Knowledge

Emissivity

Source 📝

1362:" of a surface). Kirchhoff's law is rigorously applicable with regard to the spectral directional definitions of emissivity and absorptivity. The relationship explains why emissivities cannot exceed 1, since the largest absorptivity—corresponding to complete absorption of all incident light by a truly black object—is also 1. Mirror-like, metallic surfaces that reflect light will thus have low emissivities, since the reflected light isn't absorbed. A polished silver surface has an emissivity of about 0.02 near room temperature. Black soot absorbs thermal radiation very well; it has an emissivity as large as 0.97, and hence soot is a fair approximation to an ideal black body. 194: 1423: 1028:. The color photographs are taken using an infrared camera; the black and white photographs underneath are taken with an ordinary camera. All faces of the cube are at the same temperature of about 55 °C (131 °F). The face of the cube that has been painted (black or white paint has negligible impact) has a large emissivity, which is indicated by the reddish color in the infrared photograph. The polished face of the cube has a low emissivity indicated by the blue color, and the reflected image of the warm hand is clear. 110: 1496: 20: 936: 1010:. The apparatus compares the thermal radiation from a surface to be tested with the thermal radiation from a nearly ideal, black sample. The detectors are essentially black absorbers with very sensitive thermometers that record the detector's temperature rise when exposed to thermal radiation. For measuring room temperature emissivities, the detectors must absorb thermal radiation completely at infrared 1021: 538: 746: 1483:=0.65-0.99, with lowest values typically limited to the most barren desert areas. Emissivities of most surface regions are above 0.9 due to the dominant influence of water; including oceans, land vegetation, and snow/ice. Globally averaged estimates for the hemispheric emissivity of Earth's surface are in the vicinity of ε 3368:≈ 2.90×10 metre-kelvins. Room temperature is about 293 kelvins. Sunlight itself is thermal radiation originating from the hot surface of the Sun. The Sun's surface temperature of about 5800 kelvins corresponds well to the peak wavelength of sunlight, which is at the green wavelength of about 0.5×10 metres. See 384: 1635:
reports an outgoing thermal radiation flux (OLR) of 239 (237–242) W m and a surface thermal radiation flux (SLR) of 398 (395–400) W m, where the parenthesized amounts indicate the 5-95% confidence intervals as of 2015. These values indicate that the atmosphere (with clouds included) reduces
4362:
An open community-focused website & directory with resources related to spectral emissivity and emittance. On this site, the focus is on available data, references and links to resources related to spectral emissivity as it is measured & used in thermal radiation thermometry and thermography
1409:
Emittance of a surface can be measured directly or indirectly from the emitted energy from that surface. In the direct radiometric method, the emitted energy from the sample is measured directly using a spectroscope such as Fourier transform infrared spectroscopy (FTIR). In the indirect calorimetric
1365:
With the exception of bare, polished metals, the appearance of a surface to the eye is not a good guide to emissivities near room temperature. For example, white paint absorbs very little visible light. However, at an infrared wavelength of 10×10 metre, paint absorbs light very well, and has a high
1499:
A typical spectrum of infrared radiation transmittance through Earth's atmosphere. A 'window' can be seen between 8 and 14 μm that enables direct transmission of the most intense thermal emissions from Earth's surface. The remaining portion of the upwelling energy, as well as downwelling
1374:
Emittance (or emissive power) is the total amount of thermal energy emitted per unit area per unit time for all possible wavelengths. Emissivity of a body at a given temperature is the ratio of the total emissive power of a body to the total emissive power of a perfectly black body at that
931:{\displaystyle {\begin{aligned}\varepsilon _{\nu ,\Omega }&={\frac {L_{\mathrm {e} ,\Omega ,\nu }}{L_{\mathrm {e} ,\Omega ,\nu }^{\circ }}},\\\varepsilon _{\lambda ,\Omega }&={\frac {L_{\mathrm {e} ,\Omega ,\lambda }}{L_{\mathrm {e} ,\Omega ,\lambda }^{\circ }}},\end{aligned}}} 100:
Warm surfaces are usually cooled directly by air, but they also cool themselves by emitting thermal radiation. This second cooling mechanism is important for simple glass windows, which have emissivities close to the maximum possible value of 1.0. "Low-E windows" with transparent
1438:
The emissivity of a planet or other astronomical body is determined by the composition and structure of its outer skin. In this context, the "skin" of a planet generally includes both its semi-transparent atmosphere and its non-gaseous surface. The resulting
124:
is absorbed inside each tube by a selective surface. The surface absorbs sunlight nearly completely, but has a low thermal emissivity so that it loses very little heat. Ordinary black surfaces also absorb sunlight efficiently, but they emit thermal radiation
3208:
Passive daytime radiative cooling (PDRC) dissipates terrestrial heat to the extremely cold outer space without using any energy input or producing pollution. It has the potential to simultaneously alleviate the two major problems of energy crisis and global
184:
The planets are solar thermal collectors on a large scale. The temperature of a planet's surface is determined by the balance between the heat absorbed by the planet from sunlight, heat emitted from its core, and thermal radiation emitted back into space.
1543:
in accordance with extreme yet realistic local conditions. At the upper limit, dense low cloud structures (consisting of liquid/ice aerosols and saturated water vapor) close the infrared transmission windows, yielding near to black body conditions with
682: 533:{\displaystyle {\begin{aligned}\varepsilon _{\nu }&={\frac {M_{\mathrm {e} ,\nu }}{M_{\mathrm {e} ,\nu }^{\circ }}},\\\varepsilon _{\lambda }&={\frac {M_{\mathrm {e} ,\lambda }}{M_{\mathrm {e} ,\lambda }^{\circ }}},\end{aligned}}} 201:
picture of a cold beer can shows vastly different (and incorrect) temperature values depending on the surface material. Reflections (like on the blank end of the can and the countertop) make accurate measurements of reflective surfaces
1379:, the total energy radiated increases with temperature while the peak of the emission spectrum shifts to shorter wavelengths. The energy emitted at shorter wavelengths increases more rapidly with temperature. For example, an ideal 1455:. Emissivities for the atmosphere and surface components are often quantified separately, and validated against satellite- and terrestrial-based observations as well as laboratory measurements. These emissivities serve as input 217:
are instruments used to measure the temperature of an object by using its thermal radiation; no actual contact with the object is needed. The calibration of these instruments involves the emissivity of the surface that's being
320: 1600:
For many practical applications it may not be possible, economical or necessary to know all emissivity values locally. "Effective" or "bulk" values for an atmosphere or an entire planet may be used. These can be based upon
1706: 1450:
For Earth, equilibrium skin temperatures range near the freezing point of water, 260±50 K (-13±50 °C, 8±90 °F). The most energetic emissions are thus within a band spanning about 4-50 μm as governed by
171:
Daytime passive radiative coolers use the extremely cold temperature of outer space (~2.7 K) to emit heat and lower ambient temperatures while requiring zero energy input. These surfaces minimize the absorption of
72:
The surface of a perfect black body (with an emissivity of 1) emits thermal radiation at the rate of approximately 448 watts per square metre (W/m) at a room temperature of 25 °C (298 K; 77 °F).
1410:
method, the emitted energy from the sample is measured indirectly using a calorimeter. In addition to these two commonly applied methods, inexpensive emission measurement technique based on the principle of
1331:. This means that the absorptivity at the wavelengths typical of thermal radiation doesn't depend on the thickness of the material. Very thin materials emit less thermal radiation than thicker materials. 1829: 1747: 751: 389: 1924: 57:
The emissivity of a surface depends on its chemical composition and geometrical structure. Quantitatively, it is the ratio of the thermal radiation from a surface to the radiation from an
609: 1508:. Clouds, carbon dioxide, and other components make substantial additional contributions, especially where there are gaps in the water vapor absorption spectrum. Nitrogen ( 3447:"IP" refers to inch and pound units; a version of the handbook with metric units is also available. Emissivity is a simple number, and doesn't depend on the system of units. 1532:) - the primary atmospheric components - interact less significantly with thermal radiation in the infrared band. Direct measurement of Earths atmospheric emissivities (ε 105:
coatings emit less thermal radiation than ordinary windows. In winter, these coatings can halve the rate at which a window loses heat compared to an uncoated glass window.
3885:
Mendoza, Victor M..; Vallanueva, Elba E.; Garduno, Rene; Sanchez-Meneses, Oscar (31 January 2017). "Atmospheric emissivity with clear sky computed by E-Trans/HITRAN".
986:
Hemispherical emissivity can also be expressed as a weighted average of the directional spectral emissivities as described in textbooks on "radiative heat transfer".
4372:
Resources, Tools and Basic Information for Engineering and Design of Technical Applications. This site offers an extensive list of other material not covered above.
1366:
emissivity. Similarly, pure water absorbs very little visible light, but water is nonetheless a strong infrared absorber and has a correspondingly high emissivity.
1843:
The concepts of emissivity and absorptivity, as properties of matter and radiation, appeared in the late-eighteenth thru mid-nineteenth century writings of
1574:
when atmospheric humidity is low. Researchers have also evaluated the contribution of differing cloud types to atmospheric absorptivity and emissivity.
266: 3462: 54:
radiation, which is not visible to human eyes. A portion of the thermal radiation from very hot objects (see photograph) is easily visible to the eye.
1931: 3685:"Radiation heat transfer during hypersonic flight: A review of emissivity measurement and enhancement approaches of ultra-high temperature ceramics" 1639: 1548:≈1. At a lower limit, clear sky (cloud-free) conditions promote the largest opening of transmission windows. The more uniform concentration of 4231:"Ableitung des Stefan'schen Gesetzes, betreffend die Abhängigkeit der Wärmestrahlung von der Temperatur aus der electromagnetischen Lichttheorie" 155:
aircraft, high-emissivity coatings (HECs), with emissivity values near 0.9, are applied on the surface of insulating ceramics. This facilitates
3321: 1636:
Earth's overall emissivity, relative to its surface emissions, by a factor of 239/398 ≈ 0.60. In other words, emissions to space are given by
3771: 4233:[Derivation of Stefan's law, concerning the dependency of heat radiation on temperature, from the electromagnetic theory of light]. 1891:
applied the recent theoretical developments to his 1896 investigation of Earth's surface temperatures as calculated from the planet's
176:
to lessen heat gain in order to maximize the emission of LWIR thermal radiation. It has been proposed as a solution to global warming.
1017:
Emissivity measurements for many surfaces are compiled in many handbooks and texts. Some of these are listed in the following table.
3843:"Cloud Effective Emissivity Retrievals Using Combined Ground-Based Infrared Cloud Measuring Instrument and Ceilometer Observations" 3514:
Höpfner, M.; Milz, M.; Buehler, S.; Orphall, J.; Stiller, G. (24 May 2012). "The natural greenhouse effect of atmospheric oxygen (O
1864: 1752: 1349: 3573: 2985: 1426:
A typical spectrum of Earth's total outgoing (upwelling) thermal radiation flux under clear-sky conditions, as simulated with
139:
that have very low emissivities. These collectors waste very little of the solar energy through emission of thermal radiation.
4077: 3440: 3221: 2886: 2833: 117: 242:, which considers emissions as totaled over all wavelengths, directions, and polarizations, given a particular temperature. 3377: 1711: 1582: 1358:'s 1859 law of thermal radiation) that equates the emissivity of a surface with its absorption of incident radiation (the " 1577:
These days, the detailed processes and complex properties of radiation transport through the atmosphere are evaluated by
3598: 1536:) are more challenging than for land surfaces due in part to the atmosphere's multi-layered and more dynamic structure. 1383:
in thermal equilibrium at 1,273 K (1,000 °C; 1,832 °F), will emit 97% of its energy at wavelengths below
3755: 3054: 3025: 1456: 1447:
between all other incoming plus internal sources of energy versus the outgoing flow regulates planetary temperatures.
3662: 3416: 3385: 3290: 3265: 2806: 2714: 166: 1500:
radiation back to the surface, undergoes absorption and emission by the various atmospheric components as indicated.
4106: 1917: 1887:, was thus implied and utilized in subsequent evaluations of the radiative behavior of grey bodies. For example, 4188:"Ueber das Verhältniss zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme and Licht" 4353: 4062: 4037: 4021: 3996: 3954: 3929: 135:
Similarly, solar heat collectors lose heat by emitting thermal radiation. Advanced solar collectors incorporate
2849:
Narimanov, Evgenii E.; Smolyaninov, Igor I. (2012). "Beyond Stefan–Boltzmann Law: Thermal Hyper-Conductivity".
1393:
The term emissivity is generally used to describe a simple, homogeneous surface such as silver. Similar terms,
4192: 3815: 677:{\displaystyle \varepsilon _{\Omega }={\frac {L_{\mathrm {e} ,\Omega }}{L_{\mathrm {e} ,\Omega }^{\circ }}},} 69:
is used if one is concerned with particular wavelengths of thermal radiation.) The ratio varies from 0 to 1.
3458: 1844: 1334:
Most emissitivies in the chart above were recorded at room temperature, 300 K (27 °C; 80 °F).
4385: 4115: 4230: 4170: 3076: 1552:
in combination with water vapor pressures of 0.25-20 mbar then yield minimum values in the range of ε
1014:
near 10×10 metre. Visible light has a wavelength range of about 0.4–0.7×10 metre from violet to deep red.
159:
and protection of the underlying structure and is an alternative to ablative coatings, used in single-use
3624:"ASTM C835 - 06(2013)e1: Standard Test Method for Total Hemispherical Emittance of Surfaces up to 1400°C" 3077:"Improved oxidation resistance of high emissivity coatings on fibrous ceramic for reusable space systems" 2729: 1471:) have been inferred with satellite-based instruments by directly observing surface thermal emissions at 1440: 584:° is the spectral radiant exitance in wavelength of a black body at the same temperature as that surface. 566:° is the spectral radiant exitance in frequency of a black body at the same temperature as that surface; 4367: 3342: 2744: 1614: 1443:
to space typically function as the primary cooling mechanism for these otherwise isolated bodies. The
1411: 1401:, are used to describe thermal radiation measurements on complex surfaces such as insulation products. 4081: 3225: 2996: 2794: 1626: 1578: 1444: 47: 2869: 2764: 2734: 1549: 179: 62: 3341:
For a truly black object, the spectrum of its thermal radiation peaks at the wavelength given by
2647: 2612: 2572: 2542: 2258:, divided by the spectral radiance incident onto that surface. This should not be confused with " 1848: 1261: 982:° is the spectral radiance in wavelength of a black body at the same temperature as that surface. 130: 964:° is the spectral radiance in frequency of a black body at the same temperature as that surface; 4395: 3974: 3819: 3456:
The visible color of an anodized aluminum surface does not strongly affect its emissivity. See
2864: 1880: 232: 4130: 3648: 3042: 2798: 3402: 3371: 3251: 3011: 1892: 1832: 1279: 193: 3435:. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2009. 76:
Objects have emissivities less than 1.0, and emit radiation at correspondingly lower rates.
4321: 4242: 4201: 4049: 4008: 3941: 3894: 3854: 3724: 3531: 3485: 3408: 3148: 3137:"Global Radiative Sky Cooling Potential Adjusted for Population Density and Cooling Demand" 3098: 2933: 2911: 2709: 1884: 1606: 1422: 1556:=0.55-0.8 (with ε=0.35-0.75 for a simulated water-vapor-only atmosphere). Carbon dioxide ( 8: 4390: 2993:
Windows and Building Envelope Research and Development: Roadmap for Emerging Technologies
1860: 1504:
Water also dominates the planet's atmospheric emissivity and absorptivity in the form of
1286: 113: 4325: 4246: 4205: 4118:
of the Intergovernmental Panel on Climate Change. Cambridge University Press (In Press).
4053: 4012: 3945: 3898: 3858: 3535: 3489: 3152: 3102: 2937: 2208:, divided by the radiance incident onto that surface. This should not be confused with " 4312: 4105:(2021). Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S. L.; et al. (eds.). 3627: 3555: 3314:"Thermal insulation — Heat transfer by radiation — Physical quantities and definitions" 3199: 3114: 3088: 2967: 2923: 2892: 2854: 1476: 3476:
Trogler, William C. (1995). "The Environmental Chemistry of Trace Atmospheric Gases".
1903:, thus clarifying the emissivity and absorptivity concepts at individual wavelengths. 4078:"ACS Climate Science Toolkit - Atmospheric Warming - A Single-Layer Atmosphere Model" 3910: 3751: 3706: 3658: 3580: 3559: 3547: 3436: 3412: 3381: 3286: 3261: 3203: 3178:"Passive daytime radiative cooling: Fundamentals, material designs, and applications" 3118: 3050: 3021: 2959: 2882: 2829: 2802: 2789:
The Nature of Science: An A-Z Guide to the Laws and Principles Governing Our Universe
2787: 1359: 156: 136: 95: 43: 31: 3970: 2971: 2896: 4329: 4283: 4250: 4209: 4057: 4016: 3949: 3906: 3902: 3862: 3696: 3654: 3539: 3493: 3189: 3156: 3106: 2949: 2941: 2874: 1888: 1876: 1856: 1355: 1272: 1083: 1025: 999: 554: 336: 315:{\displaystyle \varepsilon ={\frac {M_{\mathrm {e} }}{M_{\mathrm {e} }^{\circ }}},} 4153: 3588:
Table of emissivities provided by a company; no source for these data is provided.
348:° is the radiant exitance of a black body at the same temperature as that surface. 147:
For the protection of structures from high surface temperatures, such as reusable
4272:"On the influence of carbonic acid in the air upon the temperature of the ground" 3110: 2823: 2719: 1900: 1852: 1452: 1376: 173: 160: 66: 3772:"ASTER global emissivity database: 100 times more detailed than its predecessor" 109: 2945: 1859:
published a mathematical description of their relationship under conditions of
1602: 1558: 1043: 102: 4288: 2173:, divided by that received by that surface. This should not be confused with " 2133:, divided by that received by that surface. This should not be confused with " 1701:{\displaystyle \mathrm {OLR} =\epsilon _{\mathrm {eff} }\,\sigma \,T_{se}^{4}} 1324:
These emissivities are the total hemispherical emissivities from the surfaces.
4379: 4334: 4307: 4255: 4214: 4187: 3914: 3710: 3602: 3551: 2878: 2499: 2468: 2432: 2406: 1328: 3601:. evitherm Society - Virtual Institute for Thermal Metrology. Archived from 1879:
from fundamental statistical principles. Emissivity, defined as a further
1609:
utilized by a particular model. For example, an effective global value of ε
2963: 1872: 1868: 1431: 214: 198: 80: 3313: 3161: 3136: 1605:
observations (from the ground or outer space) or defined according to the
710:° is the radiance of a black body at the same temperature as that surface. 3623: 3543: 2739: 2724: 2360: 2329: 2293: 2267: 2217: 2182: 2142: 2112: 1505: 1495: 142: 3176:
Chen, Meijie; Pang, Dan; Chen, Xingyu; Yan, Hongjie; Yang, Yuan (2022).
2954: 42:
of the surface of a material is its effectiveness in emitting energy as
4303: 3884: 3867: 3842: 3701: 3684: 3194: 3177: 2259: 2209: 2174: 2134: 1896: 1594: 1386: 1275: 1011: 1003: 228: 227:
In its most general form, emissivity can be specified for a particular
152: 148: 58: 23: 19: 3497: 1867:). By 1884 the emissive power of a perfect blackbody was inferred by 1136: 3257: 3017: 2853:. OSA Technical Digest. Optical Society of America. pp. QM2E.1. 1380: 1168: 1053: 1007: 210: 4357: 4271: 3683:
Saad, Abdullah A.; Martinez, Carlos; Trice, Rodney W. (2023-02-13).
3650:
Green Building: Principles and Practices in Residential Construction
3793: 3093: 1103: 1057: 952: 698: 121: 51: 2928: 2859: 83:, and other nanostructures may have an emissivity greater than 1. 1586: 1427: 1213: 4155:
An Experimental Inquiry into the Nature and Propagation of Heat
3841:
Liu, Lei; Zhang, Ting; Wu, Yi; Niu, Zhencong; Wang, Qi (2018).
2780: 2704: 1590: 1224: 1178: 1125: 1114: 575:
is the spectral radiant exitance in wavelength of that surface;
50:
that most commonly includes both visible radiation (light) and
1749:
is the effective emissivity of Earth as viewed from space and
1539:
Upper and lower limits have been measured and calculated for ε
1020: 4038:"Simple approximation of infrared emissivity of water clouds" 1472: 1308: 1093: 4102: 4063:
10.1175/1520-0469(1982)039<0171:SAFIEO>2.0.CO;2
4022:
10.1175/1520-0469(1976)033<0287:OOCIEE>2.0.CO;2
3955:
10.1175/1520-0450(1972)011<0349:EAEUCS>2.0.CO;2
1824:{\displaystyle T_{\mathrm {se} }\equiv \left^{1/4}\approx } 1632: 1327:
The values of the emissivities apply to materials that are
1251: 1157: 1002:
in conjunction with a thermal radiation detector such as a
27: 3816:"Remote Sensing: Absorption Bands and Atmospheric Windows" 3689:
International Journal of Ceramic Engineering & Science
3135:
Aili, Ablimit; Yin, Xiaobo; Yang, Ronggui (October 2021).
2692:
per unit length, divided by that received by that volume.
2642:
per unit length, divided by that received by that volume.
2607:
per unit length, divided by that received by that volume.
2567:
per unit length, divided by that received by that volume.
1613:≈0.78 has been estimated from application of an idealized 238:
However, the most commonly used form of emissivity is the
189:
is determined by the nature of its surface and atmosphere.
4308:"Über das Gesetz der Energieverteilung im Normalspektrum" 3513: 1620: 1459:
within some simpler meteorlogic and climatologic models.
1147: 4356:. Southampton, PA: Temperatures.com, Inc. Archived from 1570:) and other greenhouse gases contribute about ε=0.2 to ε 79:
However, wavelength- and subwavelength-scale particles,
3750:(2 ed.). Madison, Wisc.: Sundog Publ. p. 68. 973:
is the spectral radiance in wavelength of that surface;
16:
Capacity of an object to radiate electromagnetic energy
245:
Some specific forms of emissivity are detailed below.
3997:"Observations of cloud infrared effective emissivity" 2825:
Absorption and scattering of light by small particles
2767:
is that the rate of emission of thermal radiation is
1755: 1742:{\displaystyle \epsilon _{\mathrm {eff} }\approx 0.6} 1714: 1642: 749: 612: 387: 269: 91:
Emissivities are important in a variety of contexts:
3930:"Effective atmospheric emissivity under clear skies" 2848: 352: 1597:are thereby simulated through both space and time. 4368:"Emissivity Coefficients of some common Materials" 2786: 1823: 1741: 1700: 989: 930: 714: 676: 532: 314: 3682: 2909: 1906: 1434:are also shown for a range of Earth temperatures. 186: 4377: 4269: 3373:The Earth's Atmosphere: Its Physics and Dynamics 3308: 3306: 3304: 3302: 4108:Climate Change 2021: The Physical Science Basis 4035: 3433:2009 ASHRAE Handbook: Fundamentals - IP Edition 3253:Thermal Radiation Heat Transfer, Fourth Edition 3175: 1417: 362:spectral hemispherical emissivity in wavelength 4036:Chylek, Petr; Ramaswamy, V. (1 January 1982). 2912:"Heat radiation from long cylindrical objects" 2573:Spectral hemispherical attenuation coefficient 358:Spectral hemispherical emissivity in frequency 30:when it is hot enough to emit plainly visible 4276:Philosophical Magazine and Journal of Science 3968: 3840: 3678: 3676: 3674: 3646: 3299: 2910:Golyk, V. A.; Krüger, M.; Kardar, M. (2012). 2822:Bohren, Craig F.; Huffman, Donald R. (1998). 2821: 1925: 1875:'s experimental measurements, and derived by 1338: 998:can be measured using simple devices such as 724:spectral directional emissivity in wavelength 4101: 3927: 3280: 2851:Conference on Lasers and Electro-Optics 2012 2648:Spectral directional attenuation coefficient 2537:, divided by that received by that surface. 2494:, divided by that received by that surface. 2463:, divided by that received by that surface. 2427:, divided by that received by that surface. 2401:, divided by that received by that surface. 2355:, divided by that received by that surface. 2324:, divided by that received by that surface. 2288:, divided by that received by that surface. 1831:289 K (16 °C; 61 °F) is the 1627:Climate model § Zero-dimensional models 1615:single-layer-atmosphere energy-balance model 1479:spanning 8-13 μm. Values range about ε 720:Spectral directional emissivity in frequency 3928:Staley, D.O.; Jurica, G.M. (1 March 1972). 3134: 3040: 3009: 1404: 248: 222: 4095: 3774:. NASA Earth Observatory. 17 November 2014 3671: 3509: 3507: 2775:= 5.67×10 W/m·K, and the temperature 1932: 1918: 4333: 4287: 4254: 4228: 4213: 4185: 4114:. Contribution of Working Group I to the 4061: 4020: 3953: 3880: 3878: 3866: 3727:. NASA Earth Observatory. 14 January 2009 3700: 3404:Thermal Radiative Transfer and Properties 3245: 3243: 3241: 3193: 3160: 3092: 3041:Fricke, Jochen; Borst, Walter L. (2013). 3010:Fricke, Jochen; Borst, Walter L. (2013). 2953: 2927: 2868: 2858: 2107:at the same temperature as that surface. 2057:at the same temperature as that surface. 2022:at the same temperature as that surface. 1986:at the same temperature as that surface. 1679: 1675: 588: 86: 3469: 3400: 3281:Siegel, Robert; Howell, John R. (1992). 2986:"The Low-E Window R&D Success Story" 2903: 1494: 1421: 1019: 192: 108: 61:at the same temperature as given by the 18: 4168: 4128: 3748:A first course in atmospheric radiation 3504: 3475: 197:Due to differences in emissivity, this 4378: 4302: 4151: 3875: 3794:"Joint Emissivity Database Initiative" 3249: 3238: 3130: 3128: 3070: 3068: 3066: 3043:"9. Solar Space and Hot Water Heating" 3034: 2978: 2784: 1901:generalized law of blackbody radiation 1621:Effective emissivity due to atmosphere 3745: 3566: 3378:Springer Science & Business Media 3003: 2815: 2543:Hemispherical attenuation coefficient 1354:There is a fundamental relationship ( 1037: 3369: 3285:(3 ed.). Taylor & Francis. 3274: 3074: 2433:Spectral hemispherical transmittance 1865:Kirchhoff's law of thermal radiation 1350:Kirchhoff's law of thermal radiation 4354:"Spectral emissivity and emittance" 3995:Cox, Stephen K. (1 February 1976). 3994: 3934:Applied Meteorology and Climatology 3725:"Climate and Earth's Energy Budget" 3647:Kruger, Abe; Seville, Carl (2012). 3461:. Electro Optical Industries, Inc. 3214: 3125: 3075:Shao, Gaofeng; et al. (2019). 3063: 2613:Directional attenuation coefficient 1189:Nitrogen or Oxygen gas layer, pure 13: 4346: 3169: 2500:Spectral directional transmittance 2294:Spectral hemispherical reflectance 2143:Spectral hemispherical absorptance 1787: 1784: 1781: 1765: 1762: 1727: 1724: 1721: 1669: 1666: 1663: 1650: 1647: 1644: 903: 896: 879: 872: 852: 816: 809: 792: 785: 765: 659: 652: 641: 634: 618: 504: 486: 435: 417: 296: 284: 14: 4407: 2715:Passive daytime radiative cooling 1992:Spectral hemispherical emissivity 1550:long-lived trace greenhouse gases 353:Spectral hemispherical emissivity 167:Passive daytime radiative cooling 4131:"Mémoire sur l'équilibre du feu" 3796:. NASA Jet Propulsion Laboratory 3465:from the original on 2012-09-19. 2525: 2482: 2451: 2415: 2389: 2361:Spectral directional reflectance 2343: 2312: 2276: 2246: 2218:Spectral directional absorptance 2196: 2161: 2121: 2091: 2041: 2010: 1974: 4296: 4263: 4222: 4179: 4162: 4145: 4122: 4070: 4029: 3988: 3962: 3921: 3834: 3808: 3786: 3764: 3739: 3717: 3640: 3616: 3591: 3450: 3425: 3394: 3364:is in kelvins and the constant 3335: 3283:Thermal Radiation Heat Transfer 3047:Essentials of Energy Technology 3013:Essentials of Energy Technology 2063:Spectral directional emissivity 2053:, divided by that emitted by a 1467:Earth's surface emissivities (ε 990:Emissivities of common surfaces 740:, respectively, are defined as 715:Spectral directional emissivity 378:, respectively, are defined as 118:evacuated glass tube collectors 4172:An Elementary Treatise on Heat 4129:Prévost, Pierre (April 1791). 3969:Graham, Steve (1 March 1999). 3907:10.1016/j.atmosenv.2017.01.048 2842: 2757: 1958: 1907:Other radiometric coefficients 1343: 240:hemispherical total emissivity 1: 4235:Annalen der Physik und Chemie 4193:Annalen der Physik und Chemie 3478:Journal of Chemical Education 2750: 1490: 955:in frequency of that surface; 557:in frequency of that surface; 4135:Observations Sur la Physique 3524:Geophysical Research Letters 3111:10.1016/j.corsci.2018.11.006 1895:with all of space. By 1900 1593:. Emission, absorption, and 1418:Emissivities of planet Earth 1369: 1067:Aluminium, smooth, polished 1024:Photographs of an aluminium 7: 3574:"Table of Total Emissivity" 3401:Brewster, M. Quinn (1992). 2999:. February 2014. p. 5. 2828:. Wiley. pp. 123–126. 2698: 2407:Hemispherical transmittance 1075:Aluminium, rough, oxidized 10: 4412: 4229:Boltzmann, Ludwig (1884). 4186:Kirchhoff, Gustav (1860). 4175:. Oxford, Clarendon Press. 3049:. Wiley-VCH. p. 249. 2946:10.1103/PhysRevE.85.046603 1838: 1624: 1579:general circulation models 1475:through a less obstructed 1462: 1347: 1339:Closely related properties 4370:. engineeringtoolbox.com. 4289:10.1080/14786449608620846 4270:Svante Arrhenius (1896). 4169:Stewart, Balfour (1866). 4082:American Chemical Society 3459:"Emissivity of Materials" 3226:American Chemical Society 2997:U.S. Department of Energy 2795:Houghton Mifflin Harcourt 2785:Trefil, James S. (2003). 2469:Directional transmittance 2268:Hemispherical reflectance 2113:Hemispherical absorptance 1949: 1946: 1943: 1583:radiation transport codes 48:electromagnetic radiation 4335:10.1002/andp.19013090310 4256:10.1002/andp.18842580616 4215:10.1002/andp.18601850205 3746:Petty, Grant W. (2006). 3370:Saha, Kshudiram (2008). 3360:, where the temperature 2879:10.1364/QELS.2012.QM2E.1 1966:Hemispherical emissivity 1405:Measurement of Emittance 1205:Paper, roofing or white 254:Hemispherical emissivity 249:Hemispherical emissivity 223:Mathematical definitions 207:Temperature measurements 4158:. Edinburgh: J. Mawman. 4116:Sixth Assessment Report 3887:Atmospheric Environment 3250:Siegel, Robert (2001). 2745:Wien's displacement law 2730:Sakuma–Hattori equation 2330:Directional reflectance 2183:Directional absorptance 2103:, divided by that of a 2018:, divided by that of a 2014:Spectral exitance of a 1982:, divided by that of a 1913:Radiometry coefficients 1375:temperature. Following 1262:Polytetrafluoroethylene 1197:Paint, including white 46:. Thermal radiation is 3975:NASA Earth Observatory 3971:"Clouds and Radiation" 3820:NASA Earth Observatory 2595:Spectral radiant flux 2028:Directional emissivity 1978:Radiant exitance of a 1899:empirically derived a 1881:proportionality factor 1825: 1743: 1702: 1585:and databases such as 1501: 1435: 1029: 932: 726:of a surface, denoted 678: 596:of a surface, denoted 594:Directional emissivity 589:Directional emissivity 534: 364:of a surface, denoted 316: 256:of a surface, denoted 203: 187:Emissivity of a planet 180:Planetary temperatures 126: 87:Practical applications 35: 4152:Leslie, John (1804). 3599:"Influencing factors" 3409:John Wiley & Sons 3222:"Climate Sensitivity" 3162:10.3390/atmos12111379 1893:radiative equilibrium 1855:and others. In 1860, 1833:effective temperature 1826: 1744: 1703: 1498: 1425: 1023: 933: 679: 535: 317: 196: 131:Solar heat collectors 112: 65:. (A comparison with 22: 4042:Atmospheric Sciences 4001:Atmospheric Sciences 3544:10.1029/2012GL051409 2765:Stefan–Boltzmann law 2735:Stefan–Boltzmann law 2710:Black-body radiation 1885:Stefan-Boltzmann law 1753: 1712: 1640: 747: 610: 385: 267: 63:Stefan–Boltzmann law 4386:Physical quantities 4326:1901AnP...309..553P 4247:1884AnP...258..291B 4206:1860AnP...185..275K 4054:1982JAtS...39..171C 4013:1976JAtS...33..287C 3946:1972JApMe..11..349S 3899:2017AtmEn.155..174M 3859:2018RemS...10.2033L 3822:. 17 September 1999 3536:2012GeoRL..3910706H 3490:1995JChEd..72..973T 3153:2021Atmos..12.1379A 3103:2019Corro.146..233S 2938:2012PhRvE..85d6603G 2260:spectral absorbance 2175:spectral absorbance 1940: 1861:thermal equilibrium 1697: 1441:radiative emissions 1412:two-color pyrometry 918: 831: 668: 520: 451: 306: 114:Solar water heating 59:ideal black surface 4363:(thermal imaging). 4313:Annalen der Physik 3868:10.3390/rs10122033 3702:10.1002/ces2.10171 3628:ASTM International 3195:10.1002/eom2.12153 2680:Spectral radiance 2529:Spectral radiance 2393:Spectral radiance 2250:Spectral radiance 2095:Spectral radiance 1911: 1821: 1739: 1698: 1680: 1502: 1477:atmospheric window 1436: 1139:, smooth uncoated 1030: 928: 926: 890: 803: 674: 646: 530: 528: 498: 429: 312: 290: 204: 137:selective surfaces 127: 36: 4360:on 24 April 2017. 3518:) and nitrogen (N 3498:10.1021/ed072p973 3442:978-1-933742-56-4 3081:Corrosion Science 2888:978-1-55752-943-5 2835:978-0-471-29340-8 2696: 2695: 1399:thermal emittance 1318: 1317: 1235:Silver, oxidized 919: 832: 669: 521: 452: 307: 231:, direction, and 157:radiative cooling 143:Thermal shielding 96:Insulated windows 44:thermal radiation 32:thermal radiation 4403: 4371: 4361: 4340: 4339: 4337: 4300: 4294: 4293: 4291: 4282:(251): 237–276. 4267: 4261: 4260: 4258: 4226: 4220: 4219: 4217: 4183: 4177: 4176: 4166: 4160: 4159: 4149: 4143: 4142: 4126: 4120: 4119: 4113: 4099: 4093: 4092: 4090: 4088: 4074: 4068: 4067: 4065: 4033: 4027: 4026: 4024: 3992: 3986: 3985: 3983: 3981: 3966: 3960: 3959: 3957: 3925: 3919: 3918: 3882: 3873: 3872: 3870: 3838: 3832: 3831: 3829: 3827: 3812: 3806: 3805: 3803: 3801: 3790: 3784: 3783: 3781: 3779: 3768: 3762: 3761: 3743: 3737: 3736: 3734: 3732: 3721: 3715: 3714: 3704: 3680: 3669: 3668: 3655:Cengage Learning 3644: 3638: 3637: 3635: 3634: 3620: 3614: 3613: 3611: 3610: 3595: 3589: 3587: 3585: 3579:. Archived from 3578: 3570: 3564: 3563: 3511: 3502: 3501: 3473: 3467: 3466: 3454: 3448: 3446: 3429: 3423: 3422: 3398: 3392: 3391: 3339: 3333: 3332: 3330: 3329: 3310: 3297: 3296: 3278: 3272: 3271: 3247: 3236: 3235: 3233: 3232: 3218: 3212: 3211: 3197: 3173: 3167: 3166: 3164: 3132: 3123: 3122: 3096: 3072: 3061: 3060: 3038: 3032: 3031: 3007: 3001: 3000: 2990: 2982: 2976: 2975: 2957: 2931: 2907: 2901: 2900: 2872: 2862: 2846: 2840: 2839: 2819: 2813: 2812: 2792: 2761: 2674: 2662: 2624: 2589: 2582: 2549: 2523: 2511: 2480: 2449: 2442: 2413: 2387: 2375: 2341: 2310: 2303: 2274: 2244: 2232: 2194: 2159: 2152: 2119: 2089: 2077: 2039: 2008: 2001: 1972: 1960: 1941: 1934: 1927: 1920: 1910: 1889:Svante Arrhenius 1877:Ludwig Boltzmann 1857:Gustav Kirchhoff 1835:of the surface. 1830: 1828: 1827: 1822: 1817: 1816: 1812: 1803: 1799: 1795: 1790: 1770: 1769: 1768: 1748: 1746: 1745: 1740: 1732: 1731: 1730: 1707: 1705: 1704: 1699: 1696: 1691: 1674: 1673: 1672: 1653: 1569: 1567: 1566: 1531: 1530: 1529: 1519: 1518: 1517: 1389: 1356:Gustav Kirchhoff 1273:Transition metal 1032: 1031: 951:is the spectral 937: 935: 934: 929: 927: 920: 917: 912: 899: 889: 888: 875: 865: 856: 855: 833: 830: 825: 812: 802: 801: 788: 778: 769: 768: 701:of that surface; 683: 681: 680: 675: 670: 667: 662: 655: 645: 644: 637: 627: 622: 621: 603:, is defined as 555:radiant exitance 553:is the spectral 539: 537: 536: 531: 529: 522: 519: 514: 507: 497: 496: 489: 479: 470: 469: 453: 450: 445: 438: 428: 427: 420: 410: 401: 400: 339:of that surface; 337:radiant exitance 321: 319: 318: 313: 308: 305: 300: 299: 289: 288: 287: 277: 260:, is defined as 215:infrared cameras 161:reentry capsules 116:system based on 4411: 4410: 4406: 4405: 4404: 4402: 4401: 4400: 4376: 4375: 4366: 4352: 4349: 4347:Further reading 4344: 4343: 4301: 4297: 4268: 4264: 4227: 4223: 4184: 4180: 4167: 4163: 4150: 4146: 4127: 4123: 4111: 4100: 4096: 4086: 4084: 4076: 4075: 4071: 4034: 4030: 3993: 3989: 3979: 3977: 3967: 3963: 3926: 3922: 3883: 3876: 3839: 3835: 3825: 3823: 3814: 3813: 3809: 3799: 3797: 3792: 3791: 3787: 3777: 3775: 3770: 3769: 3765: 3758: 3744: 3740: 3730: 3728: 3723: 3722: 3718: 3681: 3672: 3665: 3657:. p. 198. 3645: 3641: 3632: 3630: 3622: 3621: 3617: 3608: 3606: 3597: 3596: 3592: 3583: 3576: 3572: 3571: 3567: 3521: 3517: 3512: 3505: 3474: 3470: 3457: 3455: 3451: 3443: 3431: 3430: 3426: 3419: 3399: 3395: 3388: 3351: 3340: 3336: 3327: 3325: 3324:catalogue. 1989 3312: 3311: 3300: 3293: 3279: 3275: 3268: 3248: 3239: 3230: 3228: 3220: 3219: 3215: 3174: 3170: 3133: 3126: 3073: 3064: 3057: 3039: 3035: 3028: 3008: 3004: 2988: 2984: 2983: 2979: 2908: 2904: 2889: 2847: 2843: 2836: 2820: 2816: 2809: 2762: 2758: 2753: 2720:Radiant barrier 2701: 2673: 2664: 2663: 2661: 2652: 2623: 2617: 2588: 2584: 2583: 2581: 2577: 2547: 2522: 2513: 2512: 2510: 2504: 2479: 2473: 2448: 2444: 2443: 2441: 2437: 2411: 2386: 2377: 2376: 2374: 2365: 2340: 2334: 2309: 2305: 2304: 2302: 2298: 2272: 2243: 2234: 2233: 2231: 2222: 2193: 2187: 2158: 2154: 2153: 2151: 2147: 2117: 2088: 2079: 2078: 2076: 2067: 2038: 2032: 2007: 2003: 2002: 2000: 1996: 1970: 1939: 1938: 1909: 1853:Balfour Stewart 1841: 1808: 1804: 1791: 1780: 1779: 1775: 1774: 1761: 1760: 1756: 1754: 1751: 1750: 1720: 1719: 1715: 1713: 1710: 1709: 1692: 1684: 1662: 1661: 1657: 1643: 1641: 1638: 1637: 1629: 1623: 1612: 1607:simplifications 1573: 1565: 1562: 1561: 1560: 1557: 1555: 1547: 1542: 1535: 1528: 1525: 1524: 1523: 1521: 1516: 1513: 1512: 1511: 1509: 1493: 1486: 1482: 1470: 1465: 1420: 1407: 1384: 1372: 1352: 1346: 1341: 1329:optically thick 1290: 1283: 992: 981: 972: 963: 950: 925: 924: 913: 895: 894: 871: 870: 866: 864: 857: 845: 841: 838: 837: 826: 808: 807: 784: 783: 779: 777: 770: 758: 754: 750: 748: 745: 744: 739: 732: 717: 709: 696: 663: 651: 650: 633: 632: 628: 626: 617: 613: 611: 608: 607: 602: 591: 583: 574: 565: 552: 527: 526: 515: 503: 502: 485: 484: 480: 478: 471: 465: 461: 458: 457: 446: 434: 433: 416: 415: 411: 409: 402: 396: 392: 388: 386: 383: 382: 377: 370: 355: 347: 334: 301: 295: 294: 283: 282: 278: 276: 268: 265: 264: 251: 225: 174:solar radiation 89: 17: 12: 11: 5: 4409: 4399: 4398: 4393: 4388: 4374: 4373: 4364: 4348: 4345: 4342: 4341: 4320:(3): 553–563. 4295: 4262: 4241:(6): 291–294. 4221: 4200:(2): 275–301. 4178: 4161: 4144: 4121: 4094: 4069: 4048:(1): 171–177. 4028: 4007:(2): 287–289. 3987: 3961: 3940:(2): 349–356. 3920: 3874: 3853:(2033): 2033. 3847:Remote Sensing 3833: 3807: 3785: 3763: 3757:978-0972903318 3756: 3738: 3716: 3670: 3663: 3639: 3615: 3590: 3586:on 2009-07-11. 3565: 3519: 3515: 3503: 3468: 3449: 3441: 3424: 3417: 3411:. p. 56. 3393: 3386: 3380:. p. 84. 3349: 3334: 3298: 3291: 3273: 3266: 3260:. p. 41. 3237: 3213: 3168: 3124: 3062: 3056:978-3527334162 3055: 3033: 3027:978-3527334162 3026: 3020:. p. 37. 3002: 2977: 2902: 2887: 2870:10.1.1.764.846 2841: 2834: 2814: 2807: 2755: 2754: 2752: 2749: 2748: 2747: 2742: 2737: 2732: 2727: 2722: 2717: 2712: 2707: 2700: 2697: 2694: 2693: 2678: 2675: 2668: 2656: 2650: 2644: 2643: 2628: 2625: 2621: 2615: 2609: 2608: 2593: 2590: 2586: 2579: 2575: 2569: 2568: 2553: 2550: 2545: 2539: 2538: 2527: 2524: 2517: 2508: 2502: 2496: 2495: 2484: 2481: 2477: 2471: 2465: 2464: 2455:Spectral flux 2453: 2450: 2446: 2439: 2435: 2429: 2428: 2417: 2414: 2409: 2403: 2402: 2391: 2388: 2381: 2369: 2363: 2357: 2356: 2345: 2342: 2338: 2332: 2326: 2325: 2316:Spectral flux 2314: 2311: 2307: 2300: 2296: 2290: 2289: 2278: 2275: 2270: 2264: 2263: 2248: 2245: 2238: 2226: 2220: 2214: 2213: 2198: 2195: 2191: 2185: 2179: 2178: 2165:Spectral flux 2163: 2160: 2156: 2149: 2145: 2139: 2138: 2123: 2120: 2115: 2109: 2108: 2093: 2090: 2083: 2071: 2065: 2059: 2058: 2043: 2040: 2036: 2030: 2024: 2023: 2012: 2009: 2005: 1998: 1994: 1988: 1987: 1976: 1973: 1968: 1962: 1961: 1956: 1952: 1951: 1948: 1945: 1937: 1936: 1929: 1922: 1914: 1912: 1908: 1905: 1845:Pierre Prévost 1840: 1837: 1820: 1815: 1811: 1807: 1802: 1798: 1794: 1789: 1786: 1783: 1778: 1773: 1767: 1764: 1759: 1738: 1735: 1729: 1726: 1723: 1718: 1695: 1690: 1687: 1683: 1678: 1671: 1668: 1665: 1660: 1656: 1652: 1649: 1646: 1622: 1619: 1610: 1571: 1563: 1553: 1545: 1540: 1533: 1526: 1520:) and oxygen ( 1514: 1492: 1489: 1484: 1480: 1468: 1464: 1461: 1419: 1416: 1406: 1403: 1371: 1368: 1348:Main article: 1345: 1342: 1340: 1337: 1336: 1335: 1332: 1325: 1316: 1315: 1312: 1305: 1304: 1301: 1297: 1296: 1293: 1288: 1281: 1269: 1268: 1265: 1258: 1257: 1254: 1248: 1247: 1244: 1240: 1239: 1236: 1232: 1231: 1228: 1221: 1220: 1217: 1210: 1209: 1206: 1202: 1201: 1198: 1194: 1193: 1190: 1186: 1185: 1182: 1175: 1174: 1171: 1165: 1164: 1161: 1154: 1153: 1150: 1144: 1143: 1140: 1133: 1132: 1129: 1122: 1121: 1118: 1111: 1110: 1107: 1100: 1099: 1096: 1090: 1089: 1086: 1080: 1079: 1076: 1072: 1071: 1068: 1064: 1063: 1060: 1050: 1049: 1046: 1044:Aluminium foil 1040: 1039: 1036: 991: 988: 984: 983: 979: 974: 970: 965: 961: 956: 948: 939: 938: 923: 916: 911: 908: 905: 902: 898: 893: 887: 884: 881: 878: 874: 869: 863: 860: 858: 854: 851: 848: 844: 840: 839: 836: 829: 824: 821: 818: 815: 811: 806: 800: 797: 794: 791: 787: 782: 776: 773: 771: 767: 764: 761: 757: 753: 752: 737: 730: 716: 713: 712: 711: 707: 702: 694: 685: 684: 673: 666: 661: 658: 654: 649: 643: 640: 636: 631: 625: 620: 616: 600: 590: 587: 586: 585: 581: 576: 572: 567: 563: 558: 550: 541: 540: 525: 518: 513: 510: 506: 501: 495: 492: 488: 483: 477: 474: 472: 468: 464: 460: 459: 456: 449: 444: 441: 437: 432: 426: 423: 419: 414: 408: 405: 403: 399: 395: 391: 390: 375: 368: 354: 351: 350: 349: 345: 340: 332: 323: 322: 311: 304: 298: 293: 286: 281: 275: 272: 250: 247: 224: 221: 220: 219: 208: 191: 190: 182: 177: 169: 164: 145: 140: 133: 107: 106: 103:low-emissivity 98: 88: 85: 15: 9: 6: 4: 3: 2: 4408: 4397: 4396:Heat transfer 4394: 4392: 4389: 4387: 4384: 4383: 4381: 4369: 4365: 4359: 4355: 4351: 4350: 4336: 4331: 4327: 4323: 4319: 4315: 4314: 4309: 4305: 4299: 4290: 4285: 4281: 4277: 4273: 4266: 4257: 4252: 4248: 4244: 4240: 4237:(in German). 4236: 4232: 4225: 4216: 4211: 4207: 4203: 4199: 4195: 4194: 4189: 4182: 4174: 4173: 4165: 4157: 4156: 4148: 4141:(1): 314–323. 4140: 4137:(in French). 4136: 4132: 4125: 4117: 4110: 4109: 4104: 4098: 4083: 4079: 4073: 4064: 4059: 4055: 4051: 4047: 4043: 4039: 4032: 4023: 4018: 4014: 4010: 4006: 4002: 3998: 3991: 3976: 3972: 3965: 3956: 3951: 3947: 3943: 3939: 3935: 3931: 3924: 3916: 3912: 3908: 3904: 3900: 3896: 3892: 3888: 3881: 3879: 3869: 3864: 3860: 3856: 3852: 3848: 3844: 3837: 3821: 3817: 3811: 3795: 3789: 3773: 3767: 3759: 3753: 3749: 3742: 3726: 3720: 3712: 3708: 3703: 3698: 3694: 3690: 3686: 3679: 3677: 3675: 3666: 3664:9781111135959 3660: 3656: 3652: 3651: 3643: 3629: 3625: 3619: 3605:on 2014-01-12 3604: 3600: 3594: 3582: 3575: 3569: 3561: 3557: 3553: 3549: 3545: 3541: 3537: 3533: 3529: 3525: 3510: 3508: 3499: 3495: 3491: 3487: 3483: 3479: 3472: 3464: 3460: 3453: 3444: 3438: 3434: 3428: 3420: 3418:9780471539827 3414: 3410: 3406: 3405: 3397: 3389: 3387:9783540784272 3383: 3379: 3375: 3374: 3367: 3363: 3359: 3355: 3348: 3344: 3338: 3323: 3319: 3318:ISO 9288:2022 3315: 3309: 3307: 3305: 3303: 3294: 3292:0-89116-271-2 3288: 3284: 3277: 3269: 3267:9781560328391 3263: 3259: 3255: 3254: 3246: 3244: 3242: 3227: 3223: 3217: 3210: 3205: 3201: 3196: 3191: 3187: 3183: 3179: 3172: 3163: 3158: 3154: 3150: 3146: 3142: 3138: 3131: 3129: 3120: 3116: 3112: 3108: 3104: 3100: 3095: 3090: 3086: 3082: 3078: 3071: 3069: 3067: 3058: 3052: 3048: 3044: 3037: 3029: 3023: 3019: 3015: 3014: 3006: 2998: 2994: 2987: 2981: 2973: 2969: 2965: 2961: 2956: 2951: 2947: 2943: 2939: 2935: 2930: 2925: 2922:(4): 046603. 2921: 2917: 2913: 2906: 2898: 2894: 2890: 2884: 2880: 2876: 2871: 2866: 2861: 2856: 2852: 2845: 2837: 2831: 2827: 2826: 2818: 2810: 2808:9780618319381 2804: 2800: 2796: 2791: 2790: 2782: 2778: 2774: 2770: 2766: 2760: 2756: 2746: 2743: 2741: 2738: 2736: 2733: 2731: 2728: 2726: 2723: 2721: 2718: 2716: 2713: 2711: 2708: 2706: 2703: 2702: 2691: 2687: 2683: 2679: 2676: 2672: 2667: 2660: 2655: 2651: 2649: 2646: 2645: 2641: 2637: 2633: 2629: 2626: 2620: 2616: 2614: 2611: 2610: 2606: 2602: 2598: 2594: 2591: 2576: 2574: 2571: 2570: 2566: 2562: 2558: 2555:Radiant flux 2554: 2551: 2546: 2544: 2541: 2540: 2536: 2532: 2528: 2521: 2516: 2507: 2503: 2501: 2498: 2497: 2493: 2489: 2485: 2476: 2472: 2470: 2467: 2466: 2462: 2458: 2454: 2436: 2434: 2431: 2430: 2426: 2422: 2419:Radiant flux 2418: 2410: 2408: 2405: 2404: 2400: 2396: 2392: 2385: 2380: 2373: 2368: 2364: 2362: 2359: 2358: 2354: 2350: 2346: 2337: 2333: 2331: 2328: 2327: 2323: 2319: 2315: 2297: 2295: 2292: 2291: 2287: 2283: 2280:Radiant flux 2279: 2271: 2269: 2266: 2265: 2261: 2257: 2253: 2249: 2242: 2237: 2230: 2225: 2221: 2219: 2216: 2215: 2211: 2207: 2203: 2199: 2190: 2186: 2184: 2181: 2180: 2176: 2172: 2168: 2164: 2146: 2144: 2141: 2140: 2136: 2132: 2128: 2125:Radiant flux 2124: 2116: 2114: 2111: 2110: 2106: 2102: 2098: 2094: 2087: 2082: 2075: 2070: 2066: 2064: 2061: 2060: 2056: 2052: 2048: 2044: 2035: 2031: 2029: 2026: 2025: 2021: 2017: 2013: 1995: 1993: 1990: 1989: 1985: 1981: 1977: 1969: 1967: 1964: 1963: 1957: 1954: 1953: 1942: 1935: 1930: 1928: 1923: 1921: 1916: 1915: 1904: 1902: 1898: 1894: 1890: 1886: 1882: 1878: 1874: 1870: 1866: 1862: 1858: 1854: 1850: 1846: 1836: 1834: 1818: 1813: 1809: 1805: 1800: 1796: 1792: 1776: 1771: 1757: 1736: 1733: 1716: 1693: 1688: 1685: 1681: 1676: 1658: 1654: 1634: 1628: 1618: 1616: 1608: 1604: 1598: 1596: 1592: 1588: 1584: 1580: 1575: 1568: 1551: 1537: 1507: 1497: 1488: 1478: 1474: 1460: 1458: 1454: 1448: 1446: 1442: 1433: 1432:Planck curves 1429: 1424: 1415: 1413: 1402: 1400: 1396: 1391: 1388: 1382: 1378: 1367: 1363: 1361: 1357: 1351: 1333: 1330: 1326: 1323: 1322: 1321: 1313: 1310: 1307: 1306: 1302: 1299: 1298: 1294: 1291: 1284: 1277: 1274: 1271: 1270: 1266: 1263: 1260: 1259: 1255: 1253: 1250: 1249: 1245: 1242: 1241: 1237: 1234: 1233: 1229: 1226: 1223: 1222: 1218: 1215: 1212: 1211: 1207: 1204: 1203: 1199: 1196: 1195: 1191: 1188: 1187: 1183: 1180: 1177: 1176: 1172: 1170: 1167: 1166: 1162: 1159: 1156: 1155: 1151: 1149: 1146: 1145: 1141: 1138: 1135: 1134: 1130: 1127: 1124: 1123: 1119: 1116: 1113: 1112: 1108: 1105: 1102: 1101: 1097: 1095: 1092: 1091: 1087: 1085: 1082: 1081: 1077: 1074: 1073: 1069: 1066: 1065: 1061: 1059: 1055: 1052: 1051: 1047: 1045: 1042: 1041: 1034: 1033: 1027: 1026:Leslie's cube 1022: 1018: 1015: 1013: 1009: 1005: 1001: 1000:Leslie's cube 997: 994:Emissivities 987: 978: 975: 969: 966: 960: 957: 954: 947: 944: 943: 942: 921: 914: 909: 906: 900: 891: 885: 882: 876: 867: 861: 859: 849: 846: 842: 834: 827: 822: 819: 813: 804: 798: 795: 789: 780: 774: 772: 762: 759: 755: 743: 742: 741: 736: 729: 725: 721: 706: 703: 700: 693: 690: 689: 688: 671: 664: 656: 647: 638: 629: 623: 614: 606: 605: 604: 599: 595: 580: 577: 571: 568: 562: 559: 556: 549: 546: 545: 544: 523: 516: 511: 508: 499: 493: 490: 481: 475: 473: 466: 462: 454: 447: 442: 439: 430: 424: 421: 412: 406: 404: 397: 393: 381: 380: 379: 374: 367: 363: 359: 344: 341: 338: 331: 328: 327: 326: 309: 302: 291: 279: 273: 270: 263: 262: 261: 259: 255: 246: 243: 241: 236: 234: 230: 216: 212: 209: 206: 205: 200: 195: 188: 183: 181: 178: 175: 170: 168: 165: 162: 158: 154: 150: 146: 144: 141: 138: 134: 132: 129: 128: 123: 119: 115: 111: 104: 99: 97: 94: 93: 92: 84: 82: 81:metamaterials 77: 74: 70: 68: 64: 60: 55: 53: 49: 45: 41: 33: 29: 25: 21: 4358:the original 4317: 4311: 4298: 4279: 4275: 4265: 4238: 4234: 4224: 4197: 4191: 4181: 4171: 4164: 4154: 4147: 4138: 4134: 4124: 4107: 4097: 4085:. Retrieved 4072: 4045: 4041: 4031: 4004: 4000: 3990: 3978:. Retrieved 3964: 3937: 3933: 3923: 3890: 3886: 3850: 3846: 3836: 3824:. Retrieved 3810: 3798:. Retrieved 3788: 3776:. Retrieved 3766: 3747: 3741: 3729:. Retrieved 3719: 3692: 3688: 3649: 3642: 3631:. Retrieved 3618: 3607:. Retrieved 3603:the original 3593: 3581:the original 3568: 3527: 3523: 3481: 3477: 3471: 3452: 3432: 3427: 3403: 3396: 3372: 3365: 3361: 3357: 3353: 3346: 3337: 3326:. Retrieved 3317: 3282: 3276: 3252: 3229:. Retrieved 3216: 3207: 3185: 3181: 3171: 3147:(11): 1379. 3144: 3140: 3084: 3080: 3046: 3036: 3012: 3005: 2992: 2980: 2955:1721.1/71630 2919: 2916:Phys. Rev. E 2915: 2905: 2850: 2844: 2824: 2817: 2788: 2776: 2772: 2768: 2759: 2689: 2685: 2681: 2670: 2665: 2658: 2653: 2639: 2635: 2631: 2618: 2604: 2600: 2596: 2564: 2560: 2556: 2534: 2530: 2519: 2514: 2505: 2491: 2487: 2474: 2460: 2456: 2424: 2420: 2398: 2394: 2383: 2378: 2371: 2366: 2352: 2348: 2335: 2321: 2317: 2285: 2281: 2255: 2251: 2240: 2235: 2228: 2223: 2205: 2201: 2188: 2170: 2166: 2130: 2126: 2104: 2100: 2096: 2085: 2080: 2073: 2068: 2062: 2054: 2050: 2046: 2033: 2027: 2019: 2015: 1991: 1983: 1979: 1965: 1873:John Tyndall 1869:Josef Stefan 1842: 1630: 1599: 1576: 1538: 1503: 1466: 1453:Planck's law 1449: 1437: 1408: 1398: 1394: 1392: 1377:Planck's law 1373: 1364: 1360:absorptivity 1353: 1319: 1243:Skin, human 1016: 995: 993: 985: 976: 967: 958: 945: 940: 734: 727: 723: 719: 718: 704: 691: 686: 597: 593: 592: 578: 569: 560: 547: 542: 372: 365: 361: 357: 356: 342: 329: 324: 257: 253: 252: 244: 239: 237: 233:polarization 226: 90: 78: 75: 71: 67:Planck's law 56: 39: 37: 4304:Planck, Max 3893:: 174–188. 3484:(11): 973. 3087:: 233–246. 2740:View factor 2725:Reflectance 2531:transmitted 2488:transmitted 2457:transmitted 2421:transmitted 1849:John Leslie 1506:water vapor 1344:Absorptance 1300:Vegetation 1276:disilicides 1246:0.97–0.999 1227:, polished 1181:, polished 1160:, polished 1128:, oxidized 1117:, polished 1038:Emissivity 1012:wavelengths 202:impossible. 24:Blacksmiths 4391:Radiometry 4380:Categories 4087:1 December 3980:28 October 3826:28 October 3800:10 October 3778:10 October 3731:10 October 3633:2014-08-09 3609:2014-07-19 3530:(L10706). 3343:Wien's Law 3328:2015-03-15 3231:2014-07-21 3141:Atmosphere 3094:1902.03943 2797:. p.  2751:References 2210:absorbance 2135:absorbance 2105:black body 2055:black body 2020:black body 1984:black body 1897:Max Planck 1625:See also: 1617:to Earth. 1595:scattering 1491:Atmosphere 1457:parameters 1303:0.92-0.96 1295:0.86–0.93 1208:0.88–0.86 1184:0.89–0.92 1152:0.97-0.99 1004:thermopile 229:wavelength 211:Pyrometers 153:hypersonic 149:spacecraft 125:copiously. 40:emissivity 3915:1352-2310 3711:2578-3270 3560:128823108 3552:1944-8007 3258:CRC Press 3204:240331557 3119:118927116 3018:Wiley-VCH 2929:1109.1769 2865:CiteSeerX 2860:1109.5444 2686:scattered 2636:scattered 2630:Radiance 2601:scattered 2561:scattered 2486:Radiance 2395:reflected 2349:reflected 2347:Radiance 2318:reflected 2282:reflected 2200:Radiance 2045:Radiance 1947:SI units 1944:Quantity 1819:≈ 1797:σ 1772:≡ 1734:≈ 1717:ϵ 1677:σ 1659:ϵ 1395:emittance 1381:blackbody 1370:Emittance 1264:(Teflon) 1169:Limestone 1054:Aluminium 1035:Material 1008:bolometer 915:∘ 910:λ 904:Ω 886:λ 880:Ω 853:Ω 847:λ 843:ε 828:∘ 823:ν 817:Ω 799:ν 793:Ω 766:Ω 760:ν 756:ε 665:∘ 660:Ω 642:Ω 619:Ω 615:ε 517:∘ 512:λ 494:λ 467:λ 463:ε 448:∘ 443:ν 425:ν 398:ν 394:ε 303:∘ 271:ε 218:measured. 4306:(1901). 3463:Archived 3209:warming. 2972:27489038 2964:22680594 2897:36550833 2771:, where 2699:See also 2682:absorbed 2632:absorbed 2597:absorbed 2557:absorbed 2252:absorbed 2202:absorbed 2167:absorbed 2127:absorbed 1385:14  1256:0.8–0.9 1216:, rough 1106:, rough 1104:Concrete 1058:anodized 953:radiance 699:radiance 199:infrared 122:Sunlight 52:infrared 4322:Bibcode 4243:Bibcode 4202:Bibcode 4139:XXXVIII 4050:Bibcode 4009:Bibcode 3942:Bibcode 3895:Bibcode 3855:Bibcode 3532:Bibcode 3486:Bibcode 3149:Bibcode 3099:Bibcode 2934:Bibcode 2781:kelvins 2535:surface 2492:surface 2461:surface 2425:surface 2399:surface 2353:surface 2322:surface 2286:surface 2256:surface 2206:surface 2171:surface 2131:surface 2101:surface 2097:emitted 2051:surface 2047:emitted 2016:surface 1980:surface 1883:to the 1839:History 1587:MODTRAN 1487:=0.95. 1463:Surface 1445:balance 1428:MODTRAN 1320:Notes: 1311:, pure 1214:Plaster 1084:Asphalt 697:is the 335:is the 3913:  3754:  3709:  3661:  3558:  3550:  3439:  3415:  3384:  3289:  3264:  3202:  3182:EcoMat 3117:  3053:  3024:  2970:  2962:  2895:  2885:  2867:  2832:  2805:  2783:. See 2779:is in 2705:Albedo 2690:volume 2640:volume 2605:volume 2565:volume 1950:Notes 1871:using 1863:(i.e. 1708:where 1603:remote 1591:HITRAN 1581:using 1278:(e.g. 1225:Silver 1179:Marble 1126:Copper 1115:Copper 941:where 687:where 543:where 325:where 4112:(PDF) 3695:(2). 3584:(PDF) 3577:(PDF) 3556:S2CID 3200:S2CID 3115:S2CID 3089:arXiv 2989:(PDF) 2968:S2CID 2924:arXiv 2893:S2CID 2855:arXiv 2688:by a 2638:by a 2603:by a 2563:by a 2533:by a 2490:by a 2459:by a 2423:by a 2397:by a 2351:by a 2320:by a 2284:by a 2254:by a 2204:by a 2169:by a 2129:by a 2099:by a 2049:by a 1955:Name 1473:nadir 1314:0.96 1309:Water 1267:0.85 1238:0.04 1230:0.02 1219:0.89 1173:0.92 1163:0.06 1142:0.95 1137:Glass 1131:0.87 1120:0.04 1109:0.91 1098:0.90 1094:Brick 1088:0.88 1070:0.04 1048:0.03 1006:or a 980:e,Ω,λ 971:e,Ω,λ 962:e,Ω,ν 949:e,Ω,ν 26:work 4103:IPCC 4089:2022 3982:2022 3911:ISSN 3828:2022 3802:2022 3780:2022 3752:ISBN 3733:2022 3707:ISSN 3659:ISBN 3548:ISSN 3522:)". 3437:ISBN 3413:ISBN 3382:ISBN 3287:ISBN 3262:ISBN 3051:ISBN 3022:ISBN 2960:PMID 2883:ISBN 2830:ISBN 2803:ISBN 2763:The 2684:and 2634:and 2599:and 2559:and 1959:Sym. 1633:IPCC 1631:The 1397:and 1280:MoSi 1252:Snow 1200:0.9 1158:Iron 1078:0.2 1062:0.9 733:and 722:and 371:and 360:and 213:and 38:The 28:iron 4330:doi 4284:doi 4251:doi 4239:258 4210:doi 4198:109 4058:doi 4017:doi 3950:doi 3903:doi 3891:155 3863:doi 3697:doi 3540:doi 3494:doi 3350:max 3322:ISO 3190:doi 3157:doi 3107:doi 3085:146 2950:hdl 2942:doi 2875:doi 2799:377 2509:Ω,ν 2262:". 2212:". 2177:". 2137:". 1737:0.6 1430:. 1287:WSi 1285:or 1192:~0 1148:Ice 738:λ,Ω 731:ν,Ω 708:e,Ω 695:e,Ω 582:e,λ 573:e,λ 564:e,ν 551:e,ν 151:or 4382:: 4328:. 4316:. 4310:. 4280:41 4278:. 4274:. 4249:. 4208:. 4196:. 4190:. 4133:. 4080:. 4056:. 4046:39 4044:. 4040:. 4015:. 4005:33 4003:. 3999:. 3973:. 3948:. 3938:11 3936:. 3932:. 3909:. 3901:. 3889:. 3877:^ 3861:. 3851:10 3849:. 3845:. 3818:. 3705:. 3691:. 3687:. 3673:^ 3653:. 3626:. 3554:. 3546:. 3538:. 3528:39 3526:. 3506:^ 3492:. 3482:72 3480:. 3407:. 3376:. 3352:= 3345:: 3320:. 3316:. 3301:^ 3256:. 3240:^ 3224:. 3206:. 3198:. 3188:. 3184:. 3180:. 3155:. 3145:12 3143:. 3139:. 3127:^ 3113:. 3105:. 3097:. 3083:. 3079:. 3065:^ 3045:. 3016:. 2995:. 2991:. 2966:. 2958:. 2948:. 2940:. 2932:. 2920:85 2918:. 2914:. 2891:. 2881:. 2873:. 2863:. 2801:. 2793:. 2769:σT 2677:m 2669:Ω, 2657:Ω, 2627:m 2592:m 2552:m 2526:— 2518:Ω, 2483:— 2452:— 2416:— 2390:— 2382:Ω, 2370:Ω, 2344:— 2313:— 2277:— 2247:— 2239:Ω, 2227:Ω, 2197:— 2162:— 2122:— 2092:— 2084:Ω, 2072:Ω, 2042:— 2011:— 1975:— 1851:, 1847:, 1559:CO 1414:. 1390:. 1387:μm 1292:) 1056:, 235:. 120:. 4338:. 4332:: 4324:: 4318:4 4292:. 4286:: 4259:. 4253:: 4245:: 4218:. 4212:: 4204:: 4091:. 4066:. 4060:: 4052:: 4025:. 4019:: 4011:: 3984:. 3958:. 3952:: 3944:: 3917:. 3905:: 3897:: 3871:. 3865:: 3857:: 3830:. 3804:. 3782:. 3760:. 3735:. 3713:. 3699:: 3693:5 3667:. 3636:. 3612:. 3562:. 3542:: 3534:: 3520:2 3516:2 3500:. 3496:: 3488:: 3445:. 3421:. 3390:. 3366:b 3362:T 3358:T 3356:/ 3354:b 3347:λ 3331:. 3295:. 3270:. 3234:. 3192:: 3186:4 3165:. 3159:: 3151:: 3121:. 3109:: 3101:: 3091:: 3059:. 3030:. 2974:. 2952:: 2944:: 2936:: 2926:: 2899:. 2877:: 2857:: 2838:. 2811:. 2777:T 2773:σ 2671:λ 2666:μ 2659:ν 2654:μ 2622:Ω 2619:μ 2587:λ 2585:μ 2580:ν 2578:μ 2548:μ 2520:λ 2515:T 2506:T 2478:Ω 2475:T 2447:λ 2445:T 2440:ν 2438:T 2412:T 2384:λ 2379:R 2372:ν 2367:R 2339:Ω 2336:R 2308:λ 2306:R 2301:ν 2299:R 2273:R 2241:λ 2236:A 2229:ν 2224:A 2192:Ω 2189:A 2157:λ 2155:A 2150:ν 2148:A 2118:A 2086:λ 2081:ε 2074:ν 2069:ε 2037:Ω 2034:ε 2006:λ 2004:ε 1999:ν 1997:ε 1971:ε 1933:e 1926:t 1919:v 1814:4 1810:/ 1806:1 1801:] 1793:/ 1788:R 1785:L 1782:S 1777:[ 1766:e 1763:s 1758:T 1728:f 1725:f 1722:e 1694:4 1689:e 1686:s 1682:T 1670:f 1667:f 1664:e 1655:= 1651:R 1648:L 1645:O 1611:a 1589:/ 1572:a 1564:2 1554:a 1546:a 1544:ε 1541:a 1534:a 1527:2 1522:O 1515:2 1510:N 1485:s 1481:s 1469:s 1289:2 1282:2 996:ε 977:L 968:L 959:L 946:L 922:, 907:, 901:, 897:e 892:L 883:, 877:, 873:e 868:L 862:= 850:, 835:, 820:, 814:, 810:e 805:L 796:, 790:, 786:e 781:L 775:= 763:, 735:ε 728:ε 705:L 692:L 672:, 657:, 653:e 648:L 639:, 635:e 630:L 624:= 601:Ω 598:ε 579:M 570:M 561:M 548:M 524:, 509:, 505:e 500:M 491:, 487:e 482:M 476:= 455:, 440:, 436:e 431:M 422:, 418:e 413:M 407:= 376:λ 373:ε 369:ν 366:ε 346:e 343:M 333:e 330:M 310:, 297:e 292:M 285:e 280:M 274:= 258:ε 163:. 34:.

Index


Blacksmiths
iron
thermal radiation
thermal radiation
electromagnetic radiation
infrared
ideal black surface
Stefan–Boltzmann law
Planck's law
metamaterials
Insulated windows
low-emissivity

Solar water heating
evacuated glass tube collectors
Sunlight
Solar heat collectors
selective surfaces
Thermal shielding
spacecraft
hypersonic
radiative cooling
reentry capsules
Passive daytime radiative cooling
solar radiation
Planetary temperatures
Emissivity of a planet

infrared

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.