Knowledge

Electron degeneracy pressure

Source šŸ“

90: 67:, no two electrons can occupy the same state, and it is not possible for all the electrons to have zero kinetic energy. Instead, the confinement makes the allowed energy levels quantized, and the electrons fill them from the bottom upwards. If many electrons are confined to a small volume, on average the electrons have a large kinetic energy, and a large pressure is exerted. 50:
In metals and white dwarf stars, electrons can be modeled as a gas of non-interacting electrons confined to a finite volume. In reality, there are strong electromagnetic forces between the negatively charged electrons. However, these are balanced by the positive nuclei, and neglected in the simplest
70:
In white dwarf stars, the positive nuclei are completely ionized ā€“ disassociated from the electrons ā€“ and closely packed ā€“ a million times more dense than the Sun. At this density gravity exerts immense force pulling the nuclei together. This force is balanced by the electron degeneracy pressure
308: 74:
In metals, the positive nuclei are partly ionized and spaced by normal interatomic distances. Gravity has negligible effect; the positive ion cores are attracted to the negatively charge electron gas. This force is balanced by the electron degeneracy pressure.
463: 200: 343: 478:(the number of free electrons per unit volume). For the case of a metal, one can prove that this equation remains approximately true for temperatures lower than the Fermi temperature, about 171: 541:. In the appropriate systems, the free electron pressure can be calculated; it can be shown that this pressure is an important contributor to the compressibility or 101:) in three dimensions. Pauli repulsion in fermions gives them an additional pressure over an equivalent classical gas, most significantly at low temperature. 59:. The degeneracy pressure is most prominent at low temperatures: If electrons were classical particles, the movement of the electrons would cease at 565:
star from collapsing. A star exceeding this limit and without significant thermally generated pressure will continue to collapse to form either a
633:
An english translation of the original work of Enrico Fermi on the quantization of the monoatomic ideal gas, is given in this paper
787: 303:{\displaystyle P={\frac {2}{3}}{\frac {E_{\text{tot}}}{V}}={\frac {2}{3}}{\frac {p_{\text{F}}^{5}}{10\pi ^{2}m\hbar ^{3}}},} 128: 63:
and the pressure of the electron gas would vanish. However, since electrons are quantum mechanical particles that obey the
803:
Mazzali, P. A.; Rƶpke, F. K.; Benetti, S.; Hillebrandt, W. (2007). "A Common Explosion Mechanism for Type Ia Supernovae".
870: 533:, several approximations are carefully justified to treat the electrons as independent particles. Usual models are the 762: 670: 125:, each particle can be treated independently with a single-fermion energy given by the purely kinetic term, 596: 458:{\displaystyle P_{\text{e}}={\frac {(3\pi ^{2})^{2/3}\hbar ^{2}}{5m_{\text{e}}}}{\rho _{\text{e}}}^{5/3},} 875: 538: 493: 118: 553:
Electron degeneracy pressure will halt the gravitational collapse of a star if its mass is below the
64: 489: 185:
its mass. Every possible momentum state of an electron within this volume up to the Fermi momentum
24: 695: 507:
levels, a modified formula is required. The relativistic degeneracy pressure is proportional to
573:, because the degeneracy pressure provided by the electrons is weaker than the inward pull of 880: 659: 822: 707: 586: 8: 554: 534: 826: 711: 321:
is the total energy of the ensemble. Specifically for the electron degeneracy pressure,
846: 812: 731: 622: 504: 32: 838: 783: 758: 735: 723: 719: 676: 666: 497: 44: 36: 850: 830: 715: 654: 601: 89: 475: 56: 864: 754: 727: 650: 60: 834: 621:
Zannoni, Alberto (1999). "On the Quantization of the Monoatomic Ideal Gas".
842: 566: 558: 542: 337: 121:. In general, for an ensemble of non-interacting fermions, also known as a 20: 680: 817: 627: 591: 562: 496:
close to the zero-temperature limit (temperatures much smaller than the
43:
solids. It is a manifestation of the more general phenomenon of quantum
570: 122: 94: 93:
Pressure vs temperature curves of classical and quantum ideal gases (
84: 98: 52: 574: 530: 114: 106: 482: 197:
The degeneracy pressure at zero temperature can be computed as
110: 802: 40: 105:
Electrons are members of a family of particles known as
346: 203: 131: 658: 457: 340:, so the electron degeneracy pressure is given by 302: 165: 35:effect critical to understanding the stability of 778:Taylor, John Robert; Zafiratos, Chris D. (1991). 862: 693: 687: 645: 643: 641: 777: 649: 638: 488:The term 'degenerate' here is not related to 55:exerted by the electrons is related to their 336:and the Fermi momentum is obtained from the 78: 780:Modern physics for scientists and engineers 796: 816: 748: 626: 561:). This is the pressure that prevents a 782:. Englewood Cliffs, N.J: Prentice Hall. 665:. New York: Holt, Rinehart and Winston. 88: 694:Koester, D; Chanmugam, G (1990-07-01). 620: 863: 314:is the total volume of the system and 166:{\displaystyle E={\frac {p^{2}}{2m}},} 500:which is about 10000 K for metals). 327:is substituted by the electron mass 179:is the momentum of one particle and 16:Repulsive force in quantum mechanics 13: 14: 892: 751:Introduction to Quantum Mechanics 753:(Second ed.). London, UK: 548: 117:, follow Pauli's principle and 771: 742: 700:Reports on Progress in Physics 696:"Physics of white dwarf stars" 614: 380: 363: 1: 607: 529:For the case of electrons in 503:When particle energies reach 29:electron degeneracy pressure 7: 580: 519: 10: 897: 720:10.1088/0034-4885/53/7/001 539:nearly free electron model 82: 871:Pauli exclusion principle 524: 79:From the Fermi gas theory 71:keeping the star stable. 65:Pauli exclusion principle 597:Boseā€“Einstein condensate 490:degenerate energy levels 25:condensed matter physics 835:10.1126/science.1136259 494:Fermiā€“Dirac statistics 459: 304: 167: 119:Fermiā€“Dirac statistics 102: 474:is the free electron 460: 305: 168: 109:. Fermions, like the 92: 587:Exchange interaction 344: 201: 129: 827:2007Sci...315..825M 712:1990RPPh...53..837K 661:Solid state physics 555:Chandrasekhar limit 535:free electron model 266: 45:degeneracy pressure 749:Griffiths (2005). 455: 300: 252: 163: 103: 33:quantum mechanical 876:Stellar evolution 811:(5813): 825ā€“828. 789:978-0-13-589789-8 757:. Equation 5.46. 655:Mermin, N. David. 651:Neil W., Ashcroft 531:crystalline solid 498:Fermi temperature 434: 423: 419: 354: 295: 259: 248: 235: 229: 218: 158: 37:white dwarf stars 888: 855: 854: 820: 818:astro-ph/0702351 800: 794: 793: 775: 769: 768: 746: 740: 739: 691: 685: 684: 664: 647: 636: 635: 630: 628:cond-mat/9912229 618: 515: 481: 473: 464: 462: 461: 456: 451: 450: 446: 437: 436: 435: 432: 424: 422: 421: 420: 417: 407: 406: 405: 396: 395: 391: 378: 377: 361: 356: 355: 352: 335: 326: 309: 307: 306: 301: 296: 294: 293: 292: 280: 279: 265: 260: 257: 251: 249: 241: 236: 231: 230: 227: 221: 219: 211: 194:being occupied. 193: 184: 178: 172: 170: 169: 164: 159: 157: 149: 148: 139: 896: 895: 891: 890: 889: 887: 886: 885: 861: 860: 859: 858: 801: 797: 790: 776: 772: 765: 747: 743: 692: 688: 673: 648: 639: 619: 615: 610: 602:Nuclear density 583: 551: 527: 522: 514: 508: 479: 472: 466: 442: 438: 431: 427: 426: 425: 416: 412: 408: 401: 397: 387: 383: 379: 373: 369: 362: 360: 351: 347: 345: 342: 341: 334: 328: 322: 320: 288: 284: 275: 271: 267: 261: 256: 250: 240: 226: 222: 220: 210: 202: 199: 198: 192: 186: 180: 174: 150: 144: 140: 138: 130: 127: 126: 87: 81: 17: 12: 11: 5: 894: 884: 883: 878: 873: 857: 856: 795: 788: 770: 763: 741: 706:(7): 837ā€“915. 686: 671: 637: 612: 611: 609: 606: 605: 604: 599: 594: 589: 582: 579: 550: 547: 526: 523: 521: 518: 512: 470: 454: 449: 445: 441: 430: 415: 411: 404: 400: 394: 390: 386: 382: 376: 372: 368: 365: 359: 350: 332: 318: 299: 291: 287: 283: 278: 274: 270: 264: 255: 247: 244: 239: 234: 225: 217: 214: 209: 206: 190: 162: 156: 153: 147: 143: 137: 134: 83:Main article: 80: 77: 57:kinetic energy 15: 9: 6: 4: 3: 2: 893: 882: 879: 877: 874: 872: 869: 868: 866: 852: 848: 844: 840: 836: 832: 828: 824: 819: 814: 810: 806: 799: 791: 785: 781: 774: 766: 760: 756: 755:Prentice Hall 752: 745: 737: 733: 729: 725: 721: 717: 713: 709: 705: 701: 697: 690: 682: 678: 674: 668: 663: 662: 656: 652: 646: 644: 642: 634: 629: 624: 617: 613: 603: 600: 598: 595: 593: 590: 588: 585: 584: 578: 576: 572: 568: 564: 560: 556: 546: 544: 540: 536: 532: 517: 511: 506: 501: 499: 495: 491: 486: 484: 477: 469: 452: 447: 443: 439: 428: 413: 409: 402: 398: 392: 388: 384: 374: 370: 366: 357: 348: 339: 331: 325: 317: 313: 297: 289: 285: 281: 276: 272: 268: 262: 253: 245: 242: 237: 232: 223: 215: 212: 207: 204: 195: 189: 183: 177: 160: 154: 151: 145: 141: 135: 132: 124: 120: 116: 112: 108: 100: 96: 91: 86: 76: 72: 68: 66: 62: 61:absolute zero 58: 54: 48: 46: 42: 38: 34: 30: 26: 22: 881:White dwarfs 808: 804: 798: 779: 773: 750: 744: 703: 699: 689: 660: 632: 616: 567:neutron star 559:solar masses 552: 549:White dwarfs 543:bulk modulus 528: 509: 505:relativistic 502: 487: 467: 338:Fermi energy 329: 323: 315: 311: 196: 187: 181: 175: 104: 73: 69: 51:models. The 49: 28: 21:astrophysics 18: 592:Fermi level 563:white dwarf 545:of metals. 865:Categories 764:0131244051 672:0030839939 608:References 571:black hole 736:250915046 728:0034-4885 492:, but to 429:ρ 399:ℏ 371:π 286:ℏ 273:π 123:Fermi gas 95:Fermi gas 85:Fermi gas 851:16408991 843:17289993 657:(1976). 581:See also 537:and the 520:Examples 107:fermions 99:Bose gas 53:pressure 823:Bibcode 805:Science 708:Bibcode 575:gravity 476:density 115:neutron 113:or the 849:  841:  786:  761:  734:  726:  681:934604 679:  669:  557:(1.44 525:Metals 483:kelvin 465:where 310:where 173:where 111:proton 847:S2CID 813:arXiv 732:S2CID 623:arXiv 41:metal 31:is a 839:PMID 784:ISBN 759:ISBN 724:ISSN 677:OCLC 667:ISBN 39:and 23:and 831:doi 809:315 716:doi 569:or 319:tot 228:tot 47:. 19:In 867:: 845:. 837:. 829:. 821:. 807:. 730:. 722:. 714:. 704:53 702:. 698:. 675:. 653:; 640:^ 631:. 577:. 516:. 485:. 480:10 269:10 97:, 27:, 853:. 833:: 825:: 815:: 792:. 767:. 738:. 718:: 710:: 683:. 625:: 513:e 510:Ļ 471:e 468:Ļ 453:, 448:3 444:/ 440:5 433:e 418:e 414:m 410:5 403:2 393:3 389:/ 385:2 381:) 375:2 367:3 364:( 358:= 353:e 349:P 333:e 330:m 324:m 316:E 312:V 298:, 290:3 282:m 277:2 263:5 258:F 254:p 246:3 243:2 238:= 233:V 224:E 216:3 213:2 208:= 205:P 191:F 188:p 182:m 176:p 161:, 155:m 152:2 146:2 142:p 136:= 133:E

Index

astrophysics
condensed matter physics
quantum mechanical
white dwarf stars
metal
degeneracy pressure
pressure
kinetic energy
absolute zero
Pauli exclusion principle
Fermi gas

Fermi gas
Bose gas
fermions
proton
neutron
Fermiā€“Dirac statistics
Fermi gas
Fermi energy
density
kelvin
degenerate energy levels
Fermiā€“Dirac statistics
Fermi temperature
relativistic
crystalline solid
free electron model
nearly free electron model
bulk modulus

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

ā†‘