Knowledge

Degenerate matter

Source 📝

574:
degenerate particles; however, adding heat does not increase the speed of most of the electrons, because they are stuck in fully occupied quantum states. Pressure is increased only by the mass of the particles, which increases the gravitational force pulling the particles closer together. Therefore, the phenomenon is the opposite of that normally found in matter where if the mass of the matter is increased, the object becomes bigger. In degenerate gas, when the mass is increased, the particles become spaced closer together due to gravity (and the pressure is increased), so the object becomes smaller. Degenerate gas can be compressed to very high densities, typical values being in the range of 10,000 kilograms per cubic centimeter.
2101: 461: 2113: 2185: 1657: 553:
occupy states of higher energy even at low temperatures. Degenerate gases strongly resist further compression because the electrons cannot move to already filled lower energy levels due to the Pauli exclusion principle. Since electrons cannot give up energy by moving to lower energy states, no thermal energy can be extracted. The momentum of the fermions in the fermion gas nevertheless generates pressure, termed "degeneracy pressure".
2149: 2173: 2125: 2161: 2137: 481:
that temperature has a negligible effect on the total pressure. The adjacent figure shows the thermal pressure (red line) and total pressure (blue line) in a Fermi gas, with the difference between the two being the degeneracy pressure. As the temperature falls, the density and the degeneracy pressure increase, until the degeneracy pressure contributes most of the total pressure.
704:. However, because protons are much more massive than electrons, the same momentum represents a much smaller velocity for protons than for electrons. As a result, in matter with approximately equal numbers of protons and electrons, proton degeneracy pressure is much smaller than electron degeneracy pressure, and proton degeneracy is usually modelled as a correction to the 530:
quantum states are filled up to the Fermi energy. Most stars are supported against their own gravitation by normal thermal gas pressure, while in white dwarf stars the supporting force comes from the degeneracy pressure of the electron gas in their interior. In neutron stars, the degenerate particles are neutrons.
671:
at a given energy. This phenomenon is compounded by the fact that the pressures within neutron stars are much higher than those in white dwarfs. The pressure increase is caused by the fact that the compactness of a neutron star causes gravitational forces to be much higher than in a less compact body
573:
of electrons are quite high and the rate of collision between electrons and other particles is quite low, therefore degenerate electrons can travel great distances at velocities that approach the speed of light. Instead of temperature, the pressure in a degenerate gas depends only on the speed of the
568:
are luminous not because they are generating energy but rather because they have trapped a large amount of heat which is gradually radiated away. Normal gas exerts higher pressure when it is heated and expands, but the pressure in a degenerate gas does not depend on the temperature. When gas becomes
773:
for neutron-degenerate objects. Whether quark-degenerate matter forms at all in these situations depends on the equations of state of both neutron-degenerate matter and quark-degenerate matter, both of which are poorly known. Quark stars are considered to be an intermediate category between neutron
159:
model. Examples include electrons in metals and in white dwarf stars and neutrons in neutron stars. The electrons are confined by Coulomb attraction to positive ion cores; the neutrons are confined by gravitation attraction. The fermions, forced in to higher levels by the Pauli principle, exert
81:
remains non-zero even at absolute zero temperature. Adding particles or reducing the volume forces the particles into higher-energy quantum states. In this situation, a compression force is required, and is made manifest as a resisting pressure. The key feature is that this degeneracy pressure does
594:
and with realistic Coulomb corrections, the corresponding mass limit is around 1.38 solar masses. The limit may also change with the chemical composition of the object, as it affects the ratio of mass to number of electrons present. The object's rotation, which counteracts the gravitational force,
529:
such as electrons, protons, and neutrons rather than molecules of ordinary matter. The electron gas in ordinary metals and in the interior of white dwarfs are two examples. Following the Pauli exclusion principle, there can be only one fermion occupying each quantum state. In a degenerate gas, all
552:
In an ordinary fermion gas in which thermal effects dominate, most of the available electron energy levels are unfilled and the electrons are free to move to these states. As particle density is increased, electrons progressively fill the lower energy states and additional electrons are forced to
505:
electrons alone as a degenerate gas, while the majority of the electrons are regarded as occupying bound quantum states. This solid state contrasts with degenerate matter that forms the body of a white dwarf, where most of the electrons would be treated as occupying free particle momentum states.
480:
All matter experiences both normal thermal pressure and degeneracy pressure, but in commonly encountered gases, thermal pressure dominates so much that degeneracy pressure can be ignored. Likewise, degenerate matter still has normal thermal pressure; the degeneracy pressure dominates to the point
789:
and as the low temperature ground state limit for states of matter. The electron degeneracy pressure occurs in the ground state systems which are non-degenerate in energy levels. The term "degeneracy" derives from work on the specific heat of gases that pre-dates the use of the term in quantum
116:
were almost completely ionised and closely packed. Fowler described white dwarfs as composed of a gas of particles that became degenerate at low temperature; he also pointed out that ordinary atoms are broadly similar in regards to the filling of energy levels by fermions. Milne proposed that
656:, usually either as a result of a merger or by feeding off of a close binary partner. Above the Chandrasekhar limit, the gravitational pressure at the core exceeds the electron degeneracy pressure, and electrons begin to combine with protons to produce neutrons (via inverse 699:
Sufficiently dense matter containing protons experiences proton degeneracy pressure, in a manner similar to the electron degeneracy pressure in electron-degenerate matter: protons confined to a sufficiently small volume have a large uncertainty in their momentum due to the
151:. The Pauli principle allows only one fermion in each quantum state and the confinement ensures that energy of these states increases as they are filled. The lowest states fill up and fermions are forced to occupy high energy states even at low temperature. 484:
While degeneracy pressure usually dominates at extremely high densities, it is the ratio between degenerate pressure and thermal pressure which determines degeneracy. Given a sufficiently drastic increase in temperature (such as during a red giant star's
76:
prevents identical fermions from occupying the same quantum state. At lowest total energy (when the thermal energy of the particles is negligible), all the lowest energy quantum states are filled. This state is referred to as full degeneracy. This
589:
for objects with typical compositions expected for white dwarf stars (carbon and oxygen with two baryons per electron). This mass cut-off is appropriate only for a star supported by ideal electron degeneracy pressure under Newtonian gravity; in
381: 492:
Degeneracy pressure contributes to the pressure of conventional solids, but these are not usually considered to be degenerate matter because a significant contribution to their pressure is provided by electrical repulsion of
533:
A fermion gas in which all quantum states below a given energy level are filled is called a fully degenerate fermion gas. The difference between this energy level and the lowest energy level is known as the Fermi energy.
154:
While the Pauli principle and Fermi-Dirac distribution applies to all matter, the interesting cases for degenerate matter involve systems of many fermions. These cases can be understood with the help of the
603:
that run out of fuel. During this shrinking, an electron-degenerate gas forms in the core, providing sufficient degeneracy pressure as it is compressed to resist further collapse. Above this mass limit, a
564:, largely helium and carbon nuclei, floating in a sea of electrons, which have been stripped from the nuclei. Degenerate gas is an almost perfect conductor of heat and does not obey ordinary gas laws. 451: 233: 664:). The result is an extremely compact star composed of "nuclear matter", which is predominantly a degenerate neutron gas with a small admixture of degenerate proton and electron gases. 916:
Andrew G. Truscott, Kevin E. Strecker, William I. McAlexander, Guthrie Partridge, and Randall G. Hulet, "Observation of Fermi Pressure in a Gas of Trapped Atoms", Science, 2 March 2001
269: 630:, which are partially supported by the pressure from a degenerate neutron gas. Neutron stars are formed either directly from the supernova of stars with masses between 10 and 25 1321:
Hanle, Paul A. "The Coming of Age of Erwin Schrödinger: His Quantum Statistics of Ideal Gases". Archive for History of Exact Sciences, vol. 17, no. 2, 1977, pp. 165–92. JSTOR,
82:
not depend on the temperature but only on the density of the fermions. Degeneracy pressure keeps dense stars in equilibrium, independent of the thermal structure of the star.
758:. The equations of state for the various proposed forms of quark-degenerate matter vary widely, and are usually also poorly defined, due to the difficulty of modelling 68:, an ensemble of non-interacting fermions. In a quantum mechanical description, particles limited to a finite volume may take only a discrete set of energies, called 1339: 765:
Quark-degenerate matter may occur in the cores of neutron stars, depending on the equations of state of neutron-degenerate matter. It may also occur in hypothetical
855:
applied Fermi's model to the puzzle of the stability of white dwarf stars. This approach was extended to relativistic models by later studies and with the work of
667:
Neutrons in a degenerate neutron gas are spaced much more closely than electrons in an electron-degenerate gas because the more massive neutron has a much shorter
1132:
Rotondo, Michael; Rueda, Jorge A.; Ruffini, Remo; Xue, She-Sheng (2011). "Relativistic Feynman-Metropolis-Teller theory for white dwarfs in general relativity".
821:, the effect at low temperatures came to be called "gas degeneracy". A fully degenerate gas has no volume dependence on pressure when temperature approaches 266:
temperature. At relatively low densities, the pressure of a fully degenerate gas can be derived by treating the system as an ideal Fermi gas, in this way
556:
Under high densities, matter becomes a degenerate gas when all electrons are stripped from their parent atoms. The core of a star, once hydrogen burning
262:
is the volume, the pressure exerted by degenerate matter depends only weakly on its temperature. In particular, the pressure remains nonzero even at
569:
super-compressed, particles position right up against each other to produce degenerate gas that behaves more like a solid. In degenerate gases the
387:
is the mass of the individual particles making up the gas. At very high densities, where most of the particles are forced into quantum states with
1428: 394: 1594: 1415:
An english translation of the original work of Enrico Fermi on the quantization of the monoatomic ideal gas, is given in this paper
770: 680: 185: 1540: 1071: 1526: 805:
at very low temperature as "degeneration"; he attributed this to quantum effects. In subsequent work in various papers on
388: 1386: 730:
is expected to occur. Several variations of this hypothesis have been proposed that represent quark-degenerate states.
85:
A degenerate mass whose fermions have velocities close to the speed of light (particle kinetic energy larger than its
2205: 1102: 836:
developed a semi-classical model for electrons in a metal. The model treated the electrons as a gas. Later in 1927,
2100: 1861: 1931: 1856: 1587: 1035: 984: 848:
model for metals. Sommerfeld called the low temperature region with quantum effects a "wholly degenerate gas".
2043: 1871: 672:
with similar mass. The result is a star with a diameter on the order of a thousandth that of a white dwarf.
2053: 1926: 1671: 872: 582: 543: 24: 2091: 856: 2220: 2210: 1580: 144: 73: 34: 457:
is another proportionality constant depending on the properties of the particles making up the gas.
100:, stellar objects composed of degenerate matter, was originally developed in a joint effort between 2078: 1977: 1607: 786: 164: 20: 1567: 1972: 747: 1475: 2215: 1997: 1987: 1737: 1732: 1238:
Annala, Eemeli; Gorda, Tyler; Kurkela, Aleksi; NÀttilÀ, Joonas; Vuorinen, Aleksi (2020-06-01).
841: 806: 130: 54: 163:
The allocation or distribution of fermions into quantum states ranked by energy is called the
1298: 1027: 1020: 701: 376:{\displaystyle P={\frac {(3\pi ^{2})^{2/3}\hbar ^{2}}{5m}}\left({\frac {N}{V}}\right)^{5/3},} 1916: 1676: 1354: 1261: 1204: 1151: 939: 502: 927: 818: 8: 2177: 1891: 1783: 1773: 1686: 1641: 1114: 878: 860: 646: 595:
also changes the limit for any particular object. Celestial objects below this limit are
578: 498: 148: 1358: 1265: 1208: 1155: 943: 750:
materials are degenerate gases of quarks in which quarks pair up in a manner similar to
2165: 2153: 2038: 1967: 1801: 1503: 1456: 1404: 1378: 1251: 1220: 1194: 1167: 1141: 759: 705: 591: 247: 2068: 2063: 2033: 1992: 1881: 1833: 1818: 1711: 1536: 1507: 1495: 1491: 1448: 1382: 1370: 1279: 1224: 1171: 1098: 1077: 1067: 1041: 1031: 990: 980: 957: 884: 844:
to this electron gas model, computing the specific heat of metals; the result became
837: 782: 514: 19:
This article is about a state of matter. For multiple states with equal energy, see
2129: 2117: 2023: 1646: 1532: 1487: 1440: 1429:"Propaganda in Science: Sommerfeld and the Spread of the Electron Theory of Metals" 1362: 1269: 1216: 1212: 1159: 947: 833: 661: 101: 86: 2013: 1866: 1603: 1546: 1015: 852: 810: 38: 460: 2189: 2105: 1811: 1806: 1763: 1696: 1691: 1163: 794: 755: 731: 570: 557: 510: 494: 1274: 1239: 1081: 2199: 2048: 2028: 1951: 1911: 1846: 1778: 1701: 1499: 1452: 1374: 1283: 1011: 994: 961: 952: 822: 798: 735: 684: 676: 465: 263: 140: 69: 1568:
Lecture 17: Stellar Evolution. Discusses degenerate gases in models of stars
1403:
Zannoni, Alberto (1999). "On the Quantization of the Monoatomic Ideal Gas".
585:
cannot support the object against collapse. The limit is approximately 1.44
2141: 2073: 1946: 1941: 1936: 1901: 1851: 1768: 1335: 829: 721: 627: 621: 605: 486: 118: 109: 105: 50: 42: 1572: 1045: 905: 577:
There is an upper limit to the mass of an electron-degenerate object, the
1982: 1876: 1788: 1409: 1062:
Taylor, John Robert; Zafiratos, Chris D.; Dubson, Michael Andrew (2004).
751: 688: 668: 642: 596: 565: 547: 180: 46: 1460: 509:
Exotic examples of degenerate matter include neutron degenerate matter,
1921: 1896: 1823: 1793: 1727: 1706: 1366: 1322: 1097:
section 15.3 – R Kippenhahn & A. Weigert, 1990, 3rd printing 1994.
814: 766: 743: 727: 717: 657: 638: 609: 586: 117:
degenerate matter is found in most of the nuclei of stars, not only in
2184: 167:. Degenerate matter exhibits the results of Fermi-Dirac distribution. 1444: 845: 802: 675:
The properties of neutron matter set an upper limit to the mass of a
626:
Neutron degeneracy is analogous to electron degeneracy and exists in
469: 176: 156: 65: 58: 1656: 2058: 1886: 1256: 739: 526: 473: 1199: 1146: 489:), matter can become non-degenerate without reducing its density. 2018: 1906: 1841: 1758: 1753: 726:
At densities greater than those supported by neutron degeneracy,
136: 135:
Degenerate matter exhibits quantum mechanical properties when a
1627: 734:
is a degenerate gas of quarks that is often assumed to contain
501:
of metals derives their physical properties by considering the
497:
and the screening of nuclei from each other by electrons. The
113: 1636: 1622: 560:
reactions stops, becomes a collection of positively charged
1057: 1055: 600: 254:
is the number of particles (typically atoms or molecules),
2136: 1433:
Historical Studies in the Physical and Biological Sciences
1240:"Evidence for quark-matter cores in massive neutron stars" 608:(primarily supported by neutron degeneracy pressure) or a 1632: 1237: 1066:(2 ed.). Upper Saddle River, NJ: Pearson Education. 561: 1185:
Potekhin, A. Y. (2011). "The Physics of Neutron Stars".
1178: 1052: 599:
stars, formed by the gradual shrinking of the cores of
1131: 977:
A History of Astronomy : from 1890 to the Present
53:, where thermal pressure alone is not enough to avoid 2089: 1061: 446:{\displaystyle P=K\left({\frac {N}{V}}\right)^{4/3},} 397: 272: 188: 143:. These properties result from a combination of the 1019: 445: 375: 227: 64:Degenerate matter is usually modelled as an ideal 1026:. New York: Holt, Rinehart and Winston. pp.  932:Monthly Notices of the Royal Astronomical Society 2197: 1473: 1006: 1004: 1524: 1340:"Zur Quantelung des idealen einatomigen Gases" 769:, formed by the collapse of objects above the 1588: 1010: 1001: 228:{\displaystyle P=k_{\rm {B}}{\frac {NT}{V}},} 898: 112:. Eddington had suggested that the atoms in 1602: 1064:Modern physics for scientists and engineers 1595: 1581: 45:to refer to dense stellar objects such as 1408: 1273: 1255: 1198: 1145: 951: 910: 160:pressure preventing further compression. 57:. The term also applies to metals in the 1184: 785:uses the word 'degenerate' in two ways: 459: 179:, whose pressure is proportional to its 41:at low temperature. The term is used in 1474:Koester, D; Chanmugam, G (1990-07-01). 1402: 906:http://apod.nasa.gov/apod/ap100228.html 525:Degenerate gases are gases composed of 2198: 1426: 974: 925: 537: 170: 16:Type of dense exotic matter in physics 1576: 1334: 771:Tolman–Oppenheimer–Volkoff mass limit 615: 1323:http://www.jstor.org/stable/41133485 1296: 881: â€“ Theoretical model in physics 694: 464:Pressure vs temperature curves of a 711: 520: 13: 1231: 645:acquiring a mass in excess of the 201: 14: 2232: 1561: 887:– High-pressure phase of hydrogen 2183: 2171: 2159: 2147: 2135: 2123: 2111: 2099: 1655: 840:applied the Pauli principle via 702:Heisenberg uncertainty principle 681:Tolman–Oppenheimer–Volkoff limit 476:), for a given particle density. 1525:Cohen-Tanoudji, Claude (2011). 1467: 1420: 1396: 1328: 1315: 1290: 1095:Stellar Structure and Evolution 797:described the reduction of the 708:of electron-degenerate matter. 1480:Reports on Progress in Physics 1476:"Physics of white dwarf stars" 1427:Eckert, Michael (1987-01-01). 1217:10.3367/UFNe.0180.201012c.1279 1125: 1107: 1088: 968: 919: 299: 282: 139:system temperature approaches 91:relativistic degenerate matter 1: 2044:Macroscopic quantum phenomena 1518: 2054:Order and disorder (physics) 975:David., Leverington (1995). 926:Fowler, R. H. (1926-12-10). 891: 683:, which is analogous to the 583:electron degeneracy pressure 544:Electron degeneracy pressure 7: 1297:Cain, Fraser (2016-07-25). 979:. London: Springer London. 866: 391:, the pressure is given by 10: 2237: 1528:Advances in Atomic Physics 1492:10.1088/0034-4885/53/7/001 1164:10.1103/PhysRevD.84.084007 857:Subrahmanyan Chandrasekhar 777: 715: 619: 541: 128: 124: 18: 2006: 1960: 1832: 1746: 1720: 1664: 1653: 1615: 1275:10.1038/s41567-020-0914-9 738:in addition to the usual 468:and quantum ideal gases ( 145:Pauli exclusion principle 74:Pauli exclusion principle 35:Pauli exclusion principle 2206:Concepts in astrophysics 2079:Thermo-dielectric effect 1978:Enthalpy of vaporization 1672:Bose–Einstein condensate 1325:. Accessed 27 July 2023. 1119:Encyclopaedia Britannica 875:– Degenerate bosonic gas 873:Bose–Einstein condensate 861:model for star stability 787:degenerate energy levels 517:and white dwarf matter. 165:Fermi-Dirac distribution 21:Degenerate energy levels 1973:Enthalpy of sublimation 1299:"What are Quark Stars?" 774:stars and black holes. 612:may be formed instead. 37:significantly alters a 1988:Latent internal energy 1738:Color-glass condensate 1347:Zeitschrift fĂŒr Physik 953:10.1093/mnras/87.2.114 842:Fermi-Dirac statistics 807:quantum thermodynamics 477: 447: 377: 229: 131:Fermi-Dirac statistics 55:gravitational collapse 23:. For other uses, see 1798:Magnetically ordered 1115:"Chandrasekhar limit" 463: 448: 389:relativistic energies 378: 258:is temperature, and 230: 1677:Fermionic condensate 859:became the accepted 748:Color superconductor 395: 270: 186: 1892:Chemical ionization 1784:Programmable matter 1774:Quantum spin liquid 1642:Supercritical fluid 1359:1926ZPhy...36..902F 1266:2020NatPh..16..907A 1209:2010PhyU...53.1235Y 1156:2011PhRvD..84h4007R 1022:Solid state physics 944:1926MNRAS..87..114F 879:Fermi liquid theory 647:Chandrasekhar limit 616:Neutron degeneracy 579:Chandrasekhar limit 538:Electron degeneracy 499:free electron model 466:classical ideal gas 175:Unlike a classical 171:Degeneracy pressure 149:quantum confinement 79:degeneracy pressure 2039:Leidenfrost effect 1968:Enthalpy of fusion 1733:Quark–gluon plasma 1367:10.1007/BF01400221 1353:(11–12): 902–912. 706:equations of state 592:general relativity 478: 443: 373: 248:Boltzmann constant 225: 2087: 2086: 2069:Superheated vapor 2064:Superconductivity 2034:Equation of state 1882:Flash evaporation 1834:Phase transitions 1819:String-net liquid 1712:Photonic molecule 1682:Degenerate matter 1542:978-981-277-496-5 1193:(12): 1235–1256. 1134:Physical Review D 1073:978-0-13-805715-2 1016:Mermin, N. David. 1012:Neil W., Ashcroft 928:"On Dense Matter" 885:Metallic hydrogen 838:Arnold Sommerfeld 819:Erwin Schrödinger 783:Quantum mechanics 695:Proton degeneracy 515:metallic hydrogen 420: 350: 335: 220: 31:Degenerate matter 2228: 2221:Phases of matter 2211:Degenerate stars 2188: 2187: 2176: 2175: 2174: 2164: 2163: 2162: 2152: 2151: 2150: 2140: 2139: 2128: 2127: 2126: 2116: 2115: 2114: 2104: 2103: 2095: 2024:Compressed fluid 1659: 1604:States of matter 1597: 1590: 1583: 1574: 1573: 1557: 1555: 1554: 1545:. Archived from 1533:World Scientific 1512: 1511: 1471: 1465: 1464: 1445:10.2307/27757582 1424: 1418: 1417: 1412: 1410:cond-mat/9912229 1400: 1394: 1393: 1391: 1385:. Archived from 1344: 1332: 1326: 1319: 1313: 1312: 1310: 1309: 1294: 1288: 1287: 1277: 1259: 1235: 1229: 1228: 1202: 1182: 1176: 1175: 1149: 1129: 1123: 1122: 1111: 1105: 1092: 1086: 1085: 1059: 1050: 1049: 1025: 1008: 999: 998: 972: 966: 965: 955: 923: 917: 914: 908: 902: 834:Llewellyn Thomas 712:Quark degeneracy 662:electron capture 571:kinetic energies 521:Degenerate gases 452: 450: 449: 444: 439: 438: 434: 425: 421: 413: 382: 380: 379: 374: 369: 368: 364: 355: 351: 343: 336: 334: 326: 325: 324: 315: 314: 310: 297: 296: 280: 234: 232: 231: 226: 221: 216: 208: 206: 205: 204: 102:Arthur Eddington 98:degenerate stars 87:rest mass energy 33:occurs when the 2236: 2235: 2231: 2230: 2229: 2227: 2226: 2225: 2196: 2195: 2194: 2182: 2172: 2170: 2160: 2158: 2148: 2146: 2134: 2124: 2122: 2112: 2110: 2098: 2090: 2088: 2083: 2014:Baryonic matter 2002: 1956: 1927:Saturated fluid 1867:Crystallization 1828: 1802:Antiferromagnet 1742: 1716: 1660: 1651: 1611: 1601: 1564: 1552: 1550: 1543: 1535:. p. 791. 1521: 1516: 1515: 1472: 1468: 1425: 1421: 1401: 1397: 1389: 1342: 1333: 1329: 1320: 1316: 1307: 1305: 1295: 1291: 1236: 1232: 1187:Physics-Uspekhi 1183: 1179: 1130: 1126: 1113: 1112: 1108: 1093: 1089: 1074: 1060: 1053: 1038: 1009: 1002: 987: 973: 969: 924: 920: 915: 911: 903: 899: 894: 869: 853:Ralph H. Fowler 832:and separately 811:Albert Einstein 780: 756:superconductors 724: 716:Main articles: 714: 697: 655: 636: 624: 618: 581:, beyond which 550: 542:Main articles: 540: 523: 430: 426: 412: 408: 407: 396: 393: 392: 360: 356: 342: 338: 337: 327: 320: 316: 306: 302: 298: 292: 288: 281: 279: 271: 268: 267: 245: 209: 207: 200: 199: 195: 187: 184: 183: 173: 133: 127: 96:The concept of 61:approximation. 39:state of matter 28: 17: 12: 11: 5: 2234: 2224: 2223: 2218: 2213: 2208: 2193: 2192: 2180: 2168: 2156: 2144: 2132: 2120: 2108: 2085: 2084: 2082: 2081: 2076: 2071: 2066: 2061: 2056: 2051: 2046: 2041: 2036: 2031: 2026: 2021: 2016: 2010: 2008: 2004: 2003: 2001: 2000: 1995: 1993:Trouton's rule 1990: 1985: 1980: 1975: 1970: 1964: 1962: 1958: 1957: 1955: 1954: 1949: 1944: 1939: 1934: 1929: 1924: 1919: 1914: 1909: 1904: 1899: 1894: 1889: 1884: 1879: 1874: 1869: 1864: 1862:Critical point 1859: 1854: 1849: 1844: 1838: 1836: 1830: 1829: 1827: 1826: 1821: 1816: 1815: 1814: 1809: 1804: 1796: 1791: 1786: 1781: 1776: 1771: 1766: 1764:Liquid crystal 1761: 1756: 1750: 1748: 1744: 1743: 1741: 1740: 1735: 1730: 1724: 1722: 1718: 1717: 1715: 1714: 1709: 1704: 1699: 1697:Strange matter 1694: 1692:Rydberg matter 1689: 1684: 1679: 1674: 1668: 1666: 1662: 1661: 1654: 1652: 1650: 1649: 1644: 1639: 1630: 1625: 1619: 1617: 1613: 1612: 1600: 1599: 1592: 1585: 1577: 1571: 1570: 1563: 1562:External links 1560: 1559: 1558: 1541: 1520: 1517: 1514: 1513: 1486:(7): 837–915. 1466: 1439:(2): 191–233. 1419: 1395: 1392:on 2019-04-06. 1338:(1926-11-01). 1327: 1314: 1303:Universe Today 1289: 1250:(9): 907–910. 1244:Nature Physics 1230: 1177: 1124: 1106: 1087: 1072: 1051: 1036: 1000: 985: 967: 938:(2): 114–122. 918: 909: 896: 895: 893: 890: 889: 888: 882: 876: 868: 865: 828:Early in 1927 795:Walther Nernst 779: 776: 762:interactions. 754:in electrical 752:Cooper pairing 736:strange quarks 732:Strange matter 713: 710: 696: 693: 660:, also termed 653: 634: 620:Main article: 617: 614: 558:nuclear fusion 539: 536: 522: 519: 511:strange matter 442: 437: 433: 429: 424: 419: 416: 411: 406: 403: 400: 372: 367: 363: 359: 354: 349: 346: 341: 333: 330: 323: 319: 313: 309: 305: 301: 295: 291: 287: 284: 278: 275: 243: 224: 219: 215: 212: 203: 198: 194: 191: 172: 169: 129:Main article: 126: 123: 70:quantum states 15: 9: 6: 4: 3: 2: 2233: 2222: 2219: 2217: 2216:Exotic matter 2214: 2212: 2209: 2207: 2204: 2203: 2201: 2191: 2186: 2181: 2179: 2169: 2167: 2157: 2155: 2145: 2143: 2138: 2133: 2131: 2121: 2119: 2109: 2107: 2102: 2097: 2096: 2093: 2080: 2077: 2075: 2072: 2070: 2067: 2065: 2062: 2060: 2057: 2055: 2052: 2050: 2049:Mpemba effect 2047: 2045: 2042: 2040: 2037: 2035: 2032: 2030: 2029:Cooling curve 2027: 2025: 2022: 2020: 2017: 2015: 2012: 2011: 2009: 2005: 1999: 1996: 1994: 1991: 1989: 1986: 1984: 1981: 1979: 1976: 1974: 1971: 1969: 1966: 1965: 1963: 1959: 1953: 1952:Vitrification 1950: 1948: 1945: 1943: 1940: 1938: 1935: 1933: 1930: 1928: 1925: 1923: 1920: 1918: 1917:Recombination 1915: 1913: 1912:Melting point 1910: 1908: 1905: 1903: 1900: 1898: 1895: 1893: 1890: 1888: 1885: 1883: 1880: 1878: 1875: 1873: 1870: 1868: 1865: 1863: 1860: 1858: 1857:Critical line 1855: 1853: 1850: 1848: 1847:Boiling point 1845: 1843: 1840: 1839: 1837: 1835: 1831: 1825: 1822: 1820: 1817: 1813: 1810: 1808: 1805: 1803: 1800: 1799: 1797: 1795: 1792: 1790: 1787: 1785: 1782: 1780: 1779:Exotic matter 1777: 1775: 1772: 1770: 1767: 1765: 1762: 1760: 1757: 1755: 1752: 1751: 1749: 1745: 1739: 1736: 1734: 1731: 1729: 1726: 1725: 1723: 1719: 1713: 1710: 1708: 1705: 1703: 1700: 1698: 1695: 1693: 1690: 1688: 1685: 1683: 1680: 1678: 1675: 1673: 1670: 1669: 1667: 1663: 1658: 1648: 1645: 1643: 1640: 1638: 1634: 1631: 1629: 1626: 1624: 1621: 1620: 1618: 1614: 1609: 1605: 1598: 1593: 1591: 1586: 1584: 1579: 1578: 1575: 1569: 1566: 1565: 1549:on 2012-05-11 1548: 1544: 1538: 1534: 1530: 1529: 1523: 1522: 1509: 1505: 1501: 1497: 1493: 1489: 1485: 1481: 1477: 1470: 1462: 1458: 1454: 1450: 1446: 1442: 1438: 1434: 1430: 1423: 1416: 1411: 1406: 1399: 1388: 1384: 1380: 1376: 1372: 1368: 1364: 1360: 1356: 1352: 1349:(in German). 1348: 1341: 1337: 1331: 1324: 1318: 1304: 1300: 1293: 1285: 1281: 1276: 1271: 1267: 1263: 1258: 1253: 1249: 1245: 1241: 1234: 1226: 1222: 1218: 1214: 1210: 1206: 1201: 1196: 1192: 1188: 1181: 1173: 1169: 1165: 1161: 1157: 1153: 1148: 1143: 1140:(8): 084007. 1139: 1135: 1128: 1120: 1116: 1110: 1104: 1103:0-387-58013-1 1100: 1096: 1091: 1083: 1079: 1075: 1069: 1065: 1058: 1056: 1047: 1043: 1039: 1033: 1029: 1024: 1023: 1017: 1013: 1007: 1005: 996: 992: 988: 982: 978: 971: 963: 959: 954: 949: 945: 941: 937: 933: 929: 922: 913: 907: 901: 897: 886: 883: 880: 877: 874: 871: 870: 864: 862: 858: 854: 851:Also in 1927 849: 847: 843: 839: 835: 831: 826: 824: 823:absolute zero 820: 816: 812: 808: 804: 800: 799:specific heat 796: 791: 788: 784: 775: 772: 768: 763: 761: 757: 753: 749: 745: 741: 737: 733: 729: 723: 719: 709: 707: 703: 692: 690: 686: 685:Chandrasekhar 682: 678: 673: 670: 665: 663: 659: 652: 649:of 1.44  648: 644: 640: 633: 629: 628:neutron stars 623: 613: 611: 607: 602: 598: 593: 588: 584: 580: 575: 572: 567: 563: 559: 554: 549: 545: 535: 531: 528: 518: 516: 512: 507: 504: 500: 496: 495:atomic nuclei 490: 488: 482: 475: 471: 467: 462: 458: 456: 440: 435: 431: 427: 422: 417: 414: 409: 404: 401: 398: 390: 386: 370: 365: 361: 357: 352: 347: 344: 339: 331: 328: 321: 317: 311: 307: 303: 293: 289: 285: 276: 273: 265: 264:absolute zero 261: 257: 253: 249: 242: 239:is pressure, 238: 222: 217: 213: 210: 196: 192: 189: 182: 178: 168: 166: 161: 158: 152: 150: 146: 142: 141:absolute zero 138: 132: 122: 120: 119:compact stars 115: 111: 107: 103: 99: 94: 92: 88: 83: 80: 75: 71: 67: 62: 60: 56: 52: 51:neutron stars 48: 44: 40: 36: 32: 26: 22: 2178:Solar System 2074:Superheating 1947:Vaporization 1942:Triple point 1937:Supercooling 1902:Lambda point 1852:Condensation 1769:Time crystal 1747:Other states 1687:Quantum Hall 1681: 1551:. Retrieved 1547:the original 1527: 1483: 1479: 1469: 1436: 1432: 1422: 1414: 1398: 1387:the original 1350: 1346: 1330: 1317: 1306:. Retrieved 1302: 1292: 1247: 1243: 1233: 1190: 1186: 1180: 1137: 1133: 1127: 1118: 1109: 1094: 1090: 1063: 1021: 976: 970: 935: 931: 921: 912: 900: 850: 830:Enrico Fermi 827: 792: 781: 764: 760:strong force 728:quark matter 725: 722:Strange star 698: 677:neutron star 674: 666: 650: 643:white dwarfs 639:solar masses 631: 625: 622:Neutron star 606:neutron star 587:solar masses 576: 566:White dwarfs 555: 551: 532: 524: 508: 491: 487:helium flash 483: 479: 454: 384: 259: 255: 251: 240: 236: 174: 162: 153: 134: 110:Arthur Milne 106:Ralph Fowler 97: 95: 90: 89:) is called 84: 78: 63: 47:white dwarfs 43:astrophysics 30: 29: 2166:Outer space 2154:Spaceflight 1983:Latent heat 1932:Sublimation 1877:Evaporation 1812:Ferromagnet 1807:Ferrimagnet 1789:Dark matter 1721:High energy 790:mechanics. 767:quark stars 689:white dwarf 597:white dwarf 548:White dwarf 181:temperature 2200:Categories 1998:Volatility 1961:Quantities 1922:Regelation 1897:Ionization 1872:Deposition 1824:Superglass 1794:Antimatter 1728:QCD matter 1707:Supersolid 1702:Superfluid 1665:Low energy 1553:2012-01-31 1519:References 1308:2021-01-15 1257:1903.09121 1082:1319408575 1037:0030839939 986:1447121244 815:Max Planck 718:Quark star 687:limit for 669:wavelength 658:beta decay 610:black hole 503:conduction 25:Degeneracy 2130:Astronomy 2118:Chemistry 1508:250915046 1500:0034-4885 1453:0890-9997 1383:123334672 1375:0044-3328 1336:Fermi, E. 1284:1745-2481 1225:119231427 1200:1102.5735 1172:119120610 1147:1012.0154 995:840277483 962:0035-8711 892:Citations 846:Fermi gas 817:, and by 641:), or by 470:Fermi gas 318:ℏ 290:π 177:ideal gas 157:Fermi gas 66:Fermi gas 59:Fermi gas 2059:Spinodal 2007:Concepts 1887:Freezing 1461:27757582 1018:(1976). 867:See also 793:In 1914 746:quarks. 527:fermions 474:Bose gas 114:Sirius B 2190:Science 2106:Physics 2092:Portals 2019:Binodal 1907:Melting 1842:Boiling 1759:Crystal 1754:Colloid 1355:Bibcode 1262:Bibcode 1205:Bibcode 1152:Bibcode 940:Bibcode 778:History 691:stars. 246:is the 137:fermion 125:Concept 1647:Plasma 1628:Liquid 1539:  1506:  1498:  1459:  1451:  1381:  1373:  1282:  1223:  1170:  1101:  1080:  1070:  1046:934604 1044:  1034:  993:  983:  960:  679:, the 453:where 383:where 235:where 72:. The 2142:Stars 1637:Vapor 1623:Solid 1616:State 1504:S2CID 1457:JSTOR 1405:arXiv 1390:(PDF) 1379:S2CID 1343:(PDF) 1252:arXiv 1221:S2CID 1195:arXiv 1168:S2CID 1142:arXiv 813:, by 803:gases 601:stars 1608:list 1537:ISBN 1496:ISSN 1449:ISSN 1371:ISSN 1280:ISSN 1099:ISBN 1078:OCLC 1068:ISBN 1042:OCLC 1032:ISBN 991:OCLC 981:ISBN 958:ISSN 904:see 744:down 742:and 720:and 562:ions 546:and 147:and 108:and 49:and 1633:Gas 1488:doi 1441:doi 1363:doi 1270:doi 1213:doi 1160:doi 948:doi 809:by 801:of 2202:: 1635:/ 1531:. 1502:. 1494:. 1484:53 1482:. 1478:. 1455:. 1447:. 1437:17 1435:. 1431:. 1413:. 1377:. 1369:. 1361:. 1351:36 1345:. 1301:. 1278:. 1268:. 1260:. 1248:16 1246:. 1242:. 1219:. 1211:. 1203:. 1191:53 1189:. 1166:. 1158:. 1150:. 1138:84 1136:. 1117:. 1076:. 1054:^ 1040:. 1030:. 1028:39 1014:; 1003:^ 989:. 956:. 946:. 936:87 934:. 930:. 863:. 825:. 740:up 513:, 472:, 250:, 121:. 104:, 93:. 2094:: 1610:) 1606:( 1596:e 1589:t 1582:v 1556:. 1510:. 1490:: 1463:. 1443:: 1407:: 1365:: 1357:: 1311:. 1286:. 1272:: 1264:: 1254:: 1227:. 1215:: 1207:: 1197:: 1174:. 1162:: 1154:: 1144:: 1121:. 1084:. 1048:. 997:. 964:. 950:: 942:: 654:☉ 651:M 637:( 635:☉ 632:M 455:K 441:, 436:3 432:/ 428:4 423:) 418:V 415:N 410:( 405:K 402:= 399:P 385:m 371:, 366:3 362:/ 358:5 353:) 348:V 345:N 340:( 332:m 329:5 322:2 312:3 308:/ 304:2 300:) 294:2 286:3 283:( 277:= 274:P 260:V 256:T 252:N 244:B 241:k 237:P 223:, 218:V 214:T 211:N 202:B 197:k 193:= 190:P 27:.

Index

Degenerate energy levels
Degeneracy
Pauli exclusion principle
state of matter
astrophysics
white dwarfs
neutron stars
gravitational collapse
Fermi gas
Fermi gas
quantum states
Pauli exclusion principle
rest mass energy
Arthur Eddington
Ralph Fowler
Arthur Milne
Sirius B
compact stars
Fermi-Dirac statistics
fermion
absolute zero
Pauli exclusion principle
quantum confinement
Fermi gas
Fermi-Dirac distribution
ideal gas
temperature
Boltzmann constant
absolute zero
relativistic energies

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑