Knowledge

Transmission electron microscopy

Source 📝

2335:
the furnace and the TEM grid; complicated by temperature gradients along the sample caused by varying thermal conductivity with different samples and grid materials. With different holders both commercial and lab made, different methods for creating temperature calibration are available. Manufacturers like Gatan use IR pyrometry to measure temperature gradients over their entire sample. An even better method to calibrate is Raman spectroscopy which measures the local temperature of Si powder on electron transparent windows and quantitatively calibrates the IR pyrometry. These measurements have guaranteed accuracy within 5%. Research laboratories have also performed their own calibrations on commercial holders. Researchers at NIST utilized Raman spectroscopy to map the temperature profile of a sample on a TEM grid and achieve very precise measurements to enhance their research. Similarly, a research group in Germany utilized X-ray diffraction to measure slight shifts in lattice spacing caused by changes in temperature to back calculate the exact temperature in the holder. This process required careful calibration and exact TEM optics. Other examples include the use of EELS to measure local temperature using change of gas density, and resistivity changes.
159:
Contrast can arise from position-to-position differences in the thickness or density ("mass-thickness contrast"), atomic number ("Z contrast", referring to the common abbreviation Z for atomic number), crystal structure or orientation ("crystallographic contrast" or "diffraction contrast"), the slight quantum-mechanical phase shifts that individual atoms produce in electrons that pass through them ("phase contrast"), the energy lost by electrons on passing through the sample ("spectrum imaging") and more. Each mechanism tells the user a different kind of information, depending not only on the contrast mechanism but on how the microscope is used—the settings of lenses, apertures, and detectors. What this means is that a TEM is capable of returning an extraordinary variety of nanometre- and atomic-resolution information, in ideal cases revealing not only where all the atoms are but what kinds of atoms they are and how they are bonded to each other. For this reason TEM is regarded as an essential tool for nanoscience in both biological and materials fields.
1496: 1922: 1504:
done by selecting a certain area in the back focal plane such as only the central beam or a specific diffracted beam (angle), or combinations of such beams. By intentionally selecting an objective aperture which only permits the non-diffracted beam to pass beyond the back focal plane (and onto the image plane): one creates a Bright-Field (BF) image (c), whereas if the central, non-diffracted beam is blocked: one may obtain dark-field (DF) images such as those shown in (d–e). The DF images (d–e) were obtained by selecting the diffracted beams indicated in diffraction pattern with circles (b) using an aperture at the back focal plane. Grains from which electrons are scattered into these diffraction spots appear brighter. More details about diffraction contrast formation are given further.
1440:
of the electrons, although phase effects may often be ignored at lower magnifications. Higher resolution imaging requires thinner samples and higher energies of incident electrons, which means that the sample can no longer be considered to be absorbing electrons (i.e., via a Beer's law effect). Instead, the sample can be modeled as an object that does not change the amplitude of the incoming electron wave function, but instead modifies the phase of the incoming wave; in this model, the sample is known as a pure phase object. For sufficiently thin specimens, phase effects dominate the image, complicating analysis of the observed intensities. To improve the contrast in the image, the TEM may be operated at a slight defocus to enhance contrast, owing to convolution by the
2468:(MEMs) based holders provide a cheap and customizable platform to conduct mechanical tests on previously difficult samples to work with such as micropillars, nanowires, and thin films. Passive MEMs are used as simple push to pull devices for in-situ mechanical tests. Typically, a nano-indentation holder is used to apply a pushing force at the indentation site. Using a geometry of arms, this pushing force translates to a pulling force on a pair of tensile pads to which the sample is attached. Thus, a compression applied on the outside of the MEMs translates to a tension in the central gap where the TEM sample is located. The resulting force-displacement curve needs to be corrected by performing the same test on an empty MEMs without the TEM sample to account for the 1808:
is therefore regularly applied to mitigate this effect. Low-dose imaging is performed by deflecting illumination and imaging regions simultaneously away from the optical axis to image an adjacent region to the area to be recorded (the high-dose region). This area is maintained centered during tilting and refocused before recording. During recording the deflections are removed so that the area of interest is exposed to the electron beam only for the duration required for imaging. An improvement of this technique (for objects resting on a sloping substrate film) is to have two symmetrical off-axis regions for focusing followed by setting focus to the average of the two high-dose focus values before recording the low-dose area of interest.
1018:
from a few to 100 μm. The sample is placed onto the meshed area having a diameter of approximately 2.5 mm. Usual grid materials are copper, molybdenum, gold or platinum. This grid is placed into the sample holder, which is paired with the specimen stage. A wide variety of designs of stages and holders exist, depending upon the type of experiment being performed. In addition to 3.05 mm grids, 2.3 mm grids are sometimes, if rarely, used. These grids were particularly used in the mineral sciences where a large degree of tilt can be required and where specimen material may be extremely rare. Electron transparent specimens have a thickness usually less than 100 nm, but this value depends on the accelerating voltage.
185: 1448: 2134: 1824: 1537: 2253:. A STEM is a TEM in which the electron source and observation point have been switched relative to the direction of travel of the electron beam. See the ray diagrams in the figure on the right. The STEM instrument effectively relies on the same optical set-up as a TEM, but operates by flipping the direction of travel of the electrons (or reversing time) during operation of a TEM. Rather than using an aperture to control detected electrons, as in TEM, a STEM uses various detectors with collection angles that may be adjusted depending on which electrons the user wants to capture. 2271:(LVEM) is operated at relatively low electron accelerating voltage between 5–25 kV. Some of these can be a combination of SEM, TEM and STEM in a single compact instrument. Low voltage increases image contrast which is especially important for biological specimens. This increase in contrast significantly reduces, or even eliminates the need to stain. Resolutions of a few nm are possible in TEM, SEM and STEM modes. The low energy of the electron beam means that permanent magnets can be used as lenses and thus a miniature column that does not require cooling can be used. 1598:. When using a field emission source and a specimen of uniform thickness, the images are formed due to differences in phase of electron waves, which is caused by specimen interaction. Image formation is given by the complex modulus of the incoming electron beams. As such, the image is not only dependent on the number of electrons hitting the screen, making direct interpretation of phase contrast images slightly more complex. However this effect can be used to an advantage, as it can be manipulated to provide more information about the sample, such as in complex 1907:. The resin block is fractured as it passes over a glass or diamond knife edge. This method is used to obtain thin, minimally deformed samples that allow for the observation of tissue ultrastructure. Inorganic samples, such as aluminium, may also be embedded in resins and ultrathin sectioned in this way, using either coated glass, sapphire or larger angle diamond knives. To prevent charge build-up at the sample surface when viewing in the TEM, tissue samples need to be coated with a thin layer of conducting material, such as carbon. 1026:
stages. Some modern TEMs provide the ability for two orthogonal tilt angles of movement with specialized holder designs called double-tilt sample holders. Some stage designs, such as top-entry or vertical insertion stages once common for high resolution TEM studies, may simply only have X-Y translation available. The design criteria of TEM stages are complex, owing to the simultaneous requirements of mechanical and electron-optical constraints and specialized models are available for different methods.
1815:, use images of multiple (hopefully) identical objects at different orientations to produce the image data required for three-dimensional reconstruction. If the objects do not have significant preferred orientations, this method does not suffer from the missing data wedge (or cone) which accompany tomographic methods nor does it incur excessive radiation dosage, however it assumes that the different objects imaged can be treated as if the 3D data generated from them arose from a single stable object. 47: 1889: 31: 193: 791:
mode, there are also objective lenses above the sample to make the incident electron beam convergent). The projector lenses are used to expand the beam onto the phosphor screen or other imaging device, such as film. The magnification of the TEM is due to the ratio of the distances between the specimen and the objective lens' image plane. TEM optical configurations differ significantly with implementation, with manufacturers using custom lens configurations, such as in
8121: 2609: 754:
electric field shape and intensity near the sharp tip. The combination of the cathode and these first electrostatic lens elements is collectively called the "electron gun". After it leaves the gun, the beam is typically accelerated until it reaches its final voltage and enters the next part of the microscope: the condenser lens system. These upper lenses of the TEM then further focus the electron beam to the desired size and location on the sample.
700: 1931: 1050: 2188: 1092:
circuit. The gun is designed to create a beam of electrons exiting from the assembly at some given angle, known as the gun divergence semi-angle, α. By constructing the Wehnelt cylinder such that it has a higher negative charge than the filament itself, electrons that exit the filament in a diverging manner are, under proper operation, forced into a converging pattern the minimum size of which is the gun crossover diameter.
692: 2331:
resolution loss and mechanical drift. Individual labs and manufacturers have developed software coupled with advanced cooling systems to correct for thermal drift based on the predicted temperature in the sample chamber These systems often take 30 min-many hours for sample shifts to stabilize. While significant progress has been made, no universal TEM attachment has been made to account for drift at elevated temperatures.
1002: 1205:) are required for the gun filament. Furthermore, both lanthanum hexaboride and tungsten thermionic sources must be heated in order to achieve thermionic emission, this can be achieved by the use of a small resistive strip. To prevent thermal shock, there is often a delay enforced in the application of current to the tip, to prevent thermal gradients from damaging the filament, the delay is usually a few seconds for LaB 2067: 1617: 1084: 910: 1650: 1513:. When the beam illuminates two neighbouring areas with low mass (or thickness) and high mass (or thickness), the heavier region scatters electrons at bigger angles. These strongly scattered electrons are blocked in BF TEM mode by objective aperture. As a result, heavier regions appear darker in BF images (have low intensity). Mass–thickness contrast is most important for non–crystalline, amorphous materials. 547:), and their wave-like properties mean that a beam of electrons can be focused and diffracted much like light can. The wavelength of electrons is related to their kinetic energy via the de Broglie equation, which says that the wavelength is inversely proportional to the momentum. Taking into account relativistic effects (as in a TEM an electron's velocity is a substantial fraction of the speed of light,  8133: 1030:
requirements as low as a few nm/minute while being able to move several μm/minute, with repositioning accuracy on the order of nanometres. Earlier designs of TEM accomplished this with a complex set of mechanical downgearing devices, allowing the operator to finely control the motion of the stage by several rotating rods. Modern devices may use electrical stage designs, using screw gearing in concert with
278:. The research team worked on lens design and CRO column placement, to optimize parameters to construct better CROs, and make electron optical components to generate low magnification (nearly 1:1) images. In 1931, the group successfully generated magnified images of mesh grids placed over the anode aperture. The device used two magnetic lenses to achieve higher magnifications, arguably creating the first 1218: 1069:
perpendicular to the TEM optic axis. When sealed, the airlock is manipulated to push the cartridge such that the cartridge falls into place, where the bore hole becomes aligned with the beam axis, such that the beam travels down the cartridge bore and into the specimen. Such designs are typically unable to be tilted without blocking the beam path or interfering with the objective lens.
1713: 2775:
suppressed. By combining multiple images with different spatial frequencies, the use of techniques such as focal series reconstruction can be used to improve the resolution of the TEM in a limited manner. The contrast transfer function can, to some extent, be experimentally approximated through techniques such as Fourier transforming images of amorphous material, such as
708: 779:
a precise, confined shape. When an electron enters and leaves this magnetic field, it spirals around the curved magnetic field lines in a way that acts very much as an ordinary glass lens does for light—it is a converging lens. But, unlike a glass lens, a magnetic lens can very easily change its focusing power by adjusting the current passing through the coils.
1058:
inserted into the stage. The stage is thus designed to accommodate the rod, placing the sample either in between or near the objective lens, dependent upon the objective design. When inserted into the stage, the side entry holder has its tip contained within the TEM vacuum, and the base is presented to atmosphere, the airlock formed by the vacuum rings.
1580:), any distortion of the crystal plane that locally tilts the plane to the Bragg angle will produce particularly strong contrast variations. However, defects that produce only displacement of atoms that do not tilt the crystal towards the Bragg angle (i. e. displacements parallel to the crystal plane) will produce weaker contrast. 2452:. Although nano-indentation was possible since early 1980s, its investigation using a TEM was first reported in 2001 where an aluminum sample deposited on a silicon wedge was investigated. For nanoindentation experiments, TEM samples are typically shaped as wedges using a tripod polisher, H-bar window or a micro-nanopillar using 50: 49: 54: 53: 48: 55: 2150:, the film subsequently coated with a heavy metal such as platinum, the original film dissolved away, and the replica imaged on the TEM. Variations of the replica technique are used for both materials and biological samples. In materials science a common use is for examining the fresh fracture surface of metal alloys. 1297:
electrons are filtered from the beam, which may be desired in the case of beam sensitive samples. Secondly, this filtering removes electrons that are scattered to high angles, which may be due to unwanted processes such as spherical or chromatic aberration, or due to diffraction from interaction within the sample.
1855:). High quality samples will have a thickness that is comparable to the mean free path of the electrons that travel through the samples, which may be only a few tens of nanometres. Preparation of TEM specimens is specific to the material under analysis and the type of information to be obtained from the specimen. 2585:(PINEM). The latter is based on the inelastic coupling between electrons and photons in presence of a surface or a nanostructure. This method allows one to investigate time-varying nanoscale electromagnetic fields in an electron microscope, as well as dynamically shape the wave properties of the electron beam. 2594:
changed during the preparation process. Also the field of view is relatively small, raising the possibility that the region analyzed may not be characteristic of the whole sample. There is potential that the sample may be damaged by the electron beam, particularly in the case of biological materials.
2176:(STEM) by the addition of a system that rasters a convergent beam across the sample to form the image, when combined with suitable detectors. Scanning coils are used to deflect the beam, such as by an electrostatic shift of the beam, where the beam is then collected using a current detector such as a 2025:
Certain samples may be prepared by chemical etching, particularly metallic specimens. These samples are thinned using a chemical etchant, such as an acid, to prepare the sample for TEM observation. Devices to control the thinning process may allow the operator to control either the voltage or current
1460:
bright field image (BF image) is obtained. If we allow the signal from a diffracted beam, a dark field image (DF image) is received. The selected signal is magnified and projected on a screen (or on a camera) with the help of Intermediate and Projector lenses. An image of the sample is thus obtained.
346:
in 1936, where the aim of the research was the development and improvement of TEM imaging properties, particularly with regard to biological specimens. At this time electron microscopes were being fabricated for specific groups, such as the "EM1" device used at the UK National Physical Laboratory. In
306:
in 1924. Knoll's research group was unaware of this publication until 1932, when they realized that the de Broglie wavelength of electrons was many orders of magnitude smaller than that for light, theoretically allowing for imaging at atomic scales. (Even for electrons with a kinetic energy of just 1
158:
TEM instruments have multiple operating modes including conventional imaging, scanning TEM imaging (STEM), diffraction, spectroscopy, and combinations of these. Even within conventional imaging, there are many fundamentally different ways that contrast is produced, called "image contrast mechanisms".
2593:
There are a number of drawbacks to the TEM technique. Many materials require extensive sample preparation to produce a sample thin enough to be electron transparent, which makes TEM analysis a relatively time-consuming process with a low throughput of samples. The structure of the sample may also be
1858:
Materials that have dimensions small enough to be electron transparent, such as powdered substances, small organisms, viruses, or nanotubes, can be quickly prepared by the deposition of a dilute sample containing the specimen onto films on support grids. Biological specimens may be embedded in resin
1807:
All the above-mentioned methods involve recording tilt series of a given specimen field. This inevitably results in the summation of a high dose of reactive electrons through the sample and the accompanying destruction of fine detail during recording. The technique of low-dose (minimal-dose) imaging
1798:
methods decreases the range of resolvable frequencies in the three-dimensional reconstruction. Mechanical refinements, such as multi-axis tilting (two tilt series of the same specimen made at orthogonal directions) and conical tomography (where the specimen is first tilted to a given fixed angle and
1727:
As TEM specimen holders typically allow for the rotation of a sample by a desired angle, multiple views of the same specimen can be obtained by rotating the angle of the sample along an axis perpendicular to the beam. By taking multiple images of a single TEM sample at differing angles, typically in
1503:
Figure on the right shows a TEM image (a) and the corresponding diffraction pattern (b) of Pt polycrystalline film taken without an objective aperture. In order to enhance the contrast in the TEM image the number of scattered beams as visible in the diffraction pattern should be reduced. This can be
1296:
may be excluded. These consist of a small metallic disc that is sufficiently thick to prevent electrons from passing through the disc, whilst permitting axial electrons. This permission of central electrons in a TEM causes two effects simultaneously: firstly, apertures decrease the beam intensity as
1283:
The coils which produce the magnetic field are located within the lens yoke. The coils can contain a variable current, but typically use high voltages, and therefore require significant insulation in order to prevent short-circuiting the lens components. Thermal distributors are placed to ensure the
786:
The electron-optical system also includes deflectors and stigmators, usually made of small electromagnets. The deflectors allow the position and angle of the beam at the sample position to be independently controlled and also ensure that the beams remain near the low-aberration centers of every lens
778:
The lenses of a TEM are what gives it its flexibility of operating modes and ability to focus beams down to the atomic scale and magnify them to get an image. A lens is usually made of a solenoid coil nearly surrounded by ferromagnetic materials designed to concentrate the coil's magnetic field into
2774:
The frequency domain representation of the contrast transfer function may often have an oscillatory nature, which can be tuned by adjusting the focal value of the objective lens. This oscillatory nature implies that some spatial frequencies are faithfully imaged by the microscope, whilst others are
2488:
Much of current research focuses on developing sample holders that can perform mechanical tests while creating an environmental stimulus such as temperature change, variable strain rates, and different gas environments. In addition, the emergence of high resolution detectors are allowing to monitor
2399:
actuated by an electric motor located in a housing outside the TEM. Typically strain rates range from 10 nm/s to 10 μm/s. Custom-made holders expanding simple straining actuation have enabled bending tests using a bending holder and shear tests using a shear sample holder. The typical measured
2365:
motion. By simultaneously observing deformation phenomena and measuring mechanical response in situ, it is possible to connect nano-mechanical testing information to models that describe both the subtlety and complexity of how materials respond to stress and strain. The material properties and data
2334:
An additional challenge of many of these specialized holders is knowing the local sample temperature. Many high temperature holders utilize a tungsten filament to locally heat the sample. Ambiguity in temperature in furnace heaters (W wire) with thermocouples arises from the thermal contact between
2330:
Sample drift in the TEM is linearly proportional to the temperature differential between the room and holder. With temperatures as high as 1500C in modern holders, samples may experience significant drift and vertical displacement (bulging), requiring continuous focus or stage adjustments, inducing
2322:
Many phase transformations occur during heating. Additionally, coarsening and grain growth, along with other diffusion-related processes occur more rapidly at elevated temperatures, where kinetics are improved, allowing for the observation of related phenomena under transmission electron microscopy
1491:
is obtained due to removal of some electrons before the image plane. During their interaction with the specimen some of electrons will be lost due to absorption, or due to scattering at very high angles beyond the physical limitation of microscope or are blocked by the objective aperture. While the
1455:
The figure on the right shows the two basic operation modes of TEM – imaging and diffraction modes. In both cases the specimen is illuminated with the parallel beam, formed by electron beam shaping with the system of Condenser lenses and Condenser aperture. After interaction with the sample, on the
1439:
Different imaging methods therefore attempt to modify the electron waves exiting the sample in a way that provides information about the sample, or the beam itself. From the previous equation, it can be deduced that the observed image depends not only on the amplitude of beam, but also on the phase
1300:
Apertures are either a fixed aperture within the column, such as at the condenser lens, or are a movable aperture, which can be inserted or withdrawn from the beam path, or moved in the plane perpendicular to the beam path. Aperture assemblies are mechanical devices which allow for the selection of
1017:
to allow for insertion of the specimen holder into the vacuum with minimal loss of vacuum in other areas of the microscope. The specimen holders hold a standard size of sample grid or self-supporting specimen. Standard TEM grid sizes are 3.05 mm diameter, with a thickness and mesh size ranging
918:
A TEM is composed of several components, which include a vacuum system in which the electrons travel, an electron emission source for generation of the electron stream, a series of electromagnetic lenses, as well as electrostatic plates. The latter two allow the operator to guide and manipulate the
790:
Typically a TEM consists of three stages of lensing. The stages are the condenser lenses, the objective lenses, and the projector lenses. The condenser lenses are responsible for primary beam formation, while the objective lenses focus the beam that comes through the sample itself (in STEM scanning
122:
of electrons. This enables the instrument to capture fine detail—even as small as a single column of atoms, which is thousands of times smaller than a resolvable object seen in a light microscope. Transmission electron microscopy is a major analytical method in the physical, chemical and biological
1575:
in crystals. By carefully selecting the orientation of the sample, it is possible not just to determine the position of defects but also to determine the type of defect present. If the sample is oriented so that one particular plane is only slightly tilted away from the strongest diffracting angle
1459:
In Imaging mode, the objective aperture is inserted in a back focal plane (BFP) of the objective lens (where diffraction spots are formed). If using the objective aperture to select only the central beam, the transmitted electrons are passed through the aperture while all others are blocked, and a
1091:
The electron gun is formed from several components: the filament, a biasing circuit, a Wehnelt cap, and an extraction anode. By connecting the filament to the negative component power supply, electrons can be "pumped" from the electron gun to the anode plate and the TEM column, thus completing the
782:
Equally important to the lenses are the apertures. These are circular holes in thin strips of heavy metal. Some are fixed in size and position and play important roles in limiting x-ray generation and improving the vacuum performance. Others can be freely switched among several different sizes and
2557:
illumination is used: an image is formed by the accumulation of many ultrashort electron pulses (typically of hundreds of femtoseconds) with a fixed time delay between the arrival of the electron pulse and the sample excitation. On the other hand, the use of single or a short sequence of electron
2085:
methods have been used to prepare samples. FIB is a relatively new technique to prepare thin samples for TEM examination from larger specimens. Because FIB can be used to micro-machine samples very precisely, it is possible to mill very thin membranes from a specific area of interest in a sample,
1703:
beams. As for many images inelastic scattering will include information that may not be of interest to the investigator thus reducing observable signals of interest, EELS imaging can be used to enhance contrast in observed images, including both bright field and diffraction, by rejecting unwanted
1660:
Analysis of diffraction patterns beyond point-position can be complex, as the image is sensitive to a number of factors such as specimen thickness and orientation, objective lens defocus, and spherical and chromatic aberration. Although quantitative interpretation of the contrast shown in lattice
1521:
occurs due to a specific crystallographic orientation of a grain. In such a case the crystal is oriented in a way that there is a high probability of diffraction. Diffraction contrast provides information on the orientation of the crystals in a polycrystalline sample, as well as other information
1275:
for the magnetic field that forms the lens. Imperfections in the manufacture of the pole piece can induce severe distortions in the magnetic field symmetry, which induce distortions that will ultimately limit the lenses' ability to reproduce the object plane. The exact dimensions of the gap, pole
1057:
The most common is the side entry holder, where the specimen is placed near the tip of a long metal (brass or stainless steel) rod, with the specimen placed flat in a small bore. Along the rod are several polymer vacuum rings to allow for the formation of a vacuum seal of sufficient quality, when
367:
After World War II, Ruska resumed work at Siemens, where he continued to develop the electron microscope, producing the first microscope with 100k magnification. The fundamental structure of this microscope design, with multi-stage beam preparation optics, is still used in modern microscopes. The
2456:
to create enough space for a tip to be pressed at the desired electron transparent location. The indenter tips are typically flat punch-type, pyramidal, or wedge shaped elongated in the z-direction. Pyramidal tips offer high precision on the order of 10 nm but suffer from sample slip, while
2045:
stream that is directed to the sample surface. Acceleration energies for gases such as argon are typically a few kilovolts. The sample may be rotated to promote even polishing of the sample surface. The sputtering rate of such methods is on the order of tens of micrometres per hour, limiting the
1875:
temperatures after embedding in vitreous ice. In material science and metallurgy the specimens can usually withstand the high vacuum, but still must be prepared as a thin foil, or etched so some portion of the specimen is thin enough for the beam to penetrate. Constraints on the thickness of the
1803:
milling, a new technique has been proposed which uses pillar-shaped specimen and a dedicated on-axis tomography holder to perform 180° rotation of the sample inside the pole piece of the objective lens in TEM. Using such arrangements, quantitative electron tomography without the missing wedge is
1463:
In Diffraction mode, a selected area aperture may be used to determine more precisely the specimen area from which the signal will be displayed. By changing the strength of current to the intermediate lens, the diffraction pattern is projected on a screen. Diffraction is a very powerful tool for
6595:
Feist, Armin; Bach, Nora; Rubiano da Silva, Nara; Danz, Thomas; Möller, Marcel; Priebe, Katharina E.; Domröse, Till; Gatzmann, J. Gregor; Rost, Stefan; Schauss, Jakob; Strauch, Stefanie; Bormann, Reiner; Sivis, Murat; Schäfer, Sascha; Ropers, Claus (2017-05-01). "Ultrafast Transmission Electron
2782:
More recently, advances in aberration corrector design have been able to reduce spherical aberrations and to achieve resolution below 0.5 ångströms (50 pm) at magnifications above 50 million times. Improved resolution allows for the imaging of lighter atoms that scatter electrons less
1563:
If the reflections that are selected do not include the unscattered beam (which will appear up at the focal point of the lens), then the image will appear dark wherever no sample scattering to the selected peak is present, as such a region without a specimen will appear dark. This is known as a
1025:
diffraction, in a specific orientation. To accommodate this, the TEM stage allows movement of the sample in the XY plane, Z height adjustment, and commonly a single tilt direction parallel to the axis of side entry holders. Sample rotation may be available on specialized diffraction holders and
753:
to provide preliminary focus of the emitted electrons into a beam while also stabilizing the current using a passive feedback circuit. A field emission source uses instead electrostatic electrodes called an extractor, a suppressor, and a gun lens, with different voltages on each, to control the
2338:
Optimal resolution in a TEM is achieved when spherical aberrations are corrected with objective lens. However, due to the geometry of most TEMs, inserting large in-situ holders requires the user to compromise the objective lens and endure spherical aberrations. Therefore, there is a compromise
1695:
based devices known as EEL spectrometers. These devices allow for the selection of particular energy values, which can be associated with the way the electron has interacted with the sample. For example, different elements in a sample result in different electron energies in the beam after the
961:
establishing high vacuum level necessary for operations. To allow for the low vacuum pump to not require continuous operation, while continually operating the turbo-molecular pumps, the vacuum side of a low-pressure pump may be connected to chambers which accommodate the exhaust gases from the
815:
electrons, as is often the case under standard TEM operating conditions. The theorem states that the wave amplitude at some point B as a result of electron point source A would be the same as the amplitude at A due to an equivalent point source placed at B. Simply stated, the wave function for
78:
is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then
52: 1567:
Modern TEMs are often equipped with specimen holders that allow the user to tilt the specimen to a range of angles in order to obtain specific diffraction conditions, and apertures placed above the specimen allow the user to select electrons that would otherwise be diffracted in a particular
1068:
The second design is the top-entry holder consists of a cartridge that is several cm long with a bore drilled down the cartridge axis. The specimen is loaded into the bore, possibly using a small screw ring to hold the sample in place. This cartridge is inserted into an airlock with the bore
1902:
Before sectioning, biological tissue is often embedded in an epoxy resin block and first trimmed using a razor blade into a trapezoidal block face. Thick sections are then cut from the block face. The thick sections are crudely stained with toluidine blue and examined for specimen and block
1029:
A TEM stage is required to have the ability to hold a specimen and be manipulated to bring the region of interest into the path of the electron beam. As the TEM can operate over a wide range of magnifications, the stage must simultaneously be highly resistant to mechanical drift, with drift
965:
High-voltage TEMs require ultra-high vacuums on the range of 10 to 10 Pa to prevent the generation of an electrical arc, particularly at the TEM cathode. As such for higher voltage TEMs a third vacuum system may operate, with the gun isolated from the main chamber either by gate valves or a
2562:
source is possible in ultrafast TEM. Using the Photon-gating approach, the temporal resolution in ultrafast electron microscope reaches to 30-fs allowing the imaging of ultrafast atomic and electron dynamics of matter. However, the technique can only image reversible processes that can be
2010:
polishing compound may be used in the final stages of polishing to remove any scratches that may cause contrast fluctuations due to varying sample thickness. Even after careful mechanical milling, additional fine methods such as ion etching may be required to perform final stage thinning.
1200:
This equation shows that in order to achieve sufficient current density it is necessary to heat the emitter, taking care not to cause damage by application of excessive heat. For this reason materials with either a high melting point, such as tungsten, or those with a low work function
942:. TEM components such as specimen holders and film cartridges must be routinely inserted or replaced requiring a system with the ability to re-evacuate on a regular basis. As such, TEMs are equipped with multiple pumping systems and airlocks and are not permanently vacuum sealed. 2180:, which acts as a direct electron counter. By correlating the electron count to the position of the scanning beam (known as the "probe"), the transmitted component of the beam may be measured. The non-transmitted components may be obtained either by beam tilting or by the use of 1645:
Diffraction patterns can have a large dynamic range, and for crystalline samples, may have intensities greater than those recordable by CCD. As such, TEMs may still be equipped with film cartridges for the purpose of obtaining these images, as the film is a single use detector.
2326:
High temperature TEM introduces various additional challenges which must be addressed in the mechanics of high temperature holders, including but not limited to drift-correction, temperature measurement, and decreased spatial resolution at the expense of more complex holders.
1690:
Using the advanced technique of electron energy loss spectroscopy (EELS), for TEMs appropriately equipped, electrons can be separated into a spectrum based upon their velocity (which is closely related to their kinetic energy, and thus energy loss from the beam energy), using
1719: 1717: 1715: 938:. The need for this is twofold: first the allowance for the voltage difference between the cathode and the ground without generating an arc, and secondly to reduce the collision frequency of electrons with gas atoms to negligible levels—this effect is characterized by the 2053:
stack structures to a specific layer which has then been atomically resolved. The TEM images taken in plan view rather than cross-section reveal that the MgO layer within MTJs contains a large number of grain boundaries that may be diminishing the properties of devices.
1718: 962:
turbo-molecular pump. Sections of the TEM may be isolated by the use of pressure-limiting apertures to allow for different vacuum levels in specific areas such as a higher vacuum of 10 to 10 Pa or higher in the electron gun in high-resolution or field-emission TEMs.
2339:
between the width of the pole-piece gap and spatial resolution below 0.1 nm. Research groups at various institutions have tried to overcome spherical aberrations through use of monochromators to achieve 0.05 nm resolution with a 5 mm pole piece gap.
1676:(CBED) where a non-parallel, i.e. converging, electron wavefront is produced by concentrating the electron beam into a fine probe at the sample surface, the interaction of the convergent beam can provide information beyond structural data such as sample thickness. 1969:) may be used prior to TEM observation to selectively deposit electron dense atoms in or on the sample in desired cellular or protein region. This process requires an understanding of how heavy metals bind to specific biological tissues and cellular structures. 1472:
The contrast between two adjacent areas in a TEM image can be defined as the difference in the electron densities in image plane. Due to the scattering of the incident beam by the sample, the amplitude and phase of the electron wave change, which results in
224:, increased resolving power by a factor of two. However this required expensive quartz optics, due to the absorption of UV by glass. It was believed that obtaining an image with sub-micrometre information was not possible due to this wavelength constraint. 1309:
Imaging methods in TEM use the information contained in the electron waves exiting from the sample to form an image. The projector lenses allow for the correct positioning of this electron wave distribution onto the viewing system. The observed intensity,
5616:
van Omme, J. Tijn; Zakhozheva, Marina; Spruit, Ronald G.; Sholkina, Mariya; Pérez Garza, H. Hugo (September 2018). "Advanced microheater for in situ transmission electron microscopy; enabling unexplored analytical studies and extreme spatial stability".
1980:
stain is applied to the sample. The result is a sample with a dark background and the topological surface of the sample appearing lighter. Negative stain electron microscopy can be ideal for visualizing or forming 3D topological reconstructions of large
1231:
Electron lenses are designed to act in a manner emulating that of an optical lens, by focusing parallel electrons at some constant focal distance. Electron lenses may operate electrostatically or magnetically. The majority of electron lenses for TEM use
1045:
Two main designs for stages in a TEM exist, the side-entry and top entry version. Each design must accommodate the matching holder to allow for specimen insertion without either damaging delicate TEM optics or allowing gas into TEM systems under vacuum.
170:
in 1931, with this group developing the first TEM with resolution greater than that of light in 1933 and the first commercial TEM in 1939. In 1986, Ruska was awarded the Nobel Prize in physics for the development of transmission electron microscopy.
880:
detectors, which are faster and more resistant to radiation damage than CCDs, have been used for TEM since 2005. In the early 2010s, further development of CMOS technology allowed for the detection of single electron counts ("counting mode"). These
1696:
sample. This normally results in chromatic aberration – however this effect can, for example, be used to generate an image which provides information on elemental composition, based upon the atomic transition during electron-electron interaction.
1716: 1456:
exit surface of the specimen two types of electrons exist – unscattered (which will correspond to the bright central beam on the diffraction pattern) and scattered electrons (which change their trajectories due to interaction with the material).
2040:
Ion etching is a sputtering process that can remove very fine quantities of material. This is used to perform a finishing polish of specimens polished by other means. Ion etching uses an inert gas passed through an electric field to generate a
319:
and normal imaging of an aluminium sheet was achieved. However the magnification achievable was lower than with light microscopy. Magnifications higher than those available with a light microscope were achieved in September 1933 with images of
2558:
pulses with a sufficient number of electrons to form an image from each pulse is called dynamic transmission electron microscopy. Temporal resolution down to hundreds of femtoseconds and spatial resolution comparable to that available with a
1636:
material. For the single crystal case the diffraction pattern is dependent upon the orientation of the specimen and the structure of the sample illuminated by the electron beam. This image provides the investigator with information about the
1301:
different aperture sizes, which may be used by the operator to trade off intensity and the filtering effect of the aperture. Aperture assemblies are often equipped with micrometers to move the aperture, required during optical calibration.
514: 655: 1434: 2382:
One of the pioneers of classical holders was Heinz G.F. Wilsdorf, who conducted a tensile test inside a TEM in 1958. In a typical experiment, electron transparent TEM samples are cut to shape and glued to a deformable grid. Advances in
2549:
electrons. Pulses can be produced by either modifying the electron source to enable laser-triggered photoemission or by installation of an ultrafast beam blanker. This approach is termed ultrafast transmission electron microscopy when
2309:
In-situ experiments may also be conducted in TEM using differentially pumped sample chambers, or specialized holders. Types of in-situ experiments include studying nanomaterials, biological specimens, chemical reactions of molecules,
2472:
of the empty MEMs. The dimensions and stiffness of the MEMs can be modified to perform tensile tests on different sized samples with different loads. To smoothen the actuation process, active MEMs have been developed with built-in
919:
beam as required. Also required is a device to allow the insertion into, motion within, and removal of specimens from the beam path. Imaging devices are subsequently used to create an image from the electrons that exit the system.
5853:
Vendelbo, S.B.; Kooyman, P.J.; Creemer, J.F.; Morana, B.; Mele, L.; Dona, P.; Nelissen, B.J.; Helveg, S. (October 2013). "Method for local temperature measurement in a nanoreactor for in situ high-resolution electron microscopy".
769:
can cause the electrons to be deflected through a constant angle. Coupling of two deflections in opposing directions with a small intermediate gap allows for the formation of a shift in the beam path, allowing for beam shifting.
1944:
TEM samples of biological tissues need high atomic number stains to enhance contrast. The stain absorbs the beam electrons or scatters part of the electron beam which otherwise is projected onto the imaging system. Compounds of
368:
worldwide electron microscopy community advanced with electron microscopes being manufactured in Manchester UK, the USA (RCA), Germany (Siemens) and Japan (JEOL). The first international conference in electron microscopy was in
315:.) In April 1932, Ruska suggested the construction of a new electron microscope for direct imaging of specimens inserted into the microscope, rather than simple mesh grids or images of apertures. With this device successful 2737: 2489:
dislocation motion and interactions with other defects and pushing the limits of sub-nanometre strain measurements. In-situ mechanical TEM measurements are routinely coupled with other standard TEM measurements such as
1735:
The reconstruction is accomplished by a two-step process, first images are aligned to account for errors in the positioning of a sample; such errors can occur due to vibration or mechanical drift. Alignment methods use
783:
have their positions adjusted. Variable apertures after the sample allow the user to select the range of spatial positions or electron scattering angles to be used in the formation of an image or a diffraction pattern.
1641:
symmetries in the crystal and the crystal's orientation to the beam path. This is typically done without using any information but the position at which the diffraction spots appear and the observed image symmetries.
51: 2086:
such as a semiconductor or metal. Unlike inert gas ion sputtering, FIB makes use of significantly more energetic gallium ions and may alter the composition or structure of the material through gallium implantation.
2457:
wedge indenters have greater contract to prevent slipping but require finite element analysis to model the transmitted stress since the high contact area with the TEM sample makes this almost a compression test.
1284:
extraction of the heat generated by the energy lost to resistance of the coil windings. The windings may be water-cooled, using a chilled water supply in order to facilitate the removal of the high thermal duty.
1799:
then imaged at equal angular rotational increments through one complete rotation in the plane of the specimen grid) can be used to limit the impact of the missing data on the observed specimen morphology. Using
1925:
A visualization of negative staining (a) and positive staining (b) of samples in transmission electron microscopy. The top row is a side profile of the sample, the bottom row shows the resulting image from the
3552:
Henderson, R.; Cattermole, D.; McMullan, G.; Scotcher, S.; Fordham, M.; Amos, W.B.; Faruqi, A.R. (February 2007). "Digitisation of electron microscope films: Six useful tests applied to three film scanners".
913:
The electron source of the TEM is at the top, where the lensing system (4,7 and 8) focuses the beam on the specimen and then projects it onto the viewing screen (10). The beam control is on the right (13 and
1180: 2005:
Mechanical polishing is also used to prepare samples for imaging on the TEM. Polishing needs to be done to a high quality, to ensure constant sample thickness across the region of interest. A diamond, or
6431:
Ishida, T; Nakajima, Y; Kakushima, K; Mita, M; Toshiyoshi, H; Fujita, H (1 July 2010). "Design and fabrication of MEMS-controlled probes for studying the nano-interface under in situ TEM observation".
2616:
The limit of resolution obtainable in a TEM may be described in several ways, and is typically referred to as the information limit of the microscope. One commonly used value is a cut-off value of the
1271:
The components include the yoke, the magnetic coil, the poles, the polepiece, and the external control circuitry. The pole piece must be manufactured in a very symmetrical manner, as this provides the
816:
electrons focused through any series of optical components that includes only scalar (i.e. not magnetic) fields will be exactly equivalent if the electron source and observation point are reversed. R
5325:
Shimizu, Toshiki; Lungerich, Dominik; Harano, Koji; Nakamura, Eiichi (2022). "Time-Resolved Imaging of Stochastic Cascade Reactions over a Submillisecond to Second Time Range at the Angstrom Level".
2353:
High resolution of TEM allows for monitoring the sample in question on a length scale ranging from hundreds of nanometres to several angstroms. This allows for the visualization of both elastic and
966:
differential pumping aperture – a small hole that prevents the diffusion of gas molecules into the higher vacuum gun area faster than they can be pumped out. For these very low pressures, either an
868:
screen coupled CCDs, or other digital detector. Typically these devices can be removed or inserted into the beam path as required. (Photograph film is no longer used.) The first report of using a
2428:
connected to a liquid nitrogen reservoir. For high temperature experiments, the TEM sample can also be heated through a miniaturized furnace or a laser that can typically reach 1000 °C.
5769:
Picher, Matthieu; Mazzucco, Stefano; Blankenship, Steve; Sharma, Renu (March 2015). "Vibrational and optical spectroscopies integrated with environmental transmission electron microscopy".
1560:
vectors can be selected (or excluded), thus only parts of the sample that are causing the electrons to scatter to the selected reflections will end up projected onto the imaging apparatus.
5510:
Yaguchi, T.; Suzuki, M.; Watabe, A.; Nagakubo, Y.; Ueda, K.; Kamino, T. (2011-03-22). "Development of a high temperature-atmospheric pressure environmental cell for high-resolution TEM".
6041:
Castany, P.; Legros, M. (January 2011). "Preparation of H-bar cross-sectional specimen for in situ TEM straining experiments: A FIB-based method applied to a nitrided Ti–6Al–4V alloy".
2323:
within reasonable time scales. This also allows for the observation of phenomena that occur at elevated temperatures and disappear or are not uniformly preserved in ex-situ samples.
2440:
on the material in question by pressing a hard tip into a polished flat surface and measuring the applied force and the resulting displacement on the TEM sample through a change in
1714: 4015:
Pulokas, James; Green, Carmen; Kisseberth, Nick; Potter, Clinton S.; Carragher, Bridget (1999). "Improving the Positional Accuracy of the Goniometer on the Philips CM Series TEM".
3754:
Faruqi, A.R.; Henderson, R.; Pryddetch, M.; Allport, P.; Evans, A. (October 2006). "Erratum to: "Direct single electron detection with a CMOS detector for electron microscopy"".
1628:
can be generated. For thin crystalline samples, this produces an image that consists of a pattern of dots in the case of a single crystal, or a series of rings in the case of a
787:
in the lens stacks. The stigmators compensate for slight imperfections and aberrations that cause astigmatism—a lens having a different focal strength in different directions.
2783:
efficiently, such as lithium atoms in lithium battery materials. The ability to determine the position of atoms within materials has made the HRTEM an indispensable tool for
2366:
accuracy obtained from such nano-mechanical tests is largely determined by the mechanical straining holder being used. Current straining holders have the ability to perform
1859:
to withstand the high vacuum in the sample chamber and to enable cutting tissue into electron transparent thin sections. The biological sample can be stained using either a
6934:
Browning, N.D.; Bonds, M.A.; Campbell, G.H.; Evans, J.E.; LaGrange, T.; Jungjohann, K.L.; Masiel, D.J.; McKeown, J.; Mehraeen, S.; Reed, B.W.; Santala, M. (February 2012).
4441:
Kawase, Noboru; Kato, Mitsuro; Jinnai, Hiroshi; Jinnai, H (2007). "Transmission electron microtomography without the 'missing wedge' for quantitative structural analysis".
757:
Manipulation of the electron beam is performed using two physical effects. The interaction of electrons with a magnetic field will cause electrons to move according to the
6294:
Oliver, W. C.; Pharr, G. M. (June 1992). "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments".
2216: 2243: 1787:). This three-dimensional image is of particular interest when morphological information is required, further study can be undertaken using computer algorithms, such as 2077:. The thin membrane shown here is suitable for TEM examination; however, at ~300-nm thickness, it would not be suitable for high-resolution TEM without further milling. 449: 104: 557: 1624:
As previously stated, by adjusting the magnetic lenses such that the back focal plane of the lens rather than the imaging plane is placed on the imaging apparatus a
1324: 3789:
Ercius, P.; Caswell, T.; Tate, M.W.; Ercan, A.; Gruner, S.M.; Muller, D. (September 2005). "A Pixel Array Detector for Scanning Transmission Electron Microscopy".
6600:. 70th Birthday of Robert Sinclair and 65th Birthday of Nestor J. Zaluzec PICO 2017 – Fourth Conference on Frontiers of Aberration Corrected Electron Microscopy. 5812:. 70th Birthday of Robert Sinclair and 65th Birthday of Nestor J. Zaluzec PICO 2017 – Fourth Conference on Frontiers of Aberration Corrected Electron Microscopy. 6111:
Kubin, L.P.; Lépinoux, J.; Rabier, J.; Veyssière, P.; Fourdeux, A. (1982). "In situ Plastic Deformation of Metals and Alloys in the 200 kV Electron Microscope".
4560:
Amzallag, Arnaud; Vaillant, Cédric; Jacob, Mathews; Unser, Michael; Bednar, Jan; Kahn, Jason D.; Dubochet, Jacques; Stasiak, Andrzej; Maddocks, John H. (2006).
945:
The vacuum system for evacuating a TEM to an operating pressure level consists of several stages. Initially, a low or roughing vacuum is achieved with either a
7765: 4939:
Gorji, Saleh; Kashiwar, Ankush; Mantha, Lakshmi S; Kruk, Robert; Witte, Ralf; Marek, Peter; Hahn, Horst; Kübel, Christian; Scherer, Torsten (December 2020).
2768: 2603: 2506: 1314:, of the image, assuming sufficiently high quality of imaging device, can be approximated as proportional to the time-averaged squared absolute value of the 372:
in 1949, with more than one hundred attendees. Later conferences included the "First" international conference in Paris, 1950 and then in London in 1954.
1794:
As TEM samples cannot typically be viewed at a full 180° rotation, the observed images typically suffer from a "missing wedge" of data, which when using
1053:
A diagram of a single axis tilt sample holder for insertion into a TEM goniometer. Tilting of the holder is achieved by rotation of the entire goniometer
5564:; Crozier, P.A.; Kabius, Bernd C.; LaGrange, Thomas; Minor, Andrew M.; Takeda, Seiji; Tanase, Mihaela; Wagner, Jakob B.; Sharma, Renu (November 2016). 977:
Poor vacuum in a TEM can cause several problems ranging from the deposition of gas inside the TEM onto the specimen while viewed in a process known as
2771:" microscopes. Their resolution is however limited by electron source geometry and brightness and chromatic aberrations in the objective lens system. 1240:. The field produced for the lens must be radially symmetrical, as deviation from the radial symmetry of the magnetic lens causes aberrations such as 302:
At the time, electrons were understood to be charged particles of matter; the wave nature of electrons was not fully realized until the PhD thesis of
2121:
at low beam current), and minimization of stress-induced bending, Pt contamination, and ion beam damage. This technique is particularly suitable for
853: 7232: 7748: 7743: 5078: 3973: 2832: 2826: 2301:, imaging of vitrified solid-electrolye interfaces, and imaging of materials that are volatile in high vacuum at room temperature, such as sulfur. 1589: 2656: 6879: 5029: 2026:
passing through the specimen, and may include systems to detect when the sample has been thinned to a sufficient level of optical transparency.
7892: 7595: 882: 832: 92: 6337:
Haque, M. A.; Espinosa, H. D.; Lee, H. J. (May 2010). "MEMS for In Situ Testing—Handling, Actuation, Loading, and Displacement Measurements".
1492:
first two losses are due to the specimen and microscope construction, the objective aperture can be used by operator to enhance the contrast.
7882: 7485: 2582: 2563:
reproducibly triggered millions of times. Dynamic TEM can resolve irreversible processes down to tens of nanoseconds and tens of nanometres.
1839:
Sample preparation in TEM can be a complex procedure. TEM specimens should be less than 100 nanometres thick for a conventional TEM. Unlike
1732:. Under purely absorption contrast conditions, this set of images can be used to construct a three-dimensional representation of the sample. 327:
At this time, interest in the electron microscope had increased, with other groups, such as that of Paul Anderson and Kenneth Fitzsimmons of
5043:
Drummy, Lawrence, F.; Yang, Junyan; Martin, David C. (2004). "Low-voltage electron microscopy of polymer and organic molecular thin films".
7785: 7758: 1522:
such as defects. Note that in case diffraction contrast exists, the contrast cannot be interpreted as due to mass or thickness variations.
391:
and adding a high quality objective lens to create the modern STEM. Using this design, Crewe demonstrated the ability to image atoms using
2578:). Ultrafast TEM and Dynamic TEM have made possible real-time investigation of numerous physical and chemical phenomena at the nanoscale. 2485:
variations. Electrostatically actuated MEMs have also been developed to accommodate very low applied forces in the 1–100 nN range.
7693: 5711:
Zhang, Chao; Firestein, Konstantin L.; Fernando, Joseph F. S.; Siriwardena, Dumindu; Treifeldt, Joel E.; Golberg, Dmitri (2019-09-30).
2158:
The capabilities of the TEM can be further extended by additional stages and detectors, sometimes incorporated on the same microscope.
2395:. The deformable grid attaches to the classical tensile holder which stretches the sample using a long rigid shaft attached to a worm 7753: 5974:
Filleter, Tobin; Beese, Allison M. (2016), "In Situ Transmission Electron Microscopy: Mechanical Testing", in Bhushan, Bharat (ed.),
3021: 2173: 2167: 1112: 820: 376: 6203: 7897: 5143:"Site-Specific Preparation of Intact Solid–Liquid Interfaces by Label-Free In Situ Localization and Cryo-Focused Ion Beam Lift-Out" 1921: 7434: 6474:
Williams, David B.; Carter, C. Barry (1996), Williams, David B.; Carter, C. Barry (eds.), "The Transmission Electron Microscope",
8164: 351:-Werke. Further work on the electron microscope was hampered by the destruction of a new laboratory constructed at Siemens by an 5665:
Saka, Hiroyasu; Kamino, Takeo; Ara, Shigeo; Sasaki, Katsuhiro (2008-02-01). "In Situ Heating Transmission Electron Microscopy".
2612:
Evolution of spatial resolution achieved with optical, transmission (TEM) and aberration-corrected electron microscopes (ACTEM).
7713: 2575: 2285:
Cryogenic transmission electron microscopy (Cryo-TEM) uses a TEM with a specimen holder capable of maintaining the specimen at
3756:
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
2191:
Schematic ray diagram illustrating the optical reciprocity between TEM (left) and STEM (right). The convergence angle in TEM,
247:
noticed that the cathode rays could be focused by magnetic fields, allowing for simple electromagnetic lens designs. In 1926,
7837: 7703: 7650: 6491: 6128: 5991: 4358: 4279: 4210: 4185: 4157: 4129: 4097: 3999: 3730: 3608: 3498: 3337: 3312: 3287: 3262: 2951: 2849: 1495: 535:). Early twentieth century scientists theorized ways of getting around the limitations of the relatively large wavelength of 6256: 6167:
Pethicai, J. B.; Hutchings, R.; Oliver, W. C. (April 1983). "Hardness measurement at penetration depths as small as 20 nm".
5192:"Characterization of Sulfur and Nanostructured Sulfur Battery Cathodes in Electron Microscopy Without Sublimation Artifacts" 2117:
The main advantages of this method include a significant reduction of sample preparation time (quick welding and cutting of
8137: 8092: 7820: 7805: 7731: 2767:= 0.5 mm and thus a 200 pm cut-off. The spherical aberrations are suppressed to the third or fifth order in the " 2494: 1673: 1021:
Once inserted into a TEM, the sample has to be manipulated to locate the region of interest to the beam, such as in single
7404: 3083: 872:
detector for TEM was in 1982, but the technology didn't find widespread use until the late 1990s/early 2000s. Monolithic
1867:
for bacteria and viruses, or, in the case of embedded sections, the specimen may be stained with heavy metals, including
1699:
EELS spectrometers can often be operated in both spectroscopic and imaging modes, allowing for isolation or rejection of
4986:
Nebesářová1, Jana; Vancová, Marie (2007). "How to Observe Small Biological Objects in Low-Voltage Electron Microscope".
1892:
A diamond knife blade used for cutting ultrathin sections (typically 70 to 350 nm) for transmission electron microscopy.
1728:
1° increments, a set of images known as a "tilt series" can be collected. This methodology was proposed in the 1970s by
4755: 3957: 3124: 2424:. In order to study the temperature-dependent mechanical properties of TEM samples, the holder can be cooled through a 1669: 2545:
It is possible to reach temporal resolution far beyond that of the readout rate of electron detectors with the use of
2444:
between a reference and a movable electrostatic plate attached to the tip. The typical measured sample properties are
1594:
Crystal structure can also be investigated by high-resolution transmission electron microscopy (HRTEM), also known as
7842: 7675: 7528: 7478: 2820: 2490: 1685: 1661:
images is possible, it is inherently complicated and can require extensive computer simulation and analysis, such as
7451: 1989:(> 150 kDa). For smaller proteins, negative stain can be used as a screening step to find ideal sample 339:, who constructed the first TEMs in North America in 1935 and 1938, respectively, continually advancing TEM design. 7830: 7825: 7698: 7665: 6068:
Legros, Marc; Cabié, Martiane; Gianola, Daniel S. (March 2009). "In situ deformation of thin films on substrates".
3624:
Roberts, P. T. E.; Chapman, J. N.; MacLeod, A. M. (1982-01-01). "A CCD-based image recording system for the CTEM".
2465: 2311: 978: 184: 5245:
P.A. Crozier; T.W. Hansen (2014). "In situ and operando transmission electron microscopy of catalytic materials".
3832:
McMullan, G.; Faruqi, A.R.; Henderson, R.; Guerrini, N.; Turchetta, R.; Jacobs, A.; van Hoften, G. (18 May 2009).
2567: 263: 7902: 7887: 7867: 7385: 2844: 2838: 2268: 989:
sublimated gases in the vicinity of the specimen largely eliminates vacuum problems that are caused by specimen
8169: 8097: 7670: 7605: 7513: 3143: 2551: 2540: 2262: 1292:
Apertures are annular metallic plates, through which electrons that are further than a fixed distance from the
8087: 2891: 270:
to lead a team of researchers to advance the CRO design. The team consisted of several PhD students including
7847: 7810: 7655: 7072: 2280: 1994: 1241: 17: 6596:
Microscopy Using a Laser-Driven Field Emitter: Femtosecond Resolution with a High Coherence Electron Beam".
5470:
Haque, M. A. & Saif, M. T. A. (2001). "In-situ tensile testing of nano-scale specimens in SEM and TEM".
4774:
Thompson, Rebecca F.; Walker, Matt; Siebert, C. Alistair; Muench, Stephen P.; Ranson, Neil A. (2016-05-01).
3040: 1847:
radiation the electrons in the beam interact readily with the sample, an effect that increases roughly with
1536: 8125: 7685: 7471: 7252:"Present status and future prospects of spherical aberration corrected TEM/STEM for study of nanomaterials" 4833:"Atomic structure and electronic properties of MgO grain boundaries in tunnelling magnetoresistive devices" 3006: 2070: 1507:
There are two types of amplitude contrast – mass–thickness and diffraction contrast. First, let's consider
846: 838: 7306: 2909: 5804:
Niekiel, Florian; Kraschewski, Simon M.; Müller, Julian; Butz, Benjamin; Spiecker, Erdmann (2017-05-01).
2348: 2122: 1823: 1447: 931:
of the electron gas interaction, a standard TEM is evacuated to low pressures, typically on the order of
328: 2870: 1061:
Insertion procedures for side-entry TEM holders typically involve the rotation of the sample to trigger
212:
of the light used in imaging or a few hundred nanometres for visible light microscopes. Developments in
7872: 7790: 6979: 5296:"Characterising degradation of perovskite solar cells through in-situ and operando electron microscopy" 4831:
Bean, J. J.; Saito, M.; Fukami, S.; Sato, H.; Ikeda, S.; Ohno, H.; Ikuhara, Y.; Mckenna, K. P. (2017).
4480:(2013). "Quantitative electron tomography: The effect of the three-dimensional point spread function". 3659:
Fan, G. Y.; Ellisman, M. H. (24 December 2001). "Digital imaging in transmission electron microscopy".
2742:
For a 200 kV microscope, with partly corrected spherical aberrations ("to the third order") and a
2617: 2181: 392: 4776:"An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology" 3834:"Experimental observation of the improvement in MTF from backthinning a CMOS direct electron detector" 741:. The gun is connected to a high voltage source (typically ~100–300 kV) and emits electrons either by 7399: 6552:
Oldfield, L. C. (June 1976). "A rotationally symmetric electron beam chopper for picosecond pulses".
6006:
Wilsdorf, H. G. F. (April 1958). "Apparatus for the Deformation of Foils in an Electron Microscope".
4711:
Phillips (1961). "Diamond knife ultra microtomy of metals and the structure of microtomed sections".
2519:
may also be used which reduce the energy spread of the incident electron beam to less than 0.15 
2413: 2298: 1903:
orientation before thin sectioning. Biological tissue is then thinned to less than 100 nm on an
1441: 347:
1939, the first commercial electron microscope, pictured, was installed in the Physics department of
7368: 4562:"3D reconstruction and comparison of shapes of DNA minicircles observed by cryo-electron microscopy" 2094:
For a minimal introduction of stress and bending to transmission electron microscopy (TEM) samples (
8051: 7877: 2810: 2050: 1877: 1812: 1795: 1745: 1276:
piece internal diameter and taper, as well as the overall design of the lens is often performed by
865: 240: 4050:
Buckingham, J (1965). "Thermionic emission properties of a lanthanum hexaboride/rhenium cathode".
1556:. By the placement of apertures in the back focal plane, i.e. the objective aperture, the desired 7800: 7736: 7610: 7569: 4227: 3433:
Pogany, A. P.; Turner, P. S. (1968-01-23). "Reciprocity in electron diffraction and microscopy".
2788: 2358: 2194: 2133: 1986: 1277: 1190: 990: 746: 509:{\displaystyle d={\frac {\lambda }{2n\sin \alpha }}\approx {\frac {\lambda }{2\,{\textrm {NA}}}}} 396: 2221: 1280:
of the magnetic field, whilst considering the thermal and electrical constraints of the design.
650:{\displaystyle \lambda _{e}={\frac {h}{\sqrt {2m_{0}E\left(1+{\frac {E}{2m_{0}c^{2}}}\right)}}}} 266:), Adolf Matthias, Professor of High Voltage Technology and Electrical Installations, appointed 8159: 7990: 6374:"An electromechanical material testing system for in situ electron microscopy and applications" 2147: 1429:{\displaystyle I(x)={\frac {k}{t_{1}-t_{0}}}\int _{t_{0}}^{t_{1}}\Psi \Psi ^{\mathrm {*} }\,dt} 248: 4896:
Baram, M. & Kaplan W. D. (2008). "Quantitative HRTEM analysis of FIB prepared specimens".
2908:
ultraviolet microscope. (2010). In Encyclopædia Britannica. Retrieved November 20, 2010, from
1552:
which in the case of a crystalline sample, disperses electrons into discrete locations in the
1444:
of the TEM, which would normally decrease contrast if the sample was not a weak phase object.
7995: 7815: 7355: 6149: 5072: 5023: 2968: 2554: 2250: 2138: 1265: 869: 842: 808: 384: 336: 259: 119: 100: 3158: 2481:. These devices work by applying a stress using electrical power and measuring strain using 8000: 7559: 7263: 7197: 7185: 7137: 7087: 7029: 6988: 6947: 6935: 6888: 6831: 6786: 6739: 6662: 6561: 6518: 6440: 6385: 6303: 6268: 6215: 6176: 6015: 5930: 5921:
Minor, Andrew M.; Dehm, Gerhard (June 2019). "Advances in in situ nanomechanical testing".
5863: 5387: 5203: 5154: 4995: 4844: 4720: 4397: 4297:"Electron tomography of negatively stained complex viruses: application in their diagnosis" 4242: 4059: 3994:. Royal Microscopical Society Microscopy Handbooks. Vol. 08. Oxford University Press. 3517:
Faruqi, A.R; Henderson, R. (October 2007). "Electronic detectors for electron microscopy".
3442: 3375: 3205: 3170: 2980: 2931: 2815: 2792: 2643: 1966: 1611: 1549: 1531: 1252:. Electron lenses are manufactured from iron, iron-cobalt or nickel cobalt alloys, such as 1249: 1245: 1065:
that initiate evacuation of the airlock before the sample is inserted into the TEM column.
954: 796: 792: 727: 712: 419: 355:, as well as the death of two of the researchers, Heinz Müller and Friedrick Krause during 252: 7458:
animations and explanations on various types of microscopes including electron microscopes
4376:"Nanomaterial datasets to advance tomography in scanning transmission electron microscopy" 4351:
Electron tomography: methods for three-dimensional visualization of structures in the cell
3883:"Quantitative characterization of electron detectors for transmission electron microscopy" 2581:
An interesting variant of the Ultrafast Transmission Electron Microscopy technique is the
8: 7965: 7950: 7857: 7852: 7795: 7660: 7642: 7574: 7564: 7508: 7494: 2805: 2354: 2095: 2007: 1625: 1272: 1261: 1257: 1104: 873: 766: 749:
into the vacuum. In the case of a thermionic source, the electron source is mounted in a
742: 543:) by using electrons. Like all matter, electrons have both wave and particle properties ( 524: 279: 7267: 7201: 7141: 7091: 7033: 6992: 6951: 6892: 6835: 6790: 6743: 6666: 6565: 6522: 6509:
Dömer, H.; Bostanjoglo, O. (2003-09-25). "High-speed transmission electron microscope".
6452: 6444: 6389: 6307: 6272: 6219: 6180: 6019: 5934: 5867: 5391: 5207: 5158: 4999: 4848: 4724: 4401: 4246: 4063: 3446: 3379: 3209: 3174: 2984: 2935: 1804:
possible. In addition, numerical techniques exist which can improve the collected data.
1668:
More complex behavior in the diffraction plane is also possible, with phenomena such as
1318:
of the electron wavefunctions, where the wave that forms the exit beam is denoted by Ψ.
399:
source and built a STEM able to visualize single heavy atoms on thin carbon substrates.
8036: 7615: 7579: 7284: 7275: 7251: 7158: 7149: 7125: 7103: 7053: 6911: 6874: 6855: 6729: 6693: 6650: 6649:
Hassan, Mohammed T.; Liu, Haihua; Baskin, John Spencer; Zewail, Ahmed H. (2015-10-20).
6631: 6605: 6456: 6408: 6373: 6354: 6319: 6120: 6093: 5956: 5751: 5690: 5642: 5590: 5565: 5487: 5411: 5360: 5334: 5272: 5227: 5118: 5093: 5011: 4968: 4921: 4873: 4832: 4808: 4775: 4693: 4650: 4637: 4610: 4586: 4561: 4418: 4387: 4375: 4323: 4296: 3967: 3907: 3882: 3858: 3833: 3814: 3692: 3597: 3396: 3387: 3363: 3229: 2969:"Über die Einwirkung des Magneten auf die elektrischen Entladungen in verdünnten Gasen" 2559: 2512: 1737: 1700: 1557: 812: 738: 532: 437: 388: 291: 283: 115: 111: 6718:"High-temporal-resolution electron microscopy for imaging ultrafast electron dynamics" 5295: 4732: 4071: 1544:
in steel, which are faults in the structure of the crystal lattice at the atomic scale
7980: 7975: 7343: 7289: 7213: 7163: 7045: 6916: 6847: 6804: 6755: 6698: 6680: 6623: 6577: 6534: 6487: 6460: 6413: 6323: 6231: 6124: 6085: 5987: 5983: 5960: 5951: 5879: 5835: 5827: 5786: 5755: 5743: 5735: 5694: 5682: 5634: 5595: 5535: 5527: 5491: 5452: 5403: 5364: 5352: 5276: 5219: 5172: 5123: 5060: 5015: 4972: 4960: 4940: 4913: 4909: 4878: 4860: 4813: 4795: 4751: 4685: 4642: 4591: 4542: 4525:
Cheville, NF; Stasko J (2014). "Techniques in Electron Microscopy of Animal Tissue".
4507: 4502: 4458: 4423: 4354: 4328: 4275: 4206: 4181: 4153: 4125: 4093: 4032: 3995: 3953: 3912: 3863: 3818: 3806: 3771: 3736: 3726: 3684: 3676: 3672: 3641: 3637: 3604: 3570: 3534: 3494: 3458: 3401: 3333: 3308: 3283: 3258: 3221: 3120: 2947: 2625: 1936: 1744:
methods to correct these errors. Secondly, using a reconstruction algorithm, such as
1577: 1087:
Cross sectional diagram of an electron gun assembly, illustrating electron extraction
894: 861: 722:
From the top down, the TEM consists of an emission source or cathode, which may be a
352: 205: 132: 88: 8067: 7107: 6635: 6573: 6358: 6097: 5897: 5646: 5415: 4697: 4654: 3233: 1748:, the aligned image slices can be transformed from a set of two-dimensional images, 228: 7930: 7862: 7279: 7271: 7209: 7205: 7153: 7145: 7095: 7057: 7037: 6996: 6955: 6906: 6896: 6859: 6839: 6794: 6747: 6688: 6670: 6619: 6615: 6569: 6526: 6479: 6448: 6403: 6393: 6346: 6311: 6276: 6223: 6184: 6116: 6077: 6050: 6023: 5979: 5946: 5938: 5875: 5871: 5822: 5817: 5805: 5782: 5778: 5727: 5674: 5630: 5626: 5585: 5581: 5577: 5566:"Current status and future directions for in situ transmission electron microscopy" 5519: 5479: 5442: 5395: 5344: 5307: 5262: 5254: 5231: 5211: 5162: 5113: 5105: 5056: 5052: 5003: 4956: 4952: 4925: 4905: 4868: 4852: 4803: 4787: 4728: 4677: 4632: 4622: 4581: 4573: 4534: 4497: 4493: 4489: 4454: 4450: 4413: 4405: 4318: 4308: 4250: 4067: 4024: 3902: 3894: 3853: 3849: 3845: 3798: 3763: 3718: 3696: 3668: 3633: 3566: 3562: 3526: 3486: 3450: 3391: 3383: 3213: 3178: 2988: 2939: 2776: 2635:, for the transfer function may be approximated with the following equation, where 2621: 2453: 2417: 2384: 2111: 2103: 2082: 2074: 2059: 2042: 2020: 1868: 1828: 1800: 1553: 1233: 946: 750: 536: 303: 275: 188:
The duplicate of an early TEM on display at the Deutsches Museum in Munich, Germany
110:
Transmission electron microscopes are capable of imaging at a significantly higher
6717: 5713:"Recent Progress of In Situ Transmission Electron Microscopy for Energy Materials" 4608: 4228:"The Scattering of Electrons by Atoms and Crystals. I. A New Theoretical Approach" 3217: 428:, that one can obtain with a light microscope is limited by the wavelength of the 217: 7985: 6959: 5712: 5311: 5291: 2971:[On the effect of a magnet on the electric discharge in rarified gases]. 2546: 2449: 2405: 2371: 2367: 2286: 2102:, and other mechanically and beam sensitive samples), when transferring inside a 1872: 1741: 1692: 1629: 1599: 1226: 665: 236: 221: 124: 7126:"Nanofabrication by advanced electron microscopy using intense and focused beam" 6483: 6153: 4791: 4668:
Porter, K & Blum, J (1953). "A study in Microtomy for Electron Microscopy".
3196:
Crewe, Albert V.; Wall, J.; Langmore, J. (1970). "Visibility of a single atom".
2566:
The technique has been pioneered at the early 2000s in laboratories in Germany (
860:, for direct observation by the operator, and an image recording system such as 849:, pixel size and array size, noise, data readout speed, and radiation hardness. 7940: 7554: 6280: 6054: 5378:
de Jonge, N.; Ross, F.M. (2011). "Electron microscopy of specimens in liquid".
3767: 3722: 3713:
McMullan, G.; Faruqi, A.R.; Henderson, R. (2016). "Direct Electron Detectors".
3091: 2784: 2497:
to reach a comprehensive understanding of the sample structure and properties.
2421: 2401: 1973: 1897: 1864: 1860: 1832: 1595: 1572: 1006: 958: 950: 939: 928: 823:
in the familiar context of TEM, and to obtain and interpret images using STEM.
758: 734: 140: 80: 7017: 6188: 6146:
Development of precision TEM holder assemblies for use in extreme environments
5215: 5167: 5142: 5007: 4255: 3898: 3802: 3530: 3490: 3454: 3069: 2628:
of objects in the object plane by the microscope optics. A cut-off frequency,
1548:
Samples can exhibit diffraction contrast, whereby the electron beam undergoes
8153: 8016: 7960: 7620: 6773:
Campbell, Geoffrey H.; McKeown, Joseph T.; Santala, Melissa K. (2014-11-03).
6759: 6684: 6581: 6538: 5831: 5739: 5686: 5531: 4864: 4799: 4538: 3810: 3775: 3680: 3645: 3462: 2992: 2516: 2437: 2409: 2290: 1990: 1848: 1100: 1031: 934: 762: 332: 244: 144: 7457: 7339: 6975:"Ultrafast electron microscopy in materials science, biology, and chemistry" 6972: 6901: 6843: 6751: 6675: 6398: 5806:"Local temperature measurement in TEM by parallel beam electron diffraction" 5523: 5447: 4627: 3931: 2732:{\displaystyle q_{\max }={\frac {1}{0.67(C_{\text{s}}\lambda ^{3})^{1/4}}}.} 1620:
Crystalline diffraction pattern from a twinned grain of FCC Austenitic steel
981:
to more severe cathode damages caused by electrical discharge. The use of a
531:
is the maximum half-angle of the cone of light that can enter the lens (see
8077: 8041: 7935: 7925: 7600: 7549: 7324: 7293: 7217: 7167: 7049: 6920: 6851: 6702: 6627: 6417: 6089: 5883: 5839: 5790: 5747: 5731: 5638: 5599: 5539: 5456: 5407: 5356: 5223: 5176: 5127: 5064: 4964: 4917: 4882: 4817: 4689: 4646: 4595: 4546: 4511: 4462: 4427: 4332: 4036: 4028: 3916: 3867: 3740: 3688: 3574: 3538: 3419: 3405: 3225: 2520: 2515:
correctors, to reduce the amount of distortion in the image. Incident beam
2294: 1977: 1946: 1888: 1729: 1654: 1078: 1062: 857: 380: 356: 321: 308: 192: 148: 96: 30: 7071:
Pennycook, S.J.; Varela, M.; Hetherington, C.J.D.; Kirkland, A.I. (2011).
6315: 6257:"In situ mechanical TEM: Seeing and measuring under stress with electrons" 5267: 4681: 4409: 4313: 2297:, the preferred preparation technique for imaging individual molecules or 795:
corrected instruments, or TEMs using energy filtering to correct electron
379:(STEM) was re-investigated and remained undeveloped until the 1970s, with 8021: 7955: 7945: 6822:
Zewail, Ahmed H. (9 April 2010). "Four-Dimensional Electron Microscopy".
5942: 5561: 5348: 5258: 5109: 4577: 3250: 2943: 2528: 2482: 2441: 2425: 2362: 2177: 2049:
Ion etching by argon gas has been recently shown to be able to file down
1638: 1541: 1237: 1022: 890: 544: 316: 271: 213: 167: 84: 7041: 6873:
Lobatsov, Vladimir A.; Ramesh Srinivasan; Ahmed H. Zewail (2005-05-09).
6872: 6350: 4440: 3881:
Ruskin, Rachel S.; Yu, Zhiheng; Grigorieff, Nikolaus (1 November 2013).
1001: 8102: 8082: 7523: 7518: 7445: 6081: 5678: 5483: 2757: 2608: 2099: 2035: 1788: 1662: 1293: 986: 209: 201: 152: 71: 35: 7463: 7425:
The National Resource for Automated Molecular Microscopy, New York USA
7322: 7099: 7001: 6974: 6808: 6799: 6774: 6530: 6227: 6027: 4856: 4830: 4609:
Winey, M.; Meehl, J. B.; O’Toole, E. T. & Giddings, T. H. (2014).
4475: 3950:
Biological Electron Microscopy: Theory, techniques and troubleshooting
3182: 2930:. Applied Optics. Vol. 25. Translated by T. Mulvey. p. 820. 1499:
BF and DF contrast demonstration. TEM image of polycrystalline Pt film
1034:, providing the operator with a computer-based stage input, such as a 395:. Crewe and coworkers at the University of Chicago developed the cold 7970: 7625: 7347: 7073:"Materials Advances through Aberration-Corrected Electron Microscopy" 7015: 6973:
King, Wayne E.; Geoffrey H. Campbell; Alan Frank; Bryan Reed (2005).
6235: 4477: 3022:"Configuration for the enlarged imaging of objects by electron beams" 2892:"The Nobel Prize in Physics 1986, Perspectives – Life through a Lens" 2469: 2392: 1904: 1672:
arising from multiple diffraction within the crystalline lattice. In
1633: 1315: 1253: 1039: 982: 676: 540: 413: 348: 312: 267: 232: 163: 136: 39: 7439: 7415:
The National Center for Electron Microscopy, Berkeley California USA
6716:
Hassan, M. Th.; Baskin, J. S.; Liao, B.; Zewail, A. H. (July 2017).
5430: 5399: 1930: 699: 8072: 7538: 7070: 6734: 6610: 5339: 5191: 4392: 3551: 3420:"The objective lens of a TEM, the heart of the electron microscope" 2474: 2445: 2396: 2388: 2118: 2107: 1916: 1464:
doing a cell reconstruction and crystal orientation determination.
1035: 967: 723: 128: 75: 7340:"Sub-Angstrom electron microscopy for sub-Angstrom nano-metrology" 6476:
Transmission Electron Microscopy: A Textbook for Materials Science
5042: 2187: 1049: 8026: 7708: 7420:
The National Center for Macromolecular Imaging, Houston Texas USA
6936:"Recent developments in dynamic transmission electron microscopy" 6651:"Photon gating in four-dimensional ultrafast electron microscopy" 5710: 5431:"Opportunities and challenges in liquid cell electron microscopy" 4941:"Nanowire facilitated transfer of sensitive TEM samples in a FIB" 3481:
Hren, John J.; Goldstein, Joseph I.; Joy, David C., eds. (1979).
2571: 2374:, compression tests, shear tests and bending tests on materials. 2066: 1982: 1958: 1840: 1616: 1014: 898: 429: 343: 287: 27:
Imaging and diffraction using electrons that pass through samples
5615: 3255:
Transmission Electron Microscopy and Diffractometry of Materials
2928:
The Early Development of Electron Lenses and Electron Microscopy
1649: 953:
setting a sufficiently low pressure to allow the operation of a
909: 691: 8046: 5768: 3992:
Maintaining and Monitoring the Transmission Electron Microscope
3831: 3753: 2478: 1950: 1175:{\displaystyle J=AT^{2}\exp \left({\frac {-\Phi }{kT}}\right),} 1083: 971: 886: 7442:
Transmission Electron Microscopy and Crystalline Imperfections
6204:"Quantitativein situnanoindentation in an electron microscope" 5324: 2142:
platinum replica image shot on a TEM at 50,000x magnification.
1485:, correspondingly. Most images have both contrast components. 255:
could, with appropriate assumptions, be applied to electrons.
6594: 3007:"Ferdinand Braun, The Nobel Prize in Physics 1909, Biography" 1940:, taken with a Tecnai T-12 TEM. The scale bar is 200 nm. 1844: 369: 204:
proposed that the ability to resolve detail in an object was
7429: 7424: 7338:
O'Keefe, Michael A.; Allard, Lawrence F. (18 January 2004).
7327:(Report). Lawrence Berkeley National Laboratory. LBNL-56646. 7183: 6110: 5852: 5803: 4272:
Electron Energy-loss Spectroscopy in the Electron Microscope
4122:
Transmission Electron Microscopy: Physics of Image Formation
4014: 3305:
Electron Diffraction in the Transmission Electron Microscope
1256:. These are selected for their magnetic properties, such as 837:
The key factors when considering electron detection include
324:
quickly acquired before being damaged by the electron beam.
8031: 7186:"Atomic-Resolution Imaging with a Sub-50-pm Electron Probe" 7016:
B. Barwick; D. J. Flannigan; A. H. Zewail (December 2009).
6775:"Time resolved electron microscopy for in situ experiments" 6430: 5509: 4773: 2749:
value of 1 μm, a theoretical cut-off value might be 1/
2524: 1962: 1954: 1679: 1571:
Applications for this method include the identification of
1217: 877: 7419: 6933: 5469: 5092:
Li, Z; Baker, ML; Jiang, W; Estes, MK; Prasad, BV (2009).
4782:. Single Particle Cryo-EM, from sample to reconstruction. 4559: 2460: 7435:
Cambridge University Teaching and Learning Package on TEM
4985: 3594: 856:, which may be made of fine (10–100 μm) particulate 375:
With the development of TEM, the associated technique of
251:
published work extending this theory and showed that the
59:
Operating principle of a transmission electron microscope
5559: 3050:(English translation by A.F. Kracklauer, 2004. ed.) 2293:
temperatures. This allows imaging specimens prepared in
1811:
Non-tomographic variants on this method, referred to as
6166: 5978:, Dordrecht: Springer Netherlands, pp. 1543–1554, 5244: 4938: 3717:. Methods in Enzymology. Vol. 579. pp. 1–17. 3712: 3590: 3588: 3586: 3584: 3280:
Fundamentals of Light Microscopy and Electronic Imaging
2523:. Major aberration corrected TEM manufacturers include 1451:
Schematic view of imaging and diffraction modes in TEM.
707: 7414: 6772: 6715: 3788: 3070:"A Brief History of the Microscopy Society of America" 1653:
Convergent-beam Kikuchi lines from silicon, near the
703:
Hairpin style tungsten filament on an insulating base.
6648: 4895: 3623: 2760:. The same microscope without a corrector would have 2659: 2604:
Transmission Electron Aberration-Corrected Microscope
2507:
Transmission Electron Aberration-Corrected Microscope
2224: 2197: 1835:
embedded in epoxy resin (amber) ready for sectioning.
1327: 1115: 560: 452: 7430:
Tutorial courses in Transmission Electron Microscopy
7184:
Erni R, Rossell MD, Kisielowski C, Dahmen U (2009).
6940:
Current Opinion in Solid State and Materials Science
3715:
The Resolution Revolution: Recent Advances in cryoEM
3581: 3156: 6372:Zhu, Yong; Espinosa, Horacio D. (11 October 2005). 5664: 5094:"Rotavirus Architecture at Subnanometer Resolution" 3157:Crewe, Albert V; Isaacson, M.; Johnson, D. (1969). 3019: 2787:research and development in many fields, including 1880:of the atoms from which the material is comprised. 683:is the kinetic energy of the accelerated electron. 7230: 6202:Minor, A. M.; Morris, J. W.; Stach, E. A. (2001). 6067: 3880: 3596: 2731: 2256: 2237: 2210: 1428: 1174: 649: 508: 7337: 5091: 3943: 3941: 3599:Transmission Electron Microscopy, Vol. 1 – Basics 3364:"Optics of high-performance electron Microscopes" 3195: 3138: 3136: 807:The optical reciprocity theorem, or principle of 342:Research continued on the electron microscope at 8151: 7325:Imaging lithium atoms at sub-Ångström resolution 6875:"Four-dimensional ultrafast electron microscopy" 6508: 6336: 6201: 5611: 5609: 4667: 4524: 4200: 4119: 3708: 3706: 3480: 3302: 2886: 2884: 2833:High-resolution transmission electron microscopy 2827:Energy filtered transmission electron microscopy 2665: 1590:High-resolution transmission electron microscopy 821:scanning transmission electron microscopy (STEM) 311:the wavelength is already as short as 1.18  7018:"Photon-induced near-field electron microscopy" 6880:Proceedings of the National Academy of Sciences 6655:Proceedings of the National Academy of Sciences 6378:Proceedings of the National Academy of Sciences 5505: 5503: 5501: 5189: 4611:"Conventional transmission electron microscopy" 4373: 3516: 3249: 3245: 3243: 2377: 2317: 1723:A three-dimensional TEM image of a parapoxvirus 765:to manipulate the electron beam. Additionally, 527:of the medium in which the lens is working and 7893:Serial block-face scanning electron microscopy 7596:Detectors for transmission electron microscopy 6473: 6433:Journal of Micromechanics and Microengineering 5555: 5553: 5551: 5549: 4294: 4269: 3989: 3938: 3512: 3510: 3483:Introduction to Analytical Electron Microscopy 3133: 833:Detectors for transmission electron microscopy 235:) by magnetic fields. This effect was used by 7479: 7323:O'Keefe, Michael A.; Shao-Horn, Yang (2004). 7249: 6040: 5973: 5967: 5706: 5704: 5606: 5289: 4049: 3703: 2881: 2583:Photon-Induced Near-field Electron Microscopy 2089: 1221:Diagram of a TEM split pole piece design lens 7130:Science and Technology of Advanced Materials 6554:Journal of Physics E: Scientific Instruments 6504: 6502: 5660: 5658: 5656: 5498: 5377: 5140: 5077:: CS1 maint: multiple names: authors list ( 4225: 4147: 3972:: CS1 maint: multiple names: authors list ( 3476: 3474: 3472: 3432: 3368:Science and Technology of Advanced Materials 3240: 2534: 2304: 1707: 6371: 6293: 5546: 5028:: CS1 maint: numeric names: authors list ( 4750:(5th ed.). New York: Garland Science. 4175: 4171: 4169: 4115: 4113: 4111: 4109: 3658: 3507: 3426: 3271: 3110: 3108: 2966: 2925: 2620:, a function that is usually quoted in the 2500: 2431: 2400:sample properties in these experiments are 2357:via strain fields as well as the motion of 2249:Fundamentally, TEM and STEM are linked via 695:Layout of optical components in a basic TEM 231:observed the deflection of "cathode rays" ( 147:research, but also in other fields such as 7486: 7472: 7452:Transmission electron microscope simulator 7119: 7117: 6478:, Boston, MA: Springer US, pp. 3–17, 5701: 5428: 3985: 3983: 3947: 3929: 3330:Physical principles of electron microscopy 3327: 3114: 2973:Poggendorffs Annalen der Physik und Chemie 196:A transmission electron microscope (1976). 7283: 7157: 7000: 6910: 6900: 6798: 6733: 6692: 6674: 6609: 6499: 6407: 6397: 5950: 5920: 5821: 5653: 5589: 5446: 5338: 5266: 5166: 5117: 4872: 4807: 4636: 4626: 4585: 4501: 4417: 4391: 4322: 4312: 4254: 4178:Advanced computing in Electron Microscopy 4143: 4141: 4087: 3906: 3857: 3595:Williams, D. & Carter, C. B. (1996). 3469: 3395: 3361: 2387:have also enabled the tensile testing of 2342: 2174:scanning transmission electron microscope 2168:Scanning transmission electron microscopy 2046:method to only extremely fine polishing. 1419: 1095:The thermionic emission current density, 495: 377:scanning transmission electron microscopy 7231:Stahlberg, Henning (September 6, 2012). 7179: 7177: 6551: 6143: 6005: 5327:Journal of the American Chemical Society 4710: 4518: 4348: 4344: 4342: 4166: 4106: 4083: 4081: 3105: 2607: 2218:, becomes the collection angle in STEM, 2186: 2132: 2065: 1929: 1920: 1887: 1822: 1765:), to a single three-dimensional image, 1711: 1680:Electron energy loss spectroscopy (EELS) 1648: 1615: 1535: 1494: 1446: 1216: 1209:, and significantly lower for tungsten. 1082: 1048: 1000: 908: 826: 706: 698: 690: 191: 183: 45: 29: 7493: 7114: 6113:Strength of Metals and Alloys (ICSMA 6) 4745: 4476:Heidari, Hamed; Van den Broek, Wouter; 4205:(4th ed.). Butterworth-Heinemann. 3980: 3357: 3355: 3353: 3351: 3349: 3159:"A Simple Scanning Electron Microscope" 2921: 2919: 2917: 2461:Micro electro-mechanical systems (MEMs) 1827:A sample of cells (black) stained with 1525: 424:Theoretically, the maximum resolution, 297: 14: 8152: 7123: 6821: 6254: 4138: 3277: 3038: 2576:Lawrence Livermore National Laboratory 1791:and data slicing to analyse the data. 1568:direction from entering the specimen. 852:Imaging systems in a TEM consist of a 179: 7467: 7174: 5190:Levin, B. D. A.; et al. (2017). 4769: 4767: 4374:Levin, B. D. A.; et al. (2016). 4339: 4226:Cowley, J. M.; Moodie, A. F. (1957). 4078: 3519:Current Opinion in Structural Biology 3117:The beginnings of Electron Microscopy 2850:Scanning confocal electron microscopy 2146:Samples may also be replicated using 2110:can be attached to a typically rigid 2073:image of a thin TEM sample milled by 2000: 1871:. Alternately samples may be held at 1818: 1467: 1193:constant, Φ is the work function and 1005:TEM sample support mesh "grid", with 8132: 6043:Materials Science and Engineering: A 4295:Mast, Jan; Demeestere, Lien (2009). 3346: 3020:Rudenberg, Reinhold (May 30, 1931). 2914: 2597: 2314:, and material deformation testing. 2057: 1883: 1674:convergent beam electron diffraction 1540:Transmission electron micrograph of 1197:is the temperature of the material. 3282:. New York: John Wiley & Sons. 2436:Nano-Indentation holders perform a 2014: 1972:Another form of sample staining is 1013:TEM specimen stage designs include 362: 123:sciences. TEMs find application in 24: 6121:10.1016/B978-1-4832-8423-1.50153-X 5560:Taheri, Mitra L.; Stach, Eric A.; 5141:M.J. Zachman; et al. (2016). 4764: 4713:British Journal of Applied Physics 4052:British Journal of Applied Physics 3144:"Ernst Ruska, Nobel Prize Lecture" 1910: 1408: 1404: 1304: 1151: 847:modulation transfer function (MTF) 839:detective quantum efficiency (DQE) 819:Reciprocity is used to understand 726:filament, a lanthanum hexaboride ( 686: 243:(CRO) measuring devices. In 1891, 162:The first TEM was demonstrated by 83:onto an imaging device, such as a 25: 8181: 7529:Timeline of microscope technology 7379: 6070:Microscopy Research and Technique 2821:Electron energy loss spectroscopy 2511:Modern research TEMs may include 1686:Electron energy loss spectroscopy 1583: 996: 286:, the scientific director of the 8131: 8120: 8119: 7391:Transmission electron microscopy 7331: 7316: 7300: 7243: 7224: 7064: 7009: 6966: 6927: 6866: 6815: 6766: 6511:Review of Scientific Instruments 6008:Review of Scientific Instruments 5984:10.1007/978-94-017-9780-1_100990 4910:10.1111/j.1365-2818.2008.02134.x 4201:Hull, D. & Bacon, J (2001). 3673:10.1046/j.1365-2818.2000.00737.x 3435:Acta Crystallographica Section A 2466:Micro Electro-Mechanical Systems 2361:such as lattice distortions and 2312:liquid-phase electron microscopy 2153: 1212: 979:electron beam induced deposition 922: 64:Transmission electron microscopy 7888:Precession electron diffraction 6709: 6642: 6588: 6545: 6467: 6424: 6365: 6330: 6287: 6248: 6195: 6160: 6137: 6104: 6061: 6034: 5999: 5914: 5890: 5846: 5797: 5762: 5463: 5422: 5371: 5318: 5283: 5238: 5183: 5134: 5085: 5036: 4979: 4932: 4889: 4824: 4739: 4704: 4661: 4602: 4553: 4469: 4434: 4367: 4288: 4263: 4219: 4194: 4043: 4008: 3948:Ross, L. E, Dykstra, M (2003). 3923: 3874: 3825: 3782: 3747: 3652: 3617: 3545: 3412: 3321: 3296: 3189: 3150: 3076: 2845:Precession electron diffraction 2839:Low-voltage electron microscope 2795:for electronics and photonics. 2269:low-voltage electron microscope 2257:Low-voltage electron microscope 2245:. Image inspired by Hren et al. 2161: 1876:material may be limited by the 1072: 876:(MAPSs) were also used in TEM. 8165:Electron microscopy techniques 7210:10.1103/PhysRevLett.102.096101 6620:10.1016/j.ultramic.2016.12.005 6255:Legros, Marc (February 2014). 5976:Encyclopedia of Nanotechnology 5876:10.1016/j.ultramic.2013.04.004 5823:10.1016/j.ultramic.2016.11.028 5783:10.1016/j.ultramic.2014.11.023 5631:10.1016/j.ultramic.2018.05.005 5582:10.1016/j.ultramic.2016.08.007 5512:Journal of Electron Microscopy 5057:10.1016/j.ultramic.2004.01.011 4957:10.1016/j.ultramic.2020.113075 4494:10.1016/j.ultramic.2013.06.005 4455:10.1016/j.ultramic.2006.04.007 3850:10.1016/j.ultramic.2009.05.005 3567:10.1016/j.ultramic.2006.05.003 3084:"Dr. James Hillier, Biography" 3062: 3048:Foundation of Louis de Broglie 3032: 3013: 2999: 2960: 2910:Encyclopædia Britannica Online 2902: 2863: 2706: 2682: 2624:to define the reproduction of 2588: 2541:Ultrafast electron diffraction 2263:Low-energy electron microscopy 2128: 2029: 1605: 1337: 1331: 802: 331:and that of Albert Prebus and 13: 1: 7233:"Contrast Transfer Functions" 6453:10.1088/0960-1317/20/7/075011 6296:Journal of Materials Research 4748:Molecular biology of the cell 4615:Molecular Biology of the Cell 4017:Journal of Structural Biology 3887:Journal of Structural Biology 3218:10.1126/science.168.3937.1338 2856: 2568:Technische Universität Berlin 2527:, Hitachi High-technologies, 2281:Cryogenic electron microscopy 2172:A TEM can be modified into a 1995:cryogenic electron microscopy 1796:Fourier-based back projection 1103:of the emitting material via 904: 402: 264:Technische Universität Berlin 74:technique in which a beam of 38:. The polio virus is 30  7405:Resources in other libraries 7276:10.1088/1468-6996/9/1/014111 7150:10.1088/1468-6996/9/1/014110 6960:10.1016/j.cossms.2011.07.001 5312:10.1016/j.nanoen.2018.02.055 5196:Microscopy and Microanalysis 5147:Microscopy and Microanalysis 4988:Microscopy and Microanalysis 4203:Introduction to dislocations 3791:Microscopy and Microanalysis 3638:10.1016/0304-3991(82)90061-4 3388:10.1088/0031-8949/9/1/014107 2926:Ernst Ruska (January 1980). 2650:is the electron wavelength: 2378:Classical mechanical holders 2318:High temperature in-situ TEM 2071:Scanning electron microscope 1287: 407: 34:A TEM image of a cluster of 7: 6484:10.1007/978-1-4757-2519-3_1 4792:10.1016/j.ymeth.2016.02.017 4733:10.1088/0508-3443/12/10/308 4120:Reimer, L; Kohl, H (2008). 4090:Handbook of Electron Optics 4072:10.1088/0508-3443/16/12/306 3278:Murphy, Douglas B. (2002). 2798: 2349:In situ electron microscopy 2274: 2211:{\displaystyle \alpha _{T}} 2123:in situ electron microscopy 1976:, where a larger amount of 870:Charge-Coupled Device (CCD) 843:point spread function (PSF) 811:, generally holds true for 329:Washington State University 10: 8186: 7873:Immune electron microscopy 7791:Annular dark-field imaging 7606:Everhart–Thornley detector 6980:Journal of Applied Physics 6281:10.1016/j.crhy.2014.02.002 6055:10.1016/j.msea.2010.10.025 3768:10.1016/j.nima.2006.07.013 3723:10.1016/bs.mie.2016.05.056 3039:de Broglie, Louis Victor. 2618:contrast transfer function 2601: 2538: 2504: 2346: 2278: 2260: 2238:{\displaystyle \beta _{S}} 2165: 2090:Nanowire assisted transfer 2033: 2018: 1914: 1895: 1683: 1609: 1587: 1529: 1442:contrast transfer function 1224: 1076: 830: 417: 411: 393:annular dark-field imaging 174: 8115: 8060: 8027:Hitachi High-Technologies 8009: 7918: 7911: 7778: 7722: 7684: 7641: 7634: 7588: 7537: 7501: 7400:Resources in your library 6574:10.1088/0022-3735/9/6/011 6189:10.1080/01418618308234914 6144:Bataineh, Khaled (2005). 5952:21.11116/0000-0005-884D-C 5216:10.1017/S1431927617000058 5168:10.1017/S1431927616011892 5008:10.1017/S143192760708124X 4503:10067/1113970151162165141 4256:10.1107/S0365110X57002194 4152:. Elsevier Science B. V. 3899:10.1016/j.jsb.2013.10.016 3803:10.1017/s1431927608085711 3531:10.1016/j.sbi.2007.08.014 3491:10.1007/978-1-4757-5581-7 3455:10.1107/S0567739468000136 3303:Champness, P. E. (2001). 3041:"On the Theory of Quanta" 2535:Ultrafast and dynamic TEM 2305:Environmental/in-situ TEM 2299:macromolecular assemblies 2106:(FIB), flexible metallic 1708:Three-dimensional imaging 883:Direct Electron Detectors 773: 216:(UV) microscopes, led by 8052:Thermo Fisher Scientific 7878:Geometric phase analysis 7766:Aberration-Corrected TEM 7256:Sci. Technol. Adv. Mater 6987:(11): 111101–111101–27. 6169:Philosophical Magazine A 4539:10.1177/0300985813505114 3115:Hawkes, P., ed. (1985). 2993:10.1002/andp.18581790106 2811:Cryo-electron microscopy 2501:Aberration corrected TEM 2432:Nano-indentation holders 2359:crystallographic defects 1987:macromolecular complexes 1878:scattering cross-section 1813:single particle analysis 1746:filtered back projection 1099:, can be related to the 539:(wavelengths of 400–700 241:cathode-ray oscilloscope 239:in 1897 to build simple 105:direct electron detector 7801:Charge contrast imaging 7611:Field electron emission 7190:Physical Review Letters 6902:10.1073/pnas.0502607102 6844:10.1126/science.1166135 6779:Applied Physics Reviews 6752:10.1038/nphoton.2017.79 6676:10.1073/pnas.1517942112 6399:10.1073/pnas.0506544102 6261:Comptes Rendus Physique 6208:Applied Physics Letters 5448:10.1126/science.aaa9886 4746:Alberts, Bruce (2008). 4628:10.1091/mbc.e12-12-0863 4270:Egerton, R. F. (1996). 4088:Orloff, J, ed. (1997). 3990:Chapman, S. K. (1986). 2791:and the development of 2789:heterogeneous catalysis 2560:Schottky field emission 1934:A section of a cell of 1510:mass–thickness contrast 1278:finite element analysis 747:field electron emission 397:field electron emission 262:in Charlottenburg (now 118:, owing to the smaller 7991:Thomas Eugene Everhart 7460:(Université Paris Sud) 7363:Cite journal requires 7250:Tanaka, Nobuo (2008). 7124:Furuya, Kazuo (2008). 5732:10.1002/adma.201904094 5472:Experimental Mechanics 5290:Kosasih, Felix Utama; 4566:Nucleic Acids Research 4349:Frank, J, ed. (2006). 4235:Acta Crystallographica 4029:10.1006/jsbi.1999.4181 3253:& Howe, J (2007). 2733: 2613: 2343:In-situ mechanical TEM 2246: 2239: 2212: 2148:cellulose acetate film 2143: 2078: 1941: 1927: 1893: 1836: 1724: 1657: 1621: 1545: 1500: 1452: 1430: 1222: 1176: 1088: 1054: 1010: 915: 719: 704: 696: 651: 510: 290:company, patented an 197: 189: 60: 43: 8170:Scientific techniques 7996:Vernon Ellis Cosslett 7816:Dark-field microscopy 7307:Scale of Things Chart 6316:10.1557/JMR.1992.1564 5524:10.1093/jmicro/dfr011 5380:Nature Nanotechnology 4898:Journal of Microscopy 4682:10.1002/ar.1091170403 4670:The Anatomical Record 4410:10.1038/sdata.2016.41 4314:10.1186/1746-1596-4-5 4148:Cowley, J. M (1995). 3661:Journal of Microscopy 2793:semiconductor devices 2734: 2611: 2251:Helmholtz reciprocity 2240: 2213: 2190: 2139:Staphylococcus aureus 2136: 2069: 1933: 1924: 1891: 1826: 1722: 1701:elastically scattered 1652: 1619: 1539: 1498: 1450: 1431: 1220: 1177: 1086: 1052: 1004: 912: 827:Display and detectors 813:elastically scattered 809:Helmholtz reciprocity 710: 702: 694: 652: 511: 385:University of Chicago 337:University of Toronto 294:electron microscope. 282:. In that same year, 260:Technische Hochschule 253:lens maker's equation 208:approximately by the 195: 187: 120:de Broglie wavelength 101:charge-coupled device 58: 33: 8001:Vladimir K. Zworykin 7651:Correlative light EM 7560:Electron diffraction 6115:. pp. 953–957. 5943:10.1557/mrs.2019.127 5349:10.1021/jacs.2c02297 5259:10.1557/mrs.2014.304 5110:10.1128/JVI.01855-08 4527:Veterinary Pathology 4301:Diagnostic Pathology 4176:Kirkland, E (1998). 2967:Plücker, J. (1858). 2944:10.1364/AO.25.000820 2816:Electron diffraction 2769:aberration-corrected 2657: 2644:spherical aberration 2222: 2195: 2125:sample preparation. 1967:immunogold labelling 1740:algorithms, such as 1612:Electron diffraction 1532:Electron diffraction 1526:Diffraction contrast 1518:Diffraction contrast 1325: 1250:chromatic aberration 1236:coils to generate a 1113: 874:active-pixel sensors 797:chromatic aberration 793:spherical aberration 767:electrostatic fields 558: 551:) the wavelength is 450: 420:Electron diffraction 298:Improving resolution 7966:Manfred von Ardenne 7951:Gerasimos Danilatos 7858:Electron tomography 7853:Electron holography 7796:Cathodoluminescence 7575:Secondary electrons 7565:Electron scattering 7509:Electron microscopy 7495:Electron microscopy 7268:2008STAdM...9a4111T 7202:2009PhRvL.102i6101E 7142:2008STAdM...9a4110F 7092:2011MRSBu..31...36P 7042:10.1038/nature08662 7034:2009Natur.462..902B 6993:2005JAP....97k1101K 6952:2012COSSM..16...23B 6893:2005PNAS..102.7069L 6836:2010Sci...328..187Z 6791:2014ApPRv...1d1101C 6744:2017NaPho..11..425H 6667:2015PNAS..11212944H 6661:(42): 12944–12949. 6566:1976JPhE....9..455O 6523:2003RScI...74.4369D 6445:2010JMiMi..20g5011I 6390:2005PNAS..10214503Z 6384:(41): 14503–14508. 6351:10.1557/mrs2010.570 6308:1992JMatR...7.1564O 6273:2014CRPhy..15..224L 6220:2001ApPhL..79.1625M 6181:1983PMagA..48..593P 6020:1958RScI...29..323W 5935:2019MRSBu..44..438M 5868:2013IJMSI.133...72V 5441:(6267): 1490–1501. 5429:F. M. Ross (2015). 5392:2003NatMa...2..532W 5208:2017MiMic..23..155L 5159:2016MiMic..22.1338Z 5098:Journal of Virology 5000:2007MiMic..13S.248N 4849:2017NatSR...745594B 4725:1961BJAP...12..554P 4402:2016NatSD...360041L 4247:1957AcCry..10..609C 4150:Diffraction physics 4064:1965BJAP...16.1821B 3932:"The Vacuum System" 3447:1968AcCrA..24..103P 3380:2008STAdM...9a4107R 3328:Egerton, R (2005). 3307:. Garland Science. 3210:1970Sci...168.1338C 3204:(3937): 1338–1340. 3175:1969RScI...40..241C 2985:1858AnP...179...88P 2936:1986ApOpt..25..820R 2806:Electron microscope 2626:spatial frequencies 2355:plastic deformation 2008:cubic boron nitride 1663:electron multislice 1626:diffraction pattern 1403: 1273:boundary conditions 1258:magnetic saturation 885:are available from 679:of an electron and 525:index of refraction 280:electron microscope 180:Initial development 87:screen, a layer of 8088:Digital Micrograph 7694:Environmental SEM 7616:Field emission gun 7580:X-ray fluorescence 6082:10.1002/jemt.20680 5720:Advanced Materials 5679:10.1557/mrs2008.21 5484:10.1007/BF02411059 4837:Scientific Reports 4578:10.1093/nar/gkl675 3362:Rose, H H (2008). 3119:. Academic Press. 3088:comdir.bfree.on.ca 2729: 2614: 2570:) and in the USA ( 2247: 2235: 2208: 2182:annular dark field 2144: 2079: 2001:Mechanical milling 1942: 1928: 1894: 1837: 1819:Sample preparation 1738:image registration 1725: 1658: 1622: 1564:dark-field image. 1558:reciprocal lattice 1546: 1501: 1489:Amplitude–contrast 1476:amplitude contrast 1468:Contrast formation 1453: 1426: 1375: 1223: 1172: 1089: 1055: 1011: 974:material is used. 916: 739:field emission gun 720: 705: 697: 647: 533:numerical aperture 506: 438:numerical aperture 389:field emission gun 292:electrostatic lens 284:Reinhold Rudenberg 198: 190: 61: 44: 8147: 8146: 8111: 8110: 7981:Nestor J. Zaluzec 7976:Maximilian Haider 7774: 7773: 7440:Online course on 7386:Library resources 7100:10.1557/mrs2006.4 7028:(7275): 902–906. 7002:10.1063/1.1927699 6887:(20): 7069–7073. 6830:(5975): 187–193. 6800:10.1063/1.4900509 6531:10.1063/1.1611612 6517:(10): 4369–4372. 6493:978-1-4757-2519-3 6228:10.1063/1.1400768 6214:(11): 1625–1627. 6130:978-1-4832-8423-1 6028:10.1063/1.1716192 5993:978-94-017-9780-1 5333:(22): 9797–9805. 4857:10.1038/srep45594 4360:978-0-387-31234-7 4281:978-0-306-45223-9 4212:978-0-7506-4681-9 4187:978-0-306-45936-8 4159:978-0-444-82218-5 4131:978-0-387-34758-5 4099:978-0-8493-2513-7 4001:978-0-19-856407-2 3732:978-0-12-805382-9 3610:978-0-306-45324-3 3500:978-1-4757-5583-1 3339:978-0-387-25800-3 3314:978-1-85996-147-6 3289:978-0-471-23429-6 3264:978-3-540-73885-5 3183:10.1063/1.1683910 3163:Rev. Sci. Instrum 3146:. nobelprize.org. 3072:. microscopy.org. 3009:. nobelprize.org. 2953:978-3-7776-0364-3 2724: 2692: 2598:Resolution limits 2385:micromanipulators 1937:Bacillus subtilis 1884:Tissue sectioning 1863:material such as 1861:negative staining 1720: 1373: 1163: 895:Quantum Detectors 862:photographic film 645: 644: 637: 504: 500: 481: 133:materials science 116:light microscopes 89:photographic film 56: 16:(Redirected from 8177: 8135: 8134: 8123: 8122: 7931:Bodo von Borries 7916: 7915: 7676:Photoemission EM 7639: 7638: 7488: 7481: 7474: 7465: 7464: 7454:(Teaching tool). 7373: 7372: 7366: 7361: 7359: 7351: 7335: 7329: 7328: 7320: 7314: 7304: 7298: 7297: 7287: 7247: 7241: 7240: 7228: 7222: 7221: 7181: 7172: 7171: 7161: 7121: 7112: 7111: 7077: 7068: 7062: 7061: 7013: 7007: 7006: 7004: 6970: 6964: 6963: 6931: 6925: 6924: 6914: 6904: 6870: 6864: 6863: 6819: 6813: 6812: 6802: 6770: 6764: 6763: 6737: 6722:Nature Photonics 6713: 6707: 6706: 6696: 6678: 6646: 6640: 6639: 6613: 6592: 6586: 6585: 6549: 6543: 6542: 6506: 6497: 6496: 6471: 6465: 6464: 6428: 6422: 6421: 6411: 6401: 6369: 6363: 6362: 6334: 6328: 6327: 6302:(6): 1564–1583. 6291: 6285: 6284: 6267:(2–3): 224–240. 6252: 6246: 6245: 6243: 6242: 6199: 6193: 6192: 6164: 6158: 6157: 6141: 6135: 6134: 6108: 6102: 6101: 6065: 6059: 6058: 6049:(3): 1367–1371. 6038: 6032: 6031: 6003: 5997: 5996: 5971: 5965: 5964: 5954: 5918: 5912: 5911: 5909: 5908: 5894: 5888: 5887: 5850: 5844: 5843: 5825: 5801: 5795: 5794: 5766: 5760: 5759: 5717: 5708: 5699: 5698: 5662: 5651: 5650: 5613: 5604: 5603: 5593: 5557: 5544: 5543: 5507: 5496: 5495: 5467: 5461: 5460: 5450: 5426: 5420: 5419: 5375: 5369: 5368: 5342: 5322: 5316: 5315: 5292:Ducati, Caterina 5287: 5281: 5280: 5270: 5242: 5236: 5235: 5187: 5181: 5180: 5170: 5153:(6): 1338–1349. 5138: 5132: 5131: 5121: 5104:(4): 1754–1766. 5089: 5083: 5082: 5076: 5068: 5040: 5034: 5033: 5027: 5019: 4983: 4977: 4976: 4936: 4930: 4929: 4893: 4887: 4886: 4876: 4828: 4822: 4821: 4811: 4771: 4762: 4761: 4743: 4737: 4736: 4708: 4702: 4701: 4665: 4659: 4658: 4640: 4630: 4606: 4600: 4599: 4589: 4557: 4551: 4550: 4522: 4516: 4515: 4505: 4473: 4467: 4466: 4438: 4432: 4431: 4421: 4395: 4371: 4365: 4364: 4346: 4337: 4336: 4326: 4316: 4292: 4286: 4285: 4267: 4261: 4260: 4258: 4232: 4223: 4217: 4216: 4198: 4192: 4191: 4173: 4164: 4163: 4145: 4136: 4135: 4117: 4104: 4103: 4085: 4076: 4075: 4047: 4041: 4040: 4012: 4006: 4005: 3987: 3978: 3977: 3971: 3963: 3945: 3936: 3935: 3934:. rodenburg.org. 3930:Rodenburg, J M. 3927: 3921: 3920: 3910: 3878: 3872: 3871: 3861: 3844:(9): 1144–1147. 3829: 3823: 3822: 3786: 3780: 3779: 3751: 3745: 3744: 3710: 3701: 3700: 3656: 3650: 3649: 3621: 3615: 3614: 3603:. Plenum Press. 3602: 3592: 3579: 3578: 3549: 3543: 3542: 3514: 3505: 3504: 3478: 3467: 3466: 3430: 3424: 3423: 3422:. rodenburg.org. 3416: 3410: 3409: 3399: 3359: 3344: 3343: 3325: 3319: 3318: 3300: 3294: 3293: 3275: 3269: 3268: 3247: 3238: 3237: 3193: 3187: 3186: 3154: 3148: 3147: 3140: 3131: 3130: 3112: 3103: 3102: 3100: 3099: 3090:. Archived from 3080: 3074: 3073: 3066: 3060: 3059: 3057: 3055: 3045: 3036: 3030: 3029: 3017: 3011: 3010: 3003: 2997: 2996: 2964: 2958: 2957: 2923: 2912: 2906: 2900: 2899: 2888: 2879: 2878: 2867: 2777:amorphous carbon 2738: 2736: 2735: 2730: 2725: 2723: 2722: 2721: 2717: 2704: 2703: 2694: 2693: 2690: 2674: 2669: 2668: 2646:coefficient and 2622:frequency domain 2454:focused ion beam 2418:bending strength 2414:tensile strength 2372:nano-indentation 2244: 2242: 2241: 2236: 2234: 2233: 2217: 2215: 2214: 2209: 2207: 2206: 2112:micromanipulator 2104:focused ion beam 2083:focused ion beam 2021:Chemical milling 2015:Chemical etching 1869:osmium tetroxide 1829:osmium tetroxide 1801:focused ion beam 1721: 1554:back focal plane 1435: 1433: 1432: 1427: 1418: 1417: 1416: 1402: 1401: 1400: 1390: 1389: 1388: 1374: 1372: 1371: 1370: 1358: 1357: 1344: 1181: 1179: 1178: 1173: 1168: 1164: 1162: 1154: 1146: 1134: 1133: 1105:Richardson's law 947:rotary vane pump 937: 927:To increase the 761:, thus allowing 751:Wehnelt cylinder 656: 654: 653: 648: 646: 643: 639: 638: 636: 635: 634: 625: 624: 608: 592: 591: 579: 575: 570: 569: 515: 513: 512: 507: 505: 503: 502: 501: 498: 487: 482: 480: 460: 363:Further research 304:Louis de Broglie 276:Bodo von Borries 258:In 1928, at the 57: 21: 8185: 8184: 8180: 8179: 8178: 8176: 8175: 8174: 8150: 8149: 8148: 8143: 8107: 8056: 8005: 7986:Ondrej Krivanek 7907: 7770: 7718: 7680: 7666:Liquid-Phase EM 7630: 7589:Instrumentation 7584: 7542: 7533: 7497: 7492: 7411: 7410: 7409: 7394: 7393: 7389: 7382: 7377: 7376: 7364: 7362: 7353: 7352: 7336: 7332: 7321: 7317: 7305: 7301: 7248: 7244: 7229: 7225: 7182: 7175: 7122: 7115: 7075: 7069: 7065: 7014: 7010: 6971: 6967: 6932: 6928: 6871: 6867: 6820: 6816: 6771: 6767: 6714: 6710: 6647: 6643: 6598:Ultramicroscopy 6593: 6589: 6550: 6546: 6507: 6500: 6494: 6472: 6468: 6429: 6425: 6370: 6366: 6335: 6331: 6292: 6288: 6253: 6249: 6240: 6238: 6200: 6196: 6165: 6161: 6142: 6138: 6131: 6109: 6105: 6066: 6062: 6039: 6035: 6004: 6000: 5994: 5972: 5968: 5919: 5915: 5906: 5904: 5902:foundry.lbl.gov 5896: 5895: 5891: 5856:Ultramicroscopy 5851: 5847: 5810:Ultramicroscopy 5802: 5798: 5771:Ultramicroscopy 5767: 5763: 5726:(18): 1904094. 5715: 5709: 5702: 5663: 5654: 5619:Ultramicroscopy 5614: 5607: 5570:Ultramicroscopy 5558: 5547: 5508: 5499: 5468: 5464: 5427: 5423: 5400:10.1038/nmat944 5376: 5372: 5323: 5319: 5288: 5284: 5243: 5239: 5188: 5184: 5139: 5135: 5090: 5086: 5070: 5069: 5045:Ultramicroscopy 5041: 5037: 5021: 5020: 4984: 4980: 4945:Ultramicroscopy 4937: 4933: 4894: 4890: 4829: 4825: 4772: 4765: 4758: 4744: 4740: 4709: 4705: 4666: 4662: 4607: 4603: 4558: 4554: 4523: 4519: 4482:Ultramicroscopy 4474: 4470: 4443:Ultramicroscopy 4439: 4435: 4380:Scientific Data 4372: 4368: 4361: 4347: 4340: 4293: 4289: 4282: 4268: 4264: 4230: 4224: 4220: 4213: 4199: 4195: 4188: 4174: 4167: 4160: 4146: 4139: 4132: 4118: 4107: 4100: 4086: 4079: 4048: 4044: 4013: 4009: 4002: 3988: 3981: 3965: 3964: 3960: 3946: 3939: 3928: 3924: 3879: 3875: 3838:Ultramicroscopy 3830: 3826: 3797:(S2): 806–807. 3787: 3783: 3752: 3748: 3733: 3711: 3704: 3657: 3653: 3626:Ultramicroscopy 3622: 3618: 3611: 3593: 3582: 3555:Ultramicroscopy 3550: 3546: 3515: 3508: 3501: 3479: 3470: 3431: 3427: 3418: 3417: 3413: 3360: 3347: 3340: 3326: 3322: 3315: 3301: 3297: 3290: 3276: 3272: 3265: 3248: 3241: 3194: 3190: 3155: 3151: 3142: 3141: 3134: 3127: 3113: 3106: 3097: 3095: 3082: 3081: 3077: 3068: 3067: 3063: 3053: 3051: 3043: 3037: 3033: 3026:Patent DE906737 3018: 3014: 3005: 3004: 3000: 2965: 2961: 2954: 2924: 2915: 2907: 2903: 2890: 2889: 2882: 2869: 2868: 2864: 2859: 2854: 2801: 2766: 2755: 2748: 2713: 2709: 2705: 2699: 2695: 2689: 2685: 2678: 2673: 2664: 2660: 2658: 2655: 2654: 2641: 2634: 2606: 2600: 2591: 2543: 2537: 2509: 2503: 2463: 2450:elastic modulus 2434: 2406:elastic modulus 2380: 2351: 2345: 2320: 2307: 2287:liquid nitrogen 2283: 2277: 2265: 2259: 2229: 2225: 2223: 2220: 2219: 2202: 2198: 2196: 2193: 2192: 2170: 2164: 2156: 2131: 2092: 2064: 2038: 2032: 2023: 2017: 2003: 1919: 1913: 1911:Sample staining 1900: 1886: 1873:liquid nitrogen 1821: 1774: 1756: 1742:autocorrelation 1712: 1710: 1693:magnetic sector 1688: 1682: 1634:amorphous solid 1630:polycrystalline 1614: 1608: 1600:phase retrieval 1592: 1586: 1573:lattice defects 1534: 1528: 1470: 1412: 1411: 1407: 1396: 1392: 1391: 1384: 1380: 1379: 1366: 1362: 1353: 1349: 1348: 1343: 1326: 1323: 1322: 1307: 1305:Imaging methods 1290: 1234:electromagnetic 1229: 1227:Electron optics 1215: 1208: 1204: 1155: 1147: 1145: 1141: 1129: 1125: 1114: 1111: 1110: 1081: 1075: 999: 955:turbo-molecular 951:diaphragm pumps 932: 925: 907: 899:Direct Electron 854:phosphor screen 835: 829: 805: 776: 731: 716: 711:Single crystal 689: 687:Electron source 674: 666:Planck constant 630: 626: 620: 616: 612: 607: 600: 596: 587: 583: 574: 565: 561: 559: 556: 555: 497: 496: 491: 486: 464: 459: 451: 448: 447: 443:of the system. 422: 416: 410: 405: 387:developing the 365: 300: 237:Ferdinand Braun 182: 177: 125:cancer research 46: 28: 23: 22: 15: 12: 11: 5: 8183: 8173: 8172: 8167: 8162: 8145: 8144: 8142: 8141: 8129: 8116: 8113: 8112: 8109: 8108: 8106: 8105: 8100: 8095: 8093:Direct methods 8090: 8085: 8080: 8075: 8070: 8064: 8062: 8058: 8057: 8055: 8054: 8049: 8044: 8039: 8034: 8029: 8024: 8019: 8013: 8011: 8007: 8006: 8004: 8003: 7998: 7993: 7988: 7983: 7978: 7973: 7968: 7963: 7958: 7953: 7948: 7943: 7941:Ernst G. Bauer 7938: 7933: 7928: 7922: 7920: 7913: 7909: 7908: 7906: 7905: 7900: 7895: 7890: 7885: 7880: 7875: 7870: 7865: 7860: 7855: 7850: 7845: 7840: 7835: 7834: 7833: 7823: 7818: 7813: 7808: 7803: 7798: 7793: 7788: 7782: 7780: 7776: 7775: 7772: 7771: 7769: 7768: 7763: 7762: 7761: 7751: 7746: 7741: 7740: 7739: 7728: 7726: 7720: 7719: 7717: 7716: 7711: 7706: 7701: 7696: 7690: 7688: 7682: 7681: 7679: 7678: 7673: 7668: 7663: 7658: 7653: 7647: 7645: 7636: 7632: 7631: 7629: 7628: 7623: 7618: 7613: 7608: 7603: 7598: 7592: 7590: 7586: 7585: 7583: 7582: 7577: 7572: 7567: 7562: 7557: 7555:Bremsstrahlung 7552: 7546: 7544: 7535: 7534: 7532: 7531: 7526: 7521: 7516: 7511: 7505: 7503: 7499: 7498: 7491: 7490: 7483: 7476: 7468: 7462: 7461: 7455: 7449: 7437: 7432: 7427: 7422: 7417: 7408: 7407: 7402: 7396: 7395: 7384: 7383: 7381: 7380:External links 7378: 7375: 7374: 7365:|journal= 7330: 7315: 7299: 7242: 7223: 7173: 7113: 7063: 7008: 6965: 6926: 6865: 6814: 6765: 6728:(7): 425–430. 6708: 6641: 6587: 6560:(6): 455–463. 6544: 6498: 6492: 6466: 6423: 6364: 6345:(5): 375–381. 6329: 6286: 6247: 6194: 6175:(4): 593–606. 6159: 6136: 6129: 6103: 6076:(3): 270–283. 6060: 6033: 6014:(4): 323–324. 5998: 5992: 5966: 5929:(6): 438–442. 5913: 5889: 5845: 5796: 5761: 5700: 5652: 5605: 5545: 5518:(3): 217–225. 5497: 5462: 5421: 5386:(8): 695–704. 5370: 5317: 5282: 5268:2286/R.I.35693 5237: 5202:(1): 155–162. 5182: 5133: 5084: 5051:(4): 247–256. 5035: 4994:(3): 248–249. 4978: 4931: 4904:(3): 395–405. 4888: 4823: 4763: 4757:978-0815341116 4756: 4738: 4703: 4676:(4): 685–710. 4660: 4621:(3): 319–323. 4601: 4552: 4517: 4468: 4433: 4366: 4359: 4338: 4287: 4280: 4262: 4241:(3): 609–619. 4218: 4211: 4193: 4186: 4165: 4158: 4137: 4130: 4105: 4098: 4077: 4042: 4023:(3): 250–256. 4007: 4000: 3979: 3959:978-0306477492 3958: 3937: 3922: 3893:(3): 385–393. 3873: 3824: 3781: 3746: 3731: 3702: 3651: 3632:(4): 385–396. 3616: 3609: 3580: 3561:(2–3): 73–80. 3544: 3525:(5): 549–555. 3506: 3499: 3468: 3441:(1): 103–109. 3425: 3411: 3345: 3338: 3320: 3313: 3295: 3288: 3270: 3263: 3239: 3188: 3169:(2): 241–246. 3149: 3132: 3126:978-0120145782 3125: 3104: 3075: 3061: 3031: 3012: 2998: 2959: 2952: 2913: 2901: 2896:nobelprize.org 2880: 2861: 2860: 2858: 2855: 2853: 2852: 2847: 2842: 2836: 2830: 2824: 2818: 2813: 2808: 2802: 2800: 2797: 2785:nanotechnology 2764: 2753: 2746: 2740: 2739: 2728: 2720: 2716: 2712: 2708: 2702: 2698: 2688: 2684: 2681: 2677: 2672: 2667: 2663: 2639: 2632: 2599: 2596: 2590: 2587: 2536: 2533: 2517:monochromators 2505:Main article: 2502: 2499: 2462: 2459: 2433: 2430: 2422:shear strength 2402:yield strength 2379: 2376: 2347:Main article: 2344: 2341: 2319: 2316: 2306: 2303: 2279:Main article: 2276: 2273: 2261:Main article: 2258: 2255: 2232: 2228: 2205: 2201: 2166:Main article: 2163: 2160: 2155: 2152: 2130: 2127: 2091: 2088: 2081:More recently 2063: 2056: 2034:Main article: 2031: 2028: 2019:Main article: 2016: 2013: 2002: 1999: 1974:negative stain 1915:Main article: 1912: 1909: 1905:ultramicrotome 1898:Ultramicrotomy 1896:Main article: 1885: 1882: 1865:uranyl acetate 1833:uranyl acetate 1820: 1817: 1770: 1752: 1709: 1706: 1684:Main article: 1681: 1678: 1610:Main article: 1607: 1604: 1596:phase contrast 1588:Main article: 1585: 1584:Phase contrast 1582: 1576:(known as the 1530:Main article: 1527: 1524: 1482:phase contrast 1469: 1466: 1437: 1436: 1425: 1422: 1415: 1410: 1406: 1399: 1395: 1387: 1383: 1378: 1369: 1365: 1361: 1356: 1352: 1347: 1342: 1339: 1336: 1333: 1330: 1306: 1303: 1289: 1286: 1244:, and worsens 1214: 1211: 1206: 1202: 1183: 1182: 1171: 1167: 1161: 1158: 1153: 1150: 1144: 1140: 1137: 1132: 1128: 1124: 1121: 1118: 1077:Main article: 1074: 1071: 1063:micro switches 1032:stepper motors 1007:ultramicrotomy 998: 997:Specimen stage 995: 959:diffusion pump 940:mean free path 929:mean free path 924: 921: 906: 903: 831:Main article: 828: 825: 804: 801: 775: 772: 763:electromagnets 759:left hand rule 735:single crystal 729: 714: 688: 685: 672: 658: 657: 642: 633: 629: 623: 619: 615: 611: 606: 603: 599: 595: 590: 586: 582: 578: 573: 568: 564: 517: 516: 494: 490: 485: 479: 476: 473: 470: 467: 463: 458: 455: 412:Main article: 409: 406: 404: 401: 364: 361: 299: 296: 181: 178: 176: 173: 141:nanotechnology 99:attached to a 79:magnified and 26: 9: 6: 4: 3: 2: 8182: 8171: 8168: 8166: 8163: 8161: 8160:Electron beam 8158: 8157: 8155: 8140: 8139: 8130: 8128: 8127: 8118: 8117: 8114: 8104: 8101: 8099: 8096: 8094: 8091: 8089: 8086: 8084: 8081: 8079: 8076: 8074: 8071: 8069: 8066: 8065: 8063: 8059: 8053: 8050: 8048: 8045: 8043: 8040: 8038: 8035: 8033: 8030: 8028: 8025: 8023: 8020: 8018: 8017:Carl Zeiss AG 8015: 8014: 8012: 8010:Manufacturers 8008: 8002: 7999: 7997: 7994: 7992: 7989: 7987: 7984: 7982: 7979: 7977: 7974: 7972: 7969: 7967: 7964: 7962: 7961:James Hillier 7959: 7957: 7954: 7952: 7949: 7947: 7944: 7942: 7939: 7937: 7934: 7932: 7929: 7927: 7924: 7923: 7921: 7917: 7914: 7910: 7904: 7901: 7899: 7896: 7894: 7891: 7889: 7886: 7884: 7881: 7879: 7876: 7874: 7871: 7869: 7866: 7864: 7861: 7859: 7856: 7854: 7851: 7849: 7846: 7844: 7841: 7839: 7836: 7832: 7829: 7828: 7827: 7824: 7822: 7819: 7817: 7814: 7812: 7809: 7807: 7804: 7802: 7799: 7797: 7794: 7792: 7789: 7787: 7784: 7783: 7781: 7777: 7767: 7764: 7760: 7757: 7756: 7755: 7752: 7750: 7747: 7745: 7742: 7738: 7735: 7734: 7733: 7730: 7729: 7727: 7725: 7721: 7715: 7714:Ultrafast SEM 7712: 7710: 7707: 7705: 7702: 7700: 7697: 7695: 7692: 7691: 7689: 7687: 7683: 7677: 7674: 7672: 7671:Low-energy EM 7669: 7667: 7664: 7662: 7659: 7657: 7654: 7652: 7649: 7648: 7646: 7644: 7640: 7637: 7633: 7627: 7624: 7622: 7621:Magnetic lens 7619: 7617: 7614: 7612: 7609: 7607: 7604: 7602: 7599: 7597: 7594: 7593: 7591: 7587: 7581: 7578: 7576: 7573: 7571: 7570:Kikuchi lines 7568: 7566: 7563: 7561: 7558: 7556: 7553: 7551: 7548: 7547: 7545: 7540: 7536: 7530: 7527: 7525: 7522: 7520: 7517: 7515: 7512: 7510: 7507: 7506: 7504: 7500: 7496: 7489: 7484: 7482: 7477: 7475: 7470: 7469: 7466: 7459: 7456: 7453: 7450: 7447: 7444: 7443: 7438: 7436: 7433: 7431: 7428: 7426: 7423: 7421: 7418: 7416: 7413: 7412: 7406: 7403: 7401: 7398: 7397: 7392: 7387: 7370: 7357: 7349: 7345: 7341: 7334: 7326: 7319: 7312: 7308: 7303: 7295: 7291: 7286: 7281: 7277: 7273: 7269: 7265: 7262:(1): 014111. 7261: 7257: 7253: 7246: 7238: 7237:2dx.unibas.ch 7234: 7227: 7219: 7215: 7211: 7207: 7203: 7199: 7196:(9). 096101. 7195: 7191: 7187: 7180: 7178: 7169: 7165: 7160: 7155: 7151: 7147: 7143: 7139: 7136:(1). 014110. 7135: 7131: 7127: 7120: 7118: 7109: 7105: 7101: 7097: 7093: 7089: 7085: 7081: 7074: 7067: 7059: 7055: 7051: 7047: 7043: 7039: 7035: 7031: 7027: 7023: 7019: 7012: 7003: 6998: 6994: 6990: 6986: 6982: 6981: 6976: 6969: 6961: 6957: 6953: 6949: 6945: 6941: 6937: 6930: 6922: 6918: 6913: 6908: 6903: 6898: 6894: 6890: 6886: 6882: 6881: 6876: 6869: 6861: 6857: 6853: 6849: 6845: 6841: 6837: 6833: 6829: 6825: 6818: 6810: 6806: 6801: 6796: 6792: 6788: 6785:(4): 041101. 6784: 6780: 6776: 6769: 6761: 6757: 6753: 6749: 6745: 6741: 6736: 6731: 6727: 6723: 6719: 6712: 6704: 6700: 6695: 6690: 6686: 6682: 6677: 6672: 6668: 6664: 6660: 6656: 6652: 6645: 6637: 6633: 6629: 6625: 6621: 6617: 6612: 6607: 6603: 6599: 6591: 6583: 6579: 6575: 6571: 6567: 6563: 6559: 6555: 6548: 6540: 6536: 6532: 6528: 6524: 6520: 6516: 6512: 6505: 6503: 6495: 6489: 6485: 6481: 6477: 6470: 6462: 6458: 6454: 6450: 6446: 6442: 6439:(7): 075011. 6438: 6434: 6427: 6419: 6415: 6410: 6405: 6400: 6395: 6391: 6387: 6383: 6379: 6375: 6368: 6360: 6356: 6352: 6348: 6344: 6340: 6333: 6325: 6321: 6317: 6313: 6309: 6305: 6301: 6297: 6290: 6282: 6278: 6274: 6270: 6266: 6262: 6258: 6251: 6237: 6233: 6229: 6225: 6221: 6217: 6213: 6209: 6205: 6198: 6190: 6186: 6182: 6178: 6174: 6170: 6163: 6155: 6151: 6147: 6140: 6132: 6126: 6122: 6118: 6114: 6107: 6099: 6095: 6091: 6087: 6083: 6079: 6075: 6071: 6064: 6056: 6052: 6048: 6044: 6037: 6029: 6025: 6021: 6017: 6013: 6009: 6002: 5995: 5989: 5985: 5981: 5977: 5970: 5962: 5958: 5953: 5948: 5944: 5940: 5936: 5932: 5928: 5924: 5917: 5903: 5899: 5893: 5885: 5881: 5877: 5873: 5869: 5865: 5861: 5857: 5849: 5841: 5837: 5833: 5829: 5824: 5819: 5815: 5811: 5807: 5800: 5792: 5788: 5784: 5780: 5776: 5772: 5765: 5757: 5753: 5749: 5745: 5741: 5737: 5733: 5729: 5725: 5721: 5714: 5707: 5705: 5696: 5692: 5688: 5684: 5680: 5676: 5673:(2): 93–100. 5672: 5668: 5661: 5659: 5657: 5648: 5644: 5640: 5636: 5632: 5628: 5624: 5620: 5612: 5610: 5601: 5597: 5592: 5587: 5583: 5579: 5575: 5571: 5567: 5563: 5556: 5554: 5552: 5550: 5541: 5537: 5533: 5529: 5525: 5521: 5517: 5513: 5506: 5504: 5502: 5493: 5489: 5485: 5481: 5477: 5473: 5466: 5458: 5454: 5449: 5444: 5440: 5436: 5432: 5425: 5417: 5413: 5409: 5405: 5401: 5397: 5393: 5389: 5385: 5381: 5374: 5366: 5362: 5358: 5354: 5350: 5346: 5341: 5336: 5332: 5328: 5321: 5313: 5309: 5305: 5301: 5297: 5293: 5286: 5278: 5274: 5269: 5264: 5260: 5256: 5252: 5248: 5241: 5233: 5229: 5225: 5221: 5217: 5213: 5209: 5205: 5201: 5197: 5193: 5186: 5178: 5174: 5169: 5164: 5160: 5156: 5152: 5148: 5144: 5137: 5129: 5125: 5120: 5115: 5111: 5107: 5103: 5099: 5095: 5088: 5080: 5074: 5066: 5062: 5058: 5054: 5050: 5046: 5039: 5031: 5025: 5017: 5013: 5009: 5005: 5001: 4997: 4993: 4989: 4982: 4974: 4970: 4966: 4962: 4958: 4954: 4950: 4946: 4942: 4935: 4927: 4923: 4919: 4915: 4911: 4907: 4903: 4899: 4892: 4884: 4880: 4875: 4870: 4866: 4862: 4858: 4854: 4850: 4846: 4842: 4838: 4834: 4827: 4819: 4815: 4810: 4805: 4801: 4797: 4793: 4789: 4785: 4781: 4777: 4770: 4768: 4759: 4753: 4749: 4742: 4734: 4730: 4726: 4722: 4718: 4714: 4707: 4699: 4695: 4691: 4687: 4683: 4679: 4675: 4671: 4664: 4656: 4652: 4648: 4644: 4639: 4634: 4629: 4624: 4620: 4616: 4612: 4605: 4597: 4593: 4588: 4583: 4579: 4575: 4571: 4567: 4563: 4556: 4548: 4544: 4540: 4536: 4532: 4528: 4521: 4513: 4509: 4504: 4499: 4495: 4491: 4487: 4483: 4479: 4472: 4464: 4460: 4456: 4452: 4448: 4444: 4437: 4429: 4425: 4420: 4415: 4411: 4407: 4403: 4399: 4394: 4389: 4385: 4381: 4377: 4370: 4362: 4356: 4352: 4345: 4343: 4334: 4330: 4325: 4320: 4315: 4310: 4306: 4302: 4298: 4291: 4283: 4277: 4273: 4266: 4257: 4252: 4248: 4244: 4240: 4236: 4229: 4222: 4214: 4208: 4204: 4197: 4189: 4183: 4179: 4172: 4170: 4161: 4155: 4151: 4144: 4142: 4133: 4127: 4123: 4116: 4114: 4112: 4110: 4101: 4095: 4092:. CRC-press. 4091: 4084: 4082: 4073: 4069: 4065: 4061: 4057: 4053: 4046: 4038: 4034: 4030: 4026: 4022: 4018: 4011: 4003: 3997: 3993: 3986: 3984: 3975: 3969: 3961: 3955: 3951: 3944: 3942: 3933: 3926: 3918: 3914: 3909: 3904: 3900: 3896: 3892: 3888: 3884: 3877: 3869: 3865: 3860: 3855: 3851: 3847: 3843: 3839: 3835: 3828: 3820: 3816: 3812: 3808: 3804: 3800: 3796: 3792: 3785: 3777: 3773: 3769: 3765: 3761: 3757: 3750: 3742: 3738: 3734: 3728: 3724: 3720: 3716: 3709: 3707: 3698: 3694: 3690: 3686: 3682: 3678: 3674: 3670: 3666: 3662: 3655: 3647: 3643: 3639: 3635: 3631: 3627: 3620: 3612: 3606: 3601: 3600: 3591: 3589: 3587: 3585: 3576: 3572: 3568: 3564: 3560: 3556: 3548: 3540: 3536: 3532: 3528: 3524: 3520: 3513: 3511: 3502: 3496: 3492: 3488: 3484: 3477: 3475: 3473: 3464: 3460: 3456: 3452: 3448: 3444: 3440: 3436: 3429: 3421: 3415: 3407: 3403: 3398: 3393: 3389: 3385: 3381: 3377: 3374:(1): 014107. 3373: 3369: 3365: 3358: 3356: 3354: 3352: 3350: 3341: 3335: 3331: 3324: 3316: 3310: 3306: 3299: 3291: 3285: 3281: 3274: 3266: 3260: 3256: 3252: 3246: 3244: 3235: 3231: 3227: 3223: 3219: 3215: 3211: 3207: 3203: 3199: 3192: 3184: 3180: 3176: 3172: 3168: 3164: 3160: 3153: 3145: 3139: 3137: 3128: 3122: 3118: 3111: 3109: 3094:on 2008-06-19 3093: 3089: 3085: 3079: 3071: 3065: 3049: 3042: 3035: 3027: 3023: 3016: 3008: 3002: 2994: 2990: 2986: 2982: 2979:(1): 88–106. 2978: 2974: 2970: 2963: 2955: 2949: 2945: 2941: 2937: 2933: 2929: 2922: 2920: 2918: 2911: 2905: 2897: 2893: 2887: 2885: 2876: 2875:users.rcn.com 2872: 2866: 2862: 2851: 2848: 2846: 2843: 2840: 2837: 2834: 2831: 2828: 2825: 2822: 2819: 2817: 2814: 2812: 2809: 2807: 2804: 2803: 2796: 2794: 2790: 2786: 2780: 2778: 2772: 2770: 2763: 2759: 2752: 2745: 2726: 2718: 2714: 2710: 2700: 2696: 2686: 2679: 2675: 2670: 2661: 2653: 2652: 2651: 2649: 2645: 2638: 2631: 2627: 2623: 2619: 2610: 2605: 2595: 2586: 2584: 2579: 2577: 2573: 2569: 2564: 2561: 2556: 2553: 2548: 2542: 2532: 2530: 2526: 2522: 2518: 2514: 2508: 2498: 2496: 2492: 2486: 2484: 2480: 2476: 2471: 2467: 2458: 2455: 2451: 2447: 2443: 2439: 2438:hardness test 2429: 2427: 2423: 2419: 2415: 2411: 2410:shear modulus 2407: 2403: 2398: 2394: 2390: 2386: 2375: 2373: 2369: 2368:tensile tests 2364: 2360: 2356: 2350: 2340: 2336: 2332: 2328: 2324: 2315: 2313: 2302: 2300: 2296: 2292: 2291:liquid helium 2288: 2282: 2272: 2270: 2264: 2254: 2252: 2230: 2226: 2203: 2199: 2189: 2185: 2183: 2179: 2175: 2169: 2159: 2154:Modifications 2151: 2149: 2141: 2140: 2135: 2126: 2124: 2120: 2115: 2113: 2109: 2105: 2101: 2097: 2087: 2084: 2076: 2072: 2068: 2061: 2058:Ion milling ( 2055: 2052: 2047: 2044: 2037: 2027: 2022: 2012: 2009: 1998: 1996: 1992: 1991:concentration 1988: 1984: 1979: 1975: 1970: 1968: 1964: 1960: 1956: 1952: 1948: 1939: 1938: 1932: 1923: 1918: 1908: 1906: 1899: 1890: 1881: 1879: 1874: 1870: 1866: 1862: 1856: 1854: 1850: 1849:atomic number 1846: 1842: 1834: 1830: 1825: 1816: 1814: 1809: 1805: 1802: 1797: 1792: 1790: 1786: 1782: 1778: 1773: 1768: 1764: 1760: 1755: 1751: 1747: 1743: 1739: 1733: 1731: 1705: 1702: 1697: 1694: 1687: 1677: 1675: 1671: 1670:Kikuchi lines 1666: 1664: 1656: 1651: 1647: 1643: 1640: 1635: 1631: 1627: 1618: 1613: 1603: 1601: 1597: 1591: 1581: 1579: 1574: 1569: 1565: 1561: 1559: 1555: 1551: 1543: 1538: 1533: 1523: 1520: 1519: 1514: 1512: 1511: 1505: 1497: 1493: 1490: 1486: 1484: 1483: 1478: 1477: 1465: 1461: 1457: 1449: 1445: 1443: 1423: 1420: 1413: 1397: 1393: 1385: 1381: 1376: 1367: 1363: 1359: 1354: 1350: 1345: 1340: 1334: 1328: 1321: 1320: 1319: 1317: 1313: 1302: 1298: 1295: 1285: 1281: 1279: 1274: 1269: 1267: 1263: 1259: 1255: 1251: 1247: 1243: 1239: 1235: 1228: 1219: 1213:Electron lens 1210: 1198: 1196: 1192: 1188: 1169: 1165: 1159: 1156: 1148: 1142: 1138: 1135: 1130: 1126: 1122: 1119: 1116: 1109: 1108: 1107: 1106: 1102: 1101:work function 1098: 1093: 1085: 1080: 1070: 1066: 1064: 1059: 1051: 1047: 1043: 1041: 1037: 1033: 1027: 1024: 1019: 1016: 1008: 1003: 994: 992: 988: 984: 980: 975: 973: 969: 963: 960: 956: 952: 948: 943: 941: 936: 930: 923:Vacuum system 920: 911: 902: 900: 896: 892: 888: 884: 879: 875: 871: 867: 863: 859: 855: 850: 848: 844: 840: 834: 824: 822: 817: 814: 810: 800: 798: 794: 788: 784: 780: 771: 768: 764: 760: 755: 752: 748: 744: 740: 736: 732: 725: 717: 709: 701: 693: 684: 682: 678: 671: 667: 663: 640: 631: 627: 621: 617: 613: 609: 604: 601: 597: 593: 588: 584: 580: 576: 571: 566: 562: 554: 553: 552: 550: 546: 542: 538: 537:visible light 534: 530: 526: 522: 492: 488: 483: 477: 474: 471: 468: 465: 461: 456: 453: 446: 445: 444: 442: 439: 435: 431: 427: 421: 415: 400: 398: 394: 390: 386: 382: 378: 373: 371: 360: 358: 354: 350: 345: 340: 338: 334: 333:James Hillier 330: 325: 323: 322:cotton fibers 318: 314: 310: 305: 295: 293: 289: 285: 281: 277: 273: 269: 265: 261: 256: 254: 250: 246: 245:Eduard Riecke 242: 238: 234: 230: 225: 223: 219: 215: 211: 207: 203: 194: 186: 172: 169: 165: 160: 156: 154: 150: 146: 145:semiconductor 142: 138: 134: 130: 126: 121: 117: 113: 108: 106: 102: 98: 94: 90: 86: 82: 77: 73: 69: 65: 41: 37: 32: 19: 18:Electron lens 8136: 8124: 8078:EM Data Bank 8042:Nion Company 7936:Dennis Gabor 7926:Albert Crewe 7723: 7704:Confocal SEM 7601:Electron gun 7550:Auger effect 7441: 7390: 7356:cite journal 7333: 7318: 7310: 7302: 7259: 7255: 7245: 7236: 7226: 7193: 7189: 7133: 7129: 7086:(1): 36–43. 7083: 7080:MRS Bulletin 7079: 7066: 7025: 7021: 7011: 6984: 6978: 6968: 6946:(1): 23–30. 6943: 6939: 6929: 6884: 6878: 6868: 6827: 6823: 6817: 6782: 6778: 6768: 6725: 6721: 6711: 6658: 6654: 6644: 6601: 6597: 6590: 6557: 6553: 6547: 6514: 6510: 6475: 6469: 6436: 6432: 6426: 6381: 6377: 6367: 6342: 6339:MRS Bulletin 6338: 6332: 6299: 6295: 6289: 6264: 6260: 6250: 6239:. Retrieved 6211: 6207: 6197: 6172: 6168: 6162: 6145: 6139: 6112: 6106: 6073: 6069: 6063: 6046: 6042: 6036: 6011: 6007: 6001: 5975: 5969: 5926: 5923:MRS Bulletin 5922: 5916: 5905:. Retrieved 5901: 5892: 5859: 5855: 5848: 5813: 5809: 5799: 5774: 5770: 5764: 5723: 5719: 5670: 5667:MRS Bulletin 5666: 5622: 5618: 5573: 5569: 5562:Arslan, Ilke 5515: 5511: 5475: 5471: 5465: 5438: 5434: 5424: 5383: 5379: 5373: 5330: 5326: 5320: 5303: 5299: 5294:(May 2018). 5285: 5250: 5247:MRS Bulletin 5246: 5240: 5199: 5195: 5185: 5150: 5146: 5136: 5101: 5097: 5087: 5073:cite journal 5048: 5044: 5038: 5024:cite journal 4991: 4987: 4981: 4948: 4944: 4934: 4901: 4897: 4891: 4840: 4836: 4826: 4783: 4779: 4747: 4741: 4716: 4712: 4706: 4673: 4669: 4663: 4618: 4614: 4604: 4572:(18): e125. 4569: 4565: 4555: 4533:(1): 28–41. 4530: 4526: 4520: 4485: 4481: 4471: 4446: 4442: 4436: 4383: 4379: 4369: 4353:. Springer. 4350: 4304: 4300: 4290: 4274:. Springer. 4271: 4265: 4238: 4234: 4221: 4202: 4196: 4180:. Springer. 4177: 4149: 4124:. Springer. 4121: 4089: 4058:(12): 1821. 4055: 4051: 4045: 4020: 4016: 4010: 3991: 3952:. Springer. 3949: 3925: 3890: 3886: 3876: 3841: 3837: 3827: 3794: 3790: 3784: 3759: 3755: 3749: 3714: 3664: 3660: 3654: 3629: 3625: 3619: 3598: 3558: 3554: 3547: 3522: 3518: 3482: 3438: 3434: 3428: 3414: 3371: 3367: 3332:. Springer. 3329: 3323: 3304: 3298: 3279: 3273: 3257:. Springer. 3254: 3201: 3197: 3191: 3166: 3162: 3152: 3116: 3096:. Retrieved 3092:the original 3087: 3078: 3064: 3052:. Retrieved 3047: 3034: 3025: 3015: 3001: 2976: 2972: 2962: 2927: 2904: 2895: 2874: 2865: 2781: 2773: 2761: 2750: 2743: 2741: 2647: 2636: 2629: 2615: 2592: 2580: 2565: 2552:stroboscopic 2544: 2531:, and NION. 2510: 2487: 2464: 2435: 2381: 2352: 2337: 2333: 2329: 2325: 2321: 2308: 2295:vitreous ice 2284: 2266: 2248: 2171: 2162:Scanning TEM 2157: 2145: 2137: 2116: 2093: 2080: 2048: 2039: 2024: 2004: 1971: 1947:heavy metals 1943: 1935: 1901: 1857: 1852: 1838: 1810: 1806: 1793: 1784: 1780: 1776: 1771: 1766: 1762: 1758: 1753: 1749: 1734: 1730:Walter Hoppe 1726: 1704:components. 1698: 1689: 1667: 1659: 1644: 1623: 1602:techniques. 1593: 1570: 1566: 1562: 1547: 1542:dislocations 1517: 1516: 1515: 1509: 1508: 1506: 1502: 1488: 1487: 1481: 1480: 1475: 1474: 1471: 1462: 1458: 1454: 1438: 1311: 1308: 1299: 1291: 1282: 1270: 1266:permeability 1230: 1199: 1194: 1191:Richardson's 1186: 1184: 1096: 1094: 1090: 1079:Electron gun 1073:Electron gun 1067: 1060: 1056: 1044: 1028: 1020: 1012: 976: 964: 944: 926: 917: 858:zinc sulfide 851: 836: 818: 806: 789: 785: 781: 777: 756: 721: 680: 669: 661: 659: 548: 528: 520: 518: 440: 433: 425: 423: 381:Albert Crewe 374: 366: 357:World War II 341: 326: 309:electronvolt 301: 257: 226: 199: 161: 157: 149:paleontology 109: 97:scintillator 67: 63: 62: 42:in diameter. 8022:FEI Company 7956:Harald Rose 7946:Ernst Ruska 7635:Microscopes 7543:with matter 7541:interaction 7313:.energy.gov 5816:: 161–169. 5306:: 243–256. 5300:Nano Energy 4719:(10): 554. 4449:(1): 8–15. 3667:(1): 1–13. 3054:25 February 2589:Limitations 2529:FEI Company 2483:capacitance 2442:capacitance 2426:cold finger 2363:dislocation 2184:detectors. 2178:Faraday cup 2129:Replication 2030:Ion etching 1978:heavy metal 1926:microscope. 1789:isosurfaces 1639:space group 1606:Diffraction 1578:Bragg Angle 1550:diffraction 1242:astigmatism 1238:convex lens 991:sublimation 803:Reciprocity 545:matter wave 317:diffraction 272:Ernst Ruska 214:ultraviolet 168:Ernst Ruska 135:as well as 85:fluorescent 8154:Categories 8103:Multislice 7919:Developers 7779:Techniques 7524:Microscope 7519:Micrograph 7446:Eric Stach 6735:1704.04246 6611:1611.05022 6241:2023-05-08 6148:(Thesis). 5907:2022-03-15 5898:"TEAM 0.5" 5340:2202.13332 4951:: 113075. 4478:Bals, Sara 4393:1606.02938 4386:: 160041. 3762:(2): 770. 3098:2008-09-09 2857:References 2756:= 42  2602:See also: 2555:pump-probe 2539:See also: 2513:aberration 2393:thin films 2100:thin films 2036:Sputtering 1665:analysis. 1294:optic axis 1262:hysteresis 1225:See also: 905:Components 743:thermionic 541:nanometres 436:) and the 418:See also: 403:Background 249:Hans Busch 210:wavelength 202:Ernst Abbe 153:palynology 112:resolution 95:such as a 72:microscopy 36:poliovirus 7971:Max Knoll 7626:Stigmator 6760:1749-4885 6685:0027-8424 6604:: 63–73. 6582:0022-3735 6539:0034-6748 6461:137919989 6324:137098960 6154:305444239 5961:197631706 5862:: 72–79. 5832:0304-3991 5777:: 10–15. 5756:203607267 5740:0935-9648 5695:136475122 5687:1938-1425 5625:: 14–20. 5576:: 86–95. 5532:0022-0744 5492:136678366 5365:247158917 5277:138802942 5253:: 38–45. 5016:138891812 4973:222255773 4865:2045-2322 4843:: 45594. 4800:1046-2023 3968:cite book 3819:137491811 3811:1431-9276 3776:0168-9002 3681:0022-2720 3646:0304-3991 3463:1600-5724 2871:"Viruses" 2697:λ 2475:actuators 2470:stiffness 2389:nanowires 2227:β 2200:α 2108:nanowires 1851:squared ( 1655:zone axis 1414:∗ 1409:Ψ 1405:Ψ 1377:∫ 1360:− 1316:amplitude 1288:Apertures 1254:permalloy 1246:spherical 1152:Φ 1149:− 1139:⁡ 1040:trackball 983:cold trap 677:rest mass 563:λ 489:λ 484:≈ 478:α 475:⁡ 462:λ 414:Electrons 408:Electrons 349:IG Farben 268:Max Knoll 233:electrons 227:In 1858, 200:In 1873, 164:Max Knoll 137:pollution 76:electrons 8126:Category 8073:CrysTBox 8061:Software 7732:Cryo-TEM 7539:Electron 7294:27877937 7218:19392535 7168:27877936 7108:41889433 7050:20016598 6921:15883380 6852:20378810 6703:26438835 6636:31779409 6628:28139341 6418:16195381 6359:12455370 6150:ProQuest 6098:10431993 6090:19189313 5884:23831940 5840:28049586 5791:25490533 5748:31566272 5647:44069323 5639:29802911 5600:27566048 5540:21427119 5457:26680204 5416:21379512 5408:12872162 5357:35609254 5224:28228169 5177:27869059 5128:19036817 5065:15149719 4965:33035837 4918:19094016 4883:28374755 4818:26931652 4786:: 3–15. 4698:37311577 4690:13124776 4655:37311577 4647:24482357 4596:17012274 4547:24114311 4512:23872036 4463:16730409 4428:27272459 4333:19208223 4037:10633064 3917:24189638 3868:19541421 3741:27572721 3689:11012823 3575:16872749 3539:17913494 3406:27877933 3251:Fultz, B 3234:31952480 3226:17731040 2799:See also 2446:hardness 2397:gear box 2275:Cryo-TEM 2119:nanowire 2096:lamellae 1983:proteins 1949:such as 1917:Staining 1036:joystick 1015:airlocks 1009:sections 968:ion pump 933:10  864:, doped 724:tungsten 718:filament 353:air raid 129:virology 93:detector 8138:Commons 7786:4D STEM 7759:4D STEM 7737:Cryo-ET 7709:SEM-XRF 7699:CryoSEM 7656:Cryo-EM 7514:History 7448:(2008). 7311:Science 7285:5099806 7264:Bibcode 7198:Bibcode 7159:5099805 7138:Bibcode 7088:Bibcode 7058:4423704 7030:Bibcode 6989:Bibcode 6948:Bibcode 6912:1129142 6889:Bibcode 6860:5449372 6832:Bibcode 6824:Science 6809:1186765 6787:Bibcode 6740:Bibcode 6694:4620897 6663:Bibcode 6562:Bibcode 6519:Bibcode 6441:Bibcode 6409:1253576 6386:Bibcode 6304:Bibcode 6269:Bibcode 6216:Bibcode 6177:Bibcode 6016:Bibcode 5931:Bibcode 5864:Bibcode 5591:5100813 5478:: 123. 5435:Science 5388:Bibcode 5232:6801783 5204:Bibcode 5155:Bibcode 5119:2643745 4996:Bibcode 4926:6487344 4874:5379487 4845:Bibcode 4809:4854231 4780:Methods 4721:Bibcode 4638:3907272 4587:1635295 4488:: 1–5. 4419:4896123 4398:Bibcode 4324:2649040 4243:Bibcode 4060:Bibcode 3908:3876735 3859:2937214 3697:2034467 3443:Bibcode 3397:5099802 3376:Bibcode 3206:Bibcode 3198:Science 3171:Bibcode 2981:Bibcode 2932:Bibcode 2835:(HRTEM) 2829:(EFTEM) 2642:is the 2572:Caltech 2479:sensors 1959:uranium 1841:neutron 1783:,  1779:,  1761:,  1189:is the 675:is the 664:is the 523:is the 430:photons 383:at the 344:Siemens 335:at the 288:Siemens 229:Plücker 206:limited 175:History 91:, or a 81:focused 70:) is a 8083:EMsoft 8068:CASINO 8047:TESCAN 7912:Others 7811:cryoEM 7502:Basics 7388:about 7348:821768 7346:  7292:  7282:  7216:  7166:  7156:  7106:  7056:  7048:  7022:Nature 6919:  6909:  6858:  6850:  6807:  6758:  6701:  6691:  6683:  6634:  6626:  6580:  6537:  6490:  6459:  6416:  6406:  6357:  6322:  6236:860719 6234:  6152:  6127:  6096:  6088:  5990:  5959:  5882:  5838:  5830:  5789:  5754:  5746:  5738:  5693:  5685:  5645:  5637:  5598:  5588:  5538:  5530:  5490:  5455:  5414:  5406:  5363:  5355:  5275:  5230:  5222:  5175:  5126:  5116:  5063:  5014:  4971:  4963:  4924:  4916:  4881:  4871:  4863:  4816:  4806:  4798:  4754:  4696:  4688:  4653:  4645:  4635:  4594:  4584:  4545:  4510:  4461:  4426:  4416:  4357:  4331:  4321:  4278:  4209:  4184:  4156:  4128:  4096:  4035:  3998:  3956:  3915:  3905:  3866:  3856:  3817:  3809:  3774:  3739:  3729:  3695:  3687:  3679:  3644:  3607:  3573:  3537:  3497:  3461:  3404:  3394:  3336:  3311:  3286:  3261:  3232:  3224:  3123:  2950:  2841:(LVEM) 2823:(EELS) 2547:pulsed 2420:, and 2043:plasma 1951:osmium 1185:where 987:adsorb 972:getter 774:Optics 660:where 519:where 218:Köhler 131:, and 8037:Leica 7883:PINEM 7749:HRTEM 7744:EFTEM 7104:S2CID 7076:(PDF) 7054:S2CID 6856:S2CID 6730:arXiv 6632:S2CID 6606:arXiv 6457:S2CID 6355:S2CID 6320:S2CID 6094:S2CID 5957:S2CID 5752:S2CID 5716:(PDF) 5691:S2CID 5643:S2CID 5488:S2CID 5412:S2CID 5361:S2CID 5335:arXiv 5273:S2CID 5228:S2CID 5012:S2CID 4969:S2CID 4922:S2CID 4694:S2CID 4651:S2CID 4388:arXiv 4307:: 5. 4231:(PDF) 3815:S2CID 3693:S2CID 3230:S2CID 3044:(PDF) 1845:X-ray 1023:grain 970:or a 887:Gatan 737:or a 370:Delft 114:than 103:or a 8098:IUCr 8032:JEOL 7903:WBDF 7898:WDXS 7848:EBIC 7843:EELS 7838:ECCI 7826:EBSD 7806:CBED 7754:STEM 7369:help 7344:OSTI 7290:PMID 7214:PMID 7164:PMID 7046:PMID 6917:PMID 6848:PMID 6805:OSTI 6756:ISSN 6699:PMID 6681:ISSN 6624:PMID 6578:ISSN 6535:ISSN 6488:ISBN 6414:PMID 6232:OSTI 6125:ISBN 6086:PMID 5988:ISBN 5880:PMID 5836:PMID 5828:ISSN 5787:PMID 5744:PMID 5736:ISSN 5683:ISSN 5635:PMID 5596:PMID 5536:PMID 5528:ISSN 5453:PMID 5404:PMID 5353:PMID 5220:PMID 5173:PMID 5124:PMID 5079:link 5061:PMID 5030:link 4961:PMID 4914:PMID 4879:PMID 4861:ISSN 4814:PMID 4796:ISSN 4752:ISBN 4686:PMID 4643:PMID 4592:PMID 4543:PMID 4508:PMID 4459:PMID 4424:PMID 4355:ISBN 4329:PMID 4276:ISBN 4207:ISBN 4182:ISBN 4154:ISBN 4126:ISBN 4094:ISBN 4033:PMID 3996:ISBN 3974:link 3954:ISBN 3913:PMID 3864:PMID 3807:ISSN 3772:ISSN 3737:PMID 3727:ISBN 3685:PMID 3677:ISSN 3642:ISSN 3605:ISBN 3571:PMID 3535:PMID 3495:ISBN 3459:ISSN 3402:PMID 3334:ISBN 3309:ISBN 3284:ISBN 3259:ISBN 3222:PMID 3121:ISBN 3056:2023 2948:ISBN 2680:0.67 2574:and 2525:JEOL 2495:XEDS 2493:and 2491:EELS 2477:and 2448:and 2391:and 1993:for 1965:(in 1963:gold 1955:lead 1831:and 1479:and 1264:and 1248:and 1201:(LaB 897:and 878:CMOS 274:and 222:Rohr 220:and 166:and 151:and 143:and 7868:FEM 7863:FIB 7831:TKD 7821:EDS 7724:TEM 7686:SEM 7661:EMP 7280:PMC 7272:doi 7206:doi 7194:102 7154:PMC 7146:doi 7096:doi 7038:doi 7026:462 6997:doi 6956:doi 6907:PMC 6897:doi 6885:102 6840:doi 6828:328 6795:doi 6748:doi 6689:PMC 6671:doi 6659:112 6616:doi 6602:176 6570:doi 6527:doi 6480:doi 6449:doi 6404:PMC 6394:doi 6382:102 6347:doi 6312:doi 6277:doi 6224:doi 6185:doi 6117:doi 6078:doi 6051:doi 6047:528 6024:doi 5980:doi 5947:hdl 5939:doi 5872:doi 5860:133 5818:doi 5814:176 5779:doi 5775:150 5728:doi 5675:doi 5627:doi 5623:192 5586:PMC 5578:doi 5574:170 5520:doi 5480:doi 5443:doi 5439:350 5396:doi 5345:doi 5331:144 5308:doi 5263:hdl 5255:doi 5212:doi 5163:doi 5114:PMC 5106:doi 5053:doi 5004:doi 4953:doi 4949:219 4906:doi 4902:232 4869:PMC 4853:doi 4804:PMC 4788:doi 4784:100 4729:doi 4678:doi 4674:117 4633:PMC 4623:doi 4582:PMC 4574:doi 4535:doi 4498:hdl 4490:doi 4486:135 4451:doi 4447:107 4414:PMC 4406:doi 4319:PMC 4309:doi 4251:doi 4239:199 4068:doi 4025:doi 4021:128 3903:PMC 3895:doi 3891:184 3854:PMC 3846:doi 3842:109 3799:doi 3764:doi 3760:566 3719:doi 3669:doi 3665:200 3634:doi 3563:doi 3559:107 3527:doi 3487:doi 3451:doi 3392:PMC 3384:doi 3214:doi 3202:168 3179:doi 2989:doi 2977:103 2940:doi 2754:max 2666:max 2633:max 2289:or 2075:FIB 2060:FIB 2051:MTJ 1985:or 1961:or 1843:or 1632:or 1136:exp 1038:or 985:to 957:or 949:or 914:14) 891:FEI 866:YAG 745:or 728:LaB 713:LaB 472:sin 68:TEM 8156:: 7643:EM 7360:: 7358:}} 7354:{{ 7342:. 7309:. 7288:. 7278:. 7270:. 7258:. 7254:. 7235:. 7212:. 7204:. 7192:. 7188:. 7176:^ 7162:. 7152:. 7144:. 7132:. 7128:. 7116:^ 7102:. 7094:. 7084:31 7082:. 7078:. 7052:. 7044:. 7036:. 7024:. 7020:. 6995:. 6985:97 6983:. 6977:. 6954:. 6944:16 6942:. 6938:. 6915:. 6905:. 6895:. 6883:. 6877:. 6854:. 6846:. 6838:. 6826:. 6803:. 6793:. 6781:. 6777:. 6754:. 6746:. 6738:. 6726:11 6724:. 6720:. 6697:. 6687:. 6679:. 6669:. 6657:. 6653:. 6630:. 6622:. 6614:. 6576:. 6568:. 6556:. 6533:. 6525:. 6515:74 6513:. 6501:^ 6486:, 6455:. 6447:. 6437:20 6435:. 6412:. 6402:. 6392:. 6380:. 6376:. 6353:. 6343:35 6341:. 6318:. 6310:. 6298:. 6275:. 6265:15 6263:. 6259:. 6230:. 6222:. 6212:79 6210:. 6206:. 6183:. 6173:48 6171:. 6123:. 6092:. 6084:. 6074:72 6072:. 6045:. 6022:. 6012:29 6010:. 5986:, 5955:. 5945:. 5937:. 5927:44 5925:. 5900:. 5878:. 5870:. 5858:. 5834:. 5826:. 5808:. 5785:. 5773:. 5750:. 5742:. 5734:. 5724:32 5722:. 5718:. 5703:^ 5689:. 5681:. 5671:33 5669:. 5655:^ 5641:. 5633:. 5621:. 5608:^ 5594:. 5584:. 5572:. 5568:. 5548:^ 5534:. 5526:. 5516:60 5514:. 5500:^ 5486:. 5476:42 5474:. 5451:. 5437:. 5433:. 5410:. 5402:. 5394:. 5382:. 5359:. 5351:. 5343:. 5329:. 5304:47 5302:. 5298:. 5271:. 5261:. 5251:40 5249:. 5226:. 5218:. 5210:. 5200:23 5198:. 5194:. 5171:. 5161:. 5151:22 5149:. 5145:. 5122:. 5112:. 5102:83 5100:. 5096:. 5075:}} 5071:{{ 5059:. 5049:99 5047:. 5026:}} 5022:{{ 5010:. 5002:. 4992:13 4990:. 4967:. 4959:. 4947:. 4943:. 4920:. 4912:. 4900:. 4877:. 4867:. 4859:. 4851:. 4839:. 4835:. 4812:. 4802:. 4794:. 4778:. 4766:^ 4727:. 4717:12 4715:. 4692:. 4684:. 4672:. 4649:. 4641:. 4631:. 4619:25 4617:. 4613:. 4590:. 4580:. 4570:34 4568:. 4564:. 4541:. 4531:51 4529:. 4506:. 4496:. 4484:. 4457:. 4445:. 4422:. 4412:. 4404:. 4396:. 4382:. 4378:. 4341:^ 4327:. 4317:. 4303:. 4299:. 4249:. 4237:. 4233:. 4168:^ 4140:^ 4108:^ 4080:^ 4066:. 4056:16 4054:. 4031:. 4019:. 3982:^ 3970:}} 3966:{{ 3940:^ 3911:. 3901:. 3889:. 3885:. 3862:. 3852:. 3840:. 3836:. 3813:. 3805:. 3795:14 3793:. 3770:. 3758:. 3735:. 3725:. 3705:^ 3691:. 3683:. 3675:. 3663:. 3640:. 3628:. 3583:^ 3569:. 3557:. 3533:. 3523:17 3521:. 3509:^ 3493:. 3485:. 3471:^ 3457:. 3449:. 3439:24 3437:. 3400:. 3390:. 3382:. 3370:. 3366:. 3348:^ 3242:^ 3228:. 3220:. 3212:. 3200:. 3177:. 3167:40 3165:. 3161:. 3135:^ 3107:^ 3086:. 3046:. 3024:. 2987:. 2975:. 2946:. 2938:. 2916:^ 2894:. 2883:^ 2873:. 2779:. 2758:pm 2521:eV 2416:, 2412:, 2408:, 2404:, 2370:, 2267:A 2114:. 2098:, 1997:. 1957:, 1953:, 1268:. 1260:, 1042:. 993:. 935:Pa 901:. 893:, 889:, 845:, 841:, 799:. 733:) 668:, 499:NA 441:NA 359:. 313:nm 155:. 139:, 127:, 107:. 40:nm 7487:e 7480:t 7473:v 7371:) 7367:( 7350:. 7296:. 7274:: 7266:: 7260:9 7239:. 7220:. 7208:: 7200:: 7170:. 7148:: 7140:: 7134:9 7110:. 7098:: 7090:: 7060:. 7040:: 7032:: 7005:. 6999:: 6991:: 6962:. 6958:: 6950:: 6923:. 6899:: 6891:: 6862:. 6842:: 6834:: 6811:. 6797:: 6789:: 6783:1 6762:. 6750:: 6742:: 6732:: 6705:. 6673:: 6665:: 6638:. 6618:: 6608:: 6584:. 6572:: 6564:: 6558:9 6541:. 6529:: 6521:: 6482:: 6463:. 6451:: 6443:: 6420:. 6396:: 6388:: 6361:. 6349:: 6326:. 6314:: 6306:: 6300:7 6283:. 6279:: 6271:: 6244:. 6226:: 6218:: 6191:. 6187:: 6179:: 6156:. 6133:. 6119:: 6100:. 6080:: 6057:. 6053:: 6030:. 6026:: 6018:: 5982:: 5963:. 5949:: 5941:: 5933:: 5910:. 5886:. 5874:: 5866:: 5842:. 5820:: 5793:. 5781:: 5758:. 5730:: 5697:. 5677:: 5649:. 5629:: 5602:. 5580:: 5542:. 5522:: 5494:. 5482:: 5459:. 5445:: 5418:. 5398:: 5390:: 5384:6 5367:. 5347:: 5337:: 5314:. 5310:: 5279:. 5265:: 5257:: 5234:. 5214:: 5206:: 5179:. 5165:: 5157:: 5130:. 5108:: 5081:) 5067:. 5055:: 5032:) 5018:. 5006:: 4998:: 4975:. 4955:: 4928:. 4908:: 4885:. 4855:: 4847:: 4841:7 4820:. 4790:: 4760:. 4735:. 4731:: 4723:: 4700:. 4680:: 4657:. 4625:: 4598:. 4576:: 4549:. 4537:: 4514:. 4500:: 4492:: 4465:. 4453:: 4430:. 4408:: 4400:: 4390:: 4384:3 4363:. 4335:. 4311:: 4305:4 4284:. 4259:. 4253:: 4245:: 4215:. 4190:. 4162:. 4134:. 4102:. 4074:. 4070:: 4062:: 4039:. 4027:: 4004:. 3976:) 3962:. 3919:. 3897:: 3870:. 3848:: 3821:. 3801:: 3778:. 3766:: 3743:. 3721:: 3699:. 3671:: 3648:. 3636:: 3630:8 3613:. 3577:. 3565:: 3541:. 3529:: 3503:. 3489:: 3465:. 3453:: 3445:: 3408:. 3386:: 3378:: 3372:9 3342:. 3317:. 3292:. 3267:. 3236:. 3216:: 3208:: 3185:. 3181:: 3173:: 3129:. 3101:. 3058:. 3028:. 2995:. 2991:: 2983:: 2956:. 2942:: 2934:: 2898:. 2877:. 2765:s 2762:C 2751:q 2747:s 2744:C 2727:. 2719:4 2715:/ 2711:1 2707:) 2701:3 2691:s 2687:C 2683:( 2676:1 2671:= 2662:q 2648:λ 2640:s 2637:C 2630:q 2231:S 2204:T 2062:) 1853:Z 1785:z 1781:y 1777:x 1775:( 1772:j 1769:′ 1767:I 1763:y 1759:x 1757:( 1754:j 1750:I 1424:t 1421:d 1398:1 1394:t 1386:0 1382:t 1368:0 1364:t 1355:1 1351:t 1346:k 1341:= 1338:) 1335:x 1332:( 1329:I 1312:I 1207:6 1203:6 1195:T 1187:A 1170:, 1166:) 1160:T 1157:k 1143:( 1131:2 1127:T 1123:A 1120:= 1117:J 1097:J 730:6 715:6 681:E 673:0 670:m 662:h 641:) 632:2 628:c 622:0 618:m 614:2 610:E 605:+ 602:1 598:( 594:E 589:0 585:m 581:2 577:h 572:= 567:e 549:c 529:α 521:n 493:2 469:n 466:2 457:= 454:d 434:λ 432:( 426:d 66:( 20:)

Index

Electron lens

poliovirus
nm
microscopy
electrons
focused
fluorescent
photographic film
detector
scintillator
charge-coupled device
direct electron detector
resolution
light microscopes
de Broglie wavelength
cancer research
virology
materials science
pollution
nanotechnology
semiconductor
paleontology
palynology
Max Knoll
Ernst Ruska


Ernst Abbe
limited

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.