Knowledge

Electroless deposition

Source 📝

101:. They presented their discovery at the 1946 Convention of the American Electroplaters' Society (AES); a year later, at the same conference they proposed the term "electroless" for the process and described optimized bath formulations, that resulted in a patent. However, neither Abner nor Riddell benefited financially from the filed patent. The first commercial deposition of Ni-P was Leonhardt Plating Company in Cincinnati followed by the Kannigen Co. Ltd in Japan which revolutionized the industry. The Leonhardt commercialization of electroless deposition was a catalyst for the design and patenting of several deposition baths including plating of metals such as Pt, Sn, Ag, and their alloys. 459: 273: 170: 80: 880: 825: 866:
Electromagnetic interference shielding (EMI shielding) refers to the process by which devices are protected from interference from the electromagnetic radiation. The interference negatively affects the function of the devices; EMI sources include radiowaves, cell phones, and TV receivers. The Federal
857:
Typical metallization of plastics includes nickel-phosphorus, nickel gold, nickel-boron, palladium, copper, and silver. Metallized plastics are used to reduce the weight of metal product and reduce the cost associated with the use of precious metals. Electroless nickel plating is used in variety of
267:
Reactions 1 and 2 describes the general process of the reduction of metals and the oxidation of a reducing agents. M is the metal cation (ex, Ni, Cu, Pt cations). M is elemental metal after reduction. Reductants (reducing agents) is a substance loses electrons and gets a higher oxidation state (ex.
229:
Deposition baths produce hydronium atoms which causes decrease in pH. If a bath becomes too acidic the hydrogen starts reducing at a higher rate than the metal and reduces the wt% of elemental metal produced. The metal is hydrolyzed and falls out of solution. The relationship between pH and standard
281:
The electroless deposition and electroplating bath actively performs cathodic and anodic reactions at the surface of the substrate. The standard electrode potential of the metal and reducing agent are important as a driving force for electron exchange. The standard potential is defined as the power
115:. This reaction is used to test for aldehydes in a basic solution of silver nitrate. This reaction is often used as crude method used in chemistry demonstrations for the oxidation of an aldehyde to carboxylic acid, and the reduction of the silver cation into elemental silver (reflective surface). 588:
gas evolves. In 1946 it was discovered that a Ni-P alloy and hydrogen gas was formed instead due to a secondary reaction of hypophosphite with atomic hydrogen to form elemental phosphorus. The standard potentials for equation , , and are 0.50 V, -0.25 V, and 0 V respectively. The potential of the
135:
which produce thin metal films but require high temperature, vacuum, and a power source respectively. Electroless deposition is advantageous in comparison to PVD, CVD, and electroplating deposition methods because it can be performed at ambient conditions. The plating method for Ni-P, Ni-Au, Ni-B,
470:
The standard potential of the reducing agent and metal salt is not the only determinant of the redox reaction for electroless deposition. Conventional deposition of the copper nanoparticles uses formaldehyde as a reducing agent. But the E of formaldehyde is pH dependent. At pH 0 of the deposition
75:
which relay set parameters based their final funtionality. These parameters are referred to a Key Performance Indicators crucial for a researcher’ or company's purpose. Electroless deposition continues to rise in importance within the microelectronic industry, oil and gas, and aerospace industry.
259:
The electroless deposition process is based on redox chemistry in which electrons are released from a reducing agent and a metal cation is reduced to elemental metal. Equations (1) and (2) shows the simplified ED process where a reducing agent releases electrons, and the metal cation is reduced
627:
gas . Lukes reasoned that the hydride ion came from the hypophosphite and thus accounts for the Ni-P codeposition through a secondary reaction. The standard potential for equation , , and are 1.65 V, -0.25 V, and 0 V respectively. NB the potential for the equation and is +0.50 V because the
622:
The hydride transfer mechanism was proposed by Hersh in 1955 which accounted for the deposition of elemental phosphorus.Hersh proposed the hydride transfer mechanism which was expanded in 1964 by R.M. Lukes to explain the deposition of elemental P. Hydride transfer in a basic environment was
222:
control plating rate and prevent decomposition of the bath. The deposition of a plating bath is preceded by hydrogen gas evolution but stabilizers are added to prevent random deposition of the ED bath. They are meticulously chosen to prevent loss of hydrogenation and dehydrogenation catalyst
96:
in 1846. Wurtz noticed the nickel-phosphorus bath when left sitting on the benchtop spontaneously decomposed and formed a black powder. 70 years later François Auguste Roux rediscovered the electroless deposition process and patented it in United States as the ‘Process of producing metallic
34:
through which metals and metal alloys are deposited onto conductive and nonconductive surfaces. These nonconductive surfaces include plastics, ceramics, and glass etc., which can then become decorative, anti-corrosive, and conductive depending on their final functions. Electroplating, unlike
483:
The first mechanism for electroless deposition, atomic hydrogen mechanism, was proposed until Brenner and Riddell for a nickel deposition bath. This led the way for other scientists to propose several other mechanisms. The four examples of classical electroless deposition mechanism for Ni-P
848:
The first industrial application of electroless deposition by the Leonhardt Plating Company electroless deposition has flourished into metallization of plastics., textiles, prevention of corrosion, and jewelry. The microelectronics industry including the manufacturing of circuit boards,
282:
of reduction of compounds. Examples are shown in Table 1., in which Zn with a lower standard potential (-0.7618 V) act as a reducing agent to copper (0.3419 V). The calculated potentials for the reaction of the copper salt and zinc metal is ~1.1 V meaning the reaction is spontaneous.
663:
and P are by products of the Ni ion reduction . The anodic reaction has a reduction potential of 0.50 V. The cathodic reactions , , , and have reduction potentials of 0.50, -0.25 V, 0 V, and 0.50 V respectively. The potential of the reaction is 1.25 V (spontaneous reaction).
471:
bath is E of formaldehyde is 0.056 V, but at pH=14 the E=-1.070. The formaldehyde (pH 14) is a more suitable reducing agent than at pH=0 because of the lower negative standard potential which makes it a powerful reducing agent. The potential dependence on pH is described by the
466:
Electrons for ED are produced by powerful reducing agents in the deposition bath ex. formaldehyde, sodium borohydride, glucose, sodium hypophosphite, hydrogen peroxide, and ascorbic acid. These reducing agents have negative standard potentials that drive the deposition process.
867:
Aviation Administration and the Federal Communications Commission prohibit the use of cellphones after an airplane is airborne to avoid interference with navigation. Elemental Ni, Cu, and Ni/Cu coating on planes absorb noise signals in the 14 Hz to 1 GHz range.
276:
Reaction of elemental zinc metal and copper(II) sulfate. Elemental zinc is dipped into a copper (II) sulphate solution. Red deposit is the reduction process in which Cu (II) is converted to elemental Cu. Elemental Zn is oxidized to Zn (II) and dissolves into
484:
codeposition including: (1) Atomic hydrogen mechanism, (2) Hydride transfer mechanism, (3) Electrochemical mechanism, and (4) Metal hydroxide mechanism. The classic mechanisms focused on the formation of a Ni-P nanoparticles onto a substrate.
658:
The electrochemical mechanism was also proposed by Brenner and Riddell but was later modified by others including scientists Machu and El-Gendi. They proposed that an electrolytic reaction occurred at the surface of the substrate, and
268:
formaldehyde, hydrazine etc.). Oxidation products is the result of the reductants losing electrons (ex. formadedhyde transformation to formic acid. ze is the number of electrons transferred from the reductant to the metal cations.
97:
deposits. Roux deposited nickel-posphorous (Ni-P) electroless deposition onto a substrate but his invention went uncommercialized. In 1946 the process was re-discovered by Abner Brenner and Grace E. Riddell while working at the
708: 245:
All the above parameters are responsible for controlling side product release. Side product formation negatively affect the bath by poisoning the catalytic site, and disrupt the morphology of the metal nanoparticle.
372: 883:
Schematic of oil rig setup. The steel tubulars are covered with elemental Ni which reduces corrosion rate. Sections 25, 26, and 27 are examples of where an elemental nickel coating would overlay the steel.
875:
Elemental nickel coating prevents corrosion of the steel tubulars used for drilling. At the core of this industry nickel coats pressure vessels, compressor blades, reactors, turbine blades, and valves.
610: 216:
provide buffering action by preventing drastic fall and rise of pH, prevent nickel salt precipitation, and reduce the concentration of free nickel ions in solution. (ex.tartrate, EDTA, acetate etc.)
740:
to elemental Ni . The released elemental H recombine to form hydrogen gas and and elemental Ni catalyzes the production of the P . The deposited Ni acts as a catalyst due continued reduction by H
285:
Since electroless deposition also uses the principles of standard electrode potentials we are also able to calculate potential, E, of metal ions in a solution governed by the Nernst equation (3).
833: 646: 264: 376:
E is the potential of the reaction, E is the standard reduction potential of the redox reaction, and Q is the concentration of the products divided by the concentration of the reactants
720:
Proposed in 1968, solvated Ni ions at the catalytic surface ionized water and forms a hydroxide coordinated Ni ion. The hydrolyzed Ni ion catalyzes the production of Ni, P, and H
577:) reducing agent, commonly used complexing agents (ex. citrate, EDTA, and tridentates etc.), and stabilizers such as cethyltrimethyl ammonium bromide ( CTAB). 453: 123:
Electroless deposition is an important process in the electronic industry for metallization of substrates. Other metallization of substrates also include
147:
size and poor plating occurs. Pretreatment determines the porosity of the elemental metal deposition, and the initiation site of elemental deposition
153:
is an activator ion that can reduce the active metal in the deposition bath and serves as a catalytic site for the templation of the active metal.
1332:"Performance Evaluation of CNT Reinforcement on Electroless Plating on Solid Free-Form-Fabricated PETG Specimens for Prosthetic Limb Application" 177:
The electroless deposition bath constitutes the following reagents which affect the side product synthesis, bath lifetime and plating rates.
1394: 2269: 136:
and Cu baths are distinct; however, the processes involve the same approach. The electroless deposition process is defined by four steps:
589:
bath overall is 0.25 V. NB: the potential for the equation is +0.50 V because the reaction has been reversed to illustrate oxidation.
290: 223:
activity. Stabilizers fine-tune the autocatalytic nature of the bath while controlling the heterogeneous deposition of nanoparticles.
159:
accelerates the deposition by acting as a catalytic seed on the substrate surface for the final electroless deposition bath metal.
17: 756:
participates in a competing reaction (refers to reaction )and to for elemental Ni and hydrolyzed Ni respectively. Finally H
2160: 2030: 1977: 1118: 771:
NB: the potential for the equation , , , , and is +0.50 V because the reaction has been reversed to illustrate oxidation.
724:. Water is ionized at the Ni surface , and Ni ions coordinate with hydroxide ions . The coordinated Ni is reduced and NiOH 68: 1957: 1903:"Copper electroless plating of cotton fabrics after surface activation with deposition of silver and copper nanoparticles" 845:
Electroless deposition changes the mechanical, magnetic, internal stress, conductivity, and brightening of the substrate.
1283: 104:
An elementary electroless deposition process is Tollens' reaction which is often used in scientific demonstrations.
898: 667:
NB the potential for the equation and is +0.50 V because the reaction has been reversed to illustrate oxidation.
72: 836:
Equations - describes a step by step proposed reactions for 'Metal Hydroxide Mechanism' by Cavallotti and Salvago.
828:
Equations - describes a step by step proposed reactions for 'Metal Hydroxide Mechanism' by Cavallotti and Salvago.
928:
Carroll, Gregory T.; Lancaster, Jeffrey R.; Turro, Nicholas J.; Koberstein, Jeffrey T.; Mammana, Angela (2017).
1804:"Novel Environmentally Benign and Low-Cost Pd-free Electroless Plating Method Using Ag Nanosol as an Activator" 1684: 1424: 2264: 2181: 108:
deposits a uniform metallic silver layer via ED on glass forming a reflective surface, thus its reference as
98: 64: 704:
The 1 and 2 reactions havepositive potentials and therefore are competing reactions within the same bath.
565:
from a Ni salt, reducing agent, complexing agent, and stabilizers. They used a nickel chloride salt (NiCl
35:
electroless deposition, only deposits on other conductive or semi-conductive materials when an external
1142: 893: 485: 1854:
Afzali, Arezoo; Mottaghitalab, Vahid; Motlagh, Mahmood Saberi; Haghi, Akbar Khodaparast (2010-07-01).
707: 516:) which is incorporated in the coating. The classical deposition methods follows the following steps: 128: 124: 52: 48: 2140: 458: 165:
is the process by which metal cation is reduced to elemental metal with a powerful reducing agent.
1425:"Differences & Advantages Between Electroplating & Electroless Plating | Electro-Coating" 623:
purported to form the hydride (H) which reduced the Ni to Ni, and combines with water to form H
238:
Potential decreases as the solution becomes more basic and this relationship is described by the
1318: 272: 59:, which are limited to 2D surfaces. Commonly the surface of the substrate is characterized via 2259: 1764: 2092:"Chemical Silver Plating on Cotton and Polyester Fabrics and its Application on Fabric Design" 1306: 929: 93: 39:
is applied. Electroless deposition deposits metals onto 2D and 3D structures such as screws,
1521: 1914: 1537: 8: 105: 1918: 2152: 2121: 1938: 1883: 1802:
Kim, Jun Hong; Oh, Joo Young; Song, Shin Ae; Kim, Kiyoung; Lim, Sung Nam (2017-09-30).
1745: 1366: 1331: 1136: 1047: 60: 1662: 606:
However, the atomic hydrogen mechanism did not account for the co-deposition of Ni-P.
379: 2156: 2125: 2113: 2072: 2026: 1983: 1973: 1942: 1930: 1875: 1825: 1784: 1749: 1737: 1732: 1715: 1714:
Benet, William E.; Lewis, Gabriella S.; Yang, Louise Z.; Hughes, D. E. Peter (2011).
1666: 1625: 1584: 1541: 1503: 1371: 1353: 1314: 1279: 1124: 1114: 1051: 1039: 949: 552:
Diffusion of the product from the surface or adhesion of the product onto the surface
1887: 711:
Equations - describe the proposed ' Electrochemical Mechanism' by Machu and El-Gendi
613:
Equation - describes the proposed 'Atomic Hydrogen Mechanism' by Brenner and Riddell
2148: 2103: 2064: 2018: 1965: 1922: 1867: 1815: 1776: 1727: 1658: 1646: 1615: 1576: 1533: 1495: 1483: 1361: 1343: 1029: 941: 858:
industries including aviation, construction, textiles, and oil and gas industries.
609: 561:
Brenner and Riddle proposed the atomic hydrogen mechanism for evolution of Ni and H
472: 239: 824: 2229: 2052: 2010: 1969: 231: 169: 44: 2022: 1902: 1820: 1803: 1113:. Milan Paunovic, Mordechay Schlesinger (5 ed.). Hoboken, NJ: Wiley. 2010. 930:"Electroless Deposition of Nickel on Photografted Polymeric Microscale Patterns" 1926: 1564: 908: 132: 56: 36: 1871: 1580: 1569:
Proceedings of the American Society of International Law at Its Annual Meeting
832: 2253: 2205: 2117: 2108: 2091: 2076: 1934: 1879: 1829: 1788: 1780: 1741: 1670: 1629: 1588: 1545: 1507: 1357: 1128: 1043: 903: 493: 143:
cleans the surface of the substrate to remove any contaminants which affects
31: 2230:"47 CFR § 22.925 - Prohibition on airborne operation of cellular telephones" 1855: 263: 1375: 1034: 1017: 953: 945: 645: 144: 1348: 1156: 1108: 584:) reduces Ni at the catalytic surface and has a secondary reaction where H 1620: 1603: 768:
evolves for both reactions. The overall reactions is shown in equation .
505: 1499: 79: 1482:
Ferrar, W. T.; O'Brien, D. F.; Warshawsky, A.; Voycheck, C. L. (1988).
649:
Equations - describe the proposed 'Hydride Transfer Mechanism' by Hersh
509: 2068: 852: 1987: 230:
potential (E) is related to the activity of the hydronium ion in the
109: 40: 1481: 47:, unlike other plating methods such as Physical Vapor Deposition ( 2017:, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 79–99, 821:= (-0.25 V + 0.50 V) -(-0.50 V) = 0.75 V (spontaneous reaction) 1395:"What is EMI Shielding and Why is it Important for Your Design?" 367:{\displaystyle E=E^{0}-({0.592}|{2})log(Q)\quad \quad \quad (3)} 1853: 927: 489: 112: 1856:"The electroless plating of Cu-Ni-P alloy onto cotton fabrics" 1522:"Annual Convention of the American Society of Civil Engineers" 879: 752:
and water combination oxidizes to Ni and elemental H. The NiOH
701:= (-0.25 V+ 0.50 V)-(-0.50 V) = 0.75 V (spontaneous reaction) 508:-like compound) as a reducer. A side reaction forms elemental 2090:
Jiang, S. Q.; Newton, E.; Yuen, C. W. M.; Kan, C. W. (2006).
1901:
Ali, Azam; Baheti, Vijay; Vik, Michal; Militky, Jiri (2020).
1765:"Ueber ammon‐alkalische Silberlösung als Reagens auf Aldehyd" 513: 2182:"Pretreatment for the metallzation of polymers/ plastics" 861: 92:
Electroless deposition was serendipitously discovered by
1484:"Metalization of lipid vesicles via electroless plating" 1330:
Siddikali, Palaiam; Sreekanth, P. S. Rama (2022-08-18).
580:
The redox reactions - proposes that adsorbed hydrogen (H
1956:
Cotell, C.M.; Sprague, J.A.; Smidt, F.A., eds. (1994),
1608:
Journal of Research of the National Bureau of Standards
1716:"The Mechanism of the Reaction of the Tollens Reagent" 728:
is adsorbed on the substrate surface. At the surface H
642:= (-0.25 V)-(-1.65 V) = 1.45 V (spontaneous reaction) 603:= (-0.25 V)-(-0.50 V) = 0.25 V (spontaneous reaction) 788:= (-0.25 V)-(-0.50V) = 0.25 V (spontaneous reaction) 764:
is oxidized and elemental H recombine to form and H
684:= (-0.25 V)-(-0.50V) = 0.25 V (spontaneous reaction) 478: 382: 293: 1713: 748:. Cavallotti and Salvago also proposed that the NiOH 628:
reaction has been reversed to illustrate oxidation.
2138: 1900: 853:
Metallization of plastics by electroless deposition
198:
which donates electrons to the metal cation (ex. CH
184:
which is provided by a metal salt (ex. Cu from CuSO
2089: 2011:"Metallization of Plastics by Electroless Plating" 1955: 1329: 1276:Electroless plating: fundamentals and applications 447: 366: 141:Pretreatment or functionalization of the substrate 2186:Fraunhofer Institute for Applied Polymer Research 1808:Journal of Electrochemical Science and Technology 1469:Amorphous and Nano Alloys Electroless Depositions 849:semi-conductive devices, batteries, and sensors. 805:= (0.50)-(0.25V) = 0.25 V (spontaneous reaction) 462:Standard Electrode Potentials for Zn and Cu table 118: 2251: 1604:"Nickel plating on steel by chemical reduction" 1274:G. O. Mallory and J. B. Hajdu, editors (1990): 809:Overall reaction including the reduction of Ni 1769:Berichte der Deutschen Chemischen Gesellschaft 1601: 30:(ED) or electroless plating is defined as the 1270: 1268: 1266: 1264: 1262: 1260: 1258: 1256: 1254: 1252: 1250: 1248: 1246: 1244: 1242: 1240: 1238: 1236: 1234: 1232: 1230: 1228: 1226: 1224: 1222: 1220: 1218: 1216: 1214: 1212: 1210: 1208: 1206: 1204: 1202: 1200: 1198: 1196: 617: 2139:Telegdi, J.; Shaban, A.; Vastag, G. (2018), 1801: 1685:"Reminiscences of Early Electroless Plating" 1307:Historical highlights of electroless plating 1194: 1192: 1190: 1188: 1186: 1184: 1182: 1180: 1178: 1176: 1018:"Electroless Plating of Metal Nanomaterials" 715: 653: 556: 492:salts as the metal cation source and either 2008: 1422: 1301: 1299: 1297: 1295: 1293: 1291: 1907:Journal of Physics and Chemistry of Solids 840: 83:Electroless nickel plating on metal parts. 2107: 1819: 1731: 1619: 1365: 1347: 1173: 1033: 870: 1488:Journal of the American Chemical Society 1288: 878: 831: 823: 706: 644: 608: 457: 271: 262: 254: 168: 78: 1964:, ASM International, pp. 311–322, 1762: 1565:"Reports of committees: Annual Meeting" 173:Steps in electroless deposition process 14: 2252: 2050: 2004: 2002: 1860:Korean Journal of Chemical Engineering 1849: 1847: 1845: 1843: 1841: 1839: 1538:10.1038/scientificamerican06061891-352 1471:. Washington State University Pullman. 1103: 1101: 1099: 1097: 1095: 1093: 1091: 1089: 1087: 1085: 1083: 1081: 1015: 1011: 1009: 1007: 1005: 1003: 1001: 999: 997: 995: 993: 991: 989: 987: 985: 983: 862:Electromagnetic interference shielding 531:Adsorption of reactants at the surface 2145:Encyclopedia of Interfacial Chemistry 1709: 1707: 1705: 1641: 1639: 1559: 1557: 1555: 1466: 1462: 1460: 1458: 1456: 1454: 1452: 1450: 1448: 1446: 1444: 1389: 1387: 1385: 1079: 1077: 1075: 1073: 1071: 1069: 1067: 1065: 1063: 1061: 981: 979: 977: 975: 973: 971: 969: 967: 965: 963: 1418: 1416: 1414: 899:Electroless nickel-boron deposititon 2270:Printed circuit board manufacturing 1999: 1836: 1602:Brenner, A.; Riddell, G.E. (1946). 1323: 1313:, volume 71, issue 6, pages 24-27. 934:Macromolecular Rapid Communications 24: 2153:10.1016/b978-0-12-409547-2.13591-7 1702: 1636: 1552: 1441: 1382: 1058: 960: 479:Four classic deposition mechanisms 25: 2281: 2234:LII / Legal Information Institute 2053:"Electroless plating of plastics" 1411: 227:Buffering agent and pH stability. 1733:10.3184/174751911X13206824040536 1305:Charles R. Shipley Jr. (1984): " 534:Chemical reaction at the surface 2222: 2198: 2174: 2132: 2083: 2044: 1949: 1894: 1795: 1756: 1677: 1595: 1514: 1475: 354: 353: 352: 51:), Chemical Vapor Deposition ( 1149: 921: 442: 383: 361: 355: 349: 343: 331: 322: 313: 202:O -formaldehyde for Cu and NaH 119:Preparation and Bath Stability 13: 1: 2206:"Portable Electronic Devices" 2057:Journal of Chemical Education 1663:10.1016/s0026-0576(09)80396-6 1311:Plating and Surface Finishing 1157:"ASM handbook | WorldCat.org" 914: 894:Electroless copper deposition 520:Diffusion of reactants (Ni, H 234:in relation to the potential. 210:-sodium hypophosphite for Ni) 2147:, Elsevier, pp. 28–42, 1970:10.31399/asm.hb.v05.a0001265 1958:"Electroless Copper Plating" 1720:Journal of Chemical Research 569:), sodium hypophosphite (NaH 99:National Bureau of Standards 7: 2023:10.1007/978-3-662-08740-4_3 1821:10.33961/jecst.2017.8.3.215 1532:(23): 352–353. 1891-06-06. 1016:Muench, Falk (2021-08-13). 887: 10: 2286: 1927:10.1016/j.jpcs.2019.109181 618:Hydride transfer mechanism 486:Electroless nickel plating 249: 87: 1872:10.1007/s11814-010-0221-8 1581:10.1017/s0272504500101861 716:Metal hydroxide mechanism 654:Electrochemical mechanism 557:Atomic hydrogen mechanism 537:Desorption of products (H 214:Suitable complexing agent 129:chemical vapor deposition 125:physical vapor deposition 2109:10.1177/0040517506053827 2096:Textile Research Journal 2009:Viswanathan, B. (1994), 1781:10.1002/cber.18820150243 1429:www.electro-coatings.com 549:, H, H) from the surface 182:A source of metal cation 841:Industrial applications 2051:Krulik, G. A. (1976). 1141:: CS1 maint: others ( 1035:10.1002/celc.202100285 946:10.1002/marc.201600564 884: 871:Oil and gas production 837: 829: 712: 650: 614: 463: 449: 368: 278: 269: 174: 163:Electroless deposition 84: 28:Electroless deposition 18:Electroless Deposition 1399:www.modusadvanced.com 1349:10.3390/polym14163366 1110:Modern electroplating 882: 835: 827: 710: 690:2 reaction of and 673:1 reaction of and 648: 612: 461: 450: 369: 275: 266: 255:Fundamental principle 172: 82: 32:autocatalytic process 2265:Corrosion prevention 2141:"Biocorrosion—Steel" 1763:Tollens, B. (1882). 1621:10.6028/jres.037.019 380: 291: 2015:Microwave Materials 1962:Surface Engineering 1919:2020JPCS..13709181A 1526:Scientific American 1500:10.1021/ja00209a046 1467:Zhang, B. (2016). 885: 838: 830: 713: 651: 615: 464: 445: 364: 279: 270: 175: 85: 2162:978-0-12-809894-3 2069:10.1021/ed055p361 2032:978-3-662-08742-8 1979:978-1-62708-170-2 1575:: 163–165. 1947. 1423:Electro-Coating. 1120:978-0-470-16778-6 1028:(16): 2993–3012. 106:Tollens' reaction 16:(Redirected from 2277: 2244: 2243: 2241: 2240: 2226: 2220: 2219: 2217: 2216: 2202: 2196: 2195: 2193: 2192: 2178: 2172: 2171: 2170: 2169: 2136: 2130: 2129: 2111: 2087: 2081: 2080: 2048: 2042: 2041: 2040: 2039: 2006: 1997: 1996: 1995: 1994: 1953: 1947: 1946: 1898: 1892: 1891: 1866:(4): 1145–1149. 1851: 1834: 1833: 1823: 1799: 1793: 1792: 1775:(2): 1635–1639. 1760: 1754: 1753: 1735: 1711: 1700: 1699: 1697: 1696: 1689:www.pfonline.com 1681: 1675: 1674: 1657:(11): 52. 2009. 1643: 1634: 1633: 1623: 1599: 1593: 1592: 1561: 1550: 1549: 1518: 1512: 1511: 1479: 1473: 1472: 1464: 1439: 1438: 1436: 1435: 1420: 1409: 1408: 1406: 1405: 1391: 1380: 1379: 1369: 1351: 1327: 1321: 1303: 1286: 1272: 1171: 1170: 1168: 1167: 1161:www.worldcat.org 1153: 1147: 1146: 1140: 1132: 1105: 1056: 1055: 1037: 1013: 958: 957: 925: 794:2 reaction of 528:) to the surface 473:Pourdaix Diagram 454: 452: 451: 448:{\displaystyle } 446: 414: 373: 371: 370: 365: 330: 325: 320: 309: 308: 240:Pourbaix Diagram 188:and Ni from NiCl 45:carbon nanotubes 21: 2285: 2284: 2280: 2279: 2278: 2276: 2275: 2274: 2250: 2249: 2248: 2247: 2238: 2236: 2228: 2227: 2223: 2214: 2212: 2204: 2203: 2199: 2190: 2188: 2180: 2179: 2175: 2167: 2165: 2163: 2137: 2133: 2088: 2084: 2049: 2045: 2037: 2035: 2033: 2007: 2000: 1992: 1990: 1980: 1954: 1950: 1899: 1895: 1852: 1837: 1800: 1796: 1761: 1757: 1726:(12): 675–677. 1712: 1703: 1694: 1692: 1683: 1682: 1678: 1651:Metal Finishing 1645: 1644: 1637: 1600: 1596: 1563: 1562: 1553: 1520: 1519: 1515: 1480: 1476: 1465: 1442: 1433: 1431: 1421: 1412: 1403: 1401: 1393: 1392: 1383: 1328: 1324: 1304: 1289: 1273: 1174: 1165: 1163: 1155: 1154: 1150: 1134: 1133: 1121: 1107: 1106: 1059: 1022:ChemElectroChem 1014: 961: 926: 922: 917: 890: 873: 864: 855: 843: 820: 816: 804: 800: 787: 783: 777:1 reaction of 767: 763: 759: 755: 751: 747: 743: 739: 735: 731: 727: 723: 718: 700: 696: 683: 679: 662: 656: 641: 637: 626: 620: 602: 598: 587: 583: 576: 572: 568: 564: 559: 548: 544: 540: 527: 523: 503: 499: 481: 410: 381: 378: 377: 326: 321: 316: 304: 300: 292: 289: 288: 257: 252: 232:Nernst equation 209: 205: 201: 191: 187: 121: 90: 23: 22: 15: 12: 11: 5: 2283: 2273: 2272: 2267: 2262: 2246: 2245: 2221: 2197: 2173: 2161: 2131: 2082: 2043: 2031: 1998: 1978: 1948: 1893: 1835: 1814:(3): 215–221. 1794: 1755: 1701: 1691:. 6 April 2018 1676: 1635: 1594: 1551: 1513: 1494:(1): 288–289. 1474: 1440: 1410: 1381: 1322: 1287: 1172: 1148: 1119: 1057: 959: 940:(2): 1600564. 919: 918: 916: 913: 912: 911: 909:Nanotechnology 906: 901: 896: 889: 886: 872: 869: 863: 860: 854: 851: 842: 839: 818: 814: 802: 798: 785: 781: 765: 761: 757: 753: 749: 745: 741: 737: 733: 729: 725: 721: 717: 714: 698: 694: 681: 677: 660: 655: 652: 639: 635: 624: 619: 616: 600: 596: 585: 581: 574: 570: 566: 562: 558: 555: 554: 553: 550: 546: 542: 538: 535: 532: 529: 525: 521: 501: 497: 480: 477: 444: 441: 438: 435: 432: 429: 426: 423: 420: 417: 413: 409: 406: 403: 400: 397: 394: 391: 388: 385: 363: 360: 357: 351: 348: 345: 342: 339: 336: 333: 329: 324: 319: 315: 312: 307: 303: 299: 296: 256: 253: 251: 248: 236: 235: 224: 217: 211: 207: 203: 199: 196:Reducing agent 193: 189: 185: 167: 166: 160: 154: 148: 133:electroplating 120: 117: 89: 86: 57:electroplating 9: 6: 4: 3: 2: 2282: 2271: 2268: 2266: 2263: 2261: 2260:Metal plating 2258: 2257: 2255: 2235: 2231: 2225: 2211: 2207: 2201: 2187: 2183: 2177: 2164: 2158: 2154: 2150: 2146: 2142: 2135: 2127: 2123: 2119: 2115: 2110: 2105: 2101: 2097: 2093: 2086: 2078: 2074: 2070: 2066: 2062: 2058: 2054: 2047: 2034: 2028: 2024: 2020: 2016: 2012: 2005: 2003: 1989: 1985: 1981: 1975: 1971: 1967: 1963: 1959: 1952: 1944: 1940: 1936: 1932: 1928: 1924: 1920: 1916: 1912: 1908: 1904: 1897: 1889: 1885: 1881: 1877: 1873: 1869: 1865: 1861: 1857: 1850: 1848: 1846: 1844: 1842: 1840: 1831: 1827: 1822: 1817: 1813: 1809: 1805: 1798: 1790: 1786: 1782: 1778: 1774: 1770: 1766: 1759: 1751: 1747: 1743: 1739: 1734: 1729: 1725: 1721: 1717: 1710: 1708: 1706: 1690: 1686: 1680: 1672: 1668: 1664: 1660: 1656: 1652: 1648: 1642: 1640: 1631: 1627: 1622: 1617: 1613: 1609: 1605: 1598: 1590: 1586: 1582: 1578: 1574: 1570: 1566: 1560: 1558: 1556: 1547: 1543: 1539: 1535: 1531: 1527: 1523: 1517: 1509: 1505: 1501: 1497: 1493: 1489: 1485: 1478: 1470: 1463: 1461: 1459: 1457: 1455: 1453: 1451: 1449: 1447: 1445: 1430: 1426: 1419: 1417: 1415: 1400: 1396: 1390: 1388: 1386: 1377: 1373: 1368: 1363: 1359: 1355: 1350: 1345: 1341: 1337: 1333: 1326: 1320: 1316: 1312: 1308: 1302: 1300: 1298: 1296: 1294: 1292: 1285: 1284:9780936569079 1281: 1278:. 539 pages. 1277: 1271: 1269: 1267: 1265: 1263: 1261: 1259: 1257: 1255: 1253: 1251: 1249: 1247: 1245: 1243: 1241: 1239: 1237: 1235: 1233: 1231: 1229: 1227: 1225: 1223: 1221: 1219: 1217: 1215: 1213: 1211: 1209: 1207: 1205: 1203: 1201: 1199: 1197: 1195: 1193: 1191: 1189: 1187: 1185: 1183: 1181: 1179: 1177: 1162: 1158: 1152: 1144: 1138: 1130: 1126: 1122: 1116: 1112: 1111: 1104: 1102: 1100: 1098: 1096: 1094: 1092: 1090: 1088: 1086: 1084: 1082: 1080: 1078: 1076: 1074: 1072: 1070: 1068: 1066: 1064: 1062: 1053: 1049: 1045: 1041: 1036: 1031: 1027: 1023: 1019: 1012: 1010: 1008: 1006: 1004: 1002: 1000: 998: 996: 994: 992: 990: 988: 986: 984: 982: 980: 978: 976: 974: 972: 970: 968: 966: 964: 955: 951: 947: 943: 939: 935: 931: 924: 920: 910: 907: 905: 904:Nanomaterials 902: 900: 897: 895: 892: 891: 881: 877: 868: 859: 850: 847: 834: 826: 822: 811: 810: 806: 795: 793: 789: 778: 776: 772: 769: 709: 705: 702: 691: 689: 685: 674: 672: 668: 665: 647: 643: 633: 629: 611: 607: 604: 594: 590: 578: 551: 536: 533: 530: 519: 518: 517: 515: 511: 507: 495: 494:hypophosphite 491: 487: 476: 474: 468: 460: 456: 439: 436: 433: 430: 427: 424: 421: 418: 415: 411: 407: 404: 401: 398: 395: 392: 389: 386: 374: 358: 346: 340: 337: 334: 327: 317: 310: 305: 301: 297: 294: 286: 283: 274: 265: 261: 260:respectively. 247: 243: 241: 233: 228: 225: 221: 218: 215: 212: 197: 194: 183: 180: 179: 178: 171: 164: 161: 158: 155: 152: 151:Sensitization 149: 146: 142: 139: 138: 137: 134: 130: 126: 116: 114: 111: 107: 102: 100: 95: 94:Charles Wurtz 81: 77: 74: 70: 66: 62: 58: 54: 50: 46: 42: 38: 33: 29: 19: 2237:. Retrieved 2233: 2224: 2213:. Retrieved 2209: 2200: 2189:. Retrieved 2185: 2176: 2166:, retrieved 2144: 2134: 2102:(1): 57–65. 2099: 2095: 2085: 2060: 2056: 2046: 2036:, retrieved 2014: 1991:, retrieved 1961: 1951: 1910: 1906: 1896: 1863: 1859: 1811: 1807: 1797: 1772: 1768: 1758: 1723: 1719: 1693:. Retrieved 1688: 1679: 1654: 1650: 1647:"Coalescers" 1611: 1607: 1597: 1572: 1568: 1529: 1525: 1516: 1491: 1487: 1477: 1468: 1432:. Retrieved 1428: 1402:. Retrieved 1398: 1342:(16): 3366. 1339: 1335: 1325: 1310: 1275: 1164:. Retrieved 1160: 1151: 1109: 1025: 1021: 937: 933: 923: 874: 865: 856: 846: 844: 812: 808: 807: 796: 791: 790: 779: 774: 773: 770: 736:reduces NiOH 719: 703: 692: 687: 686: 675: 670: 669: 666: 657: 631: 630: 621: 605: 592: 591: 579: 560: 482: 469: 465: 375: 287: 284: 280: 258: 244: 237: 226: 219: 213: 195: 181: 176: 162: 156: 150: 145:nanoparticle 140: 122: 103: 91: 27: 26: 2210:www.faa.gov 792:Calculation 775:Calculation 688:Calculation 671:Calculation 632:Calculation 593:Calculation 506:borohydride 131:(CVD), and 2254:Categories 2239:2023-02-22 2215:2023-02-22 2191:2023-02-15 2168:2023-02-22 2063:(6): 361. 2038:2023-02-22 1993:2023-02-23 1913:: 109181. 1695:2023-02-16 1434:2023-02-24 1404:2023-02-22 1166:2023-02-24 915:References 510:phosphorus 220:Stabilizer 157:Activation 41:nanofibers 2126:137801241 2118:0040-5175 2077:0021-9584 1943:202883768 1935:0022-3697 1880:1975-7220 1830:2093-8551 1789:0365-9496 1750:101079977 1742:1747-5198 1671:0026-0576 1630:0091-0635 1614:(1): 31. 1589:0272-5045 1546:0036-8733 1508:0002-7863 1358:2073-4360 1319:0360-3164 1137:cite book 1129:792932606 1052:235509471 1044:2196-0216 311:− 277:solution. 110:silvering 1888:55179900 1376:36015623 1336:Polymers 954:27873447 888:See also 504:) (or a 1915:Bibcode 1367:9415912 250:Process 127:(PVD), 113:mirrors 88:History 55:), and 37:current 2159:  2124:  2116:  2075:  2029:  1988:872041 1986:  1976:  1941:  1933:  1886:  1878:  1828:  1787:  1748:  1740:  1669:  1628:  1587:  1544:  1506:  1374:  1364:  1356:  1317:  1282:  1127:  1117:  1050:  1042:  952:  490:nickel 71:, and 43:, and 2122:S2CID 1939:S2CID 1884:S2CID 1746:S2CID 1048:S2CID 813:E = E 797:E = E 780:E = E 693:E = E 676:E = E 514:boron 488:uses 318:0.592 2157:ISBN 2114:ISSN 2073:ISSN 2027:ISBN 1984:OSTI 1974:ISBN 1931:ISSN 1876:ISSN 1826:ISSN 1785:ISSN 1738:ISSN 1667:ISSN 1626:ISSN 1585:ISSN 1542:ISSN 1504:ISSN 1372:PMID 1354:ISSN 1315:ISSN 1280:ISBN 1143:link 1125:OCLC 1115:ISBN 1040:ISSN 950:PMID 634:E= E 595:E= E 512:(or 61:pXRD 2149:doi 2104:doi 2065:doi 2019:doi 1966:doi 1923:doi 1911:137 1868:doi 1816:doi 1777:doi 1728:doi 1659:doi 1655:107 1616:doi 1577:doi 1534:doi 1496:doi 1492:110 1362:PMC 1344:doi 1309:". 1030:doi 942:doi 817:- E 815:red 801:- E 799:red 784:- E 782:red 697:- E 695:red 680:- E 678:red 638:- E 636:red 599:- E 597:red 545:, H 73:XPS 69:EDS 65:SEM 53:CVD 49:PVD 2256:: 2232:. 2208:. 2184:. 2155:, 2143:, 2120:. 2112:. 2100:76 2098:. 2094:. 2071:. 2061:55 2059:. 2055:. 2025:, 2013:, 2001:^ 1982:, 1972:, 1960:, 1937:. 1929:. 1921:. 1909:. 1905:. 1882:. 1874:. 1864:27 1862:. 1858:. 1838:^ 1824:. 1810:. 1806:. 1783:. 1773:15 1771:. 1767:. 1744:. 1736:. 1724:35 1722:. 1718:. 1704:^ 1687:. 1665:. 1653:. 1649:. 1638:^ 1624:. 1612:37 1610:. 1606:. 1583:. 1573:41 1571:. 1567:. 1554:^ 1540:. 1530:64 1528:. 1524:. 1502:. 1490:. 1486:. 1443:^ 1427:. 1413:^ 1397:. 1384:^ 1370:. 1360:. 1352:. 1340:14 1338:. 1334:. 1290:^ 1175:^ 1159:. 1139:}} 1135:{{ 1123:. 1060:^ 1046:. 1038:. 1024:. 1020:. 962:^ 948:. 938:38 936:. 932:. 819:ox 803:ox 786:ox 760:PO 754:ab 750:ab 744:PO 738:ab 732:PO 726:ab 699:ox 682:ox 640:ox 601:ox 582:ad 573:PO 541:PO 524:PO 500:PO 496:(H 475:. 455:. 242:. 206:PO 63:, 2242:. 2218:. 2194:. 2151:: 2128:. 2106:: 2079:. 2067:: 2021:: 1968:: 1945:. 1925:: 1917:: 1890:. 1870:: 1832:. 1818:: 1812:8 1791:. 1779:: 1752:. 1730:: 1698:. 1673:. 1661:: 1632:. 1618:: 1591:. 1579:: 1548:. 1536:: 1510:. 1498:: 1437:. 1407:. 1378:. 1346:: 1169:. 1145:) 1131:. 1054:. 1032:: 1026:8 956:. 944:: 766:2 762:2 758:2 746:2 742:2 734:2 730:2 722:2 661:2 659:H 625:2 586:2 575:2 571:2 567:2 563:2 547:2 543:3 539:2 526:2 522:2 502:2 498:2 443:] 440:s 437:t 434:n 431:a 428:t 425:c 422:a 419:e 416:R 412:/ 408:s 405:t 402:c 399:u 396:d 393:o 390:r 387:P 384:[ 362:) 359:3 356:( 350:) 347:Q 344:( 341:g 338:o 335:l 332:) 328:2 323:| 314:( 306:0 302:E 298:= 295:E 208:2 204:2 200:2 192:) 190:2 186:4 67:- 20:)

Index

Electroless Deposition
autocatalytic process
current
nanofibers
carbon nanotubes
PVD
CVD
electroplating
pXRD
SEM
EDS
XPS

Charles Wurtz
National Bureau of Standards
Tollens' reaction
silvering
mirrors
physical vapor deposition
chemical vapor deposition
electroplating
nanoparticle

Nernst equation
Pourbaix Diagram



Pourdaix Diagram
Electroless nickel plating

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑