 3323:Astrophysical Journal 2593:Michael Mark Woolfson 2079:on the Earth formed. 1710: 1627: 1513: 1375:Neptune and its moon 1374: 1122: 1012: 993:Grand tack hypothesis 938: Orbit of Uranus 932: Orbit of Saturn 913: 877:Grand tack hypothesis 377:, a light-years-wide 368: 350:that were created by 338:and trace amounts of 272:created many elements 216:The current standard 192: 32: 11309:Post-stellar nebulae 11015:Astronomy portal 10916:Solar System objects 10662:Circumplanetary disk 9122:Computer cartography 8855:Prebiotic atmosphere 8781:(Video at Space.com) 8431:Fraser Cain (2007). 7376:10.1029/2004JE002376 7265:A. Gailitis (1980). 6429:{\displaystyle \mu } 6420: 5553:Astronomical Journal 5205:Georgij A. Krasinsky 4507:Astronomical Journal 3773: 3329:(L13–L16): L13–L16. 3233:on 13 February 2020. 3059:Contemporary Physics 2920:Cometary Exploration 2665:The Sun: A Biography 2274:Circumplanetary disk 1703:Galactic interaction 1283:The Solar System is 1170:'s two small moons, 830:orbital inclinations 754:Subsequent evolution 557:occurring close by. 503:star-forming regions 448:the temperature rose 371:protoplanetary discs 254:theory of relativity 234:Pierre-Simon Laplace 211:Aristarchus of Samos 194:Pierre-Simon Laplace 97:Pierre-Simon Laplace 11400:Intergalactic blobs 11365:High-velocity cloud 11245:Pre-stellar nebulae 11114:Observable universe 10911:Solar System models 10841:Protoplanetary disk 10764:Interstellar medium 10724:Frost/Ice/Snow line 9265:Geologic time scale 8986:Culture and society 8850:Atmosphere of Earth 8768:skyandtelescope.com 8723:1997Icar..125....1D 8567:2001Natur.409..175W 8518:NASA (2012-05-31). 8487:2008MNRAS.386..461C 8393:1998NewA....3...51L 8291:2001PASP..113..409F 8244:2004ApJ...605L.133M 8150:2006Sci...314.1908G 8134:(5807): 1908–1910. 8062:2016ApJ...823....6R 8013:2001Icar..151..130R 7913:1997GeoRL..24.2905L 7854:1993ApJ...418..457S 7695:2008MNRAS.386..155S 7574:2019Sci...364.2965I 7461:2006AJ....132..290B 7367:2005JGRE..110.7004B 7283:1982MNRAS.201..415G 7236:2008ApJ...683.1207B 7164:Does God Play Dice? 7133:2007NatPh...3..689H 7032:1988Sci...241..433S 6874:2021Natur.598..272B 6815:2010AJ....139.2700B 6754:2005Sci...307..546C 6671:1987AREPS..15..271S 6613:2001Natur.412..708C 6586:, pp. 118–120. 6554:Scott S. Sheppard. 6450:2004Sci...306.2224T 6387:2015ApJ...806..203D 6340:2009euro.book...59C 6224:1996EOSTr..77Q.141C 6144:10.1038/nature04792 6136:2006Natur.441..192A 5968:2017OLEB...47..261Z 5848:2014ApJ...782...31I 5832:(1): 31, (20 pp.). 5803:2013Icar..224...43C 5760:2012ApJ...757...50D 5707:10.1038/nature10201 5699:2011Natur.475..206W 5575:1995AJ....110..420M 5522:10.1038/nature03539 5514:2005Natur.435..459T 5403:1998OLEB...28..597R 5274:2006Sci...312..561H 5225:2002Icar..158...98K 5141:2007AsBio...7...66R 5093:2007Icar..191..434O 5054:2006LPI....37.2367S 5007:2004MNRAS.354..769E 4953:2005Icar..179...63B 4898:2004ApJ...614..497G 4818:2002Icar..157...43K 4766:2001Icar..153..338P 4694:on 7 September 2006 4599:2008Icar..196..258L 4529:2002AJ....123.2862T 4477:2010exop.book..319D 4425:2009Icar..199..338L 4372:2013ApJ...778...77D 4317:2009MNRAS.393...49A 4236:2010exop.book..347L 4187:2010ApJ...724..730D 4120:2008SciAm.298e..50C 4108:Scientific American 4057:1973ApJ...183.1051G 4010:2005ApJ...621L.137B 3889:2020ApJ...896...15F 3820:2001ApJS..136..417Y 3730:2003ApJ...589..397K 3680:1999AJ....117.1490P 3643:2003ASPC..289...85M 3597:1987ApJ...313L..31C 3554:1974Natur.250...35D 3520:Scientific American 3478:2005Sci...307...68G 3398:2008Icar..197..221K 3345:2009ApJ...696L..13P 3302:. News at Princeton 3261:2007Sci...316.1178B 3255:(5828): 1178–1181. 3200:2004Sci...304.1116H 3194:(5674): 1116–1117. 3140:2008ApJ...686..560D 3081:2010ConPh..51..381W 3029:1977Icar...30..447C 2980:2001Icar..151..307L 2928:1983coex....1....3I 2796:2017ApJ...851..147D 2609:1984RSPTA.313....5W 2546:1979RvMP...51..447D 2502:10.1038/nature03676 2493:2005Natur.435..466G 2439:2010NatGe...3..637B 2327:Structure formation 2200:~ 12 billion years 2174:Post–main sequence 2029:protoplanetary disc 1951:interstellar medium 1915: 1412:16 small satellites 1273:Long-term stability 1263:MOA-2010-BLG-477L b 1081:interstellar medium 867:Planetary migration 825:Planetary migration 767:Terrestrial planets 742:sample return from 734:Planetary migration 613:terrestrial planets 567:Protoplanetary disk 456:protoplanetary disc 431:-like objects, the 397:occurred nearby. A 356:interstellar medium 248:'s confirmation of 150:Planetary migration 62:protoplanetary disk 35:protoplanetary disk 11452:Supernova remnants 11348:Interstellar cloud 11327:Pulsar wind nebula 11094:Virgo Supercluster 11075:Milky Way subgroup 10906:Natural satellites 10789:Nebular hypothesis 10769:Interstellar space 10759:Interstellar cloud 10667:Circumstellar disc 10257:Near-Earth objects 10141:names and meanings 9478: 9260:Geological history 9134:Geodetic astronomy 8345:American Scientist 7794:, p. 320–321. 7568:(6445): eaat2965. 7500:. pp. 61–63. 7328:10.1007/BF00898423 6953:The New York Times 6426: 6293:"The Small Bodies" 5940:(September 2017). 5744:(1): 50 (23 pp.). 4356:(1): 77 (29 pp.). 3786: 2897:10.1007/BF00054038 2369:Solar System#Notes 2315:Space and survival 2123:4.6 billion years 2102:800 million years 2077:Oldest known rocks 2067:200 million years 1913: 1908:order of magnitude 1842:radiometric dating 1713: 1634: 1580:tidal interactions 1516: 1396:tidal deceleration 1391: 1161:Kuiper belt object 1132: 1103:natural satellites 1050:Chelyabinsk meteor 1018: 947: 817:Orbital resonances 793:gravitational drag 593:inner Solar System 383: 284:Nebular hypothesis 226:Emanuel Swedenborg 222:nebular hypothesis 198: 169:interstellar space 89:Emanuel Swedenborg 85:nebular hypothesis 38: 11615:Stellar evolution 11600:Planetary science 11595:Stellar astronomy 11517: 11516: 11322:Supernova remnant 11294:Wolf–Rayet nebula 11221:Reflection nebula 11204:Supernova remnant 11136: 11135: 10981: 10980: 10977: 10976: 10954:Lagrangian points 10926:by discovery date 10524:Human spaceflight 10495:historical models 10388: 10387: 10013:S/2015 (136472) 1 9395: 9394: 9346:Planetary science 9329:Natural satellite 9250:Extremes on Earth 9217:Signal processing 8684:978-0-19-282147-8 8102:Personal web site 7931:10.1029/97GL52843 7525:978-94-007-5605-2 7026:(4864): 433–437. 6858:(7880): 272–275. 6748:(5709): 546–550. 6560:Personal web page 6349:978-0-8165-2844-8 6232:10.1029/96EO00094 6130:(7090): 192–194. 5683:(7355): 206–209. 5508:(7041): 459–461. 5307:on 12 April 2020. 5268:(5773): 561–563. 5253:(23 March 2006). 4721:Personal web site 4486:978-0-8165-2945-2 2702:978-1-85410-961-3 2674:978-0-470-09297-2 2427:Nature Geoscience 2321:Stellar evolution 2240: 2239: 2208:horizontal-branch 2112:Oldest known life 2053:50 million years 1980:Formation of Sun 1933:Pre-Solar System 1904: 1903: 1791:elliptical galaxy 1504:greenhouse effect 1446:Stellar evolution 1331:Moon–ring systems 1289:orbital resonance 1267:MOA-2010-BLG-477L 1197:Lagrangian points 972:According to the 813:planetary embryos 582:self-organization 303:Wolf-Rayet bubble 117:planetary science 64:out of which the 46:billion years ago 16:(Redirected from 11622: 11570: 11569: 11558: 11557: 11556: 11546: 11545: 11544: 11534: 11533: 11525: 11506: 11496: 11495: 11486: 11485: 11420: 11419: 11407:Lyman-alpha blob 11317:Planetary nebula 11199:Planetary nebula 11163: 11156: 11149: 11140: 11139: 11130: 11128: 11119: 11112: 11105: 11098: 11092: 11086: 11080: 11073: 11066: 11059: 11052: 11045: 11038: 11025: 11024: 11023: 11013: 11012: 11011: 11001: 11000: 10999: 10702:Exozodiacal dust 10392: 10391: 10358:Detached objects 9600: 9599: 9596: 9595: 9440: 9422: 9415: 9408: 9399: 9398: 9385: 9384: 9277:History of Earth 8928:Paleoclimatology 8809: 8802: 8795: 8786: 8785: 8753: 8734: 8697: 8696: 8673:(1st ed.). 8665:Tipler, Frank J. 8657: 8651: 8650: 8648: 8646: 8629: 8620: 8619: 8601: 8595: 8594: 8575:10.1038/35051550 8552: 8543: 8534: 8533: 8531: 8530: 8515: 8509: 8508: 8498: 8480: 8456: 8447: 8446: 8444: 8443: 8428: 8413: 8412: 8386: 8384:astro-ph/9802174 8366: 8360: 8359: 8357: 8356: 8339:Szpir, Michael. 8336: 8330: 8329: 8327: 8326: 8311: 8305: 8304: 8302: 8285:(782): 409–435. 8270: 8264: 8263: 8237: 8235:astro-ph/0402046 8217: 8211: 8210: 8208: 8207: 8201: 8195:. Archived from 8184: 8178: 8177: 8143: 8141:astro-ph/0612697 8123: 8117: 8116: 8114: 8113: 8104:. Archived from 8093: 8084: 8083: 8073: 8055: 8031: 8025: 8024: 7996: 7990: 7989: 7987: 7986: 7974:Marc Delehanty. 7971: 7965: 7964: 7962: 7961: 7955: 7949:. Archived from 7924: 7898: 7889: 7880: 7874: 7868: 7867: 7865: 7833: 7820: 7819: 7817: 7816: 7801: 7795: 7789: 7783: 7782: 7780: 7779: 7756: 7747: 7746: 7744: 7743: 7734:. Archived from 7723: 7717: 7716: 7706: 7688: 7664: 7643: 7642: 7640: 7639: 7623: 7612: 7611: 7585: 7559: 7550: 7544: 7543: 7541: 7540: 7509: 7487: 7481: 7480: 7454: 7452:astro-ph/0512491 7434: 7428: 7422: 7416: 7415: 7395: 7389: 7388: 7378: 7346: 7340: 7339: 7303: 7297: 7296: 7294: 7262: 7256: 7255: 7229: 7220:(2): 1207–1216. 7209: 7203: 7202: 7200: 7199: 7184: 7178: 7177: 7159: 7153: 7152: 7141:10.1038/nphys728 7126: 7124:astro-ph/0702179 7106: 7097: 7096: 7076: 7070: 7069: 7051: 7017: 7008: 7002: 7001: 6981: 6972: 6971: 6969: 6967: 6961: 6956:. Archived from 6943: 6937: 6936: 6934: 6932: 6925:Keck Observatory 6915: 6909: 6908: 6906: 6904: 6867: 6841: 6835: 6834: 6808: 6799:(6): 2700–2705. 6788: 6782: 6781: 6739: 6730: 6724: 6723: 6721: 6720: 6704: 6698: 6697: 6695: 6689:. Archived from 6656: 6647: 6641: 6640: 6621:10.1038/35089010 6607:(6848): 708–12. 6596: 6587: 6581: 6575: 6574: 6572: 6571: 6562:. Archived from 6551: 6545: 6544: 6542: 6536:. Archived from 6517: 6508: 6502: 6501: 6499: 6498: 6489:. Archived from 6477: 6444:(5705): 2224–7. 6435: 6433: 6432: 6427: 6413: 6407: 6406: 6380: 6360: 6354: 6353: 6333: 6314: 6308: 6307: 6305: 6304: 6288: 6282: 6281: 6279: 6265: 6256: 6247: 6246: 6244: 6243: 6238:on March 6, 2008 6234:. Archived from 6201: 6195: 6194: 6192: 6190:astro-ph/0512256 6180: 6171: 6170: 6168: 6162:. Archived from 6121: 6112: 6103: 6102: 6100: 6099: 6093: 6087:. Archived from 6070: 6061: 6055: 6054: 6052: 6051: 6040: 6031: 6030: 6028: 6027: 6012: 6006: 6005: 5995: 5961: 5934: 5928: 5927: 5925: 5924: 5909: 5903: 5902: 5874: 5868: 5867: 5841: 5821: 5815: 5814: 5786: 5780: 5779: 5753: 5733: 5727: 5726: 5692: 5672: 5666: 5665: 5654: 5648: 5647: 5621: 5619:astro-ph/0610314 5612:(3): 1195–1208. 5601: 5595: 5594: 5568: 5566:astro-ph/9504036 5548: 5542: 5541: 5499: 5490: 5481: 5480: 5478: 5476:astro-ph/0512256 5466: 5460: 5459: 5457: 5456: 5440: 5431: 5430: 5386: 5380: 5379: 5369: 5352:(6): 1309–1320. 5337: 5331: 5330: 5328: 5327: 5315: 5309: 5308: 5306: 5300:. Archived from 5259: 5249:Henry H. Hsieh; 5246: 5237: 5236: 5209:Elena V. Pitjeva 5201: 5195: 5194: 5192: 5191: 5175: 5169: 5168: 5134: 5132:astro-ph/0510285 5114: 5105: 5104: 5078: 5069: 5058: 5057: 5041: 5035: 5034: 5032: 5031: 5018: 5000: 4998:astro-ph/0409017 4980: 4971: 4965: 4964: 4938: 4929: 4918: 4917: 4891: 4889:astro-ph/0404240 4871: 4865: 4864: 4836: 4830: 4829: 4801: 4792: 4791: 4789: 4788: 4782: 4776:. Archived from 4751: 4742: 4731: 4730: 4728: 4727: 4709: 4703: 4702: 4700: 4699: 4693: 4686: 4677: 4671: 4670: 4650: 4644: 4643: 4641: 4640: 4625: 4619: 4618: 4592: 4572: 4549: 4548: 4522: 4520:astro-ph/0111290 4513:(5): 2862–2883. 4502: 4491: 4490: 4470: 4454: 4445: 4444: 4418: 4398: 4392: 4391: 4365: 4345: 4339: 4338: 4328: 4310: 4286: 4280: 4279: 4273: 4265: 4263: 4262: 4246: 4240: 4239: 4229: 4213: 4207: 4206: 4180: 4160: 4154: 4153: 4147: 4139: 4105: 4096: 4071: 4070: 4068: 4036: 4030: 4029: 4003: 4001:astro-ph/0501592 3994:(2): L137–L140. 3983: 3977: 3976: 3942: 3918: 3912: 3910: 3900: 3882: 3858: 3852: 3846: 3840: 3839: 3813: 3811:astro-ph/0104292 3795: 3793: 3792: 3787: 3785: 3784: 3766: 3757: 3756: 3754: 3748:. Archived from 3715: 3706: 3700: 3699: 3673: 3671:astro-ph/9902101 3664:(3): 1490–1504. 3653: 3647: 3646: 3625: 3619: 3618: 3616: 3614:2060/19850018239 3580: 3574: 3573: 3562:10.1038/250035a0 3537: 3531: 3530: 3528: 3527: 3512: 3506: 3505: 3461: 3455: 3454: 3444: 3433:Nature Astronomy 3424: 3418: 3417: 3391: 3371: 3365: 3364: 3338: 3318: 3312: 3311: 3309: 3307: 3295: 3289: 3288: 3244: 3235: 3234: 3232: 3226:. Archived from 3185: 3176: 3167: 3166: 3164: 3162: 3133: 3107: 3101: 3100: 3074: 3054: 3048: 3047: 3045: 3043: 3006: 3000: 2999: 2973: 2971:astro-ph/0012399 2953: 2944: 2938: 2932: 2931: 2915: 2909: 2908: 2872: 2866: 2865: 2863: 2862: 2853:. Archived from 2843: 2828: 2827: 2817: 2807: 2789: 2765: 2759: 2758: 2722: 2707: 2706: 2688: 2679: 2678: 2660: 2654: 2653: 2651: 2650: 2635: 2629: 2628: 2589: 2583: 2582: 2580: 2579: 2564: 2558: 2557: 2526: 2515: 2514: 2504: 2472: 2451: 2450: 2423:Meenakshi Wadhwa 2421:Audrey Bouvier; 2418: 2400: 2396: 2390: 2382: 2376: 2365: 2359: 2356: 2297:History of Earth 2216:planetary nebula 2185:red-giant branch 2163:Andromeda Galaxy 2151:7 billion years 2136:6 billion years 1983:0–100,000 years 1973:primal supernova 1916: 1912: 1910:indicator only. 1891: 1890: 1884: 1883: 1835: 1728:mass extinctions 1683:), and 2.8  1619:planetary nebula 1615:asymptotic giant 1611:horizontal giant 1591:hydrologic cycle 1545:red-giant branch 1539: 1538: 1529: 1528: 1462: 1346:angular momentum 1192:impacting object 1077:space weathering 943: 937: 931: 925: 905:migrated outward 853:main-belt comets 849: 651:angular momentum 553:and ejecta from 421:detached objects 369:Hubble image of 348:heavier elements 238:angular momentum 173:tens of billions 161:planetary nebula 141:giant collisions 44:began about 4.6 21: 11630: 11629: 11625: 11624: 11623: 11621: 11620: 11619: 11580: 11579: 11576: 11564: 11554: 11552: 11542: 11540: 11528: 11520: 11518: 11513: 11512: 11473: 11457: 11435:Largest Nebulae 11411: 11395: 11391:Pinwheel nebula 11374: 11358:Infrared cirrus 11353:Molecular cloud 11336: 11303: 11272: 11239: 11226:Variable nebula 11194:Emission nebula 11172: 11167: 11137: 11132: 11126: 11124: 11123: 11117: 11110: 11103: 11096: 11090: 11084: 11078: 11071: 11064: 11057: 11050: 11043: 11036: 11021: 11019: 11009: 11007: 10997: 10995: 10982: 10973: 10937: 10874: 10858:vs. Hill sphere 10784:Molecular cloud 10712:Sample curation 10692:Detached object 10631: 10624: 10468: 10460: 10397: 10384: 10329:Neptune trojans 10112: 10110: 10108: 10101: 10043: 9736: 9607: 9589: 9475: 9438: 9431: 9426: 9396: 9391: 9373: 9340: 9324: 9281: 9272:Geologic record 9226: 9212:Plate tectonics 9202:Mineral physics 9182:Earth structure 9168: 9103: 9050: 8980: 8932: 8889: 8836: 8818: 8813: 8760: 8750: 8705: 8700: 8685: 8661:Barrow, John D. 8658: 8654: 8644: 8642: 8630: 8623: 8616: 8602: 8598: 8561:(6817): 175–8. 8550: 8544: 8537: 8528: 8526: 8516: 8512: 8457: 8450: 8441: 8439: 8429: 8416: 8367: 8363: 8354: 8352: 8337: 8333: 8324: 8322: 8312: 8308: 8271: 8267: 8218: 8214: 8205: 8203: 8200:(lecture notes) 8199: 8185: 8181: 8124: 8120: 8111: 8109: 8094: 8087: 8032: 8028: 7997: 7993: 7984: 7982: 7980:Astronomy Today 7972: 7968: 7959: 7957: 7953: 7922:10.1.1.683.8827 7896: 7890: 7883: 7875: 7871: 7834: 7823: 7814: 7812: 7803: 7802: 7798: 7790: 7786: 7777: 7775: 7773: 7757: 7750: 7741: 7739: 7724: 7720: 7665: 7646: 7637: 7635: 7624: 7615: 7557: 7551: 7547: 7538: 7536: 7526: 7488: 7484: 7435: 7431: 7423: 7419: 7396: 7392: 7347: 7343: 7304: 7300: 7263: 7259: 7210: 7206: 7197: 7195: 7185: 7181: 7174: 7160: 7156: 7117:(10): 689–691. 7107: 7100: 7077: 7073: 7015: 7009: 7005: 6982: 6975: 6965: 6963: 6944: 6940: 6930: 6928: 6916: 6912: 6902: 6900: 6842: 6838: 6789: 6785: 6737: 6731: 6727: 6718: 6716: 6705: 6701: 6693: 6654: 6648: 6644: 6597: 6590: 6582: 6578: 6569: 6567: 6552: 6548: 6540: 6534: 6515: 6509: 6505: 6496: 6494: 6478: 6421: 6418: 6417: 6414: 6410: 6361: 6357: 6350: 6318:Canup, Robin M. 6315: 6311: 6302: 6300: 6289: 6285: 6263: 6257: 6250: 6241: 6239: 6202: 6198: 6181: 6174: 6166: 6119: 6113: 6106: 6097: 6095: 6091: 6068: 6062: 6058: 6049: 6047: 6042: 6041: 6034: 6025: 6023: 6013: 6009: 5935: 5931: 5922: 5920: 5910: 5906: 5875: 5871: 5822: 5818: 5787: 5783: 5734: 5730: 5673: 5669: 5656: 5655: 5651: 5602: 5598: 5549: 5545: 5497: 5491: 5484: 5467: 5463: 5454: 5452: 5441: 5434: 5387: 5383: 5338: 5334: 5325: 5323: 5322:. astronomy.com 5316: 5312: 5304: 5257: 5247: 5240: 5202: 5198: 5189: 5187: 5176: 5172: 5115: 5108: 5076: 5070: 5061: 5042: 5038: 5029: 5027: 4978: 4972: 4968: 4936: 4930: 4921: 4872: 4868: 4837: 4833: 4802: 4795: 4786: 4784: 4780: 4749: 4743: 4734: 4725: 4723: 4710: 4706: 4697: 4695: 4691: 4684: 4678: 4674: 4651: 4647: 4638: 4636: 4626: 4622: 4573: 4552: 4503: 4494: 4487: 4455: 4448: 4399: 4395: 4346: 4342: 4287: 4283: 4267: 4266: 4260: 4258: 4247: 4243: 4214: 4210: 4161: 4157: 4141: 4140: 4103: 4097: 4074: 4037: 4033: 3984: 3980: 3919: 3915: 3859: 3855: 3847: 3843: 3780: 3776: 3774: 3771: 3770: 3767: 3760: 3752: 3713: 3707: 3703: 3654: 3650: 3626: 3622: 3581: 3577: 3538: 3534: 3525: 3523: 3514: 3513: 3509: 3472:(5706): 68–71. 3462: 3458: 3425: 3421: 3372: 3368: 3319: 3315: 3305: 3303: 3296: 3292: 3245: 3238: 3230: 3183: 3177: 3170: 3160: 3158: 3108: 3104: 3055: 3051: 3041: 3039: 3007: 3003: 2954: 2947: 2939: 2935: 2916: 2912: 2873: 2869: 2860: 2858: 2849:(Spring 2003). 2844: 2831: 2766: 2762: 2723: 2710: 2703: 2689: 2682: 2675: 2661: 2657: 2648: 2646: 2636: 2632: 2590: 2586: 2577: 2575: 2566: 2565: 2561: 2527: 2518: 2487:(7041): 466–9. 2473: 2454: 2447:10.1038/NGEO941 2419: 2412: 2408: 2403: 2397: 2393: 2383: 2379: 2366: 2362: 2357: 2353: 2349: 2344: 2286:Future of Earth 2245: 1895: 1882: 1862:plate tectonics 1838: 1837: 1836: 1827: 1771: 1765: 1717:Galactic Center 1705: 1536: 1534: 1526: 1524: 1478: 1477: 1476: 1470: 1465: 1464: 1463: 1452: 1450:Future of Earth 1442: 1433:Cassini–Huygens 1333: 1281: 1275: 1238: 1211: 1204: 1099: 1093: 1007: 1001: 945: 941: 939: 935: 933: 929: 927: 923: 921: 919: 917: 915: 895:(known as the " 885: 879: 871:Main articles: 869: 847: 842: 839: 801: 769: 756: 730: 727: 709: 706: 702: 699: 694: 691: 641: 638: 573: 563: 527: 492: 489: 442:Because of the 437:retrograde TNOs 417: 414: 379:stellar nursery 352:nucleosynthesis 328: 325: 319:presolar nebula 299:molecular cloud 291: 289:Presolar nebula 286: 280: 250:Albert Einstein 187: 181: 54:molecular cloud 23: 22: 15: 12: 11: 5: 11628: 11618: 11617: 11612: 11607: 11602: 11597: 11592: 11575: 11574: 11562: 11550: 11538: 11515: 11514: 11511: 11510: 11500: 11490: 11479: 11478: 11475: 11474: 11472: 11471: 11465: 11463: 11459: 11458: 11456: 11455: 11449: 11446:Protoplanetary 11443: 11437: 11432: 11426: 11424: 11413: 11412: 11410: 11409: 11403: 11401: 11397: 11396: 11394: 11393: 11388: 11386:Bipolar nebula 11382: 11380: 11376: 11375: 11373: 11372: 11367: 11362: 11361: 11360: 11355: 11344: 11342: 11338: 11337: 11335: 11334: 11329: 11324: 11319: 11313: 11311: 11305: 11304: 11302: 11301: 11296: 11291: 11286: 11280: 11278: 11277:Stellar nebula 11274: 11273: 11271: 11270: 11265: 11260: 11255: 11249: 11247: 11241: 11240: 11238: 11237: 11236: 11235: 11234: 11233: 11228: 11218: 11217: 11216: 11211: 11206: 11201: 11189:Diffuse nebula 11186: 11180: 11178: 11177:Visible nebula 11174: 11173: 11166: 11165: 11158: 11151: 11143: 11134: 11133: 11030: 11029: 11017: 11005: 10993: 10987: 10984: 10983: 10979: 10978: 10975: 10974: 10972: 10971: 10966: 10961: 10956: 10951: 10945: 10943: 10939: 10938: 10936: 10935: 10930: 10929: 10928: 10923: 10913: 10908: 10903: 10898: 10893: 10888: 10882: 10880: 10876: 10875: 10873: 10872: 10870:Scattered disc 10867: 10862: 10861: 10860: 10850: 10845: 10844: 10843: 10838: 10837: 10836: 10826: 10821: 10816: 10811: 10801: 10796: 10791: 10786: 10781: 10776: 10771: 10766: 10761: 10756: 10751: 10746: 10741: 10736: 10731: 10726: 10721: 10720: 10719: 10714: 10704: 10699: 10694: 10689: 10684: 10679: 10674: 10669: 10664: 10659: 10658: 10657: 10655:Excretion disk 10650:Accretion disk 10647: 10642: 10640:Star formation 10636: 10634: 10626: 10625: 10623: 10622: 10617: 10612: 10607: 10602: 10597: 10592: 10587: 10586: 10585: 10575: 10570: 10565: 10564: 10563: 10553: 10548: 10543: 10542: 10541: 10536: 10531: 10529:space stations 10521: 10520: 10519: 10514: 10504: 10503: 10502: 10497: 10492: 10482: 10476: 10474: 10462: 10461: 10459: 10458: 10453: 10448: 10443: 10438: 10433: 10428: 10423: 10418: 10413: 10408: 10402: 10400: 10389: 10386: 10385: 10383: 10382: 10377: 10376: 10375: 10370: 10368:Scattered disc 10365: 10360: 10355: 10354: 10353: 10348: 10333: 10332: 10331: 10326: 10316: 10315: 10314: 10309: 10304: 10299: 10294: 10289: 10284: 10279: 10274: 10264: 10259: 10254: 10253: 10252: 10247: 10242: 10237: 10236: 10235: 10230: 10220: 10215: 10210: 10200: 10199: 10198: 10193: 10188: 10183: 10178: 10173: 10168: 10163: 10155: 10150: 10149: 10148: 10143: 10133: 10128: 10123: 10117: 10115: 10103: 10102: 10100: 10099: 10094: 10089: 10084: 10079: 10074: 10069: 10059: 10053: 10051: 10045: 10044: 10042: 10041: 10040: 10039: 10029: 10028: 10027: 10017: 10016: 10015: 10005: 10004: 10003: 9993: 9992: 9991: 9986: 9976: 9975: 9974: 9969: 9964: 9959: 9954: 9944: 9943: 9942: 9932: 9931: 9930: 9925: 9920: 9915: 9905: 9904: 9903: 9898: 9893: 9888: 9883: 9878: 9868: 9867: 9866: 9861: 9856: 9851: 9846: 9841: 9836: 9831: 9826: 9821: 9811: 9810: 9809: 9804: 9799: 9794: 9789: 9779: 9778: 9777: 9772: 9762: 9761: 9760: 9755: 9746: 9744: 9738: 9737: 9735: 9734: 9733: 9732: 9727: 9722: 9717: 9712: 9707: 9702: 9697: 9692: 9682: 9681: 9680: 9679: 9678: 9673: 9663: 9662: 9661: 9656: 9641: 9640: 9639: 9634: 9629: 9624: 9613: 9611: 9594: 9591: 9590: 9588: 9587: 9580: 9573: 9566: 9559: 9552: 9545: 9538: 9531: 9526: 9521: 9516: 9511: 9504: 9499: 9494: 9489: 9484: 9436: 9433: 9432: 9425: 9424: 9417: 9410: 9402: 9393: 9392: 9390: 9389: 9378: 9375: 9374: 9372: 9371: 9366: 9361: 9356: 9350: 9348: 9342: 9341: 9339: 9338: 9332: 9330: 9326: 9325: 9323: 9322: 9317: 9312: 9307: 9305:Atlantic Ocean 9302: 9297: 9291: 9289: 9283: 9282: 9280: 9279: 9274: 9269: 9268: 9267: 9257: 9252: 9247: 9242: 9236: 9234: 9228: 9227: 9225: 9224: 9219: 9214: 9209: 9204: 9199: 9194: 9189: 9187:Fluid dynamics 9184: 9178: 9176: 9170: 9169: 9167: 9166: 9161: 9159:Geopositioning 9156: 9154:Remote Sensing 9151: 9146: 9141: 9136: 9131: 9126: 9125: 9124: 9113: 9111: 9105: 9104: 9102: 9101: 9096: 9091: 9086: 9081: 9076: 9071: 9066: 9060: 9058: 9052: 9051: 9049: 9048: 9043: 9038: 9033: 9028: 9023: 9018: 9013: 9008: 9003: 9002: 9001: 8990: 8988: 8982: 8981: 8979: 8978: 8973: 8968: 8963: 8958: 8953: 8948: 8942: 8940: 8934: 8933: 8931: 8930: 8925: 8920: 8915: 8913:Climate change 8910: 8908:Energy balance 8905: 8903:Climate system 8899: 8897: 8891: 8890: 8888: 8887: 8882: 8877: 8872: 8867: 8862: 8857: 8852: 8846: 8844: 8838: 8837: 8835: 8834: 8829: 8823: 8820: 8819: 8812: 8811: 8804: 8797: 8789: 8783: 8782: 8776: 8771: 8759: 8758:External links 8756: 8755: 8754: 8748: 8735: 8704: 8701: 8699: 8698: 8683: 8652: 8621: 8614: 8596: 8535: 8510: 8471:(1): 461–474. 8448: 8437:Universe Today 8414: 8361: 8331: 8306: 8300:10.1086/319535 8265: 8252:10.1086/420884 8212: 8179: 8118: 8096:Bruce Balick. 8085: 8026: 8007:(1): 130–137. 7991: 7966: 7907:(22): 2905–8. 7881: 7879:, p. 322. 7869: 7863:10.1086/173407 7821: 7796: 7784: 7771: 7748: 7718: 7679:(1): 155–163. 7644: 7613: 7545: 7524: 7482: 7469:10.1086/504422 7445:(1): 290–298. 7429: 7417: 7390: 7361:(E7): E07004. 7341: 7314:(2): 141–152. 7298: 7277:(2): 415–420. 7257: 7244:10.1086/589232 7204: 7179: 7172: 7154: 7111:Nature Physics 7098: 7071: 7003: 6973: 6938: 6910: 6836: 6783: 6725: 6699: 6696:on 2020-04-12. 6665:(1): 271–315. 6642: 6588: 6576: 6546: 6543:on 2007-06-14. 6532: 6503: 6487:Universe Today 6425: 6408: 6355: 6348: 6309: 6283: 6248: 6196: 6172: 6169:on 2007-06-21. 6104: 6056: 6032: 6007: 5952:(3): 261–280. 5929: 5904: 5869: 5816: 5781: 5728: 5667: 5649: 5596: 5583:10.1086/117532 5543: 5482: 5461: 5432: 5381: 5332: 5310: 5238: 5196: 5170: 5106: 5087:(2): 434–452. 5059: 5036: 4991:(3): 769–772. 4966: 4919: 4906:10.1086/423612 4882:(1): 497–507. 4866: 4847:(4): 441–455. 4831: 4793: 4760:(2): 338–347. 4732: 4704: 4672: 4645: 4620: 4583:(1): 258–273. 4550: 4537:10.1086/339975 4492: 4485: 4446: 4409:(2): 338–350. 4393: 4340: 4281: 4241: 4208: 4171:(1): 730–747. 4155: 4104:(fee required) 4072: 4066:10.1086/152291 4031: 4018:10.1086/429160 3978: 3913: 3853: 3841: 3828:10.1086/321795 3804:(2): 417–437. 3783: 3779: 3758: 3755:on 2020-04-12. 3738:10.1086/374408 3724:(1): 397–409. 3701: 3688:10.1086/300781 3648: 3620: 3605:10.1086/184826 3575: 3532: 3507: 3456: 3419: 3382:(1): 221–238. 3366: 3313: 3298:Morgan Kelly. 3290: 3236: 3168: 3148:10.1086/589959 3124:(1): 560–569. 3102: 3065:(5): 381–396. 3049: 3023:(3): 447–461. 3001: 2964:(2): 307–313. 2945: 2943:, p. 207. 2933: 2910: 2867: 2829: 2760: 2708: 2701: 2680: 2673: 2655: 2630: 2603:(1524): 5–18. 2584: 2568:"Solar system" 2559: 2516: 2452: 2433:(9): 637–641. 2409: 2407: 2404: 2402: 2401: 2391: 2377: 2360: 2350: 2348: 2345: 2343: 2342: 2336: 2330: 2324: 2318: 2312: 2306: 2300: 2294: 2289: 2283: 2277: 2271: 2265: 2259: 2253: 2246: 2244: 2241: 2238: 2237: 2234: 2231: 2228: 2224: 2223: 2204: 2201: 2197: 2196: 2181: 2178: 2175: 2171: 2170: 2155: 2152: 2148: 2147: 2144:habitable zone 2140: 2137: 2133: 2132: 2129: 2124: 2120: 2119: 2109: 2103: 2099: 2098: 2091: 2085: 2081: 2080: 2074: 2068: 2064: 2063: 2060: 2054: 2051: 2050:Main sequence 2047: 2046: 2043: 2037: 2033: 2032: 2025: 2019: 2015: 2014: 2004: 1998: 1994: 1993: 1990: 1984: 1981: 1977: 1976: 1965: 1959: 1955: 1954: 1947:heavy elements 1943: 1939:Over 4.6  1937: 1934: 1930: 1929: 1926: 1923: 1920: 1902: 1901: 1892: 1881: 1878: 1830: 1829: 1828: 1826: 1823: 1767:Main article: 1764: 1761: 1704: 1701: 1492:greenhouse gas 1467: 1466: 1457: 1456: 1455: 1454: 1453: 1441: 1438: 1423:tidally locked 1400:planetary ring 1358:Galilean moons 1353:tidally locked 1332: 1329: 1277:Main article: 1274: 1271: 1237: 1234: 1209: 1202: 1182:. The Earth's 1117: 1116: 1113: 1110: 1092: 1089: 1073:galactic tides 1046:Tunguska event 1003:Main article: 1000: 997: 959:scattered disc 951:Beyond Neptune 940: 934: 928: 922: 868: 865: 840: 837: 834:eccentricities 800: 797: 768: 765: 755: 752: 728: 725: 707: 704: 700: 697: 692: 689: 639: 636: 562: 559: 526: 523: 490: 487: 415: 412: 326: 323: 290: 287: 279: 276: 258:nuclear fusion 183:Main article: 180: 177: 9: 6: 4: 3: 2: 11627: 11616: 11613: 11611: 11608: 11606: 11603: 11601: 11598: 11596: 11593: 11591: 11588: 11587: 11585: 11578: 11573: 11568: 11563: 11561: 11551: 11549: 11539: 11537: 11532: 11527: 11526: 11523: 11509: 11505: 11501: 11499: 11491: 11489: 11481: 11480: 11476: 11470: 11469:Cometary knot 11467: 11466: 11464: 11460: 11453: 11450: 11447: 11444: 11441: 11438: 11436: 11433: 11431: 11428: 11427: 11425: 11423: 11414: 11408: 11405: 11404: 11402: 11398: 11392: 11389: 11387: 11384: 11383: 11381: 11377: 11371: 11368: 11366: 11363: 11359: 11356: 11354: 11351: 11350: 11349: 11346: 11345: 11343: 11339: 11333: 11330: 11328: 11325: 11323: 11320: 11318: 11315: 11314: 11312: 11310: 11306: 11300: 11297: 11295: 11292: 11290: 11287: 11285: 11282: 11281: 11279: 11275: 11269: 11266: 11264: 11261: 11259: 11256: 11254: 11251: 11250: 11248: 11246: 11242: 11232: 11229: 11227: 11224: 11223: 11222: 11219: 11215: 11212: 11210: 11207: 11205: 11202: 11200: 11197: 11196: 11195: 11192: 11191: 11190: 11187: 11185: 11182: 11181: 11179: 11175: 11171: 11164: 11159: 11157: 11152: 11150: 11145: 11144: 11141: 11131: 11122: 11115: 11108: 11101: 11095: 11089: 11083: 11076: 11069: 11062: 11055: 11048: 11041: 11034: 11028: 11018: 11016: 11006: 11004: 10994: 10992: 10989: 10988: 10985: 10970: 10969:Tidal locking 10967: 10965: 10962: 10960: 10957: 10955: 10952: 10950: 10949:Double planet 10947: 10946: 10944: 10940: 10934: 10931: 10927: 10924: 10922: 10919: 10918: 10917: 10914: 10912: 10909: 10907: 10904: 10902: 10901:Minor planets 10899: 10897: 10894: 10892: 10889: 10887: 10884: 10883: 10881: 10877: 10871: 10868: 10866: 10863: 10859: 10856: 10855: 10854: 10851: 10849: 10846: 10842: 10839: 10835: 10834:Merging stars 10832: 10831: 10830: 10827: 10825: 10822: 10820: 10817: 10815: 10812: 10810: 10807: 10806: 10805: 10802: 10800: 10797: 10795: 10792: 10790: 10787: 10785: 10782: 10780: 10777: 10775: 10772: 10770: 10767: 10765: 10762: 10760: 10757: 10755: 10752: 10750: 10747: 10745: 10742: 10740: 10737: 10735: 10732: 10730: 10727: 10725: 10722: 10718: 10715: 10713: 10710: 10709: 10708: 10705: 10703: 10700: 10698: 10695: 10693: 10690: 10688: 10685: 10683: 10680: 10678: 10675: 10673: 10670: 10668: 10665: 10663: 10660: 10656: 10653: 10652: 10651: 10648: 10646: 10643: 10641: 10638: 10637: 10635: 10633: 10627: 10621: 10618: 10616: 10613: 10611: 10608: 10606: 10603: 10601: 10598: 10596: 10593: 10591: 10588: 10584: 10581: 10580: 10579: 10576: 10574: 10571: 10569: 10566: 10562: 10559: 10558: 10557: 10554: 10552: 10549: 10547: 10544: 10540: 10537: 10535: 10532: 10530: 10527: 10526: 10525: 10522: 10518: 10515: 10513: 10510: 10509: 10508: 10505: 10501: 10498: 10496: 10493: 10491: 10488: 10487: 10486: 10483: 10481: 10478: 10477: 10475: 10472: 10467: 10463: 10457: 10454: 10452: 10449: 10447: 10444: 10442: 10439: 10437: 10436:Subsatellites 10434: 10432: 10429: 10427: 10424: 10422: 10419: 10417: 10414: 10412: 10409: 10407: 10404: 10403: 10401: 10399: 10396:Hypothetical 10393: 10390: 10381: 10378: 10374: 10371: 10369: 10366: 10364: 10361: 10359: 10356: 10352: 10349: 10347: 10344: 10343: 10342: 10339: 10338: 10337: 10334: 10330: 10327: 10325: 10322: 10321: 10320: 10317: 10313: 10310: 10308: 10305: 10303: 10300: 10298: 10295: 10293: 10290: 10288: 10285: 10283: 10280: 10278: 10275: 10273: 10270: 10269: 10268: 10265: 10263: 10262:Asteroid belt 10260: 10258: 10255: 10251: 10248: 10246: 10243: 10241: 10238: 10234: 10231: 10229: 10226: 10225: 10224: 10221: 10219: 10216: 10214: 10211: 10209: 10206: 10205: 10204: 10201: 10197: 10194: 10192: 10189: 10187: 10184: 10182: 10179: 10177: 10174: 10172: 10169: 10167: 10164: 10162: 10159: 10158: 10156: 10154: 10151: 10147: 10144: 10142: 10139: 10138: 10137: 10136:Minor planets 10134: 10132: 10129: 10127: 10124: 10122: 10119: 10118: 10116: 10114: 10104: 10098: 10095: 10093: 10090: 10088: 10085: 10083: 10080: 10078: 10075: 10073: 10070: 10067: 10063: 10060: 10058: 10055: 10054: 10052: 10050: 10046: 10038: 10035: 10034: 10033: 10030: 10026: 10023: 10022: 10021: 10018: 10014: 10011: 10010: 10009: 10006: 10002: 9999: 9998: 9997: 9994: 9990: 9987: 9985: 9982: 9981: 9980: 9977: 9973: 9970: 9968: 9965: 9963: 9960: 9958: 9955: 9953: 9950: 9949: 9948: 9945: 9941: 9938: 9937: 9936: 9933: 9929: 9926: 9924: 9921: 9919: 9916: 9914: 9911: 9910: 9909: 9906: 9902: 9899: 9897: 9894: 9892: 9889: 9887: 9884: 9882: 9879: 9877: 9874: 9873: 9872: 9869: 9865: 9862: 9860: 9857: 9855: 9852: 9850: 9847: 9845: 9842: 9840: 9837: 9835: 9832: 9830: 9827: 9825: 9822: 9820: 9817: 9816: 9815: 9812: 9808: 9805: 9803: 9800: 9798: 9795: 9793: 9790: 9788: 9785: 9784: 9783: 9780: 9776: 9773: 9771: 9768: 9767: 9766: 9763: 9759: 9756: 9754: 9751: 9750: 9748: 9747: 9745: 9743: 9739: 9731: 9728: 9726: 9723: 9721: 9718: 9716: 9713: 9711: 9708: 9706: 9703: 9701: 9698: 9696: 9693: 9691: 9688: 9687: 9686: 9683: 9677: 9674: 9672: 9669: 9668: 9667: 9664: 9660: 9657: 9655: 9652: 9651: 9650: 9647: 9646: 9645: 9642: 9638: 9635: 9633: 9630: 9628: 9625: 9623: 9620: 9619: 9618: 9615: 9614: 9612: 9610: 9605: 9601: 9598: 9597: 9592: 9586: 9585: 9581: 9579: 9578: 9574: 9572: 9571: 9567: 9565: 9564: 9560: 9558: 9557: 9553: 9551: 9550: 9546: 9544: 9543: 9539: 9537: 9536: 9532: 9530: 9527: 9525: 9522: 9520: 9517: 9515: 9512: 9510: 9509: 9505: 9503: 9500: 9498: 9495: 9493: 9490: 9488: 9485: 9483: 9480: 9479: 9434: 9430: 9423: 9418: 9416: 9411: 9409: 9404: 9403: 9400: 9388: 9380: 9379: 9376: 9370: 9367: 9365: 9362: 9360: 9357: 9355: 9352: 9351: 9349: 9347: 9343: 9337: 9334: 9333: 9331: 9327: 9321: 9318: 9316: 9315:Pacific Ocean 9313: 9311: 9308: 9306: 9303: 9301: 9298: 9296: 9293: 9292: 9290: 9288: 9284: 9278: 9275: 9273: 9270: 9266: 9263: 9262: 9261: 9258: 9256: 9253: 9251: 9248: 9246: 9245:Earth science 9243: 9241: 9238: 9237: 9235: 9233: 9229: 9223: 9220: 9218: 9215: 9213: 9210: 9208: 9205: 9203: 9200: 9198: 9197:Magnetosphere 9195: 9193: 9190: 9188: 9185: 9183: 9180: 9179: 9177: 9175: 9171: 9165: 9164:Virtual globe 9162: 9160: 9157: 9155: 9152: 9150: 9147: 9145: 9142: 9140: 9137: 9135: 9132: 9130: 9129:Earth's orbit 9127: 9123: 9120: 9119: 9118: 9115: 9114: 9112: 9110: 9106: 9100: 9097: 9095: 9092: 9090: 9087: 9085: 9082: 9080: 9077: 9075: 9072: 9070: 9067: 9065: 9062: 9061: 9059: 9057: 9053: 9047: 9044: 9042: 9039: 9037: 9036:World history 9034: 9032: 9029: 9027: 9026:World economy 9024: 9022: 9019: 9017: 9014: 9012: 9009: 9007: 9004: 9000: 8997: 8996: 8995: 8992: 8991: 8989: 8987: 8983: 8977: 8976:South America 8974: 8972: 8971:North America 8969: 8967: 8964: 8962: 8959: 8957: 8954: 8952: 8949: 8947: 8944: 8943: 8941: 8939: 8935: 8929: 8926: 8924: 8921: 8919: 8916: 8914: 8911: 8909: 8906: 8904: 8901: 8900: 8898: 8896: 8892: 8886: 8883: 8881: 8878: 8876: 8873: 8871: 8868: 8866: 8863: 8861: 8858: 8856: 8853: 8851: 8848: 8847: 8845: 8843: 8839: 8833: 8830: 8828: 8825: 8824: 8821: 8817: 8810: 8805: 8803: 8798: 8796: 8791: 8790: 8787: 8780: 8777: 8775: 8772: 8769: 8765: 8762: 8761: 8751: 8749:0-03-006228-4 8745: 8741: 8736: 8732: 8728: 8724: 8720: 8716: 8712: 8707: 8706: 8694: 8690: 8686: 8680: 8676: 8672: 8671: 8666: 8662: 8656: 8641: 8640: 8639:New Scientist 8635: 8628: 8626: 8617: 8615:0-521-47895-2 8611: 8607: 8600: 8592: 8588: 8584: 8580: 8576: 8572: 8568: 8564: 8560: 8556: 8549: 8542: 8540: 8525: 8521: 8514: 8506: 8502: 8497: 8492: 8488: 8484: 8479: 8474: 8470: 8466: 8462: 8455: 8453: 8438: 8434: 8427: 8425: 8423: 8421: 8419: 8410: 8406: 8402: 8398: 8394: 8390: 8385: 8380: 8376: 8372: 8371:New Astronomy 8365: 8351:on 2012-04-02 8350: 8346: 8342: 8335: 8321: 8317: 8310: 8301: 8296: 8292: 8288: 8284: 8280: 8276: 8269: 8261: 8257: 8253: 8249: 8245: 8241: 8236: 8231: 8227: 8223: 8216: 8202:on 2005-05-27 8198: 8194: 8190: 8183: 8175: 8171: 8167: 8163: 8159: 8155: 8151: 8147: 8142: 8137: 8133: 8129: 8122: 8108:on 2008-12-19 8107: 8103: 8099: 8092: 8090: 8081: 8077: 8072: 8067: 8063: 8059: 8054: 8049: 8045: 8041: 8037: 8030: 8022: 8018: 8014: 8010: 8006: 8002: 7995: 7981: 7977: 7970: 7956:on 2011-07-24 7952: 7948: 7944: 7940: 7936: 7932: 7928: 7923: 7918: 7914: 7910: 7906: 7902: 7895: 7888: 7886: 7878: 7873: 7864: 7859: 7855: 7851: 7847: 7843: 7839: 7832: 7830: 7828: 7826: 7810: 7806: 7800: 7793: 7788: 7774: 7772:1-85233-568-8 7768: 7764: 7763: 7755: 7753: 7738:on 2008-10-09 7737: 7733: 7729: 7722: 7714: 7710: 7705: 7700: 7696: 7692: 7687: 7682: 7678: 7674: 7670: 7663: 7661: 7659: 7657: 7655: 7653: 7651: 7649: 7633: 7632:New Scientist 7629: 7622: 7620: 7618: 7609: 7605: 7601: 7597: 7593: 7589: 7584: 7579: 7575: 7571: 7567: 7563: 7556: 7549: 7535: 7531: 7527: 7521: 7517: 7513: 7508: 7503: 7499: 7495: 7494: 7486: 7478: 7474: 7470: 7466: 7462: 7458: 7453: 7448: 7444: 7440: 7433: 7426: 7421: 7413: 7409: 7405: 7401: 7394: 7386: 7382: 7377: 7372: 7368: 7364: 7360: 7356: 7352: 7345: 7337: 7333: 7329: 7325: 7321: 7317: 7313: 7309: 7302: 7293: 7288: 7284: 7280: 7276: 7272: 7268: 7261: 7253: 7249: 7245: 7241: 7237: 7233: 7228: 7223: 7219: 7215: 7208: 7194: 7190: 7183: 7175: 7173:0-14-025602-4 7169: 7165: 7158: 7150: 7146: 7142: 7138: 7134: 7130: 7125: 7120: 7116: 7112: 7105: 7103: 7094: 7090: 7086: 7082: 7075: 7067: 7063: 7059: 7055: 7050: 7045: 7041: 7037: 7033: 7029: 7025: 7021: 7014: 7007: 6999: 6995: 6991: 6987: 6980: 6978: 6962:on 2021-12-28 6960: 6955: 6954: 6949: 6942: 6927: 6926: 6921: 6914: 6899: 6895: 6891: 6887: 6883: 6879: 6875: 6871: 6866: 6861: 6857: 6853: 6852: 6847: 6840: 6832: 6828: 6824: 6820: 6816: 6812: 6807: 6802: 6798: 6794: 6787: 6779: 6775: 6771: 6767: 6763: 6759: 6755: 6751: 6747: 6743: 6736: 6729: 6714: 6710: 6703: 6692: 6688: 6684: 6680: 6676: 6672: 6668: 6664: 6660: 6653: 6646: 6638: 6634: 6630: 6626: 6622: 6618: 6614: 6610: 6606: 6602: 6595: 6593: 6585: 6580: 6566:on 2008-03-11 6565: 6561: 6557: 6550: 6539: 6535: 6533:0-521-81808-7 6529: 6525: 6521: 6514: 6507: 6493:on 2008-01-30 6492: 6488: 6484: 6475: 6471: 6467: 6463: 6459: 6455: 6451: 6447: 6443: 6439: 6423: 6412: 6404: 6400: 6396: 6392: 6388: 6384: 6379: 6374: 6370: 6366: 6359: 6351: 6345: 6341: 6337: 6332: 6327: 6323: 6319: 6313: 6298: 6294: 6287: 6278: 6273: 6269: 6262: 6255: 6253: 6237: 6233: 6229: 6225: 6221: 6217: 6213: 6212: 6207: 6200: 6191: 6186: 6179: 6177: 6165: 6161: 6157: 6153: 6149: 6145: 6141: 6137: 6133: 6129: 6125: 6118: 6111: 6109: 6094:on 2008-09-10 6090: 6086: 6082: 6078: 6074: 6067: 6060: 6045: 6039: 6037: 6022: 6018: 6011: 6003: 5999: 5994: 5989: 5985: 5981: 5977: 5973: 5969: 5965: 5960: 5955: 5951: 5947: 5943: 5939: 5933: 5919: 5915: 5908: 5900: 5896: 5892: 5888: 5884: 5880: 5873: 5865: 5861: 5857: 5853: 5849: 5845: 5840: 5835: 5831: 5827: 5820: 5812: 5808: 5804: 5800: 5796: 5792: 5785: 5777: 5773: 5769: 5765: 5761: 5757: 5752: 5747: 5743: 5739: 5732: 5724: 5720: 5716: 5712: 5708: 5704: 5700: 5696: 5691: 5686: 5682: 5678: 5671: 5663: 5659: 5653: 5645: 5641: 5637: 5633: 5629: 5625: 5620: 5615: 5611: 5607: 5600: 5592: 5588: 5584: 5580: 5576: 5572: 5567: 5562: 5558: 5554: 5547: 5539: 5535: 5531: 5527: 5523: 5519: 5515: 5511: 5507: 5503: 5496: 5489: 5487: 5477: 5472: 5465: 5450: 5446: 5439: 5437: 5428: 5424: 5420: 5416: 5412: 5408: 5404: 5400: 5396: 5392: 5385: 5377: 5373: 5368: 5363: 5359: 5355: 5351: 5347: 5343: 5336: 5321: 5314: 5303: 5299: 5295: 5291: 5287: 5283: 5279: 5275: 5271: 5267: 5263: 5256: 5252: 5245: 5243: 5234: 5230: 5226: 5222: 5219:(1): 98–105. 5218: 5214: 5210: 5206: 5200: 5186:on 2012-01-17 5185: 5181: 5174: 5166: 5162: 5158: 5154: 5150: 5146: 5142: 5138: 5133: 5128: 5124: 5120: 5113: 5111: 5102: 5098: 5094: 5090: 5086: 5082: 5075: 5068: 5066: 5064: 5055: 5051: 5047: 5040: 5026: 5022: 5017: 5012: 5008: 5004: 4999: 4994: 4990: 4986: 4985: 4977: 4970: 4962: 4958: 4954: 4950: 4946: 4942: 4935: 4928: 4926: 4924: 4915: 4911: 4907: 4903: 4899: 4895: 4890: 4885: 4881: 4877: 4870: 4862: 4858: 4854: 4850: 4846: 4842: 4835: 4827: 4823: 4819: 4815: 4811: 4807: 4800: 4798: 4783:on 2007-02-21 4779: 4775: 4771: 4767: 4763: 4759: 4755: 4748: 4741: 4739: 4737: 4722: 4718: 4714: 4708: 4690: 4683: 4676: 4668: 4664: 4660: 4656: 4649: 4635: 4631: 4624: 4616: 4612: 4608: 4604: 4600: 4596: 4591: 4586: 4582: 4578: 4571: 4569: 4567: 4565: 4563: 4561: 4559: 4557: 4555: 4546: 4542: 4538: 4534: 4530: 4526: 4521: 4516: 4512: 4508: 4501: 4499: 4497: 4488: 4482: 4478: 4474: 4469: 4464: 4460: 4453: 4451: 4442: 4438: 4434: 4430: 4426: 4422: 4417: 4412: 4408: 4404: 4397: 4389: 4385: 4381: 4377: 4373: 4369: 4364: 4359: 4355: 4351: 4344: 4336: 4332: 4327: 4322: 4318: 4314: 4309: 4304: 4300: 4296: 4292: 4285: 4277: 4271: 4256: 4252: 4245: 4237: 4233: 4228: 4223: 4219: 4212: 4204: 4200: 4196: 4192: 4188: 4184: 4179: 4174: 4170: 4166: 4159: 4151: 4145: 4137: 4133: 4129: 4125: 4121: 4117: 4113: 4109: 4102: 4095: 4093: 4091: 4089: 4087: 4085: 4083: 4081: 4079: 4077: 4067: 4062: 4058: 4054: 4050: 4046: 4042: 4035: 4027: 4023: 4019: 4015: 4011: 4007: 4002: 3997: 3993: 3989: 3982: 3974: 3970: 3966: 3962: 3958: 3954: 3950: 3946: 3941: 3936: 3932: 3928: 3924: 3917: 3908: 3904: 3899: 3894: 3890: 3886: 3881: 3876: 3872: 3868: 3864: 3857: 3850: 3845: 3837: 3833: 3829: 3825: 3821: 3817: 3812: 3807: 3803: 3799: 3781: 3777: 3765: 3763: 3751: 3747: 3743: 3739: 3735: 3731: 3727: 3723: 3719: 3712: 3705: 3697: 3693: 3689: 3685: 3681: 3677: 3672: 3667: 3663: 3659: 3652: 3644: 3640: 3636: 3632: 3624: 3615: 3610: 3606: 3602: 3598: 3594: 3590: 3586: 3579: 3571: 3567: 3563: 3559: 3555: 3551: 3547: 3543: 3536: 3521: 3517: 3511: 3503: 3499: 3495: 3491: 3487: 3483: 3479: 3475: 3471: 3467: 3460: 3452: 3448: 3443: 3438: 3434: 3430: 3423: 3415: 3411: 3407: 3403: 3399: 3395: 3390: 3385: 3381: 3377: 3370: 3362: 3358: 3354: 3350: 3346: 3342: 3337: 3332: 3328: 3324: 3317: 3301: 3294: 3286: 3282: 3278: 3274: 3270: 3266: 3262: 3258: 3254: 3250: 3243: 3241: 3229: 3225: 3221: 3217: 3213: 3209: 3205: 3201: 3197: 3193: 3189: 3182: 3175: 3173: 3157: 3153: 3149: 3145: 3141: 3137: 3132: 3127: 3123: 3119: 3118: 3113: 3106: 3098: 3094: 3090: 3086: 3082: 3078: 3073: 3068: 3064: 3060: 3053: 3038: 3034: 3030: 3026: 3022: 3018: 3017: 3012: 3005: 2997: 2993: 2989: 2985: 2981: 2977: 2972: 2967: 2963: 2959: 2952: 2950: 2942: 2937: 2929: 2925: 2921: 2914: 2906: 2902: 2898: 2894: 2890: 2886: 2882: 2878: 2871: 2857:on 2012-07-10 2856: 2852: 2848: 2847:Ann Zabludoff 2842: 2840: 2838: 2836: 2834: 2825: 2821: 2816: 2811: 2806: 2801: 2797: 2793: 2788: 2783: 2779: 2775: 2771: 2764: 2756: 2752: 2748: 2744: 2740: 2736: 2732: 2728: 2721: 2719: 2717: 2715: 2713: 2704: 2698: 2694: 2687: 2685: 2676: 2670: 2666: 2659: 2645: 2644:New Scientist 2641: 2634: 2626: 2622: 2618: 2614: 2610: 2606: 2602: 2598: 2594: 2588: 2573: 2569: 2563: 2555: 2551: 2547: 2543: 2539: 2535: 2531: 2530:Freeman Dyson 2525: 2523: 2521: 2512: 2508: 2503: 2498: 2494: 2490: 2486: 2482: 2478: 2471: 2469: 2467: 2465: 2463: 2461: 2459: 2457: 2448: 2444: 2440: 2436: 2432: 2428: 2424: 2417: 2415: 2410: 2395: 2388: 2381: 2374: 2370: 2364: 2355: 2351: 2340: 2337: 2334: 2333:Tidal locking 2331: 2328: 2325: 2322: 2319: 2316: 2313: 2310: 2307: 2304: 2301: 2298: 2295: 2293: 2290: 2287: 2284: 2281: 2278: 2275: 2272: 2269: 2266: 2263: 2260: 2257: 2254: 2251: 2248: 2247: 2235: 2232: 2229: 2226: 2225: 2221: 2217: 2213: 2209: 2205: 2202: 2199: 2194: 2190: 2186: 2182: 2179: 2176: 2168: 2164: 2160: 2156: 2153: 2150: 2145: 2141: 2138: 2135: 2130: 2128: 2125: 2122: 2117: 2113: 2110: 2108: 2104: 2101: 2096: 2092: 2090: 2087:4.0–4.1  2086: 2083: 2078: 2075: 2073: 2069: 2066: 2061: 2059: 2055: 2052: 2044: 2042: 2039:4.5–4.6  2038: 2035: 2030: 2026: 2024: 2020: 2017: 2012: 2009: 2005: 2003: 1999: 1996: 1991: 1989: 1985: 1982: 1974: 1970: 1966: 1964: 1960: 1957: 1952: 1948: 1944: 1942: 1938: 1935: 1927: 1924: 1921: 1918: 1917: 1911: 1909: 1900: 1899: 1886: 1885: 1877: 1873: 1871: 1867: 1863: 1859: 1855: 1851: 1847: 1843: 1834: 1822: 1819: 1815: 1811: 1806: 1802: 1800: 1796: 1792: 1788: 1784: 1780: 1776: 1770: 1760: 1758: 1754: 1750: 1744: 1742: 1737: 1736:galactic tide 1733: 1732:fossil record 1729: 1724: 1722: 1721:galactic year 1718: 1709: 1700: 1698: 1694: 1690: 1686: 1682: 1678: 1674: 1670: 1666: 1662: 1656: 1654: 1650: 1647: 1643: 1639: 1631: 1626: 1622: 1620: 1616: 1612: 1608: 1604: 1598: 1596: 1592: 1588: 1583: 1581: 1577: 1573: 1569: 1564: 1562: 1558: 1554: 1550: 1546: 1542: 1533: km; 110 1532: 1522: 1512: 1508: 1505: 1501: 1497: 1493: 1489: 1484: 1474: 1469: 1461: 1451: 1447: 1437: 1435: 1434: 1427: 1424: 1419: 1417: 1413: 1409: 1405: 1401: 1397: 1388: 1384: 1383: 1378: 1373: 1369: 1367: 1363: 1359: 1354: 1349: 1347: 1342: 1338: 1328: 1326: 1322: 1316: 1314: 1310: 1304: 1302: 1298: 1294: 1293:Lyapunov time 1290: 1286: 1280: 1270: 1268: 1264: 1260: 1255: 1252:and into its 1251: 1247: 1246:main sequence 1243: 1242:its evolution 1233: 1231: 1227: 1223: 1219: 1216: 1212: 1205: 1198: 1193: 1189: 1185: 1181: 1177: 1173: 1169: 1164: 1162: 1158: 1153: 1149: 1145: 1141: 1137: 1130: 1126: 1121: 1114: 1111: 1108: 1107: 1106: 1104: 1098: 1088: 1084: 1082: 1078: 1074: 1070: 1066: 1061: 1059: 1055: 1054:Meteor Crater 1051: 1047: 1043: 1040:in 1994, the 1039: 1035: 1030: 1028: 1027:life on Earth 1022: 1015: 1014:Meteor Crater 1011: 1006: 996: 994: 989: 985: 983: 979: 975: 970: 968: 964: 960: 956: 952: 912: 908: 906: 902: 898: 894: 890: 884: 878: 874: 864: 862: 858: 854: 844: 835: 831: 826: 821: 818: 814: 810: 809:planetesimals 806: 805:asteroid belt 799:Asteroid belt 796: 794: 788: 786: 782: 778: 774: 764: 762: 751: 747: 745: 741: 740: 735: 723: 719: 718:stellar winds 715: 714:T Tauri stars 711: 687: 683: 679: 675: 671: 667: 663: 659: 658:giant planets 654: 652: 648: 643: 634: 630: 626: 622: 618: 614: 610: 606: 602: 598: 594: 589: 587: 586:planetesimals 583: 579: 572: 568: 558: 556: 552: 551:massive stars 548: 544: 540: 536: 532: 522: 520: 515: 513: 512:main sequence 509: 504: 500: 496: 485: 481: 476: 474: 469: 465: 461: 457: 453: 449: 445: 440: 438: 434: 430: 426: 422: 418: 409: 405: 400: 396: 392: 388: 380: 376: 372: 367: 363: 361: 357: 353: 349: 345: 341: 337: 334:, along with 333: 329: 320: 316: 312: 308: 304: 300: 296: 285: 275: 273: 270: 266: 263: 259: 255: 251: 247: 242: 239: 235: 231: 230:Immanuel Kant 227: 223: 219: 214: 212: 208: 204: 203:heliocentrism 195: 191: 186: 176: 174: 170: 166: 162: 158: 153: 151: 146: 142: 138: 133: 128: 126: 122: 118: 114: 110: 106: 102: 98: 94: 93:Immanuel Kant 90: 86: 81: 79: 75: 71: 67: 63: 59: 55: 51: 47: 43: 36: 31: 27: 19: 11590:Solar System 11577: 11284:Nova remnant 11268:Solar nebula 11209:Nova remnant 11125:Each arrow ( 11047:Local Bubble 11033:Solar System 11031: 10824:Planetesimal 10779:Kuiper cliff 10629: 10507:Space probes 10480:Colonization 10319:Kirkwood gap 10240:Saturn Moons 10153:Planetesimal 9617:Terrestrials 9582: 9575: 9568: 9561: 9554: 9547: 9540: 9533: 9506: 9429:Solar System 9369:Solar System 9353: 9320:Oceanography 9310:Indian Ocean 9300:Arctic Ocean 9240:Age of Earth 9192:Geomagnetism 8875:Thermosphere 8865:Stratosphere 8764:7M animation 8739: 8714: 8710: 8703:Bibliography 8668: 8655: 8643:. Retrieved 8637: 8605: 8599: 8558: 8554: 8527:. Retrieved 8523: 8513: 8468: 8464: 8440:. Retrieved 8436: 8377:(1): 51–56. 8374: 8370: 8364: 8353:. Retrieved 8349:the original 8344: 8334: 8323:. Retrieved 8319: 8309: 8282: 8278: 8268: 8225: 8221: 8215: 8204:. Retrieved 8197:the original 8192: 8182: 8131: 8127: 8121: 8110:. Retrieved 8106:the original 8101: 8043: 8039: 8029: 8004: 8000: 7994: 7983:. Retrieved 7979: 7969: 7958:. Retrieved 7951:the original 7904: 7900: 7872: 7845: 7841: 7813:. Retrieved 7808: 7799: 7787: 7776:. Retrieved 7765:. Springer. 7761: 7740:. Retrieved 7736:the original 7731: 7721: 7676: 7672: 7636:. Retrieved 7631: 7592:10150/633328 7565: 7561: 7548: 7537:. Retrieved 7492: 7485: 7442: 7438: 7432: 7420: 7403: 7399: 7393: 7358: 7354: 7344: 7311: 7307: 7301: 7274: 7270: 7260: 7217: 7213: 7207: 7196:. Retrieved 7192: 7182: 7163: 7157: 7114: 7110: 7084: 7080: 7074: 7023: 7019: 7006: 6989: 6985: 6964:. Retrieved 6959:the original 6951: 6941: 6929:. Retrieved 6923: 6913: 6901:. Retrieved 6855: 6849: 6839: 6796: 6792: 6786: 6745: 6741: 6728: 6717:. Retrieved 6712: 6702: 6691:the original 6662: 6658: 6645: 6604: 6600: 6579: 6568:. Retrieved 6564:the original 6559: 6549: 6538:the original 6523: 6520:Fran Bagenal 6506: 6495:. Retrieved 6491:the original 6486: 6441: 6437: 6411: 6368: 6364: 6358: 6321: 6312: 6301:. Retrieved 6296: 6286: 6267: 6240:. Retrieved 6236:the original 6215: 6209: 6199: 6164:the original 6127: 6123: 6096:. Retrieved 6089:the original 6076: 6072: 6059: 6048:. Retrieved 6024:. Retrieved 6020: 6010: 5949: 5945: 5932: 5921:. Retrieved 5917: 5907: 5882: 5878: 5872: 5829: 5825: 5819: 5797:(1): 43–56. 5794: 5790: 5784: 5741: 5737: 5731: 5680: 5676: 5670: 5661: 5652: 5609: 5605: 5599: 5556: 5552: 5546: 5505: 5501: 5464: 5453:. Retrieved 5448: 5394: 5390: 5384: 5349: 5345: 5335: 5324:. Retrieved 5313: 5302:the original 5265: 5261: 5251:David Jewitt 5216: 5212: 5199: 5188:. Retrieved 5184:the original 5173: 5125:(1): 66–84. 5122: 5119:Astrobiology 5118: 5084: 5080: 5045: 5039: 5028:. Retrieved 4988: 4982: 4969: 4947:(1): 63–94. 4944: 4940: 4879: 4875: 4869: 4844: 4840: 4834: 4809: 4805: 4785:. Retrieved 4778:the original 4757: 4753: 4724:. Retrieved 4720: 4707: 4696:. Retrieved 4689:the original 4675: 4658: 4654: 4648: 4637:. Retrieved 4633: 4623: 4580: 4576: 4510: 4506: 4458: 4406: 4402: 4396: 4353: 4349: 4343: 4301:(1): 49–64. 4298: 4294: 4284: 4259:. Retrieved 4254: 4244: 4217: 4211: 4168: 4164: 4158: 4144:cite journal 4114:(5): 50–59. 4111: 4107: 4048: 4044: 4034: 3991: 3987: 3981: 3933:(1): 47–85. 3930: 3926: 3916: 3870: 3866: 3856: 3844: 3801: 3797: 3750:the original 3721: 3717: 3704: 3661: 3657: 3651: 3634: 3630: 3623: 3588: 3584: 3578: 3545: 3541: 3535: 3524:. Retrieved 3522:. 1999-10-21 3519: 3510: 3469: 3465: 3459: 3432: 3422: 3379: 3375: 3369: 3326: 3322: 3316: 3304:. Retrieved 3293: 3252: 3248: 3228:the original 3191: 3187: 3159:. Retrieved 3121: 3115: 3105: 3062: 3058: 3052: 3040:. Retrieved 3020: 3014: 3004: 2961: 2957: 2936: 2919: 2913: 2880: 2876: 2870: 2859:. Retrieved 2855:the original 2777: 2773: 2763: 2730: 2726: 2692: 2664: 2658: 2647:. Retrieved 2643: 2633: 2600: 2596: 2587: 2576:. Retrieved 2571: 2562: 2537: 2533: 2484: 2480: 2430: 2426: 2394: 2380: 2363: 2354: 2309:Scale height 2256:Age of Earth 2227:Remnant Sun 2126: 1972: 1969:Orion Nebula 1905: 1896: 1874: 1839: 1807: 1803: 1779:tidal forces 1772: 1745: 1725: 1714: 1671:), 1.9  1657: 1635: 1607:helium flash 1599: 1584: 1565: 1553:stellar wind 1540: 1530: 1517: 1483:carbon cycle 1479: 1431: 1428: 1420: 1392: 1380: 1350: 1337:tidal forces 1334: 1317: 1309:eccentricity 1305: 1282: 1239: 1165: 1133: 1125:giant impact 1100: 1085: 1062: 1031: 1023: 1019: 990: 986: 971: 948: 886: 845: 822: 802: 789: 777:protoplanets 770: 757: 748: 744:Comet Wild 2 737: 712: 655: 644: 633:Earth masses 607:) and rocky 590: 574: 543:aluminium-26 531:star cluster 528: 516: 484:T Tauri star 477: 466:and because 441: 433:extreme TNOs 404:Orion Nebula 384: 375:Orion Nebula 342:produced by 318: 292: 243: 215: 199: 154: 132:Solar System 129: 82: 76:, and other 42:Solar System 39: 26: 11560:Outer space 11548:Spaceflight 11258:Bok globule 11214:H II region 11184:Dark nebula 11088:Local Sheet 11082:Local Group 10865:Rubble pile 10853:Roche limit 10848:Ring system 10799:Outer space 10774:Kuiper belt 10744:Hill sphere 10739:Hills cloud 10687:Debris disk 10682:Cosmic dust 10466:Exploration 10421:Planet Nine 10406:Fifth giant 10380:Hills cloud 10341:Kuiper belt 10312:exceptional 10228:Trojan camp 9117:Cartography 9056:Environment 8923:Climatology 8860:Troposphere 8717:(1): 1–12. 8228:(2): L133. 7507:1112.3305v2 7406:(1–2): 23. 7087:: 975–989. 7049:1721.1/6038 6371:(1): 29pp. 6218:(15): 141. 3591:: L31–L35. 3161:12 November 3042:12 November 2303:Magma ocean 2220:white dwarf 1783:tidal tails 1775:Local Group 1753:blue giants 1749:spiral arms 1697:black dwarf 1642:white dwarf 1630:Ring nebula 1387:Roche limit 1379:, taken by 1341:tidal bulge 1259:white dwarf 955:Kuiper belt 761:Kuiper belt 408:Kuiper belt 311:light-years 165:white dwarf 11584:Categories 11508:Wiktionary 11379:Morphology 11370:H I region 11332:Supershell 11107:Local Hole 11054:Gould Belt 10794:Oort cloud 10630:Formation, 10620:Deep space 10456:Vulcanoids 10373:Oort cloud 10297:first 1000 10233:Greek camp 10131:Meteoroids 10126:Damocloids 10072:Charikloan 9222:Tomography 9207:Seismology 9174:Geophysics 9149:Navigation 9041:Time zones 9006:In culture 8951:Antarctica 8938:Continents 8870:Mesosphere 8842:Atmosphere 8529:2012-10-13 8442:2007-05-16 8355:2008-03-25 8325:2008-06-26 8206:2005-12-07 8112:2006-06-23 8053:1605.04924 7985:2006-06-23 7960:2008-03-21 7815:2006-12-29 7778:2007-10-29 7742:2008-03-27 7638:2007-10-29 7539:2012-10-05 7198:2008-04-28 6992:: L9–L12. 6966:14 October 6931:14 October 6903:14 October 6865:2110.07934 6719:2007-07-25 6570:2008-03-13 6497:2008-04-03 6378:1504.04364 6303:2007-04-12 6242:2008-03-13 6098:2008-05-06 6050:2008-04-29 6026:2008-03-13 5959:1704.06694 5923:2006-06-22 5455:2008-02-01 5326:2008-04-29 5190:2007-04-02 5030:2008-05-12 4787:2006-11-19 4726:2008-02-01 4713:Mike Brown 4698:2006-11-19 4639:2007-01-02 4459:Exoplanets 4261:2010-02-04 4218:Exoplanets 3880:2002.04622 3526:2023-12-05 2861:2006-12-27 2787:1712.10053 2780:(2): 147. 2649:2008-04-18 2578:2008-04-15 2406:References 2116:Oort cloud 2114:on Earth. 1866:meteorites 1825:Chronology 1814:Big Crunch 1757:supernovae 1741:Oort cloud 1646:degenerate 1549:luminosity 1444:See also: 1313:elliptical 1297:axial tilt 1095:See also: 1069:Oort cloud 974:Nice model 963:Oort cloud 961:, and the 901:gas giants 897:ice giants 881:See also: 873:Nice model 861:panspermia 722:solar wind 678:frost line 565:See also: 555:supernovae 399:shock wave 395:supernovae 282:See also: 269:red giants 265:elaborated 262:Fred Hoyle 125:exoplanets 11610:Cosmogony 11440:Planetary 11068:Milky Way 11061:Orion Arm 10829:Formation 10814:Migration 10809:Disrupted 10677:Coatlicue 10645:Accretion 10632:evolution 10578:Asteroids 10490:astronomy 10485:Discovery 10346:Cubewanos 10267:Asteroids 10097:Quaoarian 10087:Neptunian 10077:Chironean 10062:Saturnian 9844:Enceladus 9139:Geomatics 9084:Ecosystem 9069:Biosphere 9031:Etymology 9011:Earth Day 8961:Australia 8880:Exosphere 8645:April 13, 8478:0705.1170 8260:119378552 8080:119225201 7917:CiteSeerX 7686:0801.4031 7534:118494597 7477:119386667 7336:119442634 7227:0804.1946 6898:238860454 6806:0910.4784 6479:See also 6474:129845022 6424:μ 6403:119216797 6331:0812.4995 6085:0016-7800 6079:: 51–54. 5984:0169-6149 5885:: 28–38. 5864:118419463 5839:1312.3959 5776:118587166 5751:1207.2737 5690:1201.5177 5644:119476713 5376:1086-9379 4661:(1): 77. 4590:0712.0553 4468:1006.5486 4416:0810.5186 4388:118522228 4363:1310.2211 4308:0811.1259 4227:1004.4137 4203:119204765 4178:1009.4148 3973:119281082 3965:0066-4146 3940:1001.5444 3911:See §6.4. 3907:211082559 3873:(1): 15. 3836:118940644 3570:0028-0836 3451:2397-3366 3389:0707.4515 3336:0903.0237 3224:117722734 3131:0805.2607 3097:118354201 3072:1008.2973 2905:121914773 2755:120504344 2625:120193937 2280:Cosmology 2250:Accretion 2193:red giant 2165:begin to 2159:Milky Way 2105:3.8  2070:4.4  2056:4.5  2021:4.6  2011:protostar 2006:Sun is a 2000:4.6  1986:4.6  1961:4.6  1949:into the 1858:volcanism 1795:starburst 1747:galaxy's 1659:1.4  1638:supernova 1587:Enceladus 1521:red giant 1473:supernova 1416:Desdemona 1382:Voyager 2 1301:see below 1254:red-giant 1244:from the 1180:asteroids 1152:eccentric 609:silicates 605:aluminium 578:accretion 519:Milky Way 480:evolution 473:gas giant 460:protostar 360:Coatlicue 278:Formation 157:red giant 121:Space Age 105:chemistry 101:astronomy 74:asteroids 48:with the 11488:Category 11121:Universe 10959:Moonlets 10539:programs 10512:timeline 10500:timeline 10431:Planet X 10426:Planet V 10363:Sednoids 10351:Plutinos 10324:Centaurs 10302:families 10037:Dysnomia 10025:Xiangliu 10020:Gonggong 10008:Makemake 9967:Kerberos 9854:Hyperion 9792:Callisto 9787:Ganymede 9720:Gonggong 9715:Makemake 9570:Gonggong 9563:Makemake 9387:Category 8693:87028148 8667:(1986). 8583:11196637 8505:14964036 8409:17625755 8166:17185598 8046:(1): 6. 7947:14172341 7939:11542268 7713:10073988 7608:58631177 7600:30655447 7498:Springer 7149:18705038 7058:17792606 6890:34646001 6778:19558835 6770:15681378 6687:53516498 6629:11507633 6466:15618511 6152:16688170 6002:28470374 5918:Geotimes 5715:21642961 5591:10622344 5530:15917800 5419:11536892 5298:29242874 5290:16556801 5165:10257401 5157:17407404 5025:18355985 4914:16419857 4545:17510705 4441:18964068 4335:15124882 4270:cite web 4136:18444325 4051:: 1051. 4026:15244154 3851:, p. 320 3746:54039084 3696:16498360 3502:27720602 3494:15637266 3414:14342946 3361:17168366 3285:19242845 3277:17525336 3216:15155936 3156:15771704 2996:14077895 2824:30905969 2511:15917802 2262:Big Bang 2243:See also 1559:'s moon 1500:regolith 1199:(either 1144:Ganymede 739:Stardust 686:abundant 491:☉ 435:and the 416:☉ 332:hydrogen 327:☉ 80:formed. 11572:Science 11522:Portals 11498:Commons 11462:Related 11430:Diffuse 11170:Nebulae 10942:Related 10921:by size 10610:Neptune 10595:Jupiter 10546:Mercury 10471:outline 10416:Phaeton 10411:Nemesis 10398:objects 10250:Neptune 10223:Jupiter 10203:Trojans 10196:Neptune 10181:Jupiter 10161:Mercury 10092:Haumean 10082:Uranian 10064: ( 9984:Hiʻiaka 9918:Proteus 9908:Neptune 9896:Miranda 9886:Umbriel 9876:Titania 9864:all 146 9829:Iapetus 9782:Jupiter 9676:Neptune 9654:Jupiter 9622:Mercury 9604:Planets 9529:Neptune 9514:Jupiter 9487:Mercury 9232:Geology 9144:Gravity 9109:Geodesy 9079:Ecology 8895:Climate 8885:Weather 8832:History 8827:Outline 8719:Bibcode 8591:4319774 8563:Bibcode 8483:Bibcode 8389:Bibcode 8287:Bibcode 8240:Bibcode 8174:8066922 8146:Bibcode 8128:Science 8058:Bibcode 8009:Bibcode 7909:Bibcode 7850:Bibcode 7848:: 457. 7691:Bibcode 7570:Bibcode 7562:Science 7457:Bibcode 7408:Bibcode 7385:6125538 7363:Bibcode 7316:Bibcode 7279:Bibcode 7252:5999697 7232:Bibcode 7129:Bibcode 7089:Bibcode 7066:1398095 7028:Bibcode 7020:Science 6994:Bibcode 6870:Bibcode 6831:8864460 6811:Bibcode 6750:Bibcode 6742:Science 6667:Bibcode 6637:4413525 6609:Bibcode 6446:Bibcode 6438:Science 6383:Bibcode 6336:Bibcode 6220:Bibcode 6160:4420518 6132:Bibcode 5993:5602003 5964:Bibcode 5887:Bibcode 5844:Bibcode 5799:Bibcode 5756:Bibcode 5723:4431823 5695:Bibcode 5624:Bibcode 5571:Bibcode 5559:: 420. 5538:4430973 5510:Bibcode 5427:7806411 5399:Bibcode 5354:Bibcode 5270:Bibcode 5262:Science 5221:Bibcode 5137:Bibcode 5089:Bibcode 5050:Bibcode 5003:Bibcode 4949:Bibcode 4894:Bibcode 4849:Bibcode 4814:Bibcode 4762:Bibcode 4663:Bibcode 4615:7035885 4595:Bibcode 4525:Bibcode 4473:Bibcode 4421:Bibcode 4368:Bibcode 4313:Bibcode 4232:Bibcode 4183:Bibcode 4116:Bibcode 4053:Bibcode 4006:Bibcode 3945:Bibcode 3885:Bibcode 3816:Bibcode 3726:Bibcode 3676:Bibcode 3639:Bibcode 3593:Bibcode 3550:Bibcode 3474:Bibcode 3466:Science 3435:: 1–7. 3394:Bibcode 3341:Bibcode 3306:Sep 24, 3257:Bibcode 3249:Science 3196:Bibcode 3188:Science 3136:Bibcode 3077:Bibcode 3025:Bibcode 2976:Bibcode 2924:Bibcode 2885:Bibcode 2815:6430574 2792:Bibcode 2735:Bibcode 2605:Bibcode 2542:Bibcode 2489:Bibcode 2435:Bibcode 2387:ejected 2187:of the 2167:collide 2008:T Tauri 1854:erosion 1818:Big Rip 1568:Mercury 1362:Jupiter 1285:chaotic 1248:of the 1058:Arizona 1038:Jupiter 893:Neptune 785:Mercury 775:-sized 674:Neptune 662:Jupiter 617:Mercury 539:iron-60 468:Jupiter 452:gravity 391:iron-60 373:in the 340:lithium 307:parsecs 179:History 113:physics 109:geology 66:planets 11454:(SNRs) 11448:(PPNe) 11341:Clouds 11116:  11109:  11102:  11077:  11070:  11063:  11056:  11049:  11042:  11035:  10964:Syzygy 10886:Comets 10819:System 10804:Planet 10697:EXCEDE 10605:Uranus 10600:Saturn 10590:Comets 10583:mining 10561:mining 10451:Vulcan 10292:active 10287:Hygiea 10282:Pallas 10245:Uranus 10191:Uranus 10186:Saturn 10121:Comets 10113:bodies 10111:System 10057:Jovian 10001:Weywot 9996:Quaoar 9989:Namaka 9979:Haumea 9952:Charon 9928:all 16 9923:Nereid 9913:Triton 9901:all 28 9881:Oberon 9871:Uranus 9859:Phoebe 9839:Tethys 9814:Saturn 9807:all 95 9802:Europa 9775:Deimos 9770:Phobos 9749:Earth 9710:Quaoar 9705:Haumea 9685:Dwarfs 9671:Uranus 9659:Saturn 9644:Giants 9609:dwarfs 9556:Quaoar 9549:Haumea 9524:Uranus 9519:Saturn 9287:Oceans 9255:Future 9099:Nature 9021:Symbol 8966:Europe 8946:Africa 8746:  8711:Icarus 8691:  8681:  8612:  8589:  8581:  8555:Nature 8503:  8407:  8258:  8172:  8164:  8078:  8001:Icarus 7945:  7937:  7919:  7811:. 2006 7769:  7711:  7606:  7598:  7532:  7522:  7475:  7383:  7334:  7250:  7170:  7147:  7064:  7056:  6896:  6888:  6851:Nature 6829:  6776:  6768:  6685:  6635:  6627:  6601:Nature 6530:  6472:  6464:  6401:  6346:  6299:. NASA 6158:  6150:  6124:Nature 6083:  6000:  5990:  5982:  5862:  5791:Icarus 5774:  5721:  5713:  5677:Nature 5642:  5589:  5536:  5528:  5502:Nature 5425:  5417:  5374:  5296:  5288:  5213:Icarus 5163:  5155:  5081:Icarus 5023:  4941:Icarus 4912:  4806:Icarus 4754:Icarus 4613:  4577:Icarus 4543:  4483:  4439:  4403:Icarus 4386:  4333:  4201:  4134:  4024:  3971:  3963:  3905:  3834:  3744:  3694:  3568:  3542:Nature 3500:  3492:  3449:  3412:  3376:Icarus 3359:  3283:  3275:  3222:  3214:  3154:  3095:  3016:Icarus 2994:  2958:Icarus 2903:  2822:  2812:  2753:  2699:  2671:  2623:  2574:. 2008 2509:  2481:Nature 2142:Sun's 1928:Event 1860:, and 1653:oxygen 1649:carbon 1603:carbon 1557:Saturn 1408:Triton 1404:Phobos 1377:Triton 1366:Saturn 1236:Future 1224:) and 1222:Charon 1190:. The 1176:Phobos 1172:Deimos 1157:Triton 1140:Europa 1065:comets 1048:, the 1044:, the 967:comets 957:, the 942:  936:  930:  924:  889:Uranus 857:comets 682:Jovian 672:, and 670:Uranus 666:Saturn 627:, and 603:, and 601:nickel 547:flybys 427:, the 336:helium 232:, and 218:theory 115:, and 95:, and 11536:Stars 11442:(PNe) 11422:Lists 10879:Lists 10615:Pluto 10573:Ceres 10551:Venus 10446:Tyche 10441:Theia 10277:Vesta 10272:Ceres 10213:Earth 10208:Venus 10171:Earth 10166:Venus 10146:moons 10109:Solar 10107:Small 10066:Rhean 10049:Rings 9962:Hydra 9947:Pluto 9940:Vanth 9935:Orcus 9891:Ariel 9849:Mimas 9834:Dione 9819:Titan 9742:Moons 9730:Sedna 9700:Pluto 9695:Orcus 9690:Ceres 9632:Earth 9627:Venus 9584:Sedna 9542:Pluto 9535:Orcus 9508:Ceres 9497:Earth 9492:Venus 9064:Biome 9046:World 8816:Earth 8766:from 8587:S2CID 8551:(PDF) 8501:S2CID 8473:arXiv 8405:S2CID 8379:arXiv 8256:S2CID 8230:arXiv 8170:S2CID 8136:arXiv 8076:S2CID 8048:arXiv 7954:(PDF) 7943:S2CID 7897:(PDF) 7709:S2CID 7681:arXiv 7604:S2CID 7558:(PDF) 7530:S2CID 7502:arXiv 7473:S2CID 7447:arXiv 7381:S2CID 7332:S2CID 7248:S2CID 7222:arXiv 7145:S2CID 7119:arXiv 7062:S2CID 7016:(PDF) 6894:S2CID 6860:arXiv 6827:S2CID 6801:arXiv 6774:S2CID 6738:(PDF) 6694:(PDF) 6683:S2CID 6655:(PDF) 6633:S2CID 6541:(PDF) 6518:. In 6516:(PDF) 6470:S2CID 6399:S2CID 6373:arXiv 6326:arXiv 6264:(PDF) 6185:arXiv 6167:(PDF) 6156:S2CID 6120:(PDF) 6092:(PDF) 6069:(PDF) 5954:arXiv 5860:S2CID 5834:arXiv 5772:S2CID 5746:arXiv 5719:S2CID 5685:arXiv 5640:S2CID 5614:arXiv 5587:S2CID 5561:arXiv 5534:S2CID 5498:(PDF) 5471:arXiv 5423:S2CID 5305:(PDF) 5294:S2CID 5258:(PDF) 5161:S2CID 5127:arXiv 5077:(PDF) 5021:S2CID 4993:arXiv 4979:(PDF) 4937:(PDF) 4910:S2CID 4884:arXiv 4781:(PDF) 4750:(PDF) 4692:(PDF) 4685:(PDF) 4611:S2CID 4585:arXiv 4541:S2CID 4515:arXiv 4463:arXiv 4437:S2CID 4411:arXiv 4384:S2CID 4358:arXiv 4331:S2CID 4303:arXiv 4222:arXiv 4199:S2CID 4173:arXiv 4022:S2CID 3996:arXiv 3969:S2CID 3935:arXiv 3909:. 15. 3903:S2CID 3875:arXiv 3832:S2CID 3806:arXiv 3753:(PDF) 3742:S2CID 3714:(PDF) 3692:S2CID 3666:arXiv 3498:S2CID 3410:S2CID 3384:arXiv 3357:S2CID 3331:arXiv 3281:S2CID 3231:(PDF) 3220:S2CID 3184:(PDF) 3152:S2CID 3126:arXiv 3093:S2CID 3067:arXiv 2992:S2CID 2966:arXiv 2901:S2CID 2782:arXiv 2751:S2CID 2621:S2CID 2347:Notes 2127:Today 1919:Phase 1850:Earth 1576:Earth 1572:Venus 1561:Titan 1325:Earth 1321:Venus 1230:Vanth 1226:Orcus 1218:Pluto 1148:Titan 1091:Moons 1036:with 978:Pluto 781:Moons 625:Earth 621:Venus 535:Sedna 497:—the 429:Sedna 207:Earth 70:moons 10568:Mars 10556:Moon 10534:list 10517:list 10218:Mars 10176:Mars 10032:Eris 9972:Styx 9824:Rhea 9765:Mars 9753:Moon 9725:Eris 9637:Mars 9577:Eris 9502:Mars 9336:Moon 9016:Flag 8956:Asia 8744:ISBN 8689:LCCN 8679:ISBN 8647:2014 8610:ISBN 8579:PMID 8524:NASA 8162:PMID 7935:PMID 7767:ISBN 7596:PMID 7520:ISBN 7168:ISBN 7054:PMID 6968:2021 6933:2021 6905:2021 6886:PMID 6766:PMID 6625:PMID 6528:ISBN 6462:PMID 6344:ISBN 6148:PMID 6081:ISSN 5998:PMID 5980:ISSN 5711:PMID 5526:PMID 5415:PMID 5372:ISSN 5286:PMID 5153:PMID 4481:ISBN 4276:link 4150:link 4132:PMID 3961:ISSN 3566:ISSN 3490:PMID 3447:ISSN 3308:2012 3273:PMID 3212:PMID 3163:2022 3044:2022 2820:PMID 2697:ISBN 2669:ISBN 2507:PMID 2371:and 2210:and 2161:and 2157:The 1651:and 1628:The 1570:and 1496:Mars 1448:and 1184:moon 1174:and 1168:Mars 1146:and 1129:Moon 891:and 875:and 832:and 773:Mars 656:The 647:drag 629:Mars 597:iron 591:The 569:and 541:and 385:The 137:Moon 130:The 10307:PHA 9957:Nix 9666:Ice 9649:Gas 9482:Sun 8727:doi 8715:125 8571:doi 8559:409 8491:doi 8469:386 8397:doi 8295:doi 8283:113 8248:doi 8226:605 8154:doi 8132:314 8066:doi 8044:823 8017:doi 8005:151 7927:doi 7858:doi 7846:418 7699:doi 7677:386 7588:hdl 7578:doi 7566:364 7512:doi 7465:doi 7443:132 7404:219 7371:doi 7359:110 7324:doi 7287:doi 7275:201 7240:doi 7218:683 7137:doi 7085:318 7044:hdl 7036:doi 7024:241 6990:287 6878:doi 6856:598 6819:doi 6797:139 6758:doi 6746:307 6675:doi 6617:doi 6605:412 6454:doi 6442:306 6391:doi 6369:806 6272:doi 6228:doi 6140:doi 6128:441 5988:PMC 5972:doi 5895:doi 5883:392 5852:doi 5830:782 5807:doi 5795:224 5764:doi 5742:757 5703:doi 5681:475 5632:doi 5610:461 5579:doi 5557:110 5518:doi 5506:435 5407:doi 5362:doi 5278:doi 5266:312 5229:doi 5217:158 5145:doi 5097:doi 5085:191 5011:doi 4989:354 4957:doi 4945:179 4902:doi 4880:614 4857:doi 4845:216 4822:doi 4810:157 4770:doi 4758:153 4603:doi 4581:196 4533:doi 4511:123 4429:doi 4407:199 4376:doi 4354:778 4321:doi 4299:393 4191:doi 4169:724 4124:doi 4112:298 4061:doi 4049:183 4014:doi 3992:621 3953:doi 3893:doi 3871:896 3824:doi 3802:136 3734:doi 3722:589 3684:doi 3662:117 3609:hdl 3601:doi 3589:313 3558:doi 3546:250 3482:doi 3470:307 3437:doi 3402:doi 3380:197 3349:doi 3327:696 3265:doi 3253:316 3204:doi 3192:304 3144:doi 3122:686 3085:doi 3033:doi 2984:doi 2962:151 2893:doi 2810:PMC 2800:doi 2778:852 2743:doi 2613:doi 2601:313 2550:doi 2497:doi 2485:435 2443:doi 2107:bya 2089:bya 2072:bya 2058:bya 2041:bya 2023:bya 2002:bya 1988:bya 1963:bya 1848:on 1816:or 1360:of 1323:or 1206:or 1056:in 252:'s 58:Sun 11586:: 10068:?) 9797:Io 8725:. 8713:. 8687:. 8677:. 8663:; 8636:. 8624:^ 8585:. 8577:. 8569:. 8557:. 8553:. 8538:^ 8522:. 8499:. 8489:. 8481:. 8467:. 8463:. 8451:^ 8435:. 8417:^ 8403:. 8395:. 8387:. 8373:. 8343:. 8318:. 8293:. 8281:. 8277:. 8254:. 8246:. 8238:. 8224:. 8191:. 8168:. 8160:. 8152:. 8144:. 8130:. 8100:. 8088:^ 8074:. 8064:. 8056:. 8042:. 8038:. 8015:. 8003:. 7978:. 7941:. 7933:. 7925:. 7915:. 7905:24 7903:. 7899:. 7884:^ 7856:. 7844:. 7840:. 7824:^ 7807:. 7751:^ 7730:. 7707:. 7697:. 7689:. 7675:. 7671:. 7647:^ 7630:. 7616:^ 7602:. 7594:. 7586:. 7576:. 7564:. 7560:. 7528:. 7518:. 7510:. 7496:. 7471:. 7463:. 7455:. 7441:. 7402:. 7379:. 7369:. 7357:. 7353:. 7330:. 7322:. 7312:22 7310:. 7285:. 7273:. 7269:. 7246:. 7238:. 7230:. 7216:. 7191:. 7143:. 7135:. 7127:. 7113:. 7101:^ 7083:. 7060:. 7052:. 7042:. 7034:. 7022:. 7018:. 6988:. 6976:^ 6950:. 6922:. 6892:. 6884:. 6876:. 6868:. 6854:. 6848:. 6825:. 6817:. 6809:. 6795:. 6772:. 6764:. 6756:. 6744:. 6740:. 6711:. 6681:. 6673:. 6663:15 6661:. 6657:. 6631:. 6623:. 6615:. 6603:. 6591:^ 6558:. 6485:. 6468:. 6460:. 6452:. 6440:. 6397:. 6389:. 6381:. 6367:. 6342:. 6334:. 6295:. 6266:. 6251:^ 6226:. 6216:77 6214:. 6208:. 6175:^ 6154:. 6146:. 6138:. 6126:. 6122:. 6107:^ 6077:53 6075:. 6071:. 6035:^ 6019:. 5996:. 5986:. 5978:. 5970:. 5962:. 5950:47 5948:. 5944:. 5916:. 5893:. 5881:. 5858:. 5850:. 5842:. 5828:. 5805:. 5793:. 5770:. 5762:. 5754:. 5740:. 5717:. 5709:. 5701:. 5693:. 5679:. 5660:. 5638:. 5630:. 5622:. 5608:. 5585:. 5577:. 5569:. 5555:. 5532:. 5524:. 5516:. 5504:. 5500:. 5485:^ 5447:. 5435:^ 5421:. 5413:. 5405:. 5395:28 5393:. 5370:. 5360:. 5350:35 5348:. 5344:. 5292:. 5284:. 5276:. 5264:. 5260:. 5241:^ 5227:. 5215:. 5207:; 5159:. 5151:. 5143:. 5135:. 5121:. 5109:^ 5095:. 5083:. 5079:. 5062:^ 5019:. 5009:. 5001:. 4987:. 4981:. 4955:. 4943:. 4939:. 4922:^ 4908:. 4900:. 4892:. 4878:. 4855:. 4843:. 4820:. 4808:. 4796:^ 4768:. 4756:. 4752:. 4735:^ 4719:. 4715:. 4659:80 4657:. 4632:. 4609:. 4601:. 4593:. 4579:. 4553:^ 4539:. 4531:. 4523:. 4509:. 4495:^ 4479:. 4471:. 4449:^ 4435:. 4427:. 4419:. 4405:. 4382:. 4374:. 4366:. 4352:. 4329:. 4319:. 4311:. 4297:. 4293:. 4272:}} 4268:{{ 4253:. 4230:. 4197:. 4189:. 4181:. 4167:. 4146:}} 4142:{{ 4122:. 4110:. 4106:. 4075:^ 4059:. 4047:. 4043:. 4020:. 4012:. 4004:. 3990:. 3967:. 3959:. 3951:. 3943:. 3931:48 3929:. 3925:. 3901:. 3891:. 3883:. 3869:. 3865:. 3830:. 3822:. 3814:. 3800:. 3761:^ 3740:. 3732:. 3720:. 3716:. 3690:. 3682:. 3674:. 3660:. 3633:. 3607:. 3599:. 3587:. 3564:. 3556:. 3544:. 3518:. 3496:. 3488:. 3480:. 3468:. 3445:. 3431:. 3408:. 3400:. 3392:. 3378:. 3355:. 3347:. 3339:. 3325:. 3279:. 3271:. 3263:. 3251:. 3239:^ 3218:. 3210:. 3202:. 3190:. 3186:. 3171:^ 3150:. 3142:. 3134:. 3120:. 3114:. 3091:. 3083:. 3075:. 3063:51 3061:. 3031:. 3021:30 3019:. 3013:. 2990:. 2982:. 2974:. 2960:. 2948:^ 2899:. 2891:. 2881:34 2879:. 2832:^ 2818:. 2808:. 2798:. 2790:. 2776:. 2772:. 2749:. 2741:. 2731:98 2729:. 2711:^ 2683:^ 2642:. 2619:. 2611:. 2599:. 2570:. 2548:. 2538:51 2536:. 2519:^ 2505:. 2495:. 2483:. 2479:. 2455:^ 2441:. 2429:. 2413:^ 2222:. 2013:. 1856:, 1759:. 1699:. 1693:mi 1689:km 1685:AU 1681:mi 1677:km 1673:AU 1669:mi 1665:km 1661:AU 1574:. 1537:10 1527:10 1475:. 1368:. 1315:. 1269:. 1163:. 1142:, 1138:, 1136:Io 1083:. 787:. 668:, 664:, 623:, 619:, 599:, 495:AU 439:. 315:AU 228:, 111:, 107:, 103:, 91:, 72:, 68:, 11524:: 11162:e 11155:t 11148:v 11127:→ 11118:→ 11111:→ 11104:→ 11097:→ 11091:→ 11085:→ 11079:→ 11072:→ 11065:→ 11058:→ 11051:→ 11044:→ 11037:→ 10473:) 10469:( 9606:, 9421:e 9414:t 9407:v 8808:e 8801:t 8794:v 8752:. 8733:. 8729:: 8721:: 8695:. 8649:. 8618:. 8593:. 8573:: 8565:: 8532:. 8507:. 8493:: 8485:: 8475:: 8445:. 8411:. 8399:: 8391:: 8381:: 8375:3 8358:. 8328:. 8303:. 8297:: 8289:: 8262:. 8250:: 8242:: 8232:: 8209:. 8176:. 8156:: 8148:: 8138:: 8115:. 8082:. 8068:: 8060:: 8050:: 8023:. 8019:: 8011:: 7988:. 7963:. 7929:: 7911:: 7866:. 7860:: 7852:: 7818:. 7781:. 7745:. 7715:. 7701:: 7693:: 7683:: 7641:. 7610:. 7590:: 7580:: 7572:: 7542:. 7514:: 7504:: 7479:. 7467:: 7459:: 7449:: 7427:. 7414:. 7410:: 7387:. 7373:: 7365:: 7338:. 7326:: 7318:: 7295:. 7289:: 7281:: 7254:. 7242:: 7234:: 7224:: 7201:. 7176:. 7151:. 7139:: 7131:: 7121:: 7115:3 7095:. 7091:: 7068:. 7046:: 7038:: 7030:: 7000:. 6996:: 6970:. 6935:. 6907:. 6880:: 6872:: 6862:: 6833:. 6821:: 6813:: 6803:: 6780:. 6760:: 6752:: 6722:. 6677:: 6669:: 6639:. 6619:: 6611:: 6573:. 6500:. 6476:. 6456:: 6448:: 6405:. 6393:: 6385:: 6375:: 6352:. 6338:: 6328:: 6306:. 6280:. 6274:: 6245:. 6230:: 6222:: 6193:. 6187:: 6142:: 6134:: 6101:. 6053:. 6029:. 6004:. 5974:: 5966:: 5956:: 5926:. 5901:. 5897:: 5889:: 5866:. 5854:: 5846:: 5836:: 5813:. 5809:: 5801:: 5778:. 5766:: 5758:: 5748:: 5725:. 5705:: 5697:: 5687:: 5646:. 5634:: 5626:: 5616:: 5593:. 5581:: 5573:: 5563:: 5540:. 5520:: 5512:: 5479:. 5473:: 5458:. 5429:. 5409:: 5401:: 5378:. 5364:: 5356:: 5329:. 5280:: 5272:: 5235:. 5231:: 5223:: 5193:. 5167:. 5147:: 5139:: 5129:: 5123:7 5103:. 5099:: 5091:: 5056:. 5052:: 5033:. 5013:: 5005:: 4995:: 4963:. 4959:: 4951:: 4916:. 4904:: 4896:: 4886:: 4863:. 4859:: 4851:: 4828:. 4824:: 4816:: 4790:. 4772:: 4764:: 4729:. 4701:. 4669:. 4665:: 4642:. 4617:. 4605:: 4597:: 4587:: 4547:. 4535:: 4527:: 4517:: 4489:. 4475:: 4465:: 4443:. 4431:: 4423:: 4413:: 4390:. 4378:: 4370:: 4360:: 4337:. 4323:: 4315:: 4305:: 4278:) 4264:. 4238:. 4234:: 4224:: 4205:. 4193:: 4185:: 4175:: 4152:) 4138:. 4126:: 4118:: 4069:. 4063:: 4055:: 4028:. 4016:: 4008:: 3998:: 3975:. 3955:: 3947:: 3937:: 3895:: 3887:: 3877:: 3838:. 3826:: 3818:: 3808:: 3782:2 3778:Y 3736:: 3728:: 3698:. 3686:: 3678:: 3668:: 3645:. 3641:: 3617:. 3611:: 3603:: 3595:: 3572:. 3560:: 3552:: 3529:. 3504:. 3484:: 3476:: 3453:. 3439:: 3416:. 3404:: 3396:: 3386:: 3363:. 3351:: 3343:: 3333:: 3310:. 3287:. 3267:: 3259:: 3206:: 3198:: 3165:. 3146:: 3138:: 3128:: 3099:. 3087:: 3079:: 3069:: 3046:. 3035:: 3027:: 2998:. 2986:: 2978:: 2968:: 2930:. 2926:: 2907:. 2895:: 2887:: 2864:. 2826:. 2802:: 2794:: 2784:: 2757:. 2745:: 2737:: 2705:. 2677:. 2652:. 2627:. 2615:: 2607:: 2581:. 2556:. 2552:: 2544:: 2513:. 2499:: 2491:: 2449:. 2445:: 2437:: 2431:3 2375:) 1541:^ 1535:× 1531:^ 1525:× 1228:( 1220:( 1210:5 1208:L 1203:4 1201:L 848:× 841:E 838:M 729:E 726:M 708:E 705:M 701:E 698:M 693:E 690:M 660:( 640:E 637:M 635:( 615:( 488:M 413:M 324:M 20:)

Index

Formation of the Solar System

protoplanetary disk
Solar System
billion years ago
gravitational collapse
molecular cloud
Sun
protoplanetary disk
planets
moons
asteroids
small Solar System bodies
nebular hypothesis
Emanuel Swedenborg
Immanuel Kant
Pierre-Simon Laplace
astronomy
chemistry
geology
physics
planetary science
Space Age
exoplanets
Solar System
Moon
giant collisions
trans-Neptunian objects
Planetary migration
red giant

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.