Knowledge

Powder diffraction

Source đź“ť

461:(formerly Joint Committee for Powder Diffraction Studies). This has been made searchable by computer through the work of global software developers and equipment manufacturers. There are now over 1,047,661 reference materials in the 2021 Powder Diffraction File Databases, and these databases are interfaced to a wide variety of diffraction analysis software and distributed globally. The Powder Diffraction File contains many subfiles, such as minerals, metals and alloys, pharmaceuticals, forensics, excipients, superconductors, semiconductors, etc., with large collections of organic, organometallic and inorganic reference materials. 441:, resulting in authoritative identification frequently used in patents, criminal cases and other areas of law enforcement. The ability to analyze multiphase materials also allows analysis of how materials interact in a particular matrix such as a pharmaceutical tablet, a circuit board, a mechanical weld, a geologic core sampling, cement and concrete, or a pigment found in an historic painting. The method has been historically used for the identification and classification of minerals, but it can be used for nearly any material, even amorphous ones, so long as a suitable reference pattern is known or can be constructed. 33: 2754: 547:. At this point new diffraction peaks will appear or old ones disappear according to the symmetry of the new phase. If the material melts to an isotropic liquid, all sharp lines will disappear and be replaced by a broad amorphous pattern. If the transition produces another crystalline phase, one set of lines will suddenly be replaced by another set. In some cases however lines will split or coalesce, e.g. if the material undergoes a continuous, second order phase transition. In such cases the symmetry may change because the existing structure is 1280: 1154: 846:). This leads to a very high background in neutron diffraction experiments, and may make structural investigations impossible. A common solution is deuteration, i.e., replacing the 1-H atoms in the sample with deuterium (2-H). The incoherent scattering length of deuterium is much smaller (2.05(3) barn) making structural investigations significantly easier. However, in some systems, replacing hydrogen with deuterium may alter the structural and dynamic properties of interest. 3147: 223: 508: 20: 839:
atoms are approximately equal in magnitude. Neutron diffraction techniques may therefore be used to detect light elements such as oxygen or hydrogen in combination with heavy atoms. The neutron diffraction technique therefore has obvious applications to problems such as determining oxygen displacements in materials like high temperature superconductors and ferroelectrics, or to hydrogen bonding in biological systems.
3159: 437:(CSD). Advances in hardware and software, particularly improved optics and fast detectors, have dramatically improved the analytical capability of the technique, especially relative to the speed of the analysis. The fundamental physics upon which the technique is based provides high precision and accuracy in the measurement of interplanar spacings, sometimes to fractions of an 1578:
time-resolved studies. For the latter it is desirable to have a strong radiation source. The advent of synchrotron radiation and modern neutron sources has therefore done much to revitalize the powder diffraction field because it is now possible to study temperature dependent changes, reaction kinetics and so forth by means of time-resolved powder diffraction.
113:, the focus of this article although some aspects of neutron powder diffraction are mentioned. (Powder electron diffraction is more complex due to dynamical diffraction and is not discussed further herein.) Typical diffractometers use electromagnetic radiation (waves) with known wavelength and frequency, which is determined by their source. The source is often 499:, where one is interested in finding and identifying new materials. Once a pattern has been indexed, this characterizes the reaction product and identifies it as a new solid phase. Indexing programs exist to deal with the harder cases, but if the unit cell is very large and the symmetry low (triclinic) success is not always guaranteed. 1264:
in the world. Angle dispersive (fixed wavelength) instruments typically have a battery of individual detectors arranged in a cylindrical fashion around the sample holder, and can therefore collect scattered intensity simultaneously on a large 2θ range. Time of flight instruments normally have a small
573:
procedure is then used to minimize the difference between the calculated pattern and each point of the observed pattern by adjusting model parameters. Techniques to determine unknown structures from powder data do exist, but are somewhat specialized. A number of programs that can be used in structure
477:
part of the material forms an ordered crystallite by folding of the molecule. A single polymer molecule may well be folded into two different, adjacent crystallites and thus form a tie between the two. The tie part is prevented from crystallizing. The result is that the crystallinity will never reach
1090:
Semi-quantitative analysis of polycrystalline mixtures can be performed by using traditional single-peaks methods such as the Relative Intensity Ratio (RIR) or whole-pattern methods using Rietveld Refinement or PONCKS (Partial Or No Known Crystal Structures) method. The use of each method depends on
849:
As neutrons also have a magnetic moment, they are additionally scattered by any magnetic moments in a sample. In the case of long range magnetic order, this leads to the appearance of new Bragg reflections. In most simple cases, powder diffraction may be used to determine the size of the moments and
838:
X-ray photons scatter by interaction with the electron cloud of the material, neutrons are scattered by the nuclei. This means that, in the presence of heavy atoms with many electrons, it may be difficult to detect light atoms by X-ray diffraction. In contrast, the neutron scattering lengths of most
1550:
By contrast growth and mounting of large single crystals is notoriously difficult. In fact there are many materials for which, despite many attempts, it has not proven possible to obtain single crystals. Many materials are readily available with sufficient microcrystallinity for powder diffraction,
1501:
In-house applications of X-ray diffraction has always been limited to the relatively few wavelengths shown in the table above. The available choice was much needed because the combination of certain wavelengths and certain elements present in a sample can lead to strong fluorescence which increases
428:
Relative to other methods of analysis, powder diffraction allows for rapid, non-destructive analysis of multi-component mixtures without the need for extensive sample preparation. This gives laboratories the ability to quickly analyze unknown materials and perform materials characterization in such
1118:
cylinders are used as sample holders. Vanadium has a negligible absorption and coherent scattering cross section for neutrons and is hence nearly invisible in a powder diffraction experiment. Vanadium does however have a considerable incoherent scattering cross section which may cause problems for
599:
It is often possible to separate the effects of size and strain. When size broadening is independent of q (K = 1/d), strain broadening increases with increasing q-values. In most cases there will be both size and strain broadening. It is possible to separate these by combining the two equations in
1577:
Since all possible crystal orientations are measured simultaneously, collection times can be quite short even for small and weakly scattering samples. This is not merely convenient, but can be essential for samples which are unstable either inherently or under X-ray or neutron bombardment, or for
1509:
sources has drastically changed this picture and caused powder diffraction methods to enter a whole new phase of development. Not only is there a much wider choice of wavelengths available, the high brilliance of the synchrotron radiation makes it possible to observe changes in the pattern during
156:
case. Powder X-ray diffraction (PXRD) operates under the assumption that the sample is randomly arranged. Therefore, a statistically significant number of each plane of the crystal structure will be in the proper orientation to diffract the X-rays. Therefore, each plane will be represented in the
1134:. The sample is usually placed in the focusing beam, e.g. as a dusting on a piece of sticky tape. A cylindrical piece of film (or electronic multichannel detector) is put on the focusing circle, but the incident beam prevented from reaching the detector to prevent damage from its high intensity. 449:
The most widespread use of powder diffraction is in the identification and characterization of crystalline solids, each of which produces a distinctive diffraction pattern. Both the positions (corresponding to lattice spacings) and the relative intensity of the lines in a diffraction pattern are
1525:
Although it is possible to solve crystal structures from powder X-ray data alone, its single crystal analogue is a far more powerful technique for structure determination. This is directly related to the fact that information is lost by the collapse of the 3D space onto a 1D axis. Nevertheless,
1516:
Neutron diffraction has never been an in house technique because it requires the availability of an intense neutron beam only available at a nuclear reactor or spallation source. Typically the available neutron flux, and the weak interaction between neutrons and matter, require relative large
1091:
the knowledge on the analyzed system, given that, for instance, Rietveld refinement needs the solved crystal structure of each component of the mixture to be performed. In the last decades, multivariate analysis begun spreading as an alternative method for phase quantification.
478:
100%. Powder XRD can be used to determine the crystallinity by comparing the integrated intensity of the background pattern to that of the sharp peaks. Values obtained from powder XRD are typically comparable but not quite identical to those obtained from other methods such as
1176:
Diffractometers can be operated both in transmission and reflection, but reflection is more common. The powder sample is loaded in a small disc-like container and its surface carefully flattened. The disc is put on one axis of the diffractometer and tilted by an angle
137:. These waves interfere destructively at points between the intersections where the waves are out of phase, and do not lead to bright spots in the diffraction pattern. Because the sample itself is acting as the diffraction grating, this spacing is the atomic spacing. 429:
fields as metallurgy, mineralogy, chemistry, forensic science, archeology, condensed matter physics, and the biological and pharmaceutical sciences. Identification is performed by comparison of the diffraction pattern to a known standard or to a database such as the
490:
The position of a diffraction peak is independent of the atomic positions within the cell and entirely determined by the size and shape of the unit cell of the crystalline phase. Each peak represents a certain lattice plane and can therefore be characterized by a
450:
indicative of a particular phase and material, providing a "fingerprint" for comparison. A multi-phase mixture, e.g. a soil sample, will show more than one pattern superposed, allowing for the determination of the relative concentrations of phases in the mixture.
551:
rather than replaced by a completely different one. For example, the diffraction peaks for the lattice planes (100) and (001) can be found at two different values of q for a tetragonal phase, but if the symmetry becomes cubic the two peaks will come to coincide.
569:. The Rietveld method is a so-called full pattern analysis technique. A crystal structure, together with instrumental and microstructural information, is used to generate a theoretical diffraction pattern that can be compared to the observed data. A 1027: 1302:. The most commonly used laboratory X-ray tube uses a copper anode, but cobalt and molybdenum are also popular. The wavelength in nm varies for each source. The table below shows these wavelengths, determined by Bearden (all values in nm): 121:. When these waves reach the sample, the incoming beam is either reflected off the surface, or can enter the lattice and be diffracted by the atoms present in the sample. If the atoms are arranged symmetrically with a separation distance 684: 858:
Predicting the scattered intensity in powder diffraction patterns from gases, liquids, and randomly distributed nano-clusters in the solid state is (to first order) done rather elegantly with the Debye scattering equation:
363: 560:
Crystal structure determination from powder diffraction data is extremely challenging due to the overlap of reflections in a powder experiment. A number of different methods exist for structural determination, such as
1502:
the background in the diffraction pattern. A notorious example is the presence of iron in a sample when using copper radiation. In general elements just below the anode element in the period system need to be avoided.
1108:) or a cylindrical one (originally a piece of film in a cookie-jar, but increasingly bent position sensitive detectors are used). The two types of cameras are known as the Laue and the Debye–Scherrer camera. 1211:
Diffractometer settings for different experiments can schematically be illustrated by a hemisphere, in which the powder sample resides in the origin. The case of recording a pattern in the Bragg-Brentano
1559:
materials, single crystals thereof are typically not immediately available. Powder diffraction is therefore one of the most powerful methods to identify and characterize new materials in this field.
826:
for size broadening and the Stokes and Wilson expression for strain broadening. The value of η is the strain in the crystallites, the value of D represents the size of the crystallites. The constant
817: 1513:
The tunability of the wavelength also makes it possible to observe anomalous scattering effects when the wavelength is chosen close to the absorption edge of one of the elements of the sample.
727: 1104:
The simplest cameras for X-ray powder diffraction consist of a small capillary and either a flat plate detector (originally a piece of X-ray film, now more and more a flat-plate detector or a
1867:
Structure determination form powder diffraction data IUCr Monographs on crystallography, Edt. W.I.F. David, K. Shankland, L.B. McCusker and Ch. Baerlocher. 2002. Oxford Science publications
519:
temperature and pressure control. As these thermodynamic variables are changed, the observed diffraction peaks will migrate continuously to indicate higher or lower lattice spacings as the
761: 2763: 1505:
Another limitation is that the intensity of traditional generators is relatively low, requiring lengthy exposure times and precluding any time dependent measurement. The advent of
3024: 783: 3019: 495:. If the symmetry is high, e.g.: cubic or hexagonal it is usually not too hard to identify the index of each peak, even for an unknown phase. This is particularly important in 469:
In contrast to a crystalline pattern consisting of a series of sharp peaks, amorphous materials (liquids, glasses etc.) produce a broad background signal. Many polymers show
230:
When the scattered radiation is collected on a flat plate detector, the rotational averaging leads to smooth diffraction rings around the beam axis, rather than the discrete
1981:"Multivariate versus traditional quantitative phase analysis of X-ray powder diffraction and fluorescence data of mixtures showing preferred orientation and microabsorption" 1238:
Position-sensitive detectors (PSD) and area detectors, which allow collection from multiple angles at once, are becoming more popular on currently supplied instrumentation.
1204:
configuration in which the sample is stationary while the X-ray tube and the detector are rotated around it. The angle formed between the X-ray source and the detector is 2
865: 2559: 1082:. One can also use this to predict the effect of nano-crystallite shape on detected diffraction peaks, even if in some directions the cluster is only one atom thick. 3075: 1288: 457:
in the 1930s, was the first to realize the analytical potential of creating a database. Today it is represented by the Powder Diffraction File (PDF) of the
2303: 606: 1419:
According to the last re-examination of Hölzer et al. (1997), and quoted in the International Tables for Crystallography these values are respectively:
543:
At some critical set of conditions, for example 0 Â°C for water at 1 atm, a new arrangement of atoms or molecules may become stable, leading to a
1574:, the ability to use large samples can be critical, although newer and more brilliant neutron sources are being built that may change this picture. 23:
Electron powder pattern (red) of an Al film with an fcc spiral overlay (green) and a line of intersections (blue) that determines lattice parameter.
272: 842:
A further complication in the case of neutron scattering from hydrogenous materials is the strong incoherent scattering of hydrogen (80.27(6)
416:
sources has widened the choice of wavelength considerably. To facilitate comparability of data obtained with different wavelengths the use of
2893: 168:
with some regularity in the spacing between atoms. Because of this regularity, we can describe this structure in a different way using the
565:
and charge flipping. The crystal structures of known materials can be refined, i.e. as a function of temperature or pressure, using the
3080: 2805: 2971: 2263: 2028:Šišak Jung, D; Donath, T; Magdysyuk, O; Bednarcik, J (2017). "High-energy X-ray applications: Current status and new opportunities". 458: 430: 95:
Powder diffraction stands in contrast to single crystal diffraction techniques, which work best with a single, well-ordered crystal.
1231:
stand for the wave vectors of the incoming and diffracted beam that both make up the scattering plane. Various other settings for
3195: 88:
samples for structural characterization of materials. An instrument dedicated to performing such powder measurements is called a
3070: 3062: 3123: 3101: 2214: 2085: 1795: 1754: 1526:
powder X-ray diffraction is a powerful and useful technique in its own right. It is mostly used to characterize and identify
3116: 2966: 2632: 2497: 2346: 788: 3190: 3106: 3004: 2700: 692: 2353: 41: 3128: 2986: 2956: 2885: 2075: 1894: 1872: 1855: 1731: 479: 3163: 2838: 215:
remains as an important measurable quantity. This is because orientational averaging causes the three-dimensional
3111: 3034: 2908: 2507: 732: 408:. The latter variable has the advantage that the diffractogram no longer depends on the value of the wavelength 2946: 2868: 1145:, are widely used in applications where high data acquisition speeds and increased data quality are required. 2961: 2951: 2256: 1185:) rotates around it on an arm at twice this angle. This configuration is known under the name Bragg–Brentano 434: 157:
signal. In practice, it is sometimes necessary to rotate the sample orientation to eliminate the effects of
3085: 2733: 2358: 2336: 2637: 2391: 2286: 1663: 766: 515:
Cell parameters are somewhat temperature and pressure dependent. Powder diffraction can be combined with
2994: 2291: 2180: 1638: 133:
is equal to an integer multiple of the wavelength, producing a diffraction maximum in accordance with
3009: 2938: 2396: 2386: 1598: 1022:{\displaystyle I(q)=\sum _{i=1}^{N}\sum _{j=1}^{N}f_{i}(q)f_{j}(q){\frac {\sin(qr_{ij})}{qr_{ij}}},} 3151: 2875: 2771: 2644: 2607: 2522: 2401: 2381: 2249: 1613: 1593: 1056: 234:
observed in single crystal diffraction. The angle between the beam axis and the ring is called the
2999: 2843: 2788: 2537: 2502: 1571: 470: 2753: 2695: 2512: 1530:, and to refine details of an already known structure, rather than solving unknown structures. 1816:"High-Energy X-Rays: A tool for Advanced Bulk Investigations in Materials Science and Physics" 1787: 3052: 2848: 2810: 2617: 2569: 1658: 1648: 1643: 1567: 1552: 1274: 1256:
beam of suitable intensity and speed for diffraction are only available at a small number of
1232: 1182: 1138: 1111:
In order to ensure complete powder averaging, the capillary is usually spun around its axis.
496: 231: 158: 141: 118: 3185: 2776: 2649: 2485: 2376: 2153: 2110: 2037: 1920: 1693: 1618: 81: 8: 2793: 2781: 2656: 2622: 2602: 1633: 1563: 1265:
range of banks at different scattering angles which collect data at varying resolutions.
1247: 566: 562: 104: 77: 57: 2157: 2114: 2041: 1946:
Guccione, Pietro; Lopresti, Mattia; Milanesio, Marco; Caliandro, Rocco (December 2020).
1924: 1697: 582:
There are many factors that determine the width B of a diffraction peak. These include:
3042: 2853: 2798: 2341: 2053: 2005: 1980: 1709: 1142: 1037: 255: 219:
that is studied in single crystal diffraction to be projected onto a single dimension.
177: 169: 1979:
Lopresti, M.; Mangolini, B.; Milanesio, M.; Caliandro, R.; Palin, L. (1 August 2022).
2976: 2815: 2743: 2723: 2443: 2313: 2210: 2081: 2057: 2010: 1890: 1868: 1851: 1811: 1791: 1780: 1760: 1750: 1727: 1623: 1588: 1261: 823: 679:{\displaystyle B\cdot \cos(\theta )={\frac {k\lambda }{D}}+\eta \cdot \sin(\theta ),} 532: 524: 520: 173: 73: 1713: 1235:
or stress/strain measurements can also be visualized with this graphical approach.
392:
is the wavelength of the source. Powder diffraction data are usually presented as a
3200: 3014: 2820: 2738: 2728: 2527: 2460: 2431: 2424: 2161: 2118: 2045: 2000: 1992: 1959: 1928: 1827: 1701: 1257: 544: 216: 125:, these waves will interfere constructively only where the path-length difference 2 85: 1123: 2903: 2898: 2863: 2683: 2582: 2517: 2480: 2475: 2326: 2272: 1884: 1832: 1815: 1653: 1603: 1279: 262:
in the sample crystal. This leads to the definition of the scattering vector as:
165: 117:, and neutrons are also common sources, with their frequency determined by their 2136:
Hölzer, G.; Fritsch, M.; Deutsch, M.; Härtwig, J.; Förster, E. (1997-12-01). "Kα
2713: 2678: 2666: 2661: 2627: 2597: 2587: 2546: 2490: 2414: 2368: 1608: 251: 140:
The distinction between powder and single crystal diffraction is the degree of
134: 2049: 1996: 1705: 3179: 2858: 2671: 2470: 2165: 2122: 1932: 1764: 1131: 570: 438: 393: 358:{\displaystyle |G|=q=2k\sin(\theta )={\frac {4\pi }{\lambda }}\sin(\theta ).} 61: 32: 1153: 2564: 2554: 2448: 2331: 2014: 528: 492: 454: 2236: 1964: 1947: 1744: 144:
in the sample. Single crystals have maximal texturing, and are said to be
3047: 2718: 2592: 2419: 1510:
chemical reactions, temperature ramps, changes in pressure and the like.
1506: 843: 574:
determination are TOPAS, Fox, DASH, GSAS-II, EXPO2004, and a few others.
413: 149: 145: 2179:
Deslattes, R.D.; Kessler Jr, E.G.; Indelicato, P.; Lindroth, E. (2006),
19: 2612: 2298: 2206:
International Tables for Crystallography - Volume H: Powder Diffraction
1628: 1295: 1105: 1551:
or samples may be easily ground from larger crystals. In the field of
2321: 2178: 1726:
B.D. Cullity Elements of X-ray Diffraction Addison Wesley Mass. 1978
222: 153: 1908: 1157:
Hemisphere of diffraction showing the incoming and diffracted beams
507: 2918: 2688: 2436: 1978: 1115: 2241: 2187:, vol. C, International Union of Crystallography, p. 203 2027: 1945: 226:
Two-dimensional powder diffraction setup with flat plate detector.
2928: 1253: 555: 1684:
P. Fraundorf & Shuhan Lin (2004). "Spiral powder overlays".
1119:
more sensitive techniques such as neutron inelastic scattering.
523:
distorts. This allows for measurement of such quantities as the
1294:
Laboratory X-ray diffraction equipment relies on the use of an
1284: 114: 110: 830:
is typically close to unity and ranges from 0.8 to 1.39.
2923: 1299: 833: 152:
orientation is represented equally in a powdered sample, the
1814:; Bartels, Arno; Schreyer, Andreas; Clemens, Helmut (2003). 1786:(2nd ed.). Canada: John Wiley & Sons, Inc. p.  2135: 1289:
FZU – Institute of Physics of the Czech Academy of Sciences
1208:. This configuration is most convenient for loose powders. 1810: 3025:
Zeitschrift für Kristallographie – New Crystal Structures
2204: 1948:"Multivariate Analysis Applications in X-ray Diffraction" 400:, is shown as a function either of the scattering angle 2 3020:
Zeitschrift für Kristallographie – Crystalline Materials
203:*. In powder diffraction, intensity is homogeneous over 2913: 2231: 1683: 1543:
the ability to analyze mixed phases, e.g. soil samples
2203:
Gilmore, C.J.; Kaduk, J.A.; Schenk, H., eds. (2019).
868: 792: 791: 770: 769: 736: 735: 696: 695: 609: 275: 176:. This three-dimensional space can be described with 148:. In contrast, in powder diffraction, every possible 2181:"Table 4.2.2.1. K-series reference wavelengths in Ă…" 812:{\displaystyle \displaystyle {\frac {k\lambda }{D}}} 453:
J.D. Hanawalt, an analytical chemist who worked for
420:
is therefore recommended and gaining acceptability.
2144:x-ray emission lines of the 3d transition metals". 109:The most common type of powder diffraction is with 2202: 1779: 1021: 853: 811: 777: 755: 722:{\displaystyle \displaystyle B\cdot \cos(\theta )} 721: 678: 502: 357: 172:, which is related to the original structure by a 1749:(3rd ed.). Amsterdam: Elsevier Science B.V. 404:or as a function of the scattering vector length 3177: 380:is the length of the reciprocal lattice vector, 238:and in X-ray crystallography always denoted as 2 1889:(Addison–Wesley, Reading MA/Dover, Mineola NY) 1520: 164:Mathematically, crystals can be described by a 589:the presence of defects to the perfect lattice 556:Crystal structure refinement and determination 2257: 1777: 1085: 1032:where the magnitude of the scattering vector 600:what is known as the Hall–Williamson method: 577: 2101:Bearden, J. A. (1967). "X-Ray Wavelengths". 2069: 2067: 1196:Another configuration is the Bragg–Brentano 1122:A later development in X-ray cameras is the 191:* or alternatively in spherical coordinates 3094: 2129: 2073: 756:{\displaystyle \displaystyle \sin(\theta )} 246:light the convention is usually to call it 2264: 2250: 834:Comparison of X-ray and neutron scattering 2232:International Centre for Diffraction Data 2064: 2004: 1963: 1831: 592:differences in strain in different grains 459:International Centre for Diffraction Data 431:International Centre for Diffraction Data 2185:International Tables for Crystallography 1278: 1152: 506: 433:'s Powder Diffraction File (PDF) or the 254:, each ring corresponds to a particular 221: 18: 16:Experimental method in X-ray diffraction 2172: 2100: 1778:Klug, Harold; Alexander, Leroy (1954). 822:The expression is a combination of the 444: 3178: 2367: 2077:Thin Film Analysis by X-Ray Scattering 1742: 1241: 2245: 1906: 1566:, which requires larger samples than 485: 388:is half of the scattering angle, and 3158: 2498:Phase transformation crystallography 1570:due to a relatively weak scattering 538: 531:, as well determination of the full 511:Thermal expansion of a sulfur powder 3005:Journal of Chemical Crystallography 2271: 1220:mode is shown in the figure, where 1172:with respect to the sample surface. 778:{\displaystyle \displaystyle \eta } 396:in which the diffracted intensity, 13: 2195: 1985:Journal of Applied Crystallography 1148: 763:we get a straight line with slope 376:is the reciprocal lattice vector, 14: 3212: 2225: 1909:"Zerstreuung von Röntgenstrahlen" 1546:"in situ" structure determination 1533:Advantages of the technique are: 1139:hybrid photon counting technology 384:is the momentum transfer vector, 3157: 3146: 3145: 2752: 1555:that often aims at synthesizing 1537:simplicity of sample preparation 1496: 464: 72:is a scientific technique using 31: 2094: 2021: 1972: 1939: 1298:, which is used to produce the 854:Aperiodically arranged clusters 503:Expansion tensors, bulk modulus 60:with two phases, showing 1% of 3196:Synchrotron-related techniques 2947:Bilbao Crystallographic Server 1900: 1877: 1861: 1840: 1804: 1771: 1736: 1720: 1677: 1268: 1168:that are inclined by an angle 992: 973: 961: 955: 942: 936: 878: 872: 749: 743: 715: 709: 670: 664: 628: 622: 349: 343: 316: 310: 285: 277: 98: 1: 2237:Powder Diffraction on the Web 1848:Elements of X-ray diffraction 1670: 1126:camera. It is built around a 1074:is the distance between atom 435:Cambridge Structural Database 161:and achieve true randomness. 44:X-ray powder diffraction of Y 1833:10.1080/07303300310001634952 1820:Textures and Microstructures 1782:X-ray diffraction Procedures 1686:Microscopy and Microanalysis 1521:Advantages and disadvantages 1283:X-ray powder diffractometer 595:the size of the crystallites 7: 2995:Crystal Growth & Design 2287:Timeline of crystallography 1664:X-ray scattering techniques 1581: 850:their spatial orientation. 10: 3217: 3191:Neutron-related techniques 2806:Nuclear magnetic resonance 2030:Powder Diffraction, 32(S2) 1639:Pair distribution function 1272: 1245: 1099: 1094: 1086:Semi-quantitative analysis 578:Size and strain broadening 527:tensor and the isothermal 102: 3141: 3061: 3033: 3010:Journal of Crystal Growth 2985: 2937: 2884: 2831: 2762: 2750: 2545: 2536: 2459: 2312: 2279: 2103:Reviews of Modern Physics 2050:10.1017/S0885715617001191 1997:10.1107/S1600576722004708 1883:B. E. Warren (1969/1990) 1706:10.1017/S1431927604884034 1599:Crystallographic database 2876:Single particle analysis 2734:Hermann–Mauguin notation 2166:10.1103/PhysRevA.56.4554 2123:10.1103/RevModPhys.39.78 1933:10.1002/andp.19153510606 1614:Electron crystallography 1594:Condensed matter physics 1114:For neutron diffraction 1057:atomic scattering factor 1044:is the number of atoms, 64:impurity (red tickers). 3000:Crystallography Reviews 2844:Isomorphous replacement 2638:Lomer–Cottrell junction 2183:, in Prince, E. (ed.), 1540:rapidity of measurement 1252:Sources that produce a 423: 2513:Spinodal decomposition 1743:Cowley, J. M. (1995). 1291: 1173: 1063:and scattering vector 1023: 925: 904: 813: 779: 757: 723: 680: 512: 359: 250:). In accordance with 227: 24: 3053:Gregori Aminoff Prize 2849:Molecular replacement 1965:10.3390/cryst11010012 1850:Addison–Wesley, 1978 1659:X-ray crystallography 1649:Texture (crystalline) 1644:Solid state chemistry 1553:solid-state chemistry 1282: 1275:X-ray crystallography 1183:scintillation counter 1156: 1024: 905: 884: 814: 780: 758: 724: 681: 510: 497:solid-state chemistry 360: 225: 119:de Broglie wavelength 90:powder diffractometer 22: 2359:Structure prediction 2074:M. Birkholz (2005). 1619:Electron diffraction 866: 789: 767: 733: 693: 607: 586:instrumental factors 445:Phase identification 273: 82:electron diffraction 2623:Cottrell atmosphere 2603:Partial dislocation 2347:Restriction theorem 2158:1997PhRvA..56.4554H 2115:1967RvMP...39...78B 2042:2017PDiff..32S..22S 1925:1915AnP...351..809D 1746:Diffraction physics 1698:2004MiMic..10S1356F 1634:Neutron diffraction 1564:neutron diffraction 1248:Neutron diffraction 1242:Neutron diffraction 689:Thus, when we plot 563:simulated annealing 105:Diffraction grating 58:Rietveld refinement 3043:Carl Hermann Medal 2854:Molecular dynamics 2701:Defects in diamond 2696:Stone–Wales defect 2342:Reciprocal lattice 2304:Biocrystallography 1913:Annalen der Physik 1907:Debye, P. (1915). 1812:Liss, Klaus-Dieter 1692:(S02): 1356–1357. 1292: 1262:spallation sources 1181:while a detector ( 1174: 1038:reciprocal lattice 1019: 809: 808: 775: 774: 753: 752: 719: 718: 676: 513: 486:Lattice parameters 372:In this equation, 355: 256:reciprocal lattice 242:(in scattering of 228: 170:reciprocal lattice 70:Powder diffraction 25: 3173: 3172: 3137: 3136: 2744:Thermal ellipsoid 2709: 2708: 2618:Frank–Read source 2578: 2577: 2444:Aperiodic crystal 2410: 2409: 2292:Crystallographers 2216:978-1-118-41628-0 2146:Physical Review A 2087:978-3-527-31052-4 1886:X-ray diffraction 1797:978-0-471-49369-3 1756:978-0-444-82218-5 1624:Materials science 1589:Bragg diffraction 1568:X-ray diffraction 1562:Particularly for 1494: 1493: 1417: 1416: 1258:research reactors 1137:Cameras based on 1014: 824:Scherrer equation 806: 647: 539:Phase transitions 535:of the material. 533:equation of state 525:thermal expansion 335: 174:Fourier transform 3208: 3161: 3160: 3149: 3148: 3092: 3091: 3015:Kristallografija 2869:Gerchberg–Saxton 2764:Characterisation 2756: 2739:Structure factor 2543: 2542: 2528:Ostwald ripening 2365: 2364: 2310: 2309: 2266: 2259: 2252: 2243: 2242: 2220: 2189: 2188: 2176: 2170: 2169: 2152:(6): 4554–4568. 2133: 2127: 2126: 2098: 2092: 2091: 2071: 2062: 2061: 2025: 2019: 2018: 2008: 1976: 1970: 1969: 1967: 1943: 1937: 1936: 1904: 1898: 1881: 1875: 1865: 1859: 1844: 1838: 1837: 1835: 1808: 1802: 1801: 1785: 1775: 1769: 1768: 1740: 1734: 1724: 1718: 1717: 1681: 1422: 1421: 1313:(weight average) 1305: 1304: 1143:PILATUS detector 1040:distance units, 1028: 1026: 1025: 1020: 1015: 1013: 1012: 1011: 995: 991: 990: 965: 954: 953: 935: 934: 924: 919: 903: 898: 818: 816: 815: 810: 807: 802: 794: 784: 782: 781: 776: 762: 760: 759: 754: 728: 726: 725: 720: 685: 683: 682: 677: 648: 643: 635: 545:phase transition 412:. The advent of 364: 362: 361: 356: 336: 331: 323: 288: 280: 236:scattering angle 217:reciprocal space 86:microcrystalline 35: 3216: 3215: 3211: 3210: 3209: 3207: 3206: 3205: 3176: 3175: 3174: 3169: 3133: 3090: 3057: 3029: 2981: 2933: 2904:CrystalExplorer 2880: 2864:Phase retrieval 2827: 2758: 2757: 2748: 2705: 2684:Schottky defect 2583:Perfect crystal 2574: 2570:Abnormal growth 2532: 2518:Supersaturation 2481:Miscibility gap 2462: 2455: 2406: 2363: 2327:Bravais lattice 2308: 2275: 2273:Crystallography 2270: 2228: 2223: 2217: 2198: 2196:Further reading 2193: 2192: 2177: 2173: 2143: 2139: 2134: 2130: 2099: 2095: 2088: 2072: 2065: 2026: 2022: 1977: 1973: 1944: 1940: 1905: 1901: 1882: 1878: 1866: 1862: 1845: 1841: 1809: 1805: 1798: 1776: 1772: 1757: 1741: 1737: 1725: 1721: 1682: 1678: 1673: 1668: 1654:Ultrafast x-ray 1604:Crystallography 1584: 1523: 1499: 1327: 1322: 1317: 1312: 1277: 1271: 1250: 1244: 1226: 1163: 1151: 1149:Diffractometers 1102: 1097: 1088: 1072: 1049: 1004: 1000: 996: 983: 979: 966: 964: 949: 945: 930: 926: 920: 909: 899: 888: 867: 864: 863: 856: 836: 795: 793: 790: 787: 786: 768: 765: 764: 734: 731: 730: 694: 691: 690: 636: 634: 608: 605: 604: 580: 567:Rietveld method 558: 541: 505: 488: 471:semicrystalline 467: 447: 426: 324: 322: 284: 276: 274: 271: 270: 178:reciprocal axes 166:Bravais lattice 129: sin  107: 101: 67: 66: 65: 55: 51: 47: 43: 38: 37: 36: 17: 12: 11: 5: 3214: 3204: 3203: 3198: 3193: 3188: 3171: 3170: 3168: 3167: 3155: 3142: 3139: 3138: 3135: 3134: 3132: 3131: 3126: 3121: 3120: 3119: 3114: 3109: 3098: 3096: 3089: 3088: 3083: 3078: 3073: 3067: 3065: 3059: 3058: 3056: 3055: 3050: 3045: 3039: 3037: 3031: 3030: 3028: 3027: 3022: 3017: 3012: 3007: 3002: 2997: 2991: 2989: 2983: 2982: 2980: 2979: 2974: 2969: 2964: 2959: 2954: 2949: 2943: 2941: 2935: 2934: 2932: 2931: 2926: 2921: 2916: 2911: 2906: 2901: 2896: 2890: 2888: 2882: 2881: 2879: 2878: 2873: 2872: 2871: 2861: 2856: 2851: 2846: 2841: 2839:Direct methods 2835: 2833: 2829: 2828: 2826: 2825: 2824: 2823: 2818: 2808: 2803: 2802: 2801: 2796: 2786: 2785: 2784: 2779: 2768: 2766: 2760: 2759: 2751: 2749: 2747: 2746: 2741: 2736: 2731: 2726: 2724:Ewald's sphere 2721: 2716: 2710: 2707: 2706: 2704: 2703: 2698: 2693: 2692: 2691: 2686: 2676: 2675: 2674: 2669: 2667:Frenkel defect 2664: 2662:Bjerrum defect 2654: 2653: 2652: 2642: 2641: 2640: 2635: 2630: 2628:Peierls stress 2625: 2620: 2615: 2610: 2605: 2600: 2598:Burgers vector 2590: 2588:Stacking fault 2585: 2579: 2576: 2575: 2573: 2572: 2567: 2562: 2557: 2551: 2549: 2547:Grain boundary 2540: 2534: 2533: 2531: 2530: 2525: 2520: 2515: 2510: 2505: 2500: 2495: 2494: 2493: 2491:Liquid crystal 2488: 2483: 2478: 2467: 2465: 2457: 2456: 2454: 2453: 2452: 2451: 2441: 2440: 2439: 2429: 2428: 2427: 2422: 2411: 2408: 2407: 2405: 2404: 2399: 2394: 2389: 2384: 2379: 2373: 2371: 2362: 2361: 2356: 2354:Periodic table 2351: 2350: 2349: 2344: 2339: 2334: 2329: 2318: 2316: 2307: 2306: 2301: 2296: 2295: 2294: 2283: 2281: 2277: 2276: 2269: 2268: 2261: 2254: 2246: 2240: 2239: 2234: 2227: 2226:External links 2224: 2222: 2221: 2215: 2199: 2197: 2194: 2191: 2190: 2171: 2141: 2137: 2128: 2093: 2086: 2063: 2020: 1991:(4): 837–850. 1971: 1938: 1899: 1876: 1860: 1839: 1803: 1796: 1770: 1755: 1735: 1719: 1675: 1674: 1672: 1669: 1667: 1666: 1661: 1656: 1651: 1646: 1641: 1636: 1631: 1626: 1621: 1616: 1611: 1609:Diffractometer 1606: 1601: 1596: 1591: 1585: 1583: 1580: 1548: 1547: 1544: 1541: 1538: 1522: 1519: 1498: 1495: 1492: 1491: 1488: 1485: 1482: 1478: 1477: 1474: 1471: 1468: 1464: 1463: 1460: 1457: 1454: 1450: 1449: 1446: 1443: 1440: 1436: 1435: 1432: 1429: 1426: 1415: 1414: 1411: 1408: 1405: 1402: 1398: 1397: 1394: 1391: 1388: 1385: 1381: 1380: 1377: 1374: 1371: 1368: 1364: 1363: 1360: 1357: 1354: 1351: 1347: 1346: 1343: 1340: 1337: 1334: 1330: 1329: 1324: 1319: 1314: 1309: 1287:D8 Advance at 1273:Main article: 1270: 1267: 1246:Main article: 1243: 1240: 1224: 1161: 1150: 1147: 1141:, such as the 1101: 1098: 1096: 1093: 1087: 1084: 1070: 1047: 1030: 1029: 1018: 1010: 1007: 1003: 999: 994: 989: 986: 982: 978: 975: 972: 969: 963: 960: 957: 952: 948: 944: 941: 938: 933: 929: 923: 918: 915: 912: 908: 902: 897: 894: 891: 887: 883: 880: 877: 874: 871: 855: 852: 835: 832: 805: 801: 798: 785:and intercept 773: 751: 748: 745: 742: 739: 717: 714: 711: 708: 705: 702: 699: 687: 686: 675: 672: 669: 666: 663: 660: 657: 654: 651: 646: 642: 639: 633: 630: 627: 624: 621: 618: 615: 612: 597: 596: 593: 590: 587: 579: 576: 557: 554: 540: 537: 504: 501: 487: 484: 466: 463: 446: 443: 425: 422: 370: 369: 368: 367: 366: 365: 354: 351: 348: 345: 342: 339: 334: 330: 327: 321: 318: 315: 312: 309: 306: 303: 300: 297: 294: 291: 287: 283: 279: 100: 97: 53: 49: 45: 40: 39: 30: 29: 28: 27: 26: 15: 9: 6: 4: 3: 2: 3213: 3202: 3199: 3197: 3194: 3192: 3189: 3187: 3184: 3183: 3181: 3166: 3165: 3156: 3154: 3153: 3144: 3143: 3140: 3130: 3127: 3125: 3122: 3118: 3115: 3113: 3110: 3108: 3105: 3104: 3103: 3100: 3099: 3097: 3093: 3087: 3084: 3082: 3079: 3077: 3074: 3072: 3069: 3068: 3066: 3064: 3060: 3054: 3051: 3049: 3046: 3044: 3041: 3040: 3038: 3036: 3032: 3026: 3023: 3021: 3018: 3016: 3013: 3011: 3008: 3006: 3003: 3001: 2998: 2996: 2993: 2992: 2990: 2988: 2984: 2978: 2975: 2973: 2970: 2968: 2965: 2963: 2960: 2958: 2955: 2953: 2950: 2948: 2945: 2944: 2942: 2940: 2936: 2930: 2927: 2925: 2922: 2920: 2917: 2915: 2912: 2910: 2907: 2905: 2902: 2900: 2897: 2895: 2892: 2891: 2889: 2887: 2883: 2877: 2874: 2870: 2867: 2866: 2865: 2862: 2860: 2859:Patterson map 2857: 2855: 2852: 2850: 2847: 2845: 2842: 2840: 2837: 2836: 2834: 2830: 2822: 2819: 2817: 2814: 2813: 2812: 2809: 2807: 2804: 2800: 2797: 2795: 2792: 2791: 2790: 2787: 2783: 2780: 2778: 2775: 2774: 2773: 2770: 2769: 2767: 2765: 2761: 2755: 2745: 2742: 2740: 2737: 2735: 2732: 2730: 2729:Friedel's law 2727: 2725: 2722: 2720: 2717: 2715: 2712: 2711: 2702: 2699: 2697: 2694: 2690: 2687: 2685: 2682: 2681: 2680: 2677: 2673: 2672:Wigner effect 2670: 2668: 2665: 2663: 2660: 2659: 2658: 2657:Interstitials 2655: 2651: 2648: 2647: 2646: 2643: 2639: 2636: 2634: 2631: 2629: 2626: 2624: 2621: 2619: 2616: 2614: 2611: 2609: 2606: 2604: 2601: 2599: 2596: 2595: 2594: 2591: 2589: 2586: 2584: 2581: 2580: 2571: 2568: 2566: 2563: 2561: 2558: 2556: 2553: 2552: 2550: 2548: 2544: 2541: 2539: 2535: 2529: 2526: 2524: 2521: 2519: 2516: 2514: 2511: 2509: 2506: 2504: 2503:Precipitation 2501: 2499: 2496: 2492: 2489: 2487: 2484: 2482: 2479: 2477: 2474: 2473: 2472: 2471:Phase diagram 2469: 2468: 2466: 2464: 2458: 2450: 2447: 2446: 2445: 2442: 2438: 2435: 2434: 2433: 2430: 2426: 2423: 2421: 2418: 2417: 2416: 2413: 2412: 2403: 2400: 2398: 2395: 2393: 2390: 2388: 2385: 2383: 2380: 2378: 2375: 2374: 2372: 2370: 2366: 2360: 2357: 2355: 2352: 2348: 2345: 2343: 2340: 2338: 2335: 2333: 2330: 2328: 2325: 2324: 2323: 2320: 2319: 2317: 2315: 2311: 2305: 2302: 2300: 2297: 2293: 2290: 2289: 2288: 2285: 2284: 2282: 2278: 2274: 2267: 2262: 2260: 2255: 2253: 2248: 2247: 2244: 2238: 2235: 2233: 2230: 2229: 2218: 2212: 2208: 2207: 2201: 2200: 2186: 2182: 2175: 2167: 2163: 2159: 2155: 2151: 2147: 2132: 2124: 2120: 2116: 2112: 2109:(1): 78–124. 2108: 2104: 2097: 2089: 2083: 2080:. Wiley-VCH. 2079: 2078: 2070: 2068: 2059: 2055: 2051: 2047: 2043: 2039: 2036:(S2): 22–27. 2035: 2031: 2024: 2016: 2012: 2007: 2002: 1998: 1994: 1990: 1986: 1982: 1975: 1966: 1961: 1957: 1953: 1949: 1942: 1934: 1930: 1926: 1922: 1918: 1914: 1910: 1903: 1896: 1895:0-486-66317-5 1892: 1888: 1887: 1880: 1874: 1873:0-19-850091-2 1870: 1864: 1857: 1856:0-201-01174-3 1853: 1849: 1846:B.D. Cullity 1843: 1834: 1829: 1825: 1821: 1817: 1813: 1807: 1799: 1793: 1789: 1784: 1783: 1774: 1766: 1762: 1758: 1752: 1748: 1747: 1739: 1733: 1732:0-201-01174-3 1729: 1723: 1715: 1711: 1707: 1703: 1699: 1695: 1691: 1687: 1680: 1676: 1665: 1662: 1660: 1657: 1655: 1652: 1650: 1647: 1645: 1642: 1640: 1637: 1635: 1632: 1630: 1627: 1625: 1622: 1620: 1617: 1615: 1612: 1610: 1607: 1605: 1602: 1600: 1597: 1595: 1592: 1590: 1587: 1586: 1579: 1575: 1573: 1572:cross section 1569: 1565: 1560: 1558: 1554: 1545: 1542: 1539: 1536: 1535: 1534: 1531: 1529: 1518: 1514: 1511: 1508: 1503: 1497:Other sources 1489: 1486: 1483: 1480: 1479: 1475: 1472: 1469: 1466: 1465: 1461: 1458: 1455: 1452: 1451: 1447: 1444: 1441: 1438: 1437: 1433: 1430: 1427: 1424: 1423: 1420: 1412: 1409: 1406: 1403: 1400: 1399: 1395: 1392: 1389: 1386: 1383: 1382: 1378: 1375: 1372: 1369: 1366: 1365: 1361: 1358: 1355: 1352: 1349: 1348: 1344: 1341: 1338: 1335: 1332: 1331: 1325: 1323:(very strong) 1320: 1315: 1310: 1307: 1306: 1303: 1301: 1297: 1290: 1286: 1281: 1276: 1266: 1263: 1259: 1255: 1249: 1239: 1236: 1234: 1230: 1223: 1219: 1215: 1209: 1207: 1203: 1199: 1194: 1192: 1188: 1184: 1180: 1171: 1167: 1160: 1155: 1146: 1144: 1140: 1135: 1133: 1132:monochromator 1130:bent crystal 1129: 1125: 1120: 1117: 1112: 1109: 1107: 1092: 1083: 1081: 1077: 1073: 1066: 1062: 1058: 1054: 1050: 1043: 1039: 1035: 1016: 1008: 1005: 1001: 997: 987: 984: 980: 976: 970: 967: 958: 950: 946: 939: 931: 927: 921: 916: 913: 910: 906: 900: 895: 892: 889: 885: 881: 875: 869: 862: 861: 860: 851: 847: 845: 840: 831: 829: 825: 820: 803: 799: 796: 771: 746: 740: 737: 712: 706: 703: 700: 697: 673: 667: 661: 658: 655: 652: 649: 644: 640: 637: 631: 625: 619: 616: 613: 610: 603: 602: 601: 594: 591: 588: 585: 584: 583: 575: 572: 571:least squares 568: 564: 553: 550: 546: 536: 534: 530: 526: 522: 518: 509: 500: 498: 494: 483: 481: 476: 472: 465:Crystallinity 462: 460: 456: 451: 442: 440: 436: 432: 421: 419: 415: 411: 407: 403: 399: 395: 394:diffractogram 391: 387: 383: 379: 375: 352: 346: 340: 337: 332: 328: 325: 319: 313: 307: 304: 301: 298: 295: 292: 289: 281: 269: 268: 267: 266: 265: 264: 263: 261: 257: 253: 249: 245: 241: 237: 233: 224: 220: 218: 214: 210: 206: 202: 198: 194: 190: 186: 182: 179: 175: 171: 167: 162: 160: 155: 151: 147: 143: 138: 136: 132: 128: 124: 120: 116: 112: 106: 96: 93: 91: 87: 84:on powder or 83: 79: 75: 71: 63: 62:yttrium oxide 59: 42: 34: 21: 3162: 3150: 3095:Associations 3063:Organisation 2555:Disclination 2486:Polymorphism 2449:Quasicrystal 2392:Orthorhombic 2332:Miller index 2280:Key concepts 2205: 2184: 2174: 2149: 2145: 2131: 2106: 2102: 2096: 2076: 2033: 2029: 2023: 1988: 1984: 1974: 1955: 1951: 1941: 1916: 1912: 1902: 1885: 1879: 1863: 1847: 1842: 1826:(3–4): 219. 1823: 1819: 1806: 1781: 1773: 1745: 1738: 1722: 1689: 1685: 1679: 1576: 1561: 1556: 1549: 1532: 1527: 1524: 1515: 1512: 1504: 1500: 1418: 1293: 1251: 1237: 1228: 1221: 1217: 1213: 1210: 1205: 1201: 1197: 1195: 1190: 1186: 1178: 1175: 1169: 1165: 1158: 1136: 1127: 1121: 1113: 1110: 1103: 1089: 1079: 1075: 1068: 1064: 1060: 1052: 1045: 1041: 1033: 1031: 857: 848: 841: 837: 827: 821: 688: 598: 581: 559: 548: 542: 529:bulk modulus 516: 514: 493:Miller index 489: 474: 468: 455:Dow Chemical 452: 448: 427: 417: 409: 405: 401: 397: 389: 385: 381: 377: 373: 371: 259: 247: 243: 239: 235: 229: 212: 211:*, and only 208: 204: 200: 196: 192: 188: 184: 180: 163: 139: 130: 126: 122: 108: 94: 89: 69: 68: 3186:Diffraction 3048:Ewald Prize 2816:Diffraction 2794:Diffraction 2777:Diffraction 2719:Bragg plane 2714:Bragg's law 2593:Dislocation 2508:Segregation 2420:Crystallite 2337:Point group 1507:synchrotron 1487:0.070931715 1269:X-ray tubes 414:synchrotron 252:Bragg's law 150:crystalline 146:anisotropic 135:Bragg's law 99:Explanation 3180:Categories 2832:Algorithms 2821:Scattering 2799:Scattering 2782:Scattering 2650:Slip bands 2613:Cross slip 2463:transition 2397:Tetragonal 2387:Monoclinic 2299:Metallurgy 1919:(6): 809. 1858:Chapter 14 1671:References 1629:Metallurgy 1490:0.0632303 1476:0.1392234 1473:0.15405929 1470:0.15444274 1462:0.1620826 1448:0.2084881 1296:X-ray tube 1106:CCD-camera 473:behavior, 232:Laue spots 103:See also: 2939:Databases 2402:Triclinic 2382:Hexagonal 2322:Unit cell 2314:Structure 2209:. Wiley. 2058:103885050 1958:(1): 12. 1765:162131289 1517:samples. 1484:0.0713607 1459:0.1788996 1456:0.1792835 1445:0.2289726 1442:0.2293651 1413:0.063229 1396:0.139222 1379:0.162079 1362:0.175661 1345:0.208487 1078:and atom 1059:for atom 1055:) is the 971:⁡ 907:∑ 886:∑ 800:λ 772:η 747:θ 741:⁡ 713:θ 707:⁡ 701:⋅ 668:θ 662:⁡ 656:⋅ 653:η 641:λ 626:θ 620:⁡ 614:⋅ 549:distorted 521:unit cell 347:θ 341:⁡ 333:λ 329:π 314:θ 308:⁡ 159:texturing 154:isotropic 142:texturing 3152:Category 2987:Journals 2919:OctaDist 2914:JANA2020 2886:Software 2772:Electron 2689:F-center 2476:Eutectic 2437:Fiveling 2432:Twinning 2425:Equiaxed 2015:35974739 1952:Crystals 1714:17009500 1582:See also 1410:0.070930 1407:0.071359 1404:0.071073 1393:0.154056 1390:0.154439 1387:0.154184 1376:0.178897 1373:0.179285 1370:0.179026 1359:0.193604 1356:0.193998 1353:0.193736 1342:0.228970 1339:0.229361 1336:0.229100 1318:(strong) 1128:focusing 1116:vanadium 1067:, while 439:Ă…ngström 3201:Powders 3164:Commons 3112:Germany 2789:Neutron 2679:Vacancy 2538:Defects 2523:GP-zone 2369:Systems 2154:Bibcode 2111:Bibcode 2038:Bibcode 2006:9348868 1921:Bibcode 1694:Bibcode 1425:Element 1328:(weak) 1308:Element 1254:neutron 1233:texture 1124:Guinier 1100:Cameras 1095:Devices 517:in situ 258:vector 244:visible 199:*, and 187:*, and 78:neutron 3107:France 3102:Europe 3035:Awards 2565:Growth 2415:Growth 2213:  2140:and Kβ 2084:  2056:  2013:  2003:  1893:  1871:  1854:  1794:  1763:  1753:  1730:  1712:  1528:phases 1300:X-rays 1285:Bruker 1036:is in 207:* and 115:X-rays 111:X-rays 3129:Japan 3076:IOBCr 2929:SHELX 2924:Olex2 2811:X-ray 2461:Phase 2377:Cubic 2054:S2CID 1710:S2CID 80:, or 74:X-ray 3071:IUCr 2972:ICDD 2967:ICSD 2952:CCDC 2899:Coot 2894:CCP4 2645:Slip 2608:Kink 2211:ISBN 2082:ISBN 2011:PMID 1891:ISBN 1869:ISBN 1852:ISBN 1792:ISBN 1761:OCLC 1751:ISBN 1728:ISBN 1260:and 1227:and 1164:and 844:barn 729:vs. 475:i.e. 424:Uses 56:and 3086:DMG 3081:RAS 2977:PDB 2962:COD 2957:CIF 2909:DSR 2633:GND 2560:CSL 2162:doi 2142:1,3 2138:1,2 2119:doi 2046:doi 2001:PMC 1993:doi 1960:doi 1929:doi 1917:351 1828:doi 1788:122 1702:doi 1557:new 1434:Kβ 1431:Kα1 1428:Kα2 1321:Kα1 1316:Kα2 968:sin 738:sin 704:cos 659:sin 617:cos 480:DSC 338:sin 305:sin 183:*, 3182:: 3124:US 3117:UK 2160:. 2150:56 2148:. 2117:. 2107:39 2105:. 2066:^ 2052:. 2044:. 2034:32 2032:. 2009:. 1999:. 1989:55 1987:. 1983:. 1956:11 1954:. 1950:. 1927:. 1915:. 1911:. 1824:35 1822:. 1818:. 1790:. 1759:. 1708:. 1700:. 1690:10 1688:. 1481:Mo 1467:Cu 1453:Co 1439:Cr 1401:Mo 1384:Cu 1367:Co 1350:Fe 1333:Cr 1326:Kβ 1311:Kα 1193:. 1189:-2 1071:ij 819:. 482:. 195:, 92:. 76:, 48:Cu 2265:e 2258:t 2251:v 2219:. 2168:. 2164:: 2156:: 2125:. 2121:: 2113:: 2090:. 2060:. 2048:: 2040:: 2017:. 1995:: 1968:. 1962:: 1935:. 1931:: 1923:: 1897:. 1836:. 1830:: 1800:. 1767:. 1716:. 1704:: 1696:: 1229:K 1225:0 1222:K 1218:θ 1216:- 1214:θ 1206:θ 1202:θ 1200:- 1198:θ 1191:θ 1187:θ 1179:θ 1170:θ 1166:K 1162:0 1159:K 1080:j 1076:i 1069:r 1065:q 1061:i 1053:q 1051:( 1048:i 1046:f 1042:N 1034:q 1017:, 1009:j 1006:i 1002:r 998:q 993:) 988:j 985:i 981:r 977:q 974:( 962:) 959:q 956:( 951:j 947:f 943:) 940:q 937:( 932:i 928:f 922:N 917:1 914:= 911:j 901:N 896:1 893:= 890:i 882:= 879:) 876:q 873:( 870:I 828:k 804:D 797:k 750:) 744:( 716:) 710:( 698:B 674:, 671:) 665:( 650:+ 645:D 638:k 632:= 629:) 623:( 611:B 418:q 410:λ 406:q 402:θ 398:I 390:λ 386:θ 382:k 378:q 374:G 353:. 350:) 344:( 326:4 320:= 317:) 311:( 302:k 299:2 296:= 293:q 290:= 286:| 282:G 278:| 260:G 248:θ 240:θ 213:q 209:χ 205:φ 201:χ 197:φ 193:q 189:z 185:y 181:x 131:θ 127:d 123:d 54:5 52:O 50:2 46:2

Index


X-ray powder diffraction of Y2Cu2O5 and Rietveld refinement with two phases, showing 1% of yttrium oxide impurity (red tickers).

Rietveld refinement
yttrium oxide
X-ray
neutron
electron diffraction
microcrystalline
Diffraction grating
X-rays
X-rays
de Broglie wavelength
Bragg's law
texturing
anisotropic
crystalline
isotropic
texturing
Bravais lattice
reciprocal lattice
Fourier transform
reciprocal axes
reciprocal space

Laue spots
Bragg's law
reciprocal lattice
diffractogram
synchrotron

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑