Knowledge

Curie temperature

Source 📝

798: 815: 781: 764: 38: 59: 2286: 2632: 2669: 918:; otherwise thermal disorder would overcome the weak interactions of magnetic moments. The exchange interaction has a zero probability of parallel electrons occupying the same point in time, implying a preferred parallel alignment in the material. The Boltzmann factor contributes heavily as it prefers interacting particles to be aligned in the same direction. This causes 2300:. This can result in ferromagnetic materials having no spontaneous magnetism as domains could potentially balance each other out. The position of particles can therefore have different orientations around the surface than the main part (bulk) of the material. This property directly affects the Curie temperature as there can be a bulk Curie temperature 2789:(Figure 4); that is they are dependent on their past state as well as their current state. As an electric field is applied the dipoles are forced to align and polarisation is created, when the electric field is removed polarisation remains. The hysteresis loop depends on temperature and as a result as the temperature is increased and reaches 2534:. The exchange interaction favours the aligned parallel magnetic moments due to electrons being unable to occupy the same space in time and as this is increased due to the volume decreasing the Curie temperature increases with pressure. The Curie temperature is made up of a combination of dependencies on kinetic energy and the DOS. 797: 2530:(DOS). Here the DOS decreases causing the number of electrons available to the system to decrease. This leads to the number of magnetic moments decreasing as they depend on electron spins. It would be expected because of this that the Curie temperature would decrease; however, it increases. This is the result of the 638:. Of these two terms, the electron magnetic moment dominates, and the nuclear magnetic moment is insignificant. At higher temperatures, electrons have higher thermal energy. This has a randomizing effect on aligned magnetic domains, leading to the disruption of order, and the phenomena of the Curie point. 2501:
Although fluctuations in particles can be minuscule, they are heavily dependent on the structure of crystal lattices as they react with their nearest neighbouring particles. Fluctuations are also affected by the exchange interaction as parallel facing magnetic moments are favoured and therefore have
2492:
structure (hcp) all have different Curie temperatures due to magnetic moments reacting to their neighbouring electron spins. fcc and hcp have tighter structures and as a results have higher Curie temperatures than bcc as the magnetic moments have stronger effects when closer together. This is known
955:
Below the Curie temperature the atoms of each ion are aligned anti-parallel with different momentums causing a spontaneous magnetism; the material is ferrimagnetic. Above the Curie temperature the material is paramagnetic as the atoms lose their ordered magnetic moments as the material undergoes a
947:
When a magnetic field is absent the material has a spontaneous magnetism which is the result of ordered magnetic moments; that is, for ferrimagnetism one ion's magnetic moments are aligned facing in one direction with certain magnitude and the other ion's magnetic moments are aligned facing in the
2410:
on the surface, that is it is highly directed in one orientation. It remains ferromagnetic on its surface above its Curie temperature (219K) while its bulk becomes antiferromagnetic and then at higher temperatures its surface remains antiferromagnetic above its bulk Néel Temperature (230K) before
854:
is absent and magnetic when a magnetic field is applied. When a magnetic field is absent, the material has disordered magnetic moments; that is, the magnetic moments are asymmetrical and not aligned. When a magnetic field is present, the magnetic moments are temporarily realigned parallel to the
835:
Ferromagnetic, paramagnetic, ferrimagnetic, and antiferromagnetic structures are made up of intrinsic magnetic moments. If all the electrons within the structure are paired, these moments cancel out due to their opposite spins and angular momenta. Thus, even with an applied magnetic field, these
2434:
The alignment of magnetic moments in the composite material affects the Curie temperature. If the material's moments are parallel with each other, the Curie temperature will increase and if perpendicular the Curie temperature will decrease as either more or less thermal energy will be needed to
2449:
are compact structures on a nano-scale. The structure is built up of high and low bulk Curie temperatures, however will only have one mean-field Curie temperature. A higher density of lower bulk temperatures results in a lower mean-field Curie temperature, and a higher density of higher bulk
2497:
which is the number of nearest neighbouring particles in a structure. This indicates a lower coordination number at the surface of a material than the bulk which leads to the surface becoming less significant when the temperature is approaching the Curie temperature. In smaller systems the
616:
Iron filings, after being heated for a long time, are attracted by a loadstone, yet not so strongly or from so great a distance as when not heated. A loadstone loses some of its virtue by too great a heat; for its humour is set free, whence its peculiar nature is marred. (Book 2, Chapter
1000:
The material has equal magnetic moments aligned in opposite directions resulting in a zero magnetic moment and a net magnetism of zero at all temperatures below the Néel temperature. Antiferromagnetic materials are weakly magnetic in the absence or presence of an applied magnetic field.
2186:
One should note, in 1D the Curie (critical) temperature for a magnetic order phase transition is found to be at zero temperature, i.e. the magnetic order takes over only at T = 0. In 2D, the critical temperature, e.g. a finite magnetization, can be calculated by solving the inequality:
925:
Below the Curie temperature, the atoms are aligned and parallel, causing spontaneous magnetism; the material is ferromagnetic. Above the Curie temperature the material is paramagnetic, as the atoms lose their ordered magnetic moments when the material undergoes a phase transition.
780: 814: 2411:
becoming completely disordered and paramagnetic with increasing temperature. The anisotropy in the bulk is different from its surface anisotropy just above these phase changes as the magnetic moments will be ordered differently or ordered in paramagnetic materials.
2115:
The spontaneous magnetism, occurring in ferromagnetic, ferrimagnetic, and antiferromagnetic materials, approaches zero as the temperature increases towards the material's Curie temperature. Spontaneous magnetism is at its maximum as the temperature approaches
885:
Above the Curie temperature, the atoms are excited, and the spin orientations become randomized but can be realigned by an applied field, i.e., the material becomes paramagnetic. Below the Curie temperature, the intrinsic structure has undergone a
763: 1587: 1004:
Similar to ferromagnetic materials the magnetic interactions are held together by exchange interactions preventing thermal disorder from overcoming the weak interactions of magnetic moments. When disorder occurs it is at the Néel temperature.
2522:
in particles as movement increases causing the vibrations to disrupt the order of magnetic moments. This is similar to temperature as it also increases the kinetic energy of particles and destroys the order of magnetic moments and magnetism.
951:
Similar to ferromagnetic materials the magnetic interactions are held together by exchange interactions. The orientations of moments however are anti-parallel which results in a net momentum by subtracting their momentum from one another.
2462:) the fluctuations of electron spins become more prominent, which results in the Curie temperature drastically decreasing when the size of particles decreases, as the fluctuations cause disorder. The size of a particle also affects the 2450:
temperature significantly increases the mean-field Curie temperature. In more than one dimension the Curie temperature begins to increase as the magnetic moments will need more thermal energy to overcome the ordered structure.
128:
Permanent magnetism is caused by the alignment of magnetic moments, and induced magnetism is created when disordered magnetic moments are forced to align in an applied magnetic field. For example, the ordered magnetic moments
2179:
This model is important for solving and understanding the concepts of phase transitions and hence solving the Curie temperature. As a result, many different dependencies that affect the Curie temperature can be analysed.
808:: The magnetic moments in a ferrimagnetic material have different magnitudes (due to the crystal containing two different types of magnetic ions) which are aligned oppositely in the absence of an applied magnetic field. 124:
of electrons. Materials have different structures of intrinsic magnetic moments that depend on temperature; the Curie temperature is the critical point at which a material's intrinsic magnetic moments change direction.
1401: 2877: 1966: 4426:
Paulsen, J. A.; Lo, C. C. H.; Snyder, J. E.; Ring, A. P.; Jones, L. L.; Jiles, D. C. (23 September 2003). "Study of the Curie temperature of cobalt ferrite based composites for stress sensor applications".
1848: 2605:
is the temperature where ferroelectric materials lose their spontaneous polarisation as a first or second order phase change occurs. In case of a second order transition, the Curie Weiss temperature
2537:
The concentration of particles also affects the Curie temperature when pressure is being applied and can result in a decrease in Curie temperature when the concentration is above a certain percent.
2275: 1788: 2328:
on the surface of the material. An average total magnetism is taken from the bulk and surface temperatures to calculate the Curie temperature from the material, noting the bulk contributes more.
2134:
Both Curie's law and the Curie–Weiss law fail as the temperature approaches 0 K. This is because they depend on the magnetic susceptibility, which only applies when the state is disordered.
4493:
Sadoc, Aymeric; Mercey, Bernard; Simon, Charles; Grebille, Dominique; Prellier, Wilfrid; Lepetit, Marie-Bernadette (2010). "Large Increase of the Curie temperature by Orbital Ordering Control".
2066: 948:
opposite direction with a different magnitude. As the magnetic moments are of different magnitudes in opposite directions there is still a spontaneous magnetism and a magnetic field is present.
940:
Materials are only ferrimagnetic below their corresponding Curie temperature. Ferrimagnetic materials are magnetic in the absence of an applied magnetic field and are made up of two different
2321:
This allows for the surface Curie temperature to be ferromagnetic above the bulk Curie temperature when the main state is disordered, i.e. Ordered and disordered states occur simultaneously.
2473:
which only occurs in small ferromagnetic particles. In this phenomenon, fluctuations are very influential causing magnetic moments to change direction randomly and thus create disorder.
2007:
Magnetism depends on temperature and spontaneous magnetism occurs below the Curie temperature. An accurate model of critical behaviour for spontaneous magnetism with critical exponent
4472:
Hwang, Hae Jin; Nagai, Toru; Ohji, Tatsuki; Sando, Mutsuo; Toriyama, Motohiro; Niihara, Koichi (March 1998). "Curie temperature Anomaly in Lead Zirconate Titanate/Silver Composites".
2395:. Therefore, the magnetic moments are related between angular and orbital momentum and affect each other. Angular momentum contributes twice as much to magnetic moments than orbital. 890:, the atoms are ordered, and the material is ferromagnetic. The paramagnetic materials' induced magnetic fields are very weak compared with ferromagnetic materials' magnetic fields. 4885: 911:
which is a result of the ordered magnetic moments; that is, for ferromagnetism, the atoms are symmetrical and aligned in the same direction creating a permanent magnetic field.
4242:
López Domínguez, Victor; Hernàndez, Joan Manel; Tejada, Javier; Ziolo, Ronald F. (14 November 2012). "Colossal Reduction in Curie Temperature Due to Finite-Size Effects in
2140:
continues to satisfy Curie's law at 1 K. Between 0 and 1 K the law fails to hold and a sudden change in the intrinsic structure occurs at the Curie temperature.
1619: 1481: 2183:
For example, the surface and bulk properties depend on the alignment and magnitude of spins and the Ising model can determine the effects of magnetism in this system.
791:: The magnetic moments in a paramagnetic material are disordered in the absence of an applied magnetic field and ordered in the presence of an applied magnetic field. 855:
applied field; the magnetic moments are symmetrical and aligned. The magnetic moments being aligned in the same direction are what causes an induced magnetic field.
2127:
decreases to zero, that is, the disorder decreases and the material becomes ordered. This occurs without the presence of an applied magnetic field and obeys the
904:
Materials are only ferromagnetic below their corresponding Curie temperatures. Ferromagnetic materials are magnetic in the absence of an applied magnetic field.
989:
and becomes paramagnetic. That is, the thermal energy becomes large enough to destroy the microscopic magnetic ordering within the material. It is named after
4284:
Bose, S. K.; Kudrnovský, J.; Drchal, V.; Turek, I. (18 November 2011). "Pressure dependence of Curie temperature and resistivity in complex Heusler alloys".
2324:
The surface and bulk properties can be predicted by the Ising model and electron capture spectroscopy can be used to detect the electron spins and hence the
4916: 2137: 2406:
and has a high orbital angular momentum the magnetic moment is strong enough to affect the order above its bulk temperatures. It is said to have a high
825:: The magnetic moments in an antiferromagnetic material have the same magnitudes but are aligned oppositely in the absence of an applied magnetic field. 2438:
Preparing composite materials through different temperatures can result in different final compositions which will have different Curie temperatures.
4678: 2907:
are dropped into the reactor core if the actuation mechanism heats up beyond the material's Curie point. Other uses include temperature control in
2427:, that is, materials composed from other materials with different properties, can change the Curie temperature. For example, a composite which has 137:, Figure 2) at the Curie temperature. Higher temperatures make magnets weaker, as spontaneous magnetism only occurs below the Curie temperature. 2567:
The Curie temperature is seen to increase greatly due to electrons being packed together in the same plane, they are forced to align due to the
1335: 2614:
which defines the maximum of the dielectric constant is equal to the Curie temperature. However, the Curie temperature can be 10 K higher than
2816: 3732:"Demonstration of Control Rod Holding Stability of the Self Actuated Shutdown System in Joyo for Enhancement of Fast Reactor Inherent Safety" 2431:
in it can create spaces for oxygen molecules in bonding which decreases the Curie temperature as the crystal lattice will not be as compact.
1908: 2120:. That is, the magnetic moments are completely aligned and at their strongest magnitude of magnetism due to lack of thermal disturbance. 4921: 4911: 152:
In analogy to ferromagnetic and paramagnetic materials, the Curie temperature can also be used to describe the phase transition between
2502:
less disturbance and disorder, therefore a tighter structure influences a stronger magnetism and therefore a higher Curie temperature.
2123:
In paramagnetic materials thermal energy is sufficient to overcome the ordered alignments. As the temperature approaches 0 K, the
774:: The magnetic moments in a ferromagnetic material are ordered and of the same magnitude in the absence of an applied magnetic field. 17: 2552:. This is a function that determines the wave of a single electron or paired electrons inside the material. Having control over the 1799: 46:
Below the Curie temperature, neighbouring magnetic spins align parallel to each other in a ferromagnet in the absence of an applied
4870: 1999:
allowing magnetism to occur. This is a spontaneous magnetism which is a property of ferromagnetic and ferrimagnetic materials.
4965: 4671: 4548:
Kochmański, Martin; Paszkiewicz, Tadeusz; Wolski, Sławomir (2013). "Curie–Weiss magnet: a simple model of phase transition".
4359: 4202: 3854: 3263: 2193: 3554: 1743: 4875: 4957: 3818: 3254: 2458:
The size of particles in a material's crystal lattice changes the Curie temperature. Due to the small size of particles (
2391:. Electrons orbiting around the nucleus in a current loop create a magnetic field which depends on the Bohr magneton and 2017: 4934: 2899:
format. Curie point electro-magnets have been proposed and tested for actuation mechanisms in passive safety systems of
67:
Above the Curie temperature, the magnetic spins are randomly aligned in a paramagnet unless a magnetic field is applied.
4595: 3918: 2498:
coordination number for the surface is more significant and the magnetic moments have a stronger effect on the system.
4880: 4860: 4397: 4378: 4087: 3956: 3937: 3895: 3876: 3831: 3803: 3221: 4664: 4780: 1683:
the eigenvalue for eigenstate J for the stationary states within the incomplete atoms shells (electrons unpaired)
2107:
The spontaneous magnetism approaches zero as the temperature increases towards the materials Curie temperature.
665:), these properties change. The transition from antiferromagnetic to paramagnetic (or vice versa) occurs at the 4416: 4340: 4068: 4049: 4030: 4011: 3992: 2571:
and thus increases the strength of the magnetic moments which prevents thermal disorder at lower temperatures.
4172:
Rau, C.; Jin, C.; Robert, M. (1988). "Ferromagnetic order at Tb surfaces above the bulk Curie temperature".
850:
A material is paramagnetic only above its Curie temperature. Paramagnetic materials are non-magnetic when a
656:
materials have different intrinsic magnetic moment structures. At a material's specific Curie temperature (
4996: 4810: 2128: 5001: 4828: 1642: 568: 4763: 1582:{\displaystyle C={\frac {\mu _{0}\mu _{\mathrm {B} }^{2}}{3k_{\mathrm {B} }}}N_{\text{A}}g^{2}J(J+1)} 908: 171:
that goes from a finite value to zero when the temperature is increased above the Curie temperature.
161: 2489: 2296:
Materials structures consist of intrinsic magnetic moments which are separated into domains called
631: 1876:
As the Curie–Weiss law is an approximation, a more accurate model is needed when the temperature,
1597: 985:. This is similar to the Curie temperature as above the Néel Temperature the material undergoes a 830: 4949: 4845: 2392: 2176:
electrons in the structure and here the Ising model can predict their behaviour with each other.
1303: 1046: 922:
to have strong magnetic fields and high Curie temperatures of around 1,000 K (730 °C).
859: 635: 138: 2806:
A modified version of the Curie–Weiss law applies to the dielectric constant, also known as the
2548:
changes the Curie temperature of a material. Orbital ordering can be controlled through applied
2439: 1056: 994: 862:. The magnetic susceptibility only applies above the Curie temperature for disordered states. 5011: 2888: 2807: 2549: 1128: 1036: 4798: 2782:
and therefore have a spontaneous electric polarisation as the structures are unsymmetrical.
2285: 1310:, in the immediate vicinity of the Curie point because of local fluctuations between atoms. 168: 37: 5006: 4927: 4757: 4567: 4512: 4436: 4303: 4214: 4181: 4110: 3846: 3823: 2568: 2557: 2556:
of where the electron will be allows the Curie temperature to be altered. For example, the
2531: 2485: 2481: 2292:
The Weiss domains in a ferromagnetic material; the magnetic moments are aligned in domains.
915: 58: 858:
For paramagnetism, this response to an applied magnetic field is positive and is known as
8: 4941: 4711: 4122: 2494: 2071:
The critical exponent differs between materials and for the mean-field model as taken as
1860: 1260: 1221: 1164: 1141: 1026: 875: 507: 142: 4571: 4516: 4440: 4307: 4218: 4185: 4114: 4973: 4822: 4583: 4557: 4536: 4502: 4485: 4460: 4335:(Online ed.). Boca Raton, FL: CRC Press published in cooperation with IEEE Press. 4319: 4293: 4230: 4144: 3968: 2470: 2466:
causing alignment to become less stable and thus lead to disorder in magnetic moments.
2424: 2403: 1717: 965: 821: 653: 395: 316: 157: 4579: 4865: 4736: 4721: 4587: 4528: 4452: 4412: 4393: 4374: 4355: 4336: 4323: 4136: 4083: 4064: 4045: 4026: 4007: 3988: 3952: 3933: 3914: 3907: 3891: 3872: 3850: 3827: 3799: 3259: 3217: 2527: 1972: 1896: 1624: 1273: 1177: 1082: 1069: 584: 79: 4540: 4464: 4148: 2798:
the two curves become one curve as shown in the dielectric polarisation (Figure 5).
2579:
In analogy to ferromagnetic and paramagnetic materials, the term Curie temperature (
1660: 4726: 4575: 4524: 4520: 4481: 4444: 4311: 4272: 4222: 4189: 4126: 4118: 4098: 3743: 3292: 2936: 2924: 2589: 2332: 2153: 1436: 1190: 1154: 1118: 986: 887: 536: 153: 117: 4234: 3748: 3731: 2769:
Materials are only ferroelectric below their corresponding transition temperature
2900: 2779: 2515: 2477: 2325: 2297: 1095: 627: 113: 3569: 4706: 4315: 3864: 3813: 3209: 2930: 2908: 2891:
storage media for erasing and writing of new data. Famous examples include the
2545: 2519: 1470: 1422: 1266: 1108: 935: 919: 899: 851: 831:
Materials with magnetic moments that change properties at the Curie temperature
804: 770: 649: 641: 146: 130: 121: 47: 4641: 4615: 3981: 4990: 4816: 4456: 4448: 2631: 2561: 2446: 2388: 2117: 1699: 845: 787: 645: 134: 102: 2668: 990: 865:
Sources of paramagnetism (materials which have Curie temperatures) include:
4890: 4850: 4790: 4691: 4647: 4532: 4140: 2933: – Relation of magnetization to applied magnetic field and temperature 2459: 106: 4804: 1982:
As temperature is inversely proportional to magnetic susceptibility, when
1396:{\displaystyle \chi ={\frac {M}{H}}={\frac {M\mu _{0}}{B}}={\frac {C}{T}}} 4687: 4656: 2904: 2553: 2149: 1995:
the denominator tends to zero and the magnetic susceptibility approaches
1895:
An accurate model of critical behaviour for magnetic susceptibility with
2872:{\displaystyle \epsilon =\epsilon _{0}+{\frac {C}{T-T_{\mathrm {0} }}}.} 2280: 4895: 4131: 3888:
Solid-State Physics: An Introduction to Principles of Materials Science
3297: 3280: 2912: 2786: 2593: 2463: 2407: 2156:
in ferromagnetic order due to spins of electrons having magnitudes of ±
1276:
approximation, this means it works well for the materials temperature,
608: 264: 247: 4276: 4099:"Analytical solution of the mean field Ising model for finite systems" 2445:
The density of nanocomposite materials changes the Curie temperature.
2387:, which gives a specific size of magnetic moment to the electron; the 4226: 4193: 3216:(Repr. ed.). Cambridge: Cambridge Univ. Press. pp. 89–106. 1961:{\displaystyle \chi \sim {\frac {1}{(T-T_{\mathrm {C} })^{\gamma }}}} 4731: 4097:
Bertoldi, Dalía S.; Bringa, Eduardo M.; Miranda, E. N. (May 2012).
4023:
The Quest for Absolute Zero: The Meaning of Low Temperature Physics
3795: 2896: 2892: 2511: 1996: 1211: 356: 299: 281: 4562: 4507: 4298: 2518:
decreases the volume of the system. Pressure directly affects the
3281:"Mössbauer Study of the Thermal Decomposition Products of K2FeO4" 2399: 2124: 338: 75: 2887:
A heat-induced ferromagnetic-paramagnetic transition is used in
109:, who showed that magnetism was lost at a critical temperature. 4855: 4741: 4651: 4025:. with S.I. units. (2nd ed.). London: Taylor and Francis. 2574: 2476:
The Curie temperature of nanoparticles is also affected by the
2428: 2173: 2152:
is mathematically based and can analyse the critical points of
1018: 970:
Materials are only antiferromagnetic below their corresponding
666: 552: 441: 230: 213: 98: 4886:
Maria Skłodowska-Curie National Research Institute of Oncology
3214:
Magnetic materials : fundamentals and device applications
1843:{\displaystyle T_{\mathrm {C} }={\frac {C\lambda }{\mu _{0}}}} 872:
Atoms that have inner shells that are incomplete in electrons;
836:
materials have different properties and no Curie temperature.
97:, is the temperature above which certain materials lose their 1008:
Listed below are the Néel temperatures of several materials:
959: 2510:
Pressure changes a material's Curie temperature. Increasing
1971:
The critical exponent differs between materials and for the
1892:
Magnetic susceptibility occurs above the Curie temperature.
1737:
The Curie–Weiss law is then derived from Curie's law to be:
4547: 4373:(1st ed.). Cambridge, UK: Cambridge University Press. 2939: – Feature of ferromagnetic or ferrimagnetic materials 2002: 1871: 1280:, much greater than their corresponding Curie temperature, 941: 196: 2414: 116:, a dipole moment within an atom that originates from the 1646: 1421:
the magnetic susceptibility; the influence of an applied
606:
That heating destroys magnetism was already described in
3871:(2nd ed.). Cambridge: Cambridge University Press. 2927: – Characteristic of certain crystalline materials 2270:{\displaystyle M=(1-\sinh ^{-4}(2\beta J))^{1/8}>0.} 2110: 626:
At the atomic level, there are two contributors to the
141:
above the Curie temperature can be calculated from the
4333:
The Measurement, Instrumentation, and Sensors Handbook
4241: 3624: 1313:
Neither Curie's law nor the Curie–Weiss law holds for
4096: 3460: 2819: 2281:
Weiss domains and surface and bulk Curie temperatures
2196: 2020: 1911: 1802: 1783:{\displaystyle \chi ={\frac {C}{T-T_{\mathrm {C} }}}} 1746: 1600: 1484: 1338: 1272:
The Curie–Weiss law is a simple model derived from a
101:
properties, which can (in most cases) be replaced by
4917:
Maria Skłodowska-Curie Monument in Warsaw (Downtown)
4594: 2955: 2785:
Ferroelectric materials' polarization is subject to
4004:
The Solid State from Superconductors to Superalloys
3840: 3773: 2143: 2061:{\displaystyle M\sim (T_{\mathrm {C} }-T)^{\beta }} 4922:Maria Skłodowska-Curie Monument in Warsaw (Ochota) 3980: 3967: 3906: 3620: 3618: 2871: 2442:a material can also affect its Curie temperature. 2269: 2060: 1960: 1842: 1782: 1613: 1581: 1395: 27:Temperature above which magnetic properties change 3869:Magnetic Materials: Fundamentals and Applications 3792:Encyclopedia of Materials: Science and Technology 3258:(8th ed.). New York: John Wiley & Sons. 907:When a magnetic field is absent the material has 4988: 4409:Properties of Materials for Electrical Engineers 4203:"Curie temperature of multiphase nanostructures" 3970:The Electrical and Magnetic Properties of Solids 2588:) is also applied to the temperature at which a 4200: 3615: 3515: 2764: 2564:by applied strains within the crystal lattice. 1880:, approaches the material's Curie temperature, 914:The magnetic interactions are held together by 4425: 4352:Electronic Materials: From Silicon to Organics 4044:(2nd ed.). London: Taylor & Francis. 4001: 3841:Pallàs-Areny, Ramon; Webster, John G. (2001). 3610: 3529: 3486: 3311: 3239: 3196: 3013: 2978: 4672: 3525: 3523: 3482: 3480: 3192: 3190: 3188: 3186: 2172:. The spins interact with their neighbouring 1265:The Curie–Weiss law is an adapted version of 758:Orientations of magnetic moments in materials 4492: 4471: 4171: 3656: 3596: 3501: 3431: 3419: 3235: 3233: 3100: 2575:Curie temperature in ferroelectric materials 678:), which is analogous to Curie temperature. 112:The force of magnetism is determined by the 4283: 4167:. New York, Amsterdam: W. A. Benjamin, Inc. 4020: 3642: 3552: 3456: 3454: 3452: 3450: 3448: 3446: 3437: 3425: 3106: 1731:number of magnetic moments per unit volume 4686: 4679: 4665: 3666: 3664: 3606: 3604: 3520: 3511: 3509: 3477: 3373: 3371: 3344: 3334: 3332: 3305: 3183: 2984: 2915:generators against temperature variation. 2309:and a different surface Curie temperature 960:Antiferromagnetic and the Néel temperature 133:, Figure 1) change and become disordered ( 4912:Maria Skłodowska-Curie Monument in Lublin 4561: 4506: 4297: 4130: 3885: 3747: 3736:Journal of Nuclear Science and Technology 3729: 3723: 3296: 3285:Bulletin of the Chemical Society of Japan 3230: 3131: 3129: 3127: 3028: 3007: 1329:Curie's law for a paramagnetic material: 4616:"TMT-9000S Soldering and Rework Station" 4371:The Principles of Electromagnetic Theory 4354:(2nd ed.). New York, NY: Springer. 4349: 3978: 3687: 3652: 3650: 3592: 3590: 3541: 3535: 3443: 3413: 3377: 3323: 3177: 3154: 3150: 3148: 3146: 3144: 3001: 2972: 2801: 2284: 2003:Approaching Curie temperature from below 1872:Approaching Curie temperature from above 4474:Journal of the American Ceramic Society 4330: 4082:(Online ed.). Boston: Birkhäuser. 3863: 3789: 3717: 3699: 3670: 3661: 3638: 3636: 3634: 3632: 3601: 3506: 3401: 3368: 3329: 3317: 3208: 3202: 3024: 3022: 2966: 2415:Changing a material's Curie temperature 1856:is the Weiss molecular field constant. 869:All atoms that have unpaired electrons; 105:. The Curie temperature is named after 14: 4989: 4406: 4387: 4368: 4077: 4058: 4002:Jullien, André; Guinier, Rémi (1989). 3965: 3946: 3812: 3705: 3681: 3675: 3497: 3495: 3389: 3383: 3350: 3278: 3251: 3166: 3160: 3135: 3124: 3094: 3088: 3078: 3076: 3074: 3054: 3048: 3038: 3036: 2990: 2911:and stabilizing the magnetic field of 2419: 4966:Marie Curie: The Courage of Knowledge 4660: 4614: 4411:. New York, N.Y.: J. Wiley and Sons. 4392:(3rd ed.). New York : Springer. 4201:Skomski, R.; Sellmyer, D. J. (2000). 4162: 4039: 3762: 3693: 3647: 3587: 3471: 3465: 3407: 3362: 3356: 3171: 3141: 3112: 3060: 2623:in case of a first order transition. 2560:electrons can be moved onto the same 4103:Journal of Physics: Condensed Matter 3904: 3629: 3338: 3118: 3066: 3042: 3019: 2111:Approaching absolute zero (0 kelvin) 4958:Marie Curie, une femme sur le front 4061:Introduction to Solid State Physics 3987:(2nd ed.). Chichester: Wiley. 3927: 3819:Introduction to Solid State Physics 3492: 3461:Bertoldi, Bringa & Miranda 2012 3255:Introduction to Solid State Physics 3082: 3071: 3033: 2995: 2895:format as well as the now-obsolete 2540: 993:(1904–2000), who received the 1970 621: 24: 4486:10.1111/j.1151-2916.1998.tb02394.x 4390:Electronic Properties of Materials 4063:(7th ed.). New York : Wiley. 3890:(4th ed.). Berlin: Springer. 3886:Ibach, Harald; Lüth, Hans (2009). 2778:. Ferroelectric materials are all 2036: 1939: 1809: 1771: 1532: 1510: 1254: 25: 5023: 4881:Pierre and Marie Curie University 4876:Maria Curie-Skłodowska University 4861:IEEE Marie Sklodowska-Curie Award 4635: 3979:Hall, J. R.; Hook, H. E. (1994). 3909:Principles of Solid State Physics 4935:Maria Skłodowska-Curie Medallion 4042:Introductory Solid State Physics 2667: 2630: 2453: 2144:Ising model of phase transitions 1302:; however fails to describe the 929: 893: 813: 796: 779: 762: 175:Curie temperatures of materials 57: 36: 3930:Elements of Solid State Physics 3843:Sensors and Signal Conditioning 3774:Pallàs-Areny & Webster 2001 3767: 3756: 3711: 3546: 3395: 3272: 3245: 2882: 1449:the macroscopic magnetic field 839: 4525:10.1103/PhysRevLett.104.046804 4429:IEEE Transactions on Magnetics 4331:Webster, John G., ed. (1999). 4123:10.1088/0953-8984/24/22/226004 4006:. Oxford: Oxford Univ. Press. 2960: 2949: 2592:material transitions to being 2244: 2240: 2228: 2203: 2049: 2027: 1946: 1924: 1576: 1564: 13: 1: 4871:Maria Skłodowska-Curie Bridge 4781:Maria Skłodowska-Curie Museum 3782: 3749:10.1080/18811248.2007.9711316 2692:in an applied electric field 2655:in an applied electric field 2649:) Ferroelectric polarisation 1649:units is taken to equal one. 976:magnetic ordering temperature 3947:Dekker, Adrianus J. (1958). 2765:Ferroelectric and dielectric 2758:↔ Dielectric (paraelectric) 2750:↔ Dielectric (paraelectric) 2742:↔ Dielectric (paraelectric) 2734:↔ Dielectric (paraelectric) 1614:{\displaystyle N_{\text{A}}} 7: 4580:10.1088/0143-0807/34/6/1555 4550:European Journal of Physics 3625:López Domínguez et al. 2013 3516:Skomski & Sellmyer 2000 2918: 2505: 2371:due to it having a spin of 2129:third law of thermodynamics 10: 5028: 4596:"Pierre Curie – Biography" 4316:10.1103/PhysRevB.84.174422 4207:Journal of Applied Physics 4174:Journal of Applied Physics 3790:Buschow, K. H. J. (2001). 3530:Jullien & Guinier 1989 3502:Rau, Jin & Robert 1988 3487:Jullien & Guinier 1989 3312:Jullien & Guinier 1989 3240:Jullien & Guinier 1989 3197:Jullien & Guinier 1989 3014:Jullien & Guinier 1989 2979:Jullien & Guinier 1989 2686:) Dielectric polarisation 2526:Pressure also affects the 2335:of an electron is either + 1866: 1643:permeability of free space 1258: 997:for his work in the area. 963: 933: 897: 843: 601: 4904: 4838: 4789: 4773: 4764:Treatise on Radioactivity 4750: 4699: 4643:Ferromagnetic Curie Point 4080:Planar Ising correlations 3555:"Magnetism of Rare Earth" 909:spontaneous magnetization 18:Ferrorelectric transition 4449:10.1109/TMAG.2003.816761 4388:Hummel, Rolf E. (2001). 4350:Whatmore, R. W. (1991). 4059:Kittel, Charles (1996). 4021:Mendelssohn, K. (1977). 3905:Levy, Robert A. (1968). 3252:Kittel, Charles (2005). 2956:Pierre Curie – Biography 2943: 2435:destroy the alignments. 1859:For full derivation see 632:electron magnetic moment 298:Manganese antimonide (Mn 145:, which is derived from 4950:Les Palmes de M. Schutz 4495:Physical Review Letters 3279:Ichida, Toshio (1973). 2469:The extreme of this is 2393:magnetic quantum number 1304:magnetic susceptibility 860:magnetic susceptibility 636:nuclear magnetic moment 569:Samarium–cobalt magnets 160:. In this context, the 139:Magnetic susceptibility 4811:Hélène Langevin-Joliot 4602:. Nobel Media AB. 2014 4407:Pascoe, K. J. (1973). 4369:Kovetz, Attay (1990). 4265:Chemistry of Materials 4163:Brout, Robert (1965). 3932:. Wiley-Interscience. 3568:(3): 1. Archived from 2873: 2293: 2271: 2062: 1962: 1844: 1784: 1615: 1583: 1469:the material-specific 1397: 995:Nobel Prize in Physics 619: 337:Manganese arsenide (Mn 4829:Frédéric Joliot-Curie 4078:Palmer, John (2007). 4040:Myers, H. P. (1997). 3847:John Wiley & Sons 3824:John Wiley & Sons 3029:Ibach & Lüth 2009 2901:fast breeder reactors 2874: 2808:relative permittivity 2802:Relative permittivity 2288: 2272: 2063: 1963: 1845: 1785: 1616: 1584: 1398: 916:exchange interactions 614: 4928:Marie Curie Gargoyle 3720:, pp. 6.55–6.56 3553:Jackson, M. (2000). 3542:Hall & Hook 1994 3414:Hall & Hook 1994 3378:Hall & Hook 1994 3324:Hall & Hook 1994 3178:Hall & Hook 1994 3155:Hall & Hook 1994 3002:Hall & Hook 1994 2817: 2569:exchange interaction 2532:exchange interaction 2194: 2018: 1909: 1800: 1744: 1598: 1482: 1336: 282:Manganese bismuthide 4572:2013EJPh...34.1555K 4517:2010PhRvL.104d6804S 4441:2003ITM....39.3316P 4308:2011PhRvB..84q4422B 4219:2000JAP....87.4756S 4186:1988JAP....63.3667R 4115:2012JPCM...24v6004B 3983:Solid State Physics 3966:Cusack, N. (1958). 3949:Solid State Physics 3928:Fan, H. Y. (1987). 3611:Paulsen et al. 2003 2495:coordination number 2425:Composite materials 2420:Composite materials 1520: 1459:the magnetic field 508:Yttrium iron garnet 373:Iron(III) oxide (Fe 176: 4997:Critical phenomena 4825:(Pierre's brother) 4823:Paul-Jacques Curie 4799:Irène Joliot-Curie 4620:thermaltronics.com 3974:. Longmans, Green. 3913:. Academic Press. 3865:Spaldin, Nicola A. 3730:Takamatsu (2007). 3298:10.1246/bcsj.46.79 3210:Spaldin, Nicola A. 3121:, pp. 198–202 2869: 2486:face-centred cubic 2482:body-centred cubic 2471:superparamagnetism 2294: 2267: 2138:Gadolinium sulfate 2058: 1975:model is taken as 1958: 1840: 1780: 1718:Boltzmann constant 1611: 1579: 1504: 1393: 1017:Néel temperature ( 966:Antiferromagnetism 956:phase transition. 822:Antiferromagnetism 396:Iron(II,III) oxide 317:Chromium(IV) oxide 174: 99:permanent magnetic 5002:Phase transitions 4984: 4983: 4866:Marie Curie Medal 4758:Curie's principle 4722:Mean-field theory 4717:Curie temperature 4361:978-1-4613-6703-1 4286:Physical Review B 4277:10.1021/cm301927z 4165:Phase Transitions 3856:978-0-471-33232-9 3776:, pp. 262–63 3708:, pp. 190–91 3696:, pp. 404–05 3657:Sadoc et al. 2010 3597:Hwang et al. 1998 3562:The IRM Quarterly 3428:, pp. 180–81 3392:, pp. 424–26 3380:, pp. 227–28 3365:, pp. 334–45 3341:, pp. 201–02 3326:, pp. 205–06 3265:978-0-471-41526-8 3242:, pp. 156–57 3199:, pp. 158–59 3157:, pp. 220–21 3097:, pp. 454–55 3085:, pp. 164–65 3057:, pp. 217–20 3045:, pp. 236–39 3016:, pp. 136–38 2864: 2762: 2761: 2739:Antiferroelectric 2528:density of states 2154:phase transitions 1956: 1897:critical exponent 1838: 1778: 1735: 1734: 1625:Avogadro constant 1608: 1548: 1539: 1476: 1475: 1391: 1378: 1353: 1252: 1251: 755: 754: 748:Antiferromagnetic 654:antiferromagnetic 599: 598: 585:Strontium ferrite 537:Neodymium magnets 103:induced magnetism 84:Curie temperature 80:materials science 16:(Redirected from 5019: 4727:Piezoelectricity 4681: 4674: 4667: 4658: 4657: 4630: 4628: 4626: 4611: 4609: 4607: 4591: 4565: 4544: 4510: 4489: 4468: 4422: 4403: 4384: 4365: 4346: 4327: 4301: 4280: 4263:Nanoparticles". 4262: 4261: 4260: 4252: 4251: 4238: 4227:10.1063/1.373149 4197: 4194:10.1063/1.340679 4168: 4159: 4157: 4155: 4134: 4093: 4074: 4055: 4036: 4017: 3998: 3986: 3975: 3973: 3962: 3943: 3924: 3912: 3901: 3882: 3860: 3845:(2nd ed.). 3837: 3822:(6th ed.). 3809: 3777: 3771: 3765: 3760: 3754: 3753: 3751: 3727: 3721: 3715: 3709: 3703: 3697: 3691: 3685: 3679: 3673: 3668: 3659: 3654: 3645: 3643:Bose et al. 2011 3640: 3627: 3622: 3613: 3608: 3599: 3594: 3585: 3584: 3582: 3580: 3574: 3559: 3550: 3544: 3539: 3533: 3527: 3518: 3513: 3504: 3499: 3490: 3484: 3475: 3469: 3463: 3458: 3441: 3438:Mendelssohn 1977 3435: 3429: 3426:Mendelssohn 1977 3423: 3417: 3411: 3405: 3404:, pp. 52–54 3399: 3393: 3387: 3381: 3375: 3366: 3360: 3354: 3348: 3342: 3336: 3327: 3321: 3315: 3309: 3303: 3302: 3300: 3276: 3270: 3269: 3249: 3243: 3237: 3228: 3227: 3206: 3200: 3194: 3181: 3175: 3169: 3164: 3158: 3152: 3139: 3133: 3122: 3116: 3110: 3107:Mendelssohn 1977 3104: 3098: 3092: 3086: 3080: 3069: 3064: 3058: 3052: 3046: 3040: 3031: 3026: 3017: 3011: 3005: 2999: 2993: 2988: 2982: 2976: 2970: 2969:, p5021, table 1 2964: 2958: 2953: 2937:Hopkinson effect 2925:Ferroelectricity 2878: 2876: 2875: 2870: 2865: 2863: 2862: 2861: 2860: 2840: 2835: 2834: 2797: 2777: 2726: 2715: 2704: 2703: 2697: 2691: 2685: 2671: 2660: 2654: 2648: 2634: 2622: 2613: 2604: 2587: 2546:Orbital ordering 2541:Orbital ordering 2404:rare-earth metal 2386: 2384: 2383: 2380: 2377: 2370: 2368: 2367: 2364: 2361: 2360: 2352: 2350: 2349: 2346: 2343: 2342: 2333:angular momentum 2326:magnetic moments 2318:for a material. 2317: 2308: 2276: 2274: 2273: 2268: 2260: 2259: 2255: 2224: 2223: 2171: 2169: 2168: 2165: 2162: 2103: 2090: 2088: 2087: 2084: 2081: 2074: 2067: 2065: 2064: 2059: 2057: 2056: 2041: 2040: 2039: 2010: 1994: 1985: 1979: = 1. 1978: 1967: 1965: 1964: 1959: 1957: 1955: 1954: 1953: 1944: 1943: 1942: 1919: 1901: 1888: 1879: 1855: 1849: 1847: 1846: 1841: 1839: 1837: 1836: 1827: 1819: 1814: 1813: 1812: 1789: 1787: 1786: 1781: 1779: 1777: 1776: 1775: 1774: 1754: 1730: 1713: 1695: 1680: 1656: 1638: 1620: 1618: 1617: 1612: 1610: 1609: 1606: 1592: 1591: 1588: 1586: 1585: 1580: 1560: 1559: 1550: 1549: 1546: 1540: 1538: 1537: 1536: 1535: 1521: 1519: 1514: 1513: 1503: 1502: 1492: 1466: 1456: 1446: 1439:per unit volume 1437:magnetic moments 1432: 1418: 1406: 1405: 1402: 1400: 1399: 1394: 1392: 1384: 1379: 1374: 1373: 1372: 1359: 1354: 1346: 1325: 1309: 1301: 1288: 1279: 1011: 1010: 987:phase transition 972:Néel temperature 888:phase transition 817: 800: 783: 766: 743: 732: 703: 692: 681: 680: 677: 667:Néel temperature 664: 622:Magnetic moments 355:Europium oxide ( 185:temperature (K) 177: 173: 154:ferroelectricity 118:angular momentum 61: 40: 21: 5027: 5026: 5022: 5021: 5020: 5018: 5017: 5016: 4987: 4986: 4985: 4980: 4900: 4846:Curie Institute 4834: 4813:(granddaughter) 4785: 4769: 4746: 4712:Curie–Weiss law 4695: 4685: 4638: 4633: 4624: 4622: 4605: 4603: 4419: 4400: 4381: 4362: 4343: 4259: 4256: 4255: 4254: 4250: 4247: 4246: 4245: 4243: 4153: 4151: 4090: 4071: 4052: 4033: 4014: 3995: 3959: 3940: 3921: 3898: 3879: 3857: 3834: 3814:Kittel, Charles 3806: 3785: 3780: 3772: 3768: 3761: 3757: 3728: 3724: 3716: 3712: 3704: 3700: 3692: 3688: 3680: 3676: 3669: 3662: 3655: 3648: 3641: 3630: 3623: 3616: 3609: 3602: 3595: 3588: 3578: 3576: 3575:on 12 July 2017 3572: 3557: 3551: 3547: 3540: 3536: 3528: 3521: 3514: 3507: 3500: 3493: 3485: 3478: 3470: 3466: 3459: 3444: 3436: 3432: 3424: 3420: 3412: 3408: 3400: 3396: 3388: 3384: 3376: 3369: 3361: 3357: 3349: 3345: 3337: 3330: 3322: 3318: 3310: 3306: 3277: 3273: 3266: 3250: 3246: 3238: 3231: 3224: 3207: 3203: 3195: 3184: 3176: 3172: 3165: 3161: 3153: 3142: 3134: 3125: 3117: 3113: 3105: 3101: 3093: 3089: 3081: 3072: 3065: 3061: 3053: 3049: 3041: 3034: 3027: 3020: 3012: 3008: 3000: 2996: 2989: 2985: 2977: 2973: 2965: 2961: 2954: 2950: 2946: 2921: 2909:soldering irons 2889:magneto-optical 2885: 2856: 2855: 2851: 2844: 2839: 2830: 2826: 2818: 2815: 2814: 2804: 2796: 2790: 2776: 2770: 2767: 2725: 2719: 2714: 2708: 2702: 2701: 2700: 2699: 2698: 2693: 2687: 2684: 2678: 2672: 2663: 2662: 2661: 2656: 2650: 2647: 2641: 2635: 2621: 2615: 2612: 2606: 2603: 2597: 2586: 2580: 2577: 2543: 2516:crystal lattice 2508: 2478:crystal lattice 2456: 2422: 2417: 2381: 2378: 2375: 2374: 2372: 2365: 2362: 2358: 2357: 2356: 2354: 2347: 2344: 2340: 2339: 2338: 2336: 2316: 2310: 2307: 2301: 2283: 2251: 2247: 2243: 2216: 2212: 2195: 2192: 2191: 2166: 2163: 2160: 2159: 2157: 2146: 2113: 2102: 2092: 2085: 2082: 2079: 2078: 2076: 2072: 2052: 2048: 2035: 2034: 2030: 2019: 2016: 2015: 2008: 2005: 1993: 1987: 1983: 1976: 1949: 1945: 1938: 1937: 1933: 1923: 1918: 1910: 1907: 1906: 1899: 1887: 1881: 1877: 1874: 1869: 1861:Curie–Weiss law 1853: 1832: 1828: 1820: 1818: 1808: 1807: 1803: 1801: 1798: 1797: 1770: 1769: 1765: 1758: 1753: 1745: 1742: 1741: 1728: 1724:total magnetism 1712: 1706: 1694: 1688: 1671: 1654: 1637: 1631: 1605: 1601: 1599: 1596: 1595: 1555: 1551: 1545: 1541: 1531: 1530: 1526: 1522: 1515: 1509: 1508: 1498: 1494: 1493: 1491: 1483: 1480: 1479: 1464: 1454: 1444: 1430: 1416: 1383: 1368: 1364: 1360: 1358: 1345: 1337: 1334: 1333: 1324: 1314: 1307: 1300: 1290: 1287: 1281: 1277: 1263: 1261:Curie–Weiss law 1257: 1255:Curie–Weiss law 1245: 1241: 1229: 1225: 1203: 1181: 1168: 1145: 1132: 1099: 1086: 1073: 1060: 984: 968: 962: 938: 932: 902: 896: 848: 842: 833: 826: 818: 809: 801: 792: 784: 775: 767: 751:↔ Paramagnetic 742: 736: 731: 725: 719:↔ Paramagnetic 711:↔ Paramagnetic 702: 696: 691: 685: 676: 670: 663: 657: 628:magnetic moment 624: 604: 521: 517: 513: 493: 489: 472: 468: 451: 447: 427: 423: 405: 401: 380: 376: 322: 184: 162:order parameter 158:paraelectricity 143:Curie–Weiss law 114:magnetic moment 92: 72: 71: 70: 69: 68: 62: 53: 52: 51: 41: 28: 23: 22: 15: 12: 11: 5: 5025: 5015: 5014: 5009: 5004: 4999: 4982: 4981: 4979: 4978: 4970: 4962: 4954: 4946: 4938: 4931: 4924: 4919: 4914: 4908: 4906: 4902: 4901: 4899: 4898: 4893: 4888: 4883: 4878: 4873: 4868: 4863: 4858: 4853: 4848: 4842: 4840: 4836: 4835: 4833: 4832: 4826: 4820: 4814: 4808: 4802: 4795: 4793: 4787: 4786: 4784: 4783: 4777: 4775: 4771: 4770: 4768: 4767: 4760: 4754: 4752: 4748: 4747: 4745: 4744: 4739: 4734: 4729: 4724: 4719: 4714: 4709: 4703: 4701: 4697: 4696: 4684: 4683: 4676: 4669: 4661: 4655: 4654: 4637: 4636:External links 4634: 4632: 4631: 4612: 4600:Nobelprize.org 4592: 4556:(6): 1555–73. 4545: 4490: 4469: 4435:(5): 3316–18. 4423: 4417: 4404: 4398: 4385: 4379: 4366: 4360: 4347: 4341: 4328: 4292:(17): 174422. 4281: 4257: 4248: 4239: 4198: 4169: 4160: 4109:(22): 226004. 4094: 4088: 4075: 4069: 4056: 4050: 4037: 4031: 4018: 4012: 3999: 3993: 3976: 3963: 3957: 3944: 3938: 3925: 3920:978-0124457508 3919: 3902: 3896: 3883: 3877: 3861: 3855: 3838: 3832: 3810: 3804: 3786: 3784: 3781: 3779: 3778: 3766: 3755: 3742:(3): 511–517. 3722: 3710: 3698: 3686: 3674: 3660: 3646: 3628: 3614: 3600: 3586: 3545: 3534: 3519: 3505: 3491: 3476: 3474:, pp. 6–7 3464: 3442: 3430: 3418: 3406: 3394: 3382: 3367: 3355: 3343: 3328: 3316: 3314:, pp. 153 3304: 3271: 3264: 3244: 3229: 3222: 3201: 3182: 3170: 3159: 3140: 3123: 3111: 3099: 3087: 3070: 3059: 3047: 3032: 3018: 3006: 2994: 2983: 2971: 2959: 2947: 2945: 2942: 2941: 2940: 2934: 2928: 2920: 2917: 2884: 2881: 2880: 2879: 2868: 2859: 2854: 2850: 2847: 2843: 2838: 2833: 2829: 2825: 2822: 2803: 2800: 2794: 2774: 2766: 2763: 2760: 2759: 2756: 2752: 2751: 2748: 2744: 2743: 2740: 2736: 2735: 2732: 2728: 2727: 2723: 2716: 2712: 2682: 2673: 2666: 2665: 2664: 2645: 2636: 2629: 2628: 2627: 2626: 2625: 2619: 2610: 2601: 2584: 2576: 2573: 2542: 2539: 2520:kinetic energy 2507: 2504: 2455: 2452: 2447:Nanocomposites 2421: 2418: 2416: 2413: 2314: 2305: 2282: 2279: 2278: 2277: 2266: 2263: 2258: 2254: 2250: 2246: 2242: 2239: 2236: 2233: 2230: 2227: 2222: 2219: 2215: 2211: 2208: 2205: 2202: 2199: 2145: 2142: 2112: 2109: 2100: 2069: 2068: 2055: 2051: 2047: 2044: 2038: 2033: 2029: 2026: 2023: 2004: 2001: 1991: 1969: 1968: 1952: 1948: 1941: 1936: 1932: 1929: 1926: 1922: 1917: 1914: 1885: 1873: 1870: 1868: 1865: 1851: 1850: 1835: 1831: 1826: 1823: 1817: 1811: 1806: 1791: 1790: 1773: 1768: 1764: 1761: 1757: 1752: 1749: 1733: 1732: 1725: 1721: 1720: 1714: 1710: 1703: 1702: 1696: 1692: 1685: 1684: 1681: 1668: 1667: 1657: 1651: 1650: 1639: 1635: 1628: 1627: 1621: 1604: 1590: 1589: 1578: 1575: 1572: 1569: 1566: 1563: 1558: 1554: 1544: 1534: 1529: 1525: 1518: 1512: 1507: 1501: 1497: 1490: 1487: 1474: 1473: 1471:Curie constant 1467: 1461: 1460: 1457: 1451: 1450: 1447: 1441: 1440: 1433: 1427: 1426: 1425:on a material 1423:magnetic field 1419: 1413: 1412: 1410: 1404: 1403: 1390: 1387: 1382: 1377: 1371: 1367: 1363: 1357: 1352: 1349: 1344: 1341: 1322: 1298: 1285: 1259:Main article: 1256: 1253: 1250: 1249: 1246: 1243: 1239: 1235: 1234: 1231: 1227: 1223: 1218: 1217: 1214: 1208: 1207: 1204: 1201: 1197: 1196: 1193: 1187: 1186: 1183: 1179: 1174: 1173: 1170: 1166: 1161: 1160: 1157: 1151: 1150: 1147: 1143: 1138: 1137: 1134: 1130: 1125: 1124: 1121: 1115: 1114: 1111: 1105: 1104: 1101: 1097: 1092: 1091: 1088: 1084: 1079: 1078: 1075: 1071: 1066: 1065: 1062: 1058: 1053: 1052: 1049: 1043: 1042: 1039: 1033: 1032: 1029: 1023: 1022: 1015: 982: 964:Main article: 961: 958: 936:Ferrimagnetism 934:Main article: 931: 928: 900:Ferromagnetism 898:Main article: 895: 892: 883: 882: 879: 873: 870: 852:magnetic field 844:Main article: 841: 838: 832: 829: 828: 827: 819: 812: 810: 805:Ferrimagnetism 802: 795: 793: 785: 778: 776: 771:Ferromagnetism 768: 761: 759: 753: 752: 749: 745: 744: 740: 733: 729: 721: 720: 717: 713: 712: 709: 705: 704: 700: 693: 689: 674: 661: 623: 620: 603: 600: 597: 596: 593: 590: 587: 581: 580: 577: 574: 571: 565: 564: 561: 558: 555: 549: 548: 545: 542: 539: 533: 532: 529: 526: 523: 519: 515: 511: 504: 503: 500: 497: 494: 491: 487: 483: 482: 479: 476: 473: 470: 466: 462: 461: 458: 455: 452: 449: 445: 438: 437: 434: 431: 428: 425: 421: 417: 416: 413: 410: 407: 403: 399: 392: 391: 388: 385: 382: 378: 374: 370: 369: 366: 363: 360: 352: 351: 348: 345: 342: 334: 333: 330: 327: 324: 320: 313: 312: 309: 306: 303: 295: 294: 291: 288: 285: 278: 277: 274: 271: 268: 261: 260: 257: 254: 251: 244: 243: 240: 237: 234: 227: 226: 223: 220: 217: 210: 209: 206: 203: 200: 193: 192: 189: 186: 181: 90: 63: 56: 55: 54: 48:magnetic field 42: 35: 34: 33: 32: 31: 26: 9: 6: 4: 3: 2: 5024: 5013: 5010: 5008: 5005: 5003: 5000: 4998: 4995: 4994: 4992: 4976: 4975: 4971: 4968: 4967: 4963: 4960: 4959: 4955: 4952: 4951: 4947: 4944: 4943: 4939: 4937: 4936: 4932: 4930: 4929: 4925: 4923: 4920: 4918: 4915: 4913: 4910: 4909: 4907: 4903: 4897: 4894: 4892: 4889: 4887: 4884: 4882: 4879: 4877: 4874: 4872: 4869: 4867: 4864: 4862: 4859: 4857: 4854: 4852: 4849: 4847: 4844: 4843: 4841: 4837: 4830: 4827: 4824: 4821: 4818: 4817:Pierre Joliot 4815: 4812: 4809: 4806: 4803: 4800: 4797: 4796: 4794: 4792: 4788: 4782: 4779: 4778: 4776: 4772: 4766: 4765: 4761: 4759: 4756: 4755: 4753: 4749: 4743: 4740: 4738: 4737:Radioactivity 4735: 4733: 4730: 4728: 4725: 4723: 4720: 4718: 4715: 4713: 4710: 4708: 4705: 4704: 4702: 4698: 4693: 4689: 4682: 4677: 4675: 4670: 4668: 4663: 4662: 4659: 4653: 4649: 4645: 4644: 4640: 4639: 4621: 4617: 4613: 4601: 4597: 4593: 4589: 4585: 4581: 4577: 4573: 4569: 4564: 4559: 4555: 4551: 4546: 4542: 4538: 4534: 4530: 4526: 4522: 4518: 4514: 4509: 4504: 4501:(4): 046804. 4500: 4496: 4491: 4487: 4483: 4480:(3): 709–12. 4479: 4475: 4470: 4466: 4462: 4458: 4454: 4450: 4446: 4442: 4438: 4434: 4430: 4424: 4420: 4414: 4410: 4405: 4401: 4399:0-387-95144-X 4395: 4391: 4386: 4382: 4380:0-521-39997-1 4376: 4372: 4367: 4363: 4357: 4353: 4348: 4344: 4338: 4334: 4329: 4325: 4321: 4317: 4313: 4309: 4305: 4300: 4295: 4291: 4287: 4282: 4278: 4274: 4270: 4266: 4240: 4236: 4232: 4228: 4224: 4220: 4216: 4212: 4208: 4204: 4199: 4195: 4191: 4187: 4183: 4179: 4175: 4170: 4166: 4161: 4150: 4146: 4142: 4138: 4133: 4128: 4124: 4120: 4116: 4112: 4108: 4104: 4100: 4095: 4091: 4089:9780817646202 4085: 4081: 4076: 4072: 4066: 4062: 4057: 4053: 4047: 4043: 4038: 4034: 4028: 4024: 4019: 4015: 4009: 4005: 4000: 3996: 3990: 3985: 3984: 3977: 3972: 3971: 3964: 3960: 3958:9780333106235 3954: 3951:. Macmillan. 3950: 3945: 3941: 3939:9780471859871 3935: 3931: 3926: 3922: 3916: 3911: 3910: 3903: 3899: 3897:9783540938033 3893: 3889: 3884: 3880: 3878:9780521886697 3874: 3870: 3866: 3862: 3858: 3852: 3848: 3844: 3839: 3835: 3833:0-471-87474-4 3829: 3825: 3821: 3820: 3815: 3811: 3807: 3805:0-08-043152-6 3801: 3797: 3793: 3788: 3787: 3775: 3770: 3764: 3759: 3750: 3745: 3741: 3737: 3733: 3726: 3719: 3714: 3707: 3702: 3695: 3690: 3684:, p. 116 3683: 3678: 3672: 3667: 3665: 3658: 3653: 3651: 3644: 3639: 3637: 3635: 3633: 3626: 3621: 3619: 3612: 3607: 3605: 3598: 3593: 3591: 3571: 3567: 3563: 3556: 3549: 3543: 3538: 3532:, p. 138 3531: 3526: 3524: 3517: 3512: 3510: 3503: 3498: 3496: 3489:, p. 161 3488: 3483: 3481: 3473: 3468: 3462: 3457: 3455: 3453: 3451: 3449: 3447: 3440:, p. 167 3439: 3434: 3427: 3422: 3416:, p. 225 3415: 3410: 3403: 3398: 3391: 3386: 3379: 3374: 3372: 3364: 3359: 3353:, p. 444 3352: 3347: 3340: 3335: 3333: 3325: 3320: 3313: 3308: 3299: 3294: 3290: 3286: 3282: 3275: 3267: 3261: 3257: 3256: 3248: 3241: 3236: 3234: 3225: 3223:9780521016582 3219: 3215: 3211: 3205: 3198: 3193: 3191: 3189: 3187: 3180:, p. 220 3179: 3174: 3168: 3163: 3156: 3151: 3149: 3147: 3145: 3138:, p. 269 3137: 3132: 3130: 3128: 3120: 3115: 3109:, p. 162 3108: 3103: 3096: 3091: 3084: 3079: 3077: 3075: 3068: 3063: 3056: 3051: 3044: 3039: 3037: 3030: 3025: 3023: 3015: 3010: 3004:, p. 200 3003: 2998: 2992: 2987: 2981:, p. 155 2980: 2975: 2968: 2963: 2957: 2952: 2948: 2938: 2935: 2932: 2929: 2926: 2923: 2922: 2916: 2914: 2910: 2906: 2902: 2898: 2894: 2893:Sony Minidisc 2890: 2866: 2857: 2852: 2848: 2845: 2841: 2836: 2831: 2827: 2823: 2820: 2813: 2812: 2811: 2809: 2799: 2793: 2788: 2783: 2781: 2773: 2757: 2754: 2753: 2749: 2747:Ferrielectric 2746: 2745: 2741: 2738: 2737: 2733: 2731:Ferroelectric 2730: 2729: 2722: 2717: 2711: 2706: 2705: 2696: 2690: 2681: 2676: 2670: 2659: 2653: 2644: 2639: 2633: 2624: 2618: 2609: 2600: 2595: 2591: 2590:ferroelectric 2583: 2572: 2570: 2565: 2563: 2559: 2555: 2551: 2547: 2538: 2535: 2533: 2529: 2524: 2521: 2517: 2513: 2503: 2499: 2496: 2491: 2488:(fcc), and a 2487: 2483: 2479: 2474: 2472: 2467: 2465: 2461: 2460:nanoparticles 2454:Particle size 2451: 2448: 2443: 2441: 2436: 2432: 2430: 2426: 2412: 2409: 2405: 2401: 2396: 2394: 2390: 2389:Bohr magneton 2334: 2329: 2327: 2322: 2319: 2313: 2304: 2299: 2298:Weiss domains 2291: 2287: 2264: 2261: 2256: 2252: 2248: 2237: 2234: 2231: 2225: 2220: 2217: 2213: 2209: 2206: 2200: 2197: 2190: 2189: 2188: 2184: 2181: 2177: 2175: 2155: 2151: 2141: 2139: 2135: 2132: 2130: 2126: 2121: 2119: 2108: 2105: 2099: 2095: 2075: =  2053: 2045: 2042: 2031: 2024: 2021: 2014: 2013: 2012: 2000: 1998: 1990: 1980: 1974: 1950: 1934: 1930: 1927: 1920: 1915: 1912: 1905: 1904: 1903: 1898: 1893: 1890: 1884: 1864: 1862: 1857: 1833: 1829: 1824: 1821: 1815: 1804: 1796: 1795: 1794: 1766: 1762: 1759: 1755: 1750: 1747: 1740: 1739: 1738: 1726: 1723: 1722: 1719: 1715: 1709: 1705: 1704: 1701: 1700:Bohr magneton 1697: 1691: 1687: 1686: 1682: 1678: 1674: 1670: 1669: 1666: 1664: 1658: 1653: 1652: 1648: 1644: 1640: 1634: 1630: 1629: 1626: 1622: 1602: 1594: 1593: 1573: 1570: 1567: 1561: 1556: 1552: 1542: 1527: 1523: 1516: 1505: 1499: 1495: 1488: 1485: 1478: 1477: 1472: 1468: 1463: 1462: 1458: 1453: 1452: 1448: 1443: 1442: 1438: 1434: 1429: 1428: 1424: 1420: 1415: 1414: 1411: 1408: 1407: 1388: 1385: 1380: 1375: 1369: 1365: 1361: 1355: 1350: 1347: 1342: 1339: 1332: 1331: 1330: 1327: 1321: 1317: 1311: 1305: 1297: 1293: 1284: 1275: 1270: 1268: 1262: 1247: 1237: 1236: 1232: 1230: 1220: 1219: 1215: 1213: 1210: 1209: 1205: 1199: 1198: 1194: 1192: 1189: 1188: 1184: 1182: 1176: 1175: 1171: 1169: 1163: 1162: 1158: 1156: 1153: 1152: 1148: 1146: 1140: 1139: 1135: 1133: 1127: 1126: 1122: 1120: 1117: 1116: 1112: 1110: 1107: 1106: 1102: 1100: 1094: 1093: 1089: 1087: 1081: 1080: 1076: 1074: 1068: 1067: 1063: 1061: 1055: 1054: 1050: 1048: 1045: 1044: 1040: 1038: 1035: 1034: 1030: 1028: 1025: 1024: 1020: 1016: 1013: 1012: 1009: 1006: 1002: 998: 996: 992: 988: 981: 977: 973: 967: 957: 953: 949: 945: 943: 937: 930:Ferrimagnetic 927: 923: 921: 917: 912: 910: 905: 901: 894:Ferromagnetic 891: 889: 880: 877: 876:Free radicals 874: 871: 868: 867: 866: 863: 861: 856: 853: 847: 846:Paramagnetism 837: 824: 823: 816: 811: 807: 806: 799: 794: 790: 789: 788:Paramagnetism 782: 777: 773: 772: 765: 760: 757: 756: 750: 747: 746: 739: 734: 728: 723: 722: 718: 716:Ferrimagnetic 715: 714: 710: 708:Ferromagnetic 707: 706: 699: 694: 688: 683: 682: 679: 673: 668: 660: 655: 651: 650:ferrimagnetic 647: 643: 642:Ferromagnetic 639: 637: 633: 629: 618: 613: 611: 610: 594: 591: 588: 586: 583: 582: 578: 575: 572: 570: 567: 566: 562: 559: 556: 554: 551: 550: 546: 543: 540: 538: 535: 534: 530: 527: 524: 509: 506: 505: 501: 498: 495: 485: 484: 480: 477: 474: 464: 463: 459: 456: 453: 443: 440: 439: 435: 432: 429: 419: 418: 414: 411: 408: 397: 394: 393: 389: 386: 383: 372: 371: 367: 364: 361: 358: 354: 353: 349: 346: 343: 340: 336: 335: 331: 328: 325: 318: 315: 314: 310: 307: 304: 301: 297: 296: 292: 289: 286: 283: 280: 279: 275: 272: 269: 266: 263: 262: 258: 255: 252: 249: 246: 245: 241: 238: 235: 232: 229: 228: 224: 221: 218: 215: 212: 211: 207: 204: 201: 198: 195: 194: 190: 187: 182: 179: 178: 172: 170: 167: 163: 159: 155: 150: 148: 144: 140: 136: 132: 131:ferromagnetic 126: 123: 119: 115: 110: 108: 104: 100: 96: 89: 85: 81: 77: 66: 60: 49: 45: 39: 30: 19: 5012:Pierre Curie 4972: 4964: 4956: 4948: 4942:Madame Curie 4940: 4933: 4926: 4891:Curie Island 4831:(son-in-law) 4762: 4751:Publications 4716: 4648:Walter Lewin 4642: 4623:. Retrieved 4619: 4604:. Retrieved 4599: 4553: 4549: 4498: 4494: 4477: 4473: 4432: 4428: 4408: 4389: 4370: 4351: 4332: 4289: 4285: 4268: 4264: 4210: 4206: 4177: 4173: 4164: 4152:. Retrieved 4106: 4102: 4079: 4060: 4041: 4022: 4003: 3982: 3969: 3948: 3929: 3908: 3887: 3868: 3842: 3817: 3791: 3769: 3758: 3739: 3735: 3725: 3718:Webster 1999 3713: 3701: 3689: 3677: 3671:Webster 1999 3577:. Retrieved 3570:the original 3565: 3561: 3548: 3537: 3467: 3433: 3421: 3409: 3402:Spaldin 2010 3397: 3385: 3358: 3346: 3319: 3307: 3291:(1): 79–82. 3288: 3284: 3274: 3253: 3247: 3213: 3204: 3173: 3162: 3114: 3102: 3090: 3062: 3050: 3009: 2997: 2986: 2974: 2967:Buschow 2001 2962: 2951: 2905:control rods 2886: 2883:Applications 2805: 2791: 2784: 2780:pyroelectric 2771: 2768: 2755:Helielectric 2720: 2709: 2694: 2688: 2679: 2674: 2657: 2651: 2642: 2637: 2616: 2607: 2598: 2594:paraelectric 2581: 2578: 2566: 2544: 2536: 2525: 2509: 2500: 2480:structure: 2475: 2468: 2457: 2444: 2437: 2433: 2423: 2397: 2330: 2323: 2320: 2311: 2302: 2295: 2289: 2185: 2182: 2178: 2147: 2136: 2133: 2122: 2114: 2106: 2097: 2093: 2070: 2006: 1988: 1981: 1970: 1894: 1891: 1882: 1875: 1858: 1852: 1792: 1736: 1707: 1689: 1676: 1672: 1662: 1632: 1328: 1319: 1315: 1312: 1295: 1291: 1282: 1271: 1264: 1007: 1003: 999: 979: 975: 971: 969: 954: 950: 946: 939: 924: 920:ferromagnets 913: 906: 903: 884: 864: 857: 849: 840:Paramagnetic 834: 820: 803: 786: 769: 737: 726: 697: 686: 671: 658: 646:paramagnetic 640: 625: 615: 607: 605: 169:polarization 165: 151: 135:paramagnetic 127: 111: 107:Pierre Curie 94: 87: 83: 73: 64: 43: 29: 5007:Temperature 4977:(2019 film) 4974:Radioactive 4969:(2016 film) 4961:(2014 film) 4953:(1997 film) 4945:(1943 film) 4707:Curie's law 4700:Discoveries 4646:. Video by 4271:(1): 6–11. 4213:(9): 4756. 4180:(8): 3667. 4154:12 February 4132:11336/16945 3706:Pascoe 1973 3682:Kovetz 1990 3390:Kittel 1986 3351:Kittel 1996 3167:Palmer 2007 3136:Cusack 1958 3095:Dekker 1958 3055:Dekker 1958 2991:Kittel 1986 2931:Curie's law 2558:delocalised 2554:probability 2402:which is a 2150:Ising model 1986:approaches 1645:. Note: in 1267:Curie's law 202:1043-1,664 147:Curie's law 95:Curie point 4991:Categories 4905:Depictions 4896:7000 Curie 4819:(grandson) 4807:(daughter) 4801:(daughter) 4625:13 January 4418:0471669113 4342:0849383471 4070:0471111813 4051:0748406603 4032:0850661196 4013:0198555547 3994:0471928054 3783:References 3694:Myers 1997 3579:21 January 3472:Brout 1965 3363:Myers 1997 2913:tachometer 2787:hysteresis 2464:anisotropy 2408:anisotropy 1973:mean-field 1409:Definition 1274:mean-field 1014:Substance 991:Louis Néel 609:De Magnete 579:1328–1472 563:1292–1580 265:Dysprosium 248:Gadolinium 4839:Namesakes 4805:Ève Curie 4588:118331770 4563:1301.2141 4508:0910.3393 4457:0018-9464 4324:118595011 4299:1010.3025 3763:TMT-9000S 3339:Levy 1968 3119:Levy 1968 3067:Levy 1968 3043:Levy 1968 2849:− 2828:ϵ 2821:ϵ 2675:Figure 5. 2638:Figure 4. 2596:. Hence, 2490:hexagonal 2290:Figure 3. 2235:β 2226:⁡ 2218:− 2210:− 2054:β 2043:− 2025:∼ 1951:γ 1931:− 1916:∼ 1913:χ 1830:μ 1825:λ 1763:− 1748:χ 1506:μ 1496:μ 1366:μ 1340:χ 573:993–1073 557:973–1133 180:Material 65:Figure 2. 44:Figure 1. 4732:Polonium 4606:14 March 4541:35041713 4533:20366729 4465:45734431 4149:34323416 4141:22555147 3867:(2010). 3816:(1986). 3796:Elsevier 3212:(2006). 3083:Fan 1987 2919:See also 2903:, where 2512:pressure 2506:Pressure 2118:0 K 1997:infinity 634:and the 576:720–800 560:700–860 547:590–752 544:310–400 541:583–673 166:electric 4774:Museums 4568:Bibcode 4513:Bibcode 4437:Bibcode 4304:Bibcode 4215:Bibcode 4182:Bibcode 4111:Bibcode 2677:(Above 2640:(Below 2550:strains 2514:on the 2493:as the 2484:(bcc), 2400:terbium 2385:⁠ 2373:⁠ 2369:⁠ 2355:⁠ 2351:⁠ 2337:⁠ 2170:⁠ 2158:⁠ 2125:entropy 2089:⁠ 2077:⁠ 1867:Physics 1793:where: 1665:-factor 1289:, i.e. 881:Metals. 612:(1600): 602:History 368:−335.5 365:−204.2 284:(MnBi) 276:−301.3 273:−185.2 164:is the 76:physics 4856:Curium 4791:Family 4742:Radium 4692:Pierre 4652:M.I.T. 4586:  4539:  4531:  4463:  4455:  4415:  4396:  4377:  4358:  4339:  4322:  4235:288790 4233:  4147:  4139:  4086:  4067:  4048:  4029:  4010:  3991:  3955:  3936:  3917:  3894:  3875:  3853:  3830:  3802:  3262:  3220:  2718:Above 2707:Below 2440:Doping 2429:silver 2174:dipole 2091:where 1661:Landé 735:Above 724:Below 695:Above 684:Below 652:, and 630:, the 553:Alnico 486:MnO–Fe 465:MgO–Fe 420:NiO–Fe 398:(FeOFe 231:Nickel 214:Cobalt 183:Curie 93:), or 82:, the 4851:Curie 4694:Curie 4688:Marie 4584:S2CID 4558:arXiv 4537:S2CID 4503:arXiv 4461:S2CID 4320:S2CID 4294:arXiv 4231:S2CID 4145:S2CID 3573:(PDF) 3558:(PDF) 2944:Notes 2897:CD-MO 2562:plane 1318:< 1119:FeOCl 436:1085 415:1085 390:1247 267:(Dy) 250:(Gd) 233:(Ni) 225:2060 222:1130 219:1400 216:(Co) 208:1418 199:(Fe) 4690:and 4627:2016 4608:2013 4529:PMID 4453:ISSN 4413:ISBN 4394:ISBN 4375:ISBN 4356:ISBN 4337:ISBN 4244:CoFe 4156:2013 4137:PMID 4084:ISBN 4065:ISBN 4046:ISBN 4027:ISBN 4008:ISBN 3989:ISBN 3953:ISBN 3934:ISBN 3915:ISBN 3892:ISBN 3873:ISBN 3851:ISBN 3828:ISBN 3800:ISBN 3581:2020 3260:ISBN 3218:ISBN 2398:For 2353:or − 2331:The 2262:> 2214:sinh 2148:The 1716:the 1698:the 1679:+ 1) 1659:the 1641:the 1623:the 1435:the 1233:307 1216:308 1206:983 1200:KFeO 1195:525 1165:NiCl 1159:291 1129:CrCl 1113:198 1083:FeCl 1051:307 1047:MnTe 1041:160 1031:116 942:ions 617:23). 595:842 592:450 589:723 531:548 528:287 525:560 502:572 499:300 496:573 481:824 478:440 475:713 460:851 457:455 454:728 444:O–Fe 433:585 430:858 412:585 409:858 387:675 384:948 350:113 344:318 332:235 329:113 326:386 319:(CrO 311:597 308:314 305:587 293:674 290:357 287:630 253:292 242:669 239:354 236:627 205:770 197:Iron 156:and 122:spin 120:and 78:and 4576:doi 4521:doi 4499:104 4482:doi 4445:doi 4312:doi 4273:doi 4223:doi 4190:doi 4127:hdl 4119:doi 3744:doi 3293:doi 2096:≪ 1727:is 1647:CGS 1248:50 1191:NiO 1185:75 1178:NiI 1172:50 1155:CoO 1149:12 1142:CrI 1136:25 1123:80 1109:FeO 1096:FeI 1090:24 1077:79 1070:FeF 1064:67 1057:MnF 1037:MnS 1027:MnO 974:or 362:69 359:O) 347:45 270:88 259:66 256:19 191:°F 188:°C 74:In 4993:: 4650:, 4618:. 4598:. 4582:. 4574:. 4566:. 4554:34 4552:. 4535:. 4527:. 4519:. 4511:. 4497:. 4478:81 4476:. 4459:. 4451:. 4443:. 4433:39 4431:. 4318:. 4310:. 4302:. 4290:84 4288:. 4269:25 4267:. 4229:. 4221:. 4211:87 4209:. 4205:. 4188:. 4178:63 4176:. 4143:. 4135:. 4125:. 4117:. 4107:24 4105:. 4101:. 3849:. 3826:. 3798:. 3794:. 3740:44 3738:. 3734:. 3663:^ 3649:^ 3631:^ 3617:^ 3603:^ 3589:^ 3566:10 3564:. 3560:. 3522:^ 3508:^ 3494:^ 3479:^ 3445:^ 3370:^ 3331:^ 3289:46 3287:. 3283:. 3232:^ 3185:^ 3143:^ 3126:^ 3073:^ 3035:^ 3021:^ 2810:: 2265:0. 2131:. 2104:. 2011:: 1902:: 1889:. 1863:. 1326:. 1306:, 1294:≫ 1269:. 1242:Ge 1238:Nd 1222:Cr 1212:Cr 1103:9 1021:) 978:, 944:. 648:, 644:, 522:) 520:12 514:Fe 510:(Y 442:Cu 406:) 381:) 357:Eu 341:) 339:As 323:) 302:) 300:Sb 149:. 4680:e 4673:t 4666:v 4629:. 4610:. 4590:. 4578:: 4570:: 4560:: 4543:. 4523:: 4515:: 4505:: 4488:. 4484:: 4467:. 4447:: 4439:: 4421:. 4402:. 4383:. 4364:. 4345:. 4326:. 4314:: 4306:: 4296:: 4279:. 4275:: 4258:4 4253:O 4249:2 4237:. 4225:: 4217:: 4196:. 4192:: 4184:: 4158:. 4129:: 4121:: 4113:: 4092:. 4073:. 4054:. 4035:. 4016:. 3997:. 3961:. 3942:. 3923:. 3900:. 3881:. 3859:. 3836:. 3808:. 3752:. 3746:: 3583:. 3301:. 3295:: 3268:. 3226:. 2867:. 2858:0 2853:T 2846:T 2842:C 2837:+ 2832:0 2824:= 2795:0 2792:T 2775:0 2772:T 2724:C 2721:T 2713:C 2710:T 2695:E 2689:P 2683:0 2680:T 2658:E 2652:P 2646:0 2643:T 2620:0 2617:T 2611:0 2608:T 2602:C 2599:T 2585:C 2582:T 2382:2 2379:/ 2376:1 2366:2 2363:/ 2359:ħ 2348:2 2345:/ 2341:ħ 2315:S 2312:T 2306:B 2303:T 2257:8 2253:/ 2249:1 2245:) 2241:) 2238:J 2232:2 2229:( 2221:4 2207:1 2204:( 2201:= 2198:M 2167:2 2164:/ 2161:1 2101:C 2098:T 2094:T 2086:2 2083:/ 2080:1 2073:β 2050:) 2046:T 2037:C 2032:T 2028:( 2022:M 2009:β 1992:C 1989:T 1984:T 1977:γ 1947:) 1940:C 1935:T 1928:T 1925:( 1921:1 1900:γ 1886:C 1883:T 1878:T 1854:λ 1834:0 1822:C 1816:= 1810:C 1805:T 1772:C 1767:T 1760:T 1756:C 1751:= 1729:N 1711:B 1708:k 1693:B 1690:µ 1677:J 1675:( 1673:J 1663:g 1655:g 1636:0 1633:µ 1607:A 1603:N 1577:) 1574:1 1571:+ 1568:J 1565:( 1562:J 1557:2 1553:g 1547:A 1543:N 1533:B 1528:k 1524:3 1517:2 1511:B 1500:0 1489:= 1486:C 1465:C 1455:B 1445:H 1431:M 1417:χ 1389:T 1386:C 1381:= 1376:B 1370:0 1362:M 1356:= 1351:H 1348:M 1343:= 1323:C 1320:T 1316:T 1308:χ 1299:C 1296:T 1292:T 1286:C 1283:T 1278:T 1244:3 1240:5 1228:3 1226:O 1224:2 1202:2 1180:2 1167:2 1144:2 1131:2 1098:2 1085:2 1072:2 1059:2 1019:K 983:N 980:T 878:; 741:N 738:T 730:N 727:T 701:C 698:T 690:C 687:T 675:N 672:T 669:( 662:C 659:T 518:O 516:5 512:3 492:3 490:O 488:2 471:3 469:O 467:2 450:3 448:O 446:2 426:3 424:O 422:2 404:3 402:O 400:2 379:3 377:O 375:2 321:2 129:( 91:C 88:T 86:( 50:. 20:)

Index

Ferrorelectric transition

magnetic field

physics
materials science
permanent magnetic
induced magnetism
Pierre Curie
magnetic moment
angular momentum
spin
ferromagnetic
paramagnetic
Magnetic susceptibility
Curie–Weiss law
Curie's law
ferroelectricity
paraelectricity
order parameter
polarization
Iron
Cobalt
Nickel
Gadolinium
Dysprosium
Manganese bismuthide
Sb
Chromium(IV) oxide
As

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.