Knowledge

Nanofiber

Source πŸ“

278:
into pores. Next, two types of phase separation can be carried out on the polymer solution depending on the desired pattern. Liquid-liquid separation is usually used to form bicontinuous phase structures while solid-liquid phase separation is used to form crystal structures. The gelation step plays a crucial role in controlling the porous morphology of the nanofibrous matrices. Gelation is influenced by temperature, polymer concentration, and solvent properties. Temperature regulates the structure of the fiber network: low gelation temperature results in formation of nanoscale fiber networks while high gelation temperature leads to the formation of a platelet-like structure. Polymer concentration affects fiber properties: an increase in polymer concentration decreases porosity and increases mechanical properties such as tensile strength. Solvent properties influence morphology of the scaffolds. After gelation, gel is placed in distilled water for solvent exchange. Afterwards, the gel is removed from the water and goes through freezing and freeze-drying. It is then stored in a desiccator until characterization.
464:. It shows low toxicity, low cost and slow degradation. PCL can be combined with other materials such as gelatin, collagen, chitosan, and calcium phosphate to improve the differentiation and proliferation capacity (2, 17). PLLA is another popular synthetic polymer. PLLA is well known for its superior mechanical properties, biodegradability and biocompatibility. It shows efficient cell migration ability due to its high spatial interconnectivity, high porosity and controlled alignment. A blend of PLLA and PLGA scaffold matrix has shown proper biomimetic structure, good mechanical strength and favorable bioactivity. 196: 231:. A critical value is attained upon further increase in the electric field in which the repulsive electrostatic force overcomes the surface tension and the charged jet of fluid is ejected from the tip of the Taylor cone. The discharged polymer solution jet is unstable and elongates as a result, allowing the jet to become very long and thin. Charged polymer fibers solidifies with solvent evaporation. Randomly-oriented nanofibers are collected on the collector. Nanofibers can also be collected in a highly aligned fashion by using specialized collectors such as the 682:. Carbon materials have been widely used as cathodes because of their excellent electrical conductivities, large surface areas, and chemical stability. Especially relevant for lithium-air batteries, carbon materials act as substrates for supporting metal oxides. Binder-free electrospun carbon nanofibers are particularly good potential candidates to be used in electrodes in lithium-oxygen batteries because they have no binders, have open macroporous structures, have carbons that support and catalyze the oxygen reduction reactions, and have versatility. 642:
NanoVelcro CTC assays underwent three generations of development. The first generation NanoVelcro Chip was created for CTC enumeration for cancer prognosis, staging, and dynamic monitoring. The second generation NanoVelcro-LCM was developed for single-cell CTC isolation. The individually isolated CTCs can be subjected to single-CTC genotyping. The third generation Thermoresponsive Chip allowed for CTC purification. The nanofiber polymer brushes undergo temperature-dependent conformational changes to capture and release CTCs.
356: 20: 858: 576: 113:, template synthesis, and thermal-induced phase separation. Electrospinning is the most commonly used method to generate nanofibers because of the straightforward setup, the ability to mass-produce continuous nanofibers from various polymers, and the capability to generate ultrathin fibers with controllable diameters, compositions, and orientations. This flexibility allows for controlling the shape and arrangement of the fibers so that different structures ( 872: 671: 460:(PEVA) have been developed as alternatives for integration into scaffolds. Being biodegradable and biocompatible, these synthetic polymers can be used to form matrices with a fiber diameter within the nanometer range. Out of these synthetic polymers, PCL has generated considerable enthusiasm among researchers. PCL is a type of biodegradable polyester that can be prepared via ring-opening polymerization of Ξ΅-caprolactone using 762: 634: 303:(hollow nanofiber). This method can be used to prepare fibrils and tubules of many types of materials, including metals, semiconductors and electronically conductive polymers. The uniform pores allow for control of the dimensions of the fibers so nanofibers with very small diameters can be produced through this method. However, a drawback of this method is that it cannot make continuous nanofibers one at a time. 597:
over a large surface area. Whereas surface area to volume ratio can only be controlled by adjusting the radius for spherical vesicles, nanofibers have more degrees of freedom in controlling the ratio by varying both the length and the cross-sectional radius. This adjustability is important for their application in drug delivery system in which the functional parameters need to be precisely controlled.
478: 204: 532:) in the patient own body and transplanting it into the defective site. Transplantation of autologous bone has the best clinical outcome because it integrates reliably with the host bone and can avoid complications with the immune system. But its use is limited by its short supply and donor site morbidity associated with the harvest procedure. Furthermore, autografted bones are 564:. Bone substitute materials intended to replace autologous or allogeneic bone consist of bioactive ceramics, bioactive glasses, and biological and synthetic polymers. The basis of bone tissue engineering is that the materials will be resorbed and replaced over time by the body’s own newly regenerated biological tissue. 587:
carrier include maximum effect upon delivery of the drug to the target organ, evasion of the immune system of the body in the process of reaching the organ, retention of the therapeutic molecules from preparatory stages to the final delivery of the drug, and proper release of the drug for exertion of
666:
on the electrode. During recharging, the lithium oxides separate again into lithium and oxygen which is released back into the atmosphere. This conversion sequence is highly inefficient because there is significant voltage difference of more than 1.2 volts between the output voltage and the charging
617:
in tumors, these single-sample analyses fail to account for the diverse genomic nature of tumors. Considering the invasive nature, psychological stress, and the financial burden resulting from repeated tumor biopsies in patients, biomarkers that could be judged through minimally invasive procedures,
600:
Preliminary studies indicate that antibiotics and anticancer drugs may be encapsulated in electrospun nanofibers by adding the drug into the polymer solution prior to electrospinning. Surface-loaded nanofiber scaffolds are useful as adhesion barriers between internal organs and tissues post-surgery.
242:(ECM) well. This resemblance is a major advantage of electrospinning because it opens up the possibility of mimicking the ECM with regards to fiber diameters, high porosity, and mechanical properties. Electrospinning is being further developed for mass production of one-by-one continuous nanofibers. 169:
Anton Formhals was the first person to attempt nanofiber production between 1934 and 1944 and publish the first patent describing the experimental production of nanofibers. In 1966, Harold Simons published a patent for a device that could produce thin and light nanofiber fabrics with diverse motifs.
551:
Bone tissue engineering presents a versatile response to treat bone injuries and deformations. Nanofibers produced via electrospinning mimics the architecture and characteristics of natural extracellular matrix particularly well. These scaffolds can be used to deliver bioactive agents that promote
748:
that traps airborne toxins. As the filters become saturated, chemicals begin to pass through and render the respirators useless. In order to easily determine when the filter is spent, Kelly and his team developed a mask equipped with a sensor composed of carbon nanofibers assembled into repeating
629:
are more likely to have detectable CTCs in the bloodstream but CTCs also exist in patients with localized diseases. It has been found that the number of CTCs present in the bloodstream of patients with metastatic prostate and colorectal cancer is prognostic of the overall survival of tumors. CTCs
596:
that result in no harm to the tissue of the host and no toxic accumulation in the human body, respectively. Due to their cylindrical morphology, nanofibers possess a high surface area-to-volume ratio. As a result, the fibers possess high drug-loading capacity and may release therapeutic molecules
408:
nanofibers produced via electrospinning, Shih et al. found that the engineered collagen scaffold showed an increase in cell adhesion and decrease in cell migration with increasing fiber diameter. Using silk scaffolds as a guide for growth for bone tissue regeneration, Kim et al. observed complete
277:
The homogenous polymer solution in the first step is thermodynamically unstable and tends to separate into polymer-rich and polymer-lean phases under appropriate temperature. Eventually after solvent removal, the polymer-rich phase solidifies to form the matrix and the polymer-lean phase develops
226:
is applied to the end of the capillary tube that contains the polymer solution held by its surface tension and forms a charge on the surface of the liquid. As the intensity of the electric field increases, the hemispherical surface of the fluid at the tip of the capillary tube elongates to form a
489:
Simon, in a 1988 NIH SBIR grant report, showed that electrospinning could be used to produce nano- and submicron-scale polystyrene and polycarbonate fibrous mats specifically intended for use as in vitro cell substrates. This early use of electrospun fibrous lattices for cell culture and tissue
286:
The drawing method makes long single strands of nanofibers one at a time. The pulling process is accompanied by solidification that converts the dissolved spinning material into a solid fiber. A cooling step is necessary in the case of melt spinning and evaporation of solvent in the case of dry
828:
Sportswear textile with nanofiber membrane inside is based on the modern nanofiber technology where the core of the membrane consists of fibers with a diameter 1000Γ— thinner than human hair. This extremely dense "sieve" with more than 2,5 billion of pores per square centimeter works much more
819:
Nanofibers have the capabilities in oil–water separation, most particularly in sorption process when the material in use has the oleophilic and hydrophobic surfaces. These characteristic enable the nanofibers to be used as a tool to combat either oily waste- water from domestic household and
667:
voltage of the battery meaning that approximately 30% of the electrical energy is lost as heat when the battery is charging. Also the large volume changes resulting from continuous conversion of oxygen between its gaseous and solid state puts stress on the electrode and limits its lifetime.
641:
Recently, Ke et al. developed a NanoVelcro chip that captures the CTCs from the blood samples. When blood is passed through the chip, the nanofibers coated with protein antibodies bind to the proteins expressed on the surface of cancer cells and act like Velcro to trap CTCs for analysis. The
98:. The diameters of nanofibers depend on the type of polymer used and the method of production. All polymer nanofibers are unique for their large surface area-to-volume ratio, high porosity, appreciable mechanical strength, and flexibility in functionalization compared to their 3925: 120:
Nanofibers have many possible technological and commercial applications. They are used in tissue engineering, drug delivery, seed coating material, cancer diagnosis, lithium-air battery, optical sensors, air filtration, redox-flow batteries and composite materials.
740:
have been successfully incorporated into polymer nanofibers. Meng et al. showed that quantum dot-doped polymer nanofiber sensor for humidity detection shows fast response, high sensitivity, and long-term stability while requiring low power consumption.
287:
spinning. A limitation, however, is that only a viscoelastic material that can undergo extensive deformations while possessing sufficient cohesion to survive the stresses developed during pulling can be made into nanofibers through this process.
624:
is an option that is becoming increasingly popular as an alternative to solid tumor biopsy. This is simply a blood draw that contains circulating tumor cells (CTCs) which are shed into the bloodstream from solid tumors. Patients with
141:
between liquids by preparing an experiment in which he observed a spherical water drop on a dry surface warp into a cone shape when it was held below an electrically charged amber. This deformation later came to be known as the
720:
Electrospun nanofibers are particularly well-suitable for optical sensors because sensor sensitivity increases with increasing surface area per unit mass. Optical sensing works by detecting ions and molecules of interest via
485:
In tissue engineering, a highly porous artificial extracellular matrix is needed to support and guide cell growth and tissue regeneration. Natural and synthetic biodegradable polymers have been used to create such scaffolds.
588:
the intended therapeutic effect. Nanofibers are under study as a possible drug carrier candidate. Natural polymers such as gelatin and alginate make for good fabrication biomaterials for carrier nanofibers because of their
363:
Due to their high porosity and large surface area-to-volume ratio, nanofibers are widely used to construct scaffolds for biological applications. Major examples of natural polymers used in scaffold production are
3372:
Sukumar UK, Packirisamy G (2019-10-08). "Fabrication of Nanofibrous Scaffold Grafted with Gelatin Functionalized Polystyrene Microspheres for Manifesting Nanomechanical Cues of Stretch Stimulated Fibroblast".
409:
bone union after 8 weeks and complete healing of defects after 12 weeks whereas the control in which the bone did not have the scaffold displayed limited mending of defects in the same time period. Similarly,
2478:
Madheswaran, Divyabharathi; Sivan, Manikandan; Valtera, Jan; Kostakova, Eva Kuzelova; Egghe, Tim; Asadian, Mahtab; Novotny, Vit; Nguyen, Nhung H. A.; Sevcu, Alena; Morent, Rino; Geyter, Nathalie De (2022).
2088:
Nascimento ML, AraΓΊjo ES, Cordeiro ER, de Oliveira AH, de Oliveira HP (2015). "A Literature Investigation about Electrospinning and Nanofibers: Historical Trends, Current Status and Future Challenges".
705:
O. The oxygen remains in its solid state as it transitions among these forms. The chemical reactions of these transitions provide electrical energy. During charging, the transitions occur in reverse.
693:
and does not convert between gaseous and solid forms during charging and discharging. When the battery is discharging, lithium ions in nanolithia and react with superoxide oxygen the matrix to form Li
3230:
Hejazi F, Mirzadeh H (September 2016). "Novel 3D scaffold with enhanced physical and cell response properties for bone tissue regeneration, fabricated by patterned electrospinning/electrospraying".
744:
Kelly et al. developed a sensor that warns first responders when the carbon filters in their respirators have become saturated with toxic fume particles. The respirators typically contain activated
235:, metal frame, or a two-parallel plates system. Parameters such as jet stream movement and polymer concentration have to be controlled to produce nanofibers with uniform diameters and morphologies. 2622:
Kim KW, Lee KH, Khil MS, Ho YS, Kim HY (2004). "The effect of molecular weight and the linear velocity of drum surface on the properties of electrospun poly(ethylene terephthalate) nonwovens".
567:
Tissue engineering is not only limited to the bone: a large amount of research is devoted to cartilage, ligament, skeletal muscle, skin, blood vessel, and neural tissue engineering as well.
173:
Only at the end of the 20th century have the words electrospinning and nanofiber become common language among scientists and researchers. Electrospinning continues to be developed today.
773:(VOC) from the atmosphere. Scholten et al. showed that adsorption and desorption of VOC by electrospun nanofibrous membrane were faster than the rates of conventional activated carbon. 166:(1855-1944) published a manuscript about nanofiber development and production. In 1900, American inventor John Francis Cooley (1861-1903) filed the first modern electrospinning patent. 780:(MSHA). Recent work with mining equipment manufacturers and the MSHA has shown that nanofiber filter media can reduce cabin dust concentration to a greater extent compared to standard 2388:
Sarbatly R, Krishnaiah D, Kamin Z (May 2016). "A review of polymer nanofibres by electrospinning and their application in oil-water separation for cleaning up marine oil spills".
3618:
Mo XM, Xu CY, Kotaki M, Ramakrishna S (May 2004). "Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation".
3097:
Zhang C, Xue X, Luo Q, Li Y, Yang K, Zhuang X, et al. (November 2014). "Self-assembled Peptide nanofibers designed as biological enzymes for catalyzing ester hydrolysis".
685:
Zhu et al. developed a novel cathode that can store lithium and oxygen in the electrode they named nanolithia which is a matrix of carbon nanofibers periodically embedded with
490:
engineering showed that Human Foreskin Fibroblasts (HFF), transformed Human Carcinoma (HEp-2), and Mink Lung Epithelium (MLE) would adhere to and proliferate upon the fibers.
2294:"Improved methods of and apparatus for electrically separating the relatively volatile liquid component from the component of relatively fixed substances of composite fluids" 807:
and other particles. Filtration efficiency is at about 99.9% and the principle of filtration is mechanical. Particles in the air are bigger than pores in nanofiber web, but
1045:"Alternating current electrospinning: The impacts of various high-voltage signal shapes and frequencies on the spinnability and productivity of polycaprolactone nanofibers" 517:) make up the nanocomposite structure of the bone ECM. The organic collagen fibers and the inorganic mineral salts provide flexibility and toughness, respectively, to ECM. 4259:
Singhal R, Kalra V (2016). "Binder-free hierarchically-porous carbon nanofibers decorated with cobalt nanoparticles as efficient cathodes for lithium-oxygen batteries".
3173:
Kim KH, Jeong L, Park HN, Shin SY, Park WH, Lee SC, et al. (November 2005). "Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration".
1726: 717:
transparency, great flexibility, and biocompatibility, polymer optical fibers show great potential for short-distance networking, optical sensing and power delivery.
501:
pattern and composed of organized structures that vary in length from the centimeter range all the way to the nanometer scale. Nonmineralized organic component (i.e.
404:. Its fibrillary structure, which varies in diameter from 50-500 nm, is important for cell recognition, attachment, proliferation and differentiation. Using 1319:
Ahn SY, Mun CH, Lee SH (2015). "Microfluidic spinning of fibrous alginate carrier having highly enhanced drug loading capability and delayed release profile".
829:
efficiently with vapor removal and brings better level of water resistance. In the language of numbers, the nanofiber textile brings the following parameters:
776:
Airborne contamination in the personnel cabins of mining equipment is of concern to the mining workers, mining companies, and government agencies such as the
323:
residues to form proteins with unique three-dimensional structures. The self-assembly process of peptide nanofibers involves various driving forces such as
3926:"Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer" 2534:. 6th International Conference on Recent Advances in Materials, Minerals & Environment (RAMM) 2018, RAMM 2018, 27–29 November 2018, Penang, Malaysia. 1696:
Zhang B, Kang F, Tarascon JM, Kim JK (2016). "Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage".
493:
Nanofiber scaffolds are used in bone tissue engineering to mimic the natural extracellular matrix of the bones. The bone tissue is arranged either in a
3653:
Yang F, Xu CY, Kotaki M, Wang S, Ramakrishna S (2004). "Characterization of neural stem cells on electrospun poly(L-lactic acid) nanofibrous scaffold".
1939:
Scholten E, Bromberg L, Rutledge GC, Hatton TA (October 2011). "Electrospun polyurethane fibers for absorption of volatile organic compounds from air".
4380:
Liu H, Edel JB, Bellan LM, Craighead HG (April 2006). "Electrospun polymer nanofibers as subwavelength optical waveguides incorporating quantum dots".
520:
Although the bone is a dynamic tissue that can self-heal upon minor injuries, it cannot regenerate after experiencing large defects such as bone tumor
3320:
Sun B, Long YZ, Zhang HD, Li MM, Duvail JL, Jiang XY, Yin HL (2014). "Advances in three-dimensional nanofibrous macrostructures via electrospinning".
150:(1842-1919) analyzed the unstable states of liquid droplets that were electrically charged, and noted that the liquid was ejected in tiny jets when 820:
industrial activities, or oily seawater due to the oil run down to the ocean from oil transportation activities and oil tank cleaning on a vessel.
3881:
Ignatova M, Rashkov I, Manolova N (April 2013). "Drug-loaded electrospun materials in wound-dressing applications and in local cancer treatment".
2797:
Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003). "A review on polymer nanofibers by electrospinning and their applications in nanocomposites".
2433:"Plasma treatment effects on bulk properties of polycaprolactone nanofibrous mats fabricated by uncommon AC electrospinning: A comparative study" 2837:
Cheng J, Jun Y, Qin J, Lee SH (January 2017). "Electrospinning versus microfluidic spinning of functional fibers for biomedical applications".
654:
are of particular interest due to their considerable energy storing capacities and high power densities. As the battery is being used, lithium
3846:
Kumbar SG, Nair LS, Bhattacharyya S, Laurencin CT (2006). "Polymeric nanofibers as novel carriers for the delivery of therapeutic molecules".
2481:"Composite yarns with antibacterial nanofibrous sheaths produced by collectorless alternating-current electrospinning for suture applications" 1600:"Programming thermoresponsiveness of NanoVelcro substrates enables effective purification of circulating tumor cells in lung cancer patients" 1779:
Wang X, Drew C, Lee SH, Senecal KJ, Kumar J, Samuelson LA (2002). "Electrospun nanofibrous membranes for highly sensitive optical sensors".
1357:
Garg T, Rath G, Goyal AK (April 2015). "Biomaterials-based nanofiber scaffold: targeted and controlled carrier for cell and drug delivery".
214:
is the most commonly used method to fabricate nanofibers. The instruments necessary for electrospinning include a high voltage supplier, a
3796:"Prevention of postsurgery-induced abdominal adhesions by electrospun bioabsorbable nanofibrous poly(lactide-co-glycolide)-based membranes" 3062:
Malkar NB, Lauer-Fields JL, Juska D, Fields GB (2003). "Characterization of peptide-amphiphiles possessing cellular activation sequences".
87: 689:. These cobalt oxides provide stability to the normally unstable superoxide-containing nanolithia. In this design, oxygen is stored as LiO 4224:
Mitchell RR, Gallant BM, Thompson CV, Shao-Horn Y (2011). "All-carbon-nanofiber electrodes for high-energy rechargeable LiO2 batteries".
3509:
Lin VS, Lee MC, O'Neal S, McKean J, Sung KL (October 1999). "Ligament tissue engineering using synthetic biodegradable fiber scaffolds".
583:
Successful delivery of therapeutics to the intended target largely depends on the choice of the drug carrier. The criteria for an ideal
548:
which transplants bones harvested from a human cadaver. However, allografts introduce the risk of disease and infection in the host.
2657:
Dersch R, Liu T, Schaper AK, Greiner A, Wendorff JH (2003). "Electrospun nanofibers: internal structure and intrinsic orientation".
2312: 2028:
Maccaferri, Emanuele; Mazzocchetti, Laura; Benelli, Tiziana; Brugo, Tommaso Maria; Zucchelli, Andrea; Giorgini, Loris (2022-01-12).
1238: 3721:
Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X (July 2014). "Electrospinning of polymeric nanofibers for drug delivery applications".
674:
Schematic of a lithium-air battery. For the nanofiber-based lithium-air battery, the cathode would be made up of carbon nanofibers.
436:
However, cellular recognition of natural polymers can easily initiate an immune response. Consequently, synthetic polymers such as
3756:
Yoo HS, Kim TG, Park TG (October 2009). "Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery".
147: 1441:"Enhancing Agrichemical Delivery and Seedling Development with Biodegradable, Tunable, Biopolymer-Based Nanofiber Seed Coatings" 753:
that reflect specific wavelengths of light. The sensors exhibit an iridescent color that changes when the fibers absorb toxins.
238:
The electrospinning technique transforms many types of polymers into nanofibers. An electrospun nanofiber network resembles the
4415:
Meng C, Xiao Y, Wang P, Zhang L, Liu Y, Tong L (September 2011). "Quantum-dot-doped polymer nanofibers for optical sensing".
2919: 1101: 777: 579:
Drugs and biopolymers can be loaded onto nanofibers via simple adsorption, nanoparticles adsorption, and multilayer assembly.
4112:"High-purity prostate circulating tumor cell isolation by a polymer nanofiber-embedded microchip for whole exome sequencing" 295:
The template synthesis method uses a nanoporous membrane template composed of cylindrical pores of uniform diameter to make
4469: 1995:
Graham K, Ouyang M, Raether T, Grafe T, McDonald B, Knauf P (2002). "Polymeric nanofibers in air filtration applications".
1478:
De Gregorio PR, Michavila G, Ricciardi Muller L, de Souza Borges C, Pomares MF, Saccol de SΓ‘ EL, et al. (2017-05-04).
885: 835:Β·       RET 4.8 vapor permeability and 30,000 mm water column (version preferring water resistance) 601:
Adhesion occurs during the healing process and can bring on complications such as chronic pain and reoperation failure.
4063:"A comparison of isolated circulating tumor cells and tissue biopsies using whole-genome sequencing in prostate cancer" 2431:
Sivan M, Madheswaran D, Asadian M, Cools P, Thukkaram M, Van Der Voort P, Morent R, De Geyter N, Lukas D (2020-10-15).
713:
Polymer optical fibers have generated increasing interest in recent years. Because of low cost, ease of handling, long
1857:
Zubia J, Arrue J (2001). "Plastic optical fibers: an introduction to their technological processes and applications".
1747:
Yang X, He P, Xia Y (2009). "Preparation of mesocellular carbon foam and its application for lithium/oxygen battery".
3705: 2332:"Polyvinylidene fluoride molecules in nanofibers, imaged at atomic scale by aberration corrected electron microscopy" 1897:"Carbon and carbon/silicon composites templated in rugate filters for the adsorption and detection of organic vapors" 832:Β·       RET 1.0 vapor permeability and 10,000 mm water column (version preferring breathability) 1827:
Yang Q, Jiang X, Gu F, Ma Z, Zhang J, Tong L (2008). "Polymer micro or nanofibers for optical device applications".
1544:"Clinical Applications of NanoVelcro Rare-Cell Assays for Detection and Characterization of Circulating Tumor Cells" 274:
under vacuum. Thermal-induced phase separation method is widely used to generate scaffolds for tissue regeneration.
4294:
Zhu Z, Kushima A, Yin Z, Qi L, Amine K, Lu J, Li J (2016). "Anion-redox nanolithia cathodes for Li-ion batteries".
2293: 1043:
Sivan, Manikandan; Madheswaran, Divyabharathi; Valtera, Jan; Kostakova, Eva Kuzelova; Lukas, David (2022-01-01).
3546:"Electrospun degradable polyesterurethane membranes: potential scaffolds for skeletal muscle tissue engineering" 2528:"Production of poly (Ξ΅-caprolactone) Antimicrobial Nanofibers by Needleless Alternating Current Electrospinning" 2030:"Self-Assembled NBR/Nomex Nanofibers as Lightweight Rubbery Nonwovens for Hindering Delamination in Epoxy CFRPs" 765:
Paints and protective coatings on furniture contain volatile organic compounds such as toluene and formaldehyde.
524:
and severe nonunion fractures because it lacks the appropriate template. Currently, the standard treatment is
133:
more than four centuries ago. Beginning with the development of the electrospinning method, English physicist
38:
and hence have different physical properties and application potentials. Examples of natural polymers include
1118: 449: 83: 1480:"Beneficial rhizobacteria immobilized in nanofibers for potential application as soybean seed bioinoculants" 457: 151: 134: 544:
is complete due to high remodeling rates in the body. Another strategy for treating severe bone damage is
725:. Wang et al. successfully developed nanofibrous thin film optical sensors for metal ion (Fe and Hg) and 2232:"On the equilibrium of liquid conducting masses charged with electricity London, Edinburgh, and Dublin" 686: 250:
Thermal-induced phase separation separates a homogenous polymer solution into a multi-phase system via
3282:
Burg KJ, Porter S, Kellam JF (December 2000). "Biomaterial developments for bone tissue engineering".
2527: 4169:"Capture and stimulated release of circulating tumor cells on polymer-grafted silicon nanostructures" 3349:"NIH PHASE I FINAL REPORT: FIBROUS SUBSTRATES FOR CELL CULTURE (R3RR03544A) (PDF Download Available)" 2432: 1997:
Fifteenth Annual Technical Conference & Expo of the American Filtration & Separations Society
770: 2173: 1801: 678:
The performance of these batteries depends on the characteristics of the material that makes up the
138: 1652:"Circulating tumor cells: a novel prognostic factor for newly diagnosed metastatic breast cancer" 540:
for nutrients, which affects their viability in the host. The grafts can also be resorbed before
324: 255: 110: 2130: 528:
which involves obtaining the donor bone from a non-significant and easily accessible site (i.e.
3965:"Circulating tumor cells predict survival in early average-to-high risk breast cancer patients" 3963:
Rack B, Schindlbeck C, JΓΌckstock J, Andergassen U, Hepp P, Zwingers T, et al. (May 2014).
1796: 895: 733: 722: 481:
Bone matrix composed of collagen fibrils. Nanofiber scaffolds are able to mimic such structure.
263: 91: 3583:
Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002). "Electrospinning of collagen nanofibers".
1650:
Cristofanilli M, Hayes DF, Budd GT, Ellis MJ, Stopeck A, Reuben JM, et al. (March 2005).
117:
hollow, flat and ribbon shaped) can be fabricated depending on intended application purposes.
2160: 613:
is the current standard method for molecular characterization in testing for the presence of
222:
is placed into the polymer solution and the other electrode is attached to the collector. An
3924:
Cohen SJ, Punt CJ, Iannotti N, Saidman BH, Sabbath KD, Gabrail NY, et al. (July 2008).
3211:
Azimi B, Nourpanah P, Rabiee M, Arbab S (2014). "Poly (Ξ΅-caprolactone) fiber: an overview".
2480: 842:
so its production is not harmful to nature. Membranes to sportswear made from nanofiber are
732:
Quantum dots show useful optical and electrical properties, including high optical gain and
4346: 4303: 4268: 4180: 4123: 3020: 2981:
Martin C (1995). "Template synthesis of electronically conductive polymer nanostructures".
2944: 2666: 2397: 2343: 2196: 1866: 1788: 1491: 1328: 1182: 1130: 239: 34:
range (typically, between 1 nm and 1 ΞΌm). Nanofibers can be generated from different
8: 2330:
Lolla D, Gorse J, Kisielowski C, Miao J, Taylor PL, Chase GG, Reneker DH (January 2016).
651: 521: 336: 328: 316: 163: 159: 4358: 4350: 4307: 4272: 4184: 4127: 3024: 2948: 2670: 2401: 2347: 2200: 1870: 1792: 1495: 1332: 1186: 1134: 4440: 4362: 4319: 4241: 4201: 4168: 4144: 4111: 4087: 4062: 4038: 4013: 3989: 3964: 3906: 3820: 3811: 3795: 3678: 3631: 3561: 3423:
Betz RR (May 2002). "Limitations of autograft and allograft: new synthetic solutions".
3398: 3333: 3255: 3044: 2960: 2850: 2814: 2767: 2742: 2718: 2693: 2639: 2599: 2574: 2555: 2508: 2460: 2367: 2212: 2062: 2029: 1974: 1624: 1599: 1568: 1543: 1514: 1479: 1460: 1421: 1382: 1198: 1146: 1074: 964: 937: 726: 3486: 3459: 3295: 2935:
Ondarcuhu T, Joachim C (1998). "Drawing a single nanofiber over hundreds of microns".
2895: 2878: 2810: 2155:
Gilbert W (1600). "De magnete, magneticisque corporibus, et de magno magnete tellure".
618:
such as blood draws, constitute an opportunity for progression in precision medicine.
195: 4432: 4397: 4206: 4149: 4092: 4043: 3994: 3945: 3898: 3863: 3825: 3773: 3738: 3701: 3670: 3635: 3600: 3565: 3545: 3526: 3491: 3440: 3402: 3390: 3348: 3299: 3247: 3190: 3155: 3114: 3079: 3036: 2964: 2915: 2854: 2772: 2723: 2643: 2604: 2559: 2547: 2512: 2500: 2464: 2452: 2413: 2371: 2359: 2106: 2102: 2067: 2049: 2010: 1966: 1918: 1673: 1629: 1573: 1519: 1464: 1425: 1374: 1298: 1277:
Sharifi F, Sooriyarachchi AC, Altural H, Montazami R, Rylander MN, Hashemi N (2016).
1252: 1202: 1097: 1078: 1066: 969: 890: 877: 626: 437: 401: 71: 4366: 4245: 3910: 3259: 3048: 2409: 2216: 1294: 1142: 4444: 4424: 4389: 4354: 4311: 4276: 4233: 4196: 4188: 4139: 4131: 4082: 4074: 4033: 4025: 3984: 3976: 3937: 3890: 3855: 3815: 3807: 3765: 3730: 3682: 3662: 3627: 3592: 3557: 3518: 3481: 3471: 3432: 3382: 3329: 3291: 3239: 3182: 3145: 3106: 3071: 3028: 2990: 2952: 2890: 2846: 2818: 2806: 2762: 2754: 2713: 2705: 2674: 2631: 2594: 2586: 2539: 2492: 2448: 2444: 2405: 2351: 2274: 2243: 2204: 2098: 2057: 2041: 1978: 1956: 1948: 1908: 1874: 1836: 1806: 1756: 1705: 1663: 1619: 1611: 1563: 1555: 1509: 1499: 1477: 1452: 1413: 1386: 1366: 1336: 1290: 1242: 1234: 1190: 1150: 1138: 1056: 1023: 959: 949: 750: 589: 561: 441: 426: 332: 218:
with a pipette or needle with a small diameter, and a metal collecting screen. One
75: 4323: 3734: 3436: 3186: 3032: 1709: 1456: 1417: 630:
also have been demonstrated to inform prognosis in earlier stages of the disease.
4464: 3894: 3011:
Martin CR (December 1994). "Nanomaterials: a membrane-based synthetic approach".
2526:
Manikandan, S.; Divyabharathi, M.; Tomas, K.; Pavel, P.; David, L. (2019-01-01).
1760: 1504: 1370: 1225:
Ma PX, Zhang R (July 1999). "Synthetic nano-scale fibrous extracellular matrix".
1061: 1044: 502: 498: 453: 405: 385: 190: 155: 130: 106: 59: 4029: 3150: 3133: 2956: 2543: 2131:"The history of the science and technology of electrospinning from 1600 to 1995" 1440: 1401: 3769: 2709: 2331: 863: 593: 506: 355: 340: 251: 223: 215: 95: 3794:
Zong X, Li S, Chen E, Garlick B, Kim KS, Fang D, et al. (November 2004).
3698:
Bioactive-based poly(anhydride-esters) and blends for controlled drug delivery
3544:
Riboldi SA, Sampaolesi M, Neuenschwander P, Cossu G, Mantero S (August 2005).
3243: 2278: 2263:"On the production, properties, and some suggested uses of the finest threads" 2247: 19: 4458: 4315: 4078: 3941: 3666: 2698:
Materials Science & Engineering. C, Materials for Biological Applications
2551: 2504: 2456: 2053: 1173:
Li D, Xia Y (2004). "Electrospinning of nanofibers: reinventing the wheel?".
1070: 954: 663: 659: 621: 557: 553: 271: 232: 4012:
Lu YT, Zhao L, Shen Q, Garcia MA, Wu D, Hou S, et al. (December 2013).
3134:"Growth of mesenchymal stem cells on electrospun type I collagen nanofibers" 2743:"Electrospinning fundamentals: optimizing solution and apparatus parameters" 1668: 1651: 1598:
Ke Z, Lin M, Chen JF, Choi JS, Zhang Y, Fong A, et al. (January 2015).
1012:"Electrospun biodegradable nanofibers scaffolds for bone tissue engineering" 637:
CTC capture and release mechanism of third generation Thermoresponsive Chip.
4436: 4428: 4401: 4393: 4210: 4192: 4153: 4135: 4096: 4047: 3998: 3949: 3902: 3867: 3829: 3777: 3742: 3674: 3639: 3604: 3569: 3530: 3522: 3495: 3444: 3394: 3386: 3303: 3251: 3194: 3159: 3118: 3083: 3040: 2858: 2776: 2727: 2694:"Effect of electrospinning parameters on the nanofiber diameter and length" 2608: 2417: 2363: 2208: 2110: 2071: 2045: 1970: 1922: 1913: 1896: 1878: 1677: 1633: 1577: 1523: 1378: 1302: 1256: 1194: 973: 839: 541: 514: 510: 494: 445: 373: 79: 47: 3980: 1400:
Farias BV, Pirzada T, Mathew R, Sit TL, Opperman C, Khan SA (2019-12-16).
105:
There exist many different methods to make nanofibers, including drawing,
4167:
Hou S, Zhao H, Zhao L, Shen Q, Wei KS, Suh DY, et al. (March 2013).
4061:
Jiang R, Lu YT, Ho H, Li B, Chen JF, Lin M, et al. (December 2015).
3859: 1278: 1247: 737: 650:
Among many advanced electrochemical energy storage devices, rechargeable
529: 430: 228: 143: 2994: 1961: 1542:
Chen JF, Zhu Y, Lu YT, Hodara E, Hou S, Agopian VG, et al. (2016).
575: 181:
Many chemical and mechanical techniques for preparing nanofibers exist.
4280: 4237: 2678: 2635: 2355: 2187:
Taylor G (1964). "Disintegration of water drops in an electric field".
1559: 1439:
Xu T, Ma C, Aytac Z, Hu X, Ng KW, White JC, Demokritou P (2020-06-29).
1340: 1239:
10.1002/(sici)1097-4636(199907)46:1<60::aid-jbm7>3.0.co;2-h
714: 545: 320: 99: 3596: 3110: 3075: 2590: 2496: 1952: 1840: 1810: 1615: 1028: 1011: 857: 1402:"Electrospun Polymer Nanofibers as Seed Coatings for Crop Protection" 1276: 843: 781: 614: 610: 537: 533: 525: 461: 369: 359:
Collagen fibers in a cross-sectional area of dense connective tissue.
219: 43: 31: 3543: 2262: 2231: 670: 477: 3962: 2087: 804: 792: 745: 422: 418: 397: 393: 389: 365: 267: 259: 67: 63: 39: 35: 3476: 2027: 2011:"A bibliometric review of flow batteries' progress and challenges" 1119:"Nanometre diameter fibres of polymer produced by electrospinning" 871: 4110:
Zhao L, Lu YT, Li F, Wu K, Hou S, Yu J, et al. (June 2013).
4014:"NanoVelcro Chip for CTC enumeration in prostate cancer patients" 2758: 2525: 2313:"Process and apparatus for producing patterned non-woven fabrics" 679: 552:
tissue regeneration. These bioactive materials should ideally be
414: 410: 381: 377: 312: 55: 51: 16:
Natural or synthetic fibers with diameters in the nanometer range
4223: 3845: 2477: 1042: 761: 633: 808: 300: 296: 1938: 203: 3061: 2129:
Tucker N, Stanger JJ, Staiger MP, Razzaq H, Hofman K (2012).
788: 3132:
Shih YR, Chen CN, Tsai SW, Wang YJ, Lee OK (November 2006).
2430: 319:. The method was inspired by the natural folding process of 4337:
Peters K (2011). "Polymer optical fiber sensorsβ€”a review".
2796: 1649: 800: 796: 584: 3695: 2128: 258:, liquid-liquid or liquid-solid phase separation, polymer 207:
Taylor cone from which jet of polymer solution is ejected.
3582: 3210: 2329: 1094:
Polymer Solutions: An Introduction to Physical Properties
938:"Nanofibers and their applications in tissue engineering" 655: 3923: 2383: 2381: 1994: 1009: 3880: 2656: 2387: 787:
Nanofibers can be used in masks to protect people from
509:), and many other noncollagenous matrix proteins (i.e. 344: 4379: 3508: 1399: 658:
combine with oxygen from the air to form particles of
3617: 2741:
Leach MK, Feng ZQ, Tuck SJ, Corey JM (January 2011).
2378: 1279:"Fiber based approaches as medicine delivery systems" 729:(DNT) detection using the electrospinning technique. 3696:
Fogaça R, Ouimet MA, Catalani LH, Uhrich KE (2013).
1695: 853: 254:
changes. The procedure involves five steps: polymer
3232:
Journal of Materials Science. Materials in Medicine
245: 3371: 2740: 2015:Journal of Electrochemical Science and Engineering 1778: 124: 4414: 3793: 2912:An Introduction to Electrospinning and Nanofibers 2575:"Electrospinning jets and nanofibrous structures" 339:and is influenced by external conditions such as 4456: 4011: 3655:Journal of Biomaterials Science. Polymer Edition 3652: 3281: 3172: 3131: 2934: 1645: 1643: 838:Nanofiber apparel and shoe membranes consist of 311:The self-assembly technique is used to generate 4293: 4166: 3460:"Current state of cartilage tissue engineering" 1541: 769:Electrospun nanofibers are useful for removing 199:Diagram of a general set-up of electrospinning. 3720: 3319: 3229: 2836: 1894: 3096: 2223: 2083: 2081: 1826: 1640: 1597: 1356: 400:is a natural extracellular component of many 4258: 2621: 1727:"Lithium-air batteries: their time has come" 1721: 1719: 811:particles are small enough to pass through. 88:poly(3-hydroxybutyrate-co-3-hydroxyvalerate) 4060: 3006: 3004: 2976: 2974: 2909: 2903: 2691: 1934: 1932: 1445:ACS Sustainable Chemistry & Engineering 1438: 1406:ACS Sustainable Chemistry & Engineering 1116: 1010:Khajavi R, Abbasipour M, Bahador A (2016). 935: 4109: 3755: 3457: 2572: 2078: 1856: 1691: 1689: 1687: 1005: 1003: 4200: 4143: 4086: 4037: 3988: 3848:Journal of Nanoscience and Nanotechnology 3841: 3839: 3819: 3485: 3475: 3149: 2928: 2894: 2766: 2717: 2598: 2124: 2122: 2120: 2061: 1990: 1988: 1960: 1912: 1895:Kelly TL, Gao T, Sailor MJ (April 2011). 1822: 1820: 1800: 1746: 1742: 1740: 1716: 1667: 1623: 1567: 1513: 1503: 1318: 1272: 1270: 1268: 1266: 1246: 1060: 1027: 1001: 999: 997: 995: 993: 991: 989: 987: 985: 983: 963: 953: 931: 505:), mineralized inorganic component (i.e. 94:(PEVA). Polymer chains are connected via 70:. Examples of synthetic polymers include 23:Example of a cellulose nanofiber network. 4217: 3969:Journal of the National Cancer Institute 3874: 3576: 3206: 3204: 3001: 2971: 2832: 2830: 2828: 2792: 2790: 2788: 2786: 2685: 2566: 1929: 1890: 1888: 1852: 1850: 1227:Journal of Biomedical Materials Research 929: 927: 925: 923: 921: 919: 917: 915: 913: 911: 760: 669: 632: 574: 476: 354: 266:of solvent from the gel with water, and 202: 194: 18: 4252: 3789: 3787: 3537: 3418: 3416: 3414: 3412: 3277: 3275: 3273: 3271: 3269: 3090: 2872: 2870: 2868: 2154: 2148: 1774: 1772: 1770: 1684: 1537: 1535: 1533: 1352: 1350: 1224: 1091: 814: 4457: 4336: 4330: 3836: 3689: 3315: 3313: 3055: 3010: 2980: 2650: 2304: 2285: 2229: 2186: 2180: 2117: 2034:ACS Applied Materials & Interfaces 1985: 1941:ACS Applied Materials & Interfaces 1817: 1737: 1263: 1110: 1085: 980: 645: 4054: 3917: 3346: 3201: 3166: 2825: 2783: 2734: 1885: 1847: 1593: 1591: 1589: 1587: 1314: 1312: 1172: 942:International Journal of Nanomedicine 908: 823: 778:Mine Safety and Health Administration 472: 290: 4408: 4103: 3956: 3784: 3646: 3451: 3422: 3409: 3266: 3223: 3125: 2865: 2260: 2254: 1767: 1530: 1347: 1220: 1218: 1216: 1214: 1212: 1168: 1166: 1164: 1162: 1160: 886:Subwavelength-diameter optical fiber 350: 176: 4373: 4287: 4160: 3749: 3502: 3310: 2910:Ramakrishna S, et al. (2005). 2615: 604: 129:Nanofibers were first produced via 13: 4005: 3812:10.1097/01.sla.0000143302.48223.7e 3714: 3632:10.1016/j.biomaterials.2003.08.042 3611: 3562:10.1016/j.biomaterials.2004.11.035 3334:10.1016/j.progpolymsci.2013.06.002 2879:"Scaffolds for tissue fabrication" 2876: 2851:10.1016/j.biomaterials.2016.10.040 2485:Journal of Applied Polymer Science 2310: 2291: 2189:Proceedings of the Royal Society A 1584: 1309: 708: 184: 14: 4481: 2747:Journal of Visualized Experiments 1209: 1157: 756: 137:(1544-1603) first documented the 30:are fibers with diameters in the 3464:Arthritis Research & Therapy 2692:Beachley V, Wen X (April 2009). 2573:Garg K, Bowlin GL (March 2011). 2103:10.2174/187221050902150819151532 2091:Recent Patents on Nanotechnology 870: 856: 723:fluorescence quenching mechanism 570: 306: 246:Thermal-induced phase separation 3883:Expert Opinion on Drug Delivery 3458:Tuli R, Li WJ, Tuan RS (2003). 3365: 3340: 2519: 2471: 2437:Surface and Coatings Technology 2424: 2410:10.1016/j.marpolbul.2016.03.037 2323: 2021: 2003: 1471: 1432: 1393: 1295:10.1021/acsbiomaterials.6b00281 467: 125:History of nanofiber production 3758:Advanced Drug Delivery Reviews 2449:10.1016/j.surfcoat.2020.126203 1096:. John Wiley & Sons, Inc. 1036: 458:poly(ethylene-co-vinylacetate) 92:poly(ethylene-co-vinylacetate) 1: 4359:10.1088/0964-1726/20/1/013002 3735:10.1016/j.jconrel.2014.04.018 3723:Journal of Controlled Release 3700:. American Chemical Society. 3437:10.3928/0147-7447-20020502-04 3296:10.1016/s0142-9612(00)00102-2 3187:10.1016/j.jbiotec.2005.06.033 3033:10.1126/science.266.5193.1961 2896:10.1016/S1369-7021(04)00233-0 2811:10.1016/S0266-3538(03)00178-7 1710:10.1016/j.pmatsci.2015.08.002 1457:10.1021/acssuschemeng.0c02696 1418:10.1021/acssuschemeng.9b05200 901: 450:poly(lactic-co-glycolic acid) 162:. In 1887, British physicist 146:. In 1882, English physicist 84:poly(lactic-co-glycolic acid) 3930:Journal of Clinical Oncology 3895:10.1517/17425247.2013.758103 2532:Materials Today: Proceedings 1761:10.1016/j.elecom.2009.03.029 1656:Journal of Clinical Oncology 1505:10.1371/journal.pone.0176930 1371:10.3109/1061186X.2014.992899 1062:10.1016/j.matdes.2021.110308 154:was established between the 7: 4470:Nanoparticles by morphology 4030:10.1016/j.ymeth.2013.06.019 3151:10.1634/stemcells.2006-0253 2544:10.1016/j.matpr.2019.06.526 936:Vasita R, Katti DS (2006). 849: 536:and hence are dependent on 227:conical shape known as the 10: 4486: 3770:10.1016/j.addr.2009.07.007 2710:10.1016/j.msec.2008.10.037 1117:Reneker D, Chun I (1996). 771:volatile organic compounds 281: 188: 3375:ACS Applied Bio Materials 3244:10.1007/s10856-016-5748-8 2957:10.1209/epl/i1998-00233-9 2390:Marine Pollution Bulletin 2279:10.1080/14786448708628043 2248:10.1080/14786448208628425 1359:Journal of Drug Targeting 1143:10.1088/0957-4484/7/3/009 4316:10.1038/nenergy.2016.111 4079:10.18632/oncotarget.6330 3942:10.1200/JCO.2007.15.8923 3667:10.1163/1568562042459733 3175:Journal of Biotechnology 1859:Optical Fiber Technology 955:10.2147/nano.2006.1.1.15 736:stability. A variety of 325:hydrophobic interactions 139:electrostatic attraction 3347:Simon, Eric M. (1988). 1669:10.1200/JCO.2005.08.140 4429:10.1002/adma.201101392 4394:10.1002/smll.200500432 4267:(105): 103072–103080. 4193:10.1002/adma.201203185 4136:10.1002/adma.201205237 3523:10.1089/ten.1999.5.443 3387:10.1021/acsabm.9b00580 2209:10.1098/rspa.1964.0151 2168:Cite journal requires 2046:10.1021/acsami.1c17643 1914:10.1002/adma.201190052 1879:10.1006/ofte.2000.0355 1195:10.1002/adma.200400719 1049:Materials & Design 896:Polyaniline nanofibers 766: 675: 638: 611:pathologic examination 580: 482: 425:demonstrate excellent 360: 299:(solid nanofiber) and 208: 200: 24: 764: 673: 652:lithium-air batteries 636: 578: 480: 358: 206: 198: 22: 3860:10.1166/jnn.2006.462 3431:(5 Suppl): s561-70. 2914:. World Scientific. 1283:ACS Biomater Sci Eng 815:Oil-water separation 337:van der Waals forces 329:electrostatic forces 240:extracellular matrix 4351:2011SMaS...20a3002P 4308:2016NatEn...116111Z 4273:2016RSCAd...6j3072S 4185:2013AdM....25.1547H 4128:2013AdM....25.2897Z 3981:10.1093/jnci/dju066 3025:1994Sci...266.1961M 2995:10.1021/ar00050a002 2949:1998EL.....42..215O 2671:2003JPoSA..41..545D 2402:2016MarPB.106....8S 2348:2015Nanos...8..120L 2201:1964RSPSA.280..383T 1871:2001OptFT...7..101Z 1793:2002NanoL...2.1273W 1496:2017PLoSO..1276930D 1412:(24): 19848–19856. 1333:2015RSCAd...515172A 1327:(20): 15172–15181. 1187:2004AdM....16.1151L 1135:1996Nanot...7..216R 646:Lithium-air battery 317:peptide amphiphiles 164:Charles Vernon Boys 160:electrostatic force 4417:Advanced Materials 4339:Smart Mater Struct 4281:10.1039/C6RA16874D 4238:10.1039/c1ee01496j 4226:Energy Environ Sci 4173:Advanced Materials 4116:Advanced Materials 3854:(9–10): 2591–607. 3511:Tissue Engineering 2799:Compos Sci Technol 2679:10.1002/pola.10609 2636:10.1007/BF02902925 2356:10.1039/C5NR01619C 2195:(1382): 383–39 7. 1901:Advanced Materials 1749:Electrochem Commun 1560:10.7150/thno.15359 1341:10.1039/C4RA11438H 1092:Teraoka I (2002). 824:Sportswear textile 767: 749:structures called 727:2,4-dinitrotoluene 676: 662:, which attach to 639: 581: 483: 473:Tissue engineering 402:connective tissues 361: 291:Template synthesis 209: 201: 25: 3800:Annals of Surgery 3597:10.1021/bm015533u 3585:Biomacromolecules 3381:(12): 5323–5339. 3213:J Eng Fibers Fabr 3111:10.1021/nn5051344 3076:10.1021/bm0256597 3064:Biomacromolecules 2921:978-981-256-415-3 2805:(15): 2223–2253. 2591:10.1063/1.3567097 2497:10.1002/app.51851 2230:Strutt J (1882). 2138:J Eng Fibers Fabr 1953:10.1021/am200748y 1841:10.1002/app.28716 1811:10.1021/nl020216u 1787:(11): 1273–1275. 1616:10.1021/nn5056282 1451:(25): 9537–9548. 1181:(14): 1151–1170. 1103:978-0-471-22451-8 1029:10.1002/app.42883 891:Nanofiber seeding 878:Technology portal 751:photonic crystals 627:metastatic cancer 562:osseointegratable 438:poly(lactic acid) 351:Polymer materials 177:Synthesis methods 72:poly(lactic acid) 4477: 4449: 4448: 4412: 4406: 4405: 4377: 4371: 4370: 4334: 4328: 4327: 4291: 4285: 4284: 4256: 4250: 4249: 4232:(8): 2952–2958. 4221: 4215: 4214: 4204: 4164: 4158: 4157: 4147: 4122:(21): 2897–902. 4107: 4101: 4100: 4090: 4073:(42): 44781–93. 4058: 4052: 4051: 4041: 4009: 4003: 4002: 3992: 3960: 3954: 3953: 3921: 3915: 3914: 3878: 3872: 3871: 3843: 3834: 3833: 3823: 3791: 3782: 3781: 3753: 3747: 3746: 3718: 3712: 3711: 3693: 3687: 3686: 3650: 3644: 3643: 3615: 3609: 3608: 3580: 3574: 3573: 3541: 3535: 3534: 3506: 3500: 3499: 3489: 3479: 3455: 3449: 3448: 3420: 3407: 3406: 3369: 3363: 3362: 3360: 3359: 3344: 3338: 3337: 3317: 3308: 3307: 3279: 3264: 3263: 3227: 3221: 3220: 3208: 3199: 3198: 3170: 3164: 3163: 3153: 3129: 3123: 3122: 3105:(11): 11715–23. 3094: 3088: 3087: 3059: 3053: 3052: 3019:(5193): 1961–6. 3008: 2999: 2998: 2978: 2969: 2968: 2932: 2926: 2925: 2907: 2901: 2900: 2898: 2874: 2863: 2862: 2834: 2823: 2822: 2794: 2781: 2780: 2770: 2738: 2732: 2731: 2721: 2689: 2683: 2682: 2654: 2648: 2647: 2619: 2613: 2612: 2602: 2579:Biomicrofluidics 2570: 2564: 2563: 2523: 2517: 2516: 2475: 2469: 2468: 2428: 2422: 2421: 2385: 2376: 2375: 2327: 2321: 2320: 2308: 2302: 2301: 2289: 2283: 2282: 2273:(145): 489–499. 2258: 2252: 2251: 2227: 2221: 2220: 2184: 2178: 2177: 2171: 2166: 2164: 2156: 2152: 2146: 2145: 2135: 2126: 2115: 2114: 2085: 2076: 2075: 2065: 2040:(1): 1885–1899. 2025: 2019: 2018: 2007: 2001: 2000: 1992: 1983: 1982: 1964: 1936: 1927: 1926: 1916: 1892: 1883: 1882: 1854: 1845: 1844: 1835:(2): 1080–1084. 1829:J Appl Polym Sci 1824: 1815: 1814: 1804: 1776: 1765: 1764: 1755:(6): 1127–1130. 1744: 1735: 1734: 1723: 1714: 1713: 1693: 1682: 1681: 1671: 1647: 1638: 1637: 1627: 1595: 1582: 1581: 1571: 1539: 1528: 1527: 1517: 1507: 1475: 1469: 1468: 1436: 1430: 1429: 1397: 1391: 1390: 1354: 1345: 1344: 1316: 1307: 1306: 1289:(9): 1411–1431. 1274: 1261: 1260: 1250: 1222: 1207: 1206: 1170: 1155: 1154: 1114: 1108: 1107: 1089: 1083: 1082: 1064: 1040: 1034: 1033: 1031: 1016:J Appl Polym Sci 1007: 978: 977: 967: 957: 933: 880: 875: 874: 866: 861: 860: 605:Cancer diagnosis 594:biodegradability 590:biocompatibility 442:polycaprolactone 427:biocompatibility 333:hydrogen bonding 76:polycaprolactone 4485: 4484: 4480: 4479: 4478: 4476: 4475: 4474: 4455: 4454: 4453: 4452: 4413: 4409: 4378: 4374: 4335: 4331: 4292: 4288: 4257: 4253: 4222: 4218: 4179:(11): 1547–51. 4165: 4161: 4108: 4104: 4059: 4055: 4010: 4006: 3961: 3957: 3936:(19): 3213–21. 3922: 3918: 3879: 3875: 3844: 3837: 3792: 3785: 3764:(12): 1033–42. 3754: 3750: 3719: 3715: 3708: 3694: 3690: 3661:(12): 1483–97. 3651: 3647: 3626:(10): 1883–90. 3616: 3612: 3581: 3577: 3556:(22): 4606–15. 3542: 3538: 3507: 3503: 3456: 3452: 3421: 3410: 3370: 3366: 3357: 3355: 3345: 3341: 3318: 3311: 3290:(23): 2347–59. 3280: 3267: 3228: 3224: 3209: 3202: 3171: 3167: 3130: 3126: 3095: 3091: 3060: 3056: 3009: 3002: 2979: 2972: 2933: 2929: 2922: 2908: 2904: 2883:Materials Today 2877:Ma, P. (2004). 2875: 2866: 2835: 2826: 2795: 2784: 2739: 2735: 2690: 2686: 2655: 2651: 2620: 2616: 2571: 2567: 2524: 2520: 2476: 2472: 2429: 2425: 2386: 2379: 2328: 2324: 2309: 2305: 2290: 2286: 2261:Boys C (1887). 2259: 2255: 2242:(87): 184–186. 2228: 2224: 2185: 2181: 2169: 2167: 2158: 2157: 2153: 2149: 2133: 2127: 2118: 2086: 2079: 2026: 2022: 2009: 2008: 2004: 1993: 1986: 1937: 1930: 1907:(15): 1776–81. 1893: 1886: 1855: 1848: 1825: 1818: 1802:10.1.1.459.8052 1777: 1768: 1745: 1738: 1725: 1724: 1717: 1694: 1685: 1648: 1641: 1596: 1585: 1540: 1531: 1490:(5): e0176930. 1476: 1472: 1437: 1433: 1398: 1394: 1355: 1348: 1317: 1310: 1275: 1264: 1223: 1210: 1171: 1158: 1115: 1111: 1104: 1090: 1086: 1041: 1037: 1008: 981: 934: 909: 904: 876: 869: 862: 855: 852: 826: 817: 759: 711: 709:Optical sensors 704: 700: 696: 692: 648: 607: 573: 558:osteoconductive 503:type 1 collagen 475: 470: 454:poly(L-lactide) 406:type I collagen 386:polysaccharides 353: 315:nanofibers and 309: 293: 284: 248: 212:Electrospinning 193: 191:Electrospinning 187: 185:Electrospinning 179: 156:surface tension 135:William Gilbert 131:electrospinning 127: 107:electrospinning 60:polysaccharides 17: 12: 11: 5: 4483: 4473: 4472: 4467: 4451: 4450: 4423:(33): 3770–4. 4407: 4372: 4329: 4286: 4251: 4216: 4159: 4102: 4053: 4004: 3955: 3916: 3873: 3835: 3783: 3748: 3713: 3706: 3688: 3645: 3610: 3575: 3536: 3501: 3450: 3408: 3364: 3339: 3328:(5): 862–890. 3322:Prog Polym Sci 3309: 3265: 3222: 3200: 3165: 3144:(11): 2391–7. 3124: 3089: 3054: 3000: 2970: 2943:(2): 215–220. 2927: 2920: 2902: 2864: 2824: 2782: 2733: 2704:(3): 663–668. 2684: 2665:(4): 545–553. 2649: 2630:(2): 122–127. 2614: 2565: 2518: 2470: 2423: 2377: 2322: 2303: 2284: 2253: 2222: 2179: 2170:|journal= 2147: 2116: 2077: 2020: 2002: 1984: 1947:(10): 3902–9. 1928: 1884: 1865:(2): 101–140. 1846: 1816: 1766: 1736: 1733:. Aug 6, 2016. 1715: 1698:Prog Mater Sci 1683: 1662:(7): 1420–30. 1639: 1583: 1554:(9): 1425–39. 1529: 1470: 1431: 1392: 1346: 1308: 1262: 1208: 1156: 1129:(3): 216–223. 1123:Nanotechnology 1109: 1102: 1084: 1035: 979: 906: 905: 903: 900: 899: 898: 893: 888: 882: 881: 867: 864:Science portal 851: 848: 825: 822: 816: 813: 784:filter media. 758: 757:Air filtration 755: 710: 707: 702: 698: 694: 690: 660:lithium oxides 647: 644: 606: 603: 572: 569: 554:osteoinductive 507:hydroxyapatite 474: 471: 469: 466: 433:in scaffolds. 352: 349: 341:ionic strength 308: 305: 292: 289: 283: 280: 247: 244: 224:electric field 216:capillary tube 189:Main article: 186: 183: 178: 175: 126: 123: 102:counterparts. 96:covalent bonds 15: 9: 6: 4: 3: 2: 4482: 4471: 4468: 4466: 4463: 4462: 4460: 4446: 4442: 4438: 4434: 4430: 4426: 4422: 4418: 4411: 4403: 4399: 4395: 4391: 4387: 4383: 4376: 4368: 4364: 4360: 4356: 4352: 4348: 4345:(1): 013002. 4344: 4340: 4333: 4325: 4321: 4317: 4313: 4309: 4305: 4301: 4297: 4296:Nature Energy 4290: 4282: 4278: 4274: 4270: 4266: 4262: 4255: 4247: 4243: 4239: 4235: 4231: 4227: 4220: 4212: 4208: 4203: 4198: 4194: 4190: 4186: 4182: 4178: 4174: 4170: 4163: 4155: 4151: 4146: 4141: 4137: 4133: 4129: 4125: 4121: 4117: 4113: 4106: 4098: 4094: 4089: 4084: 4080: 4076: 4072: 4068: 4064: 4057: 4049: 4045: 4040: 4035: 4031: 4027: 4024:(2): 144–52. 4023: 4019: 4015: 4008: 4000: 3996: 3991: 3986: 3982: 3978: 3974: 3970: 3966: 3959: 3951: 3947: 3943: 3939: 3935: 3931: 3927: 3920: 3912: 3908: 3904: 3900: 3896: 3892: 3889:(4): 469–83. 3888: 3884: 3877: 3869: 3865: 3861: 3857: 3853: 3849: 3842: 3840: 3831: 3827: 3822: 3817: 3813: 3809: 3805: 3801: 3797: 3790: 3788: 3779: 3775: 3771: 3767: 3763: 3759: 3752: 3744: 3740: 3736: 3732: 3728: 3724: 3717: 3709: 3707:9780841227996 3703: 3699: 3692: 3684: 3680: 3676: 3672: 3668: 3664: 3660: 3656: 3649: 3641: 3637: 3633: 3629: 3625: 3621: 3614: 3606: 3602: 3598: 3594: 3590: 3586: 3579: 3571: 3567: 3563: 3559: 3555: 3551: 3547: 3540: 3532: 3528: 3524: 3520: 3517:(5): 443–52. 3516: 3512: 3505: 3497: 3493: 3488: 3483: 3478: 3477:10.1186/ar991 3473: 3469: 3465: 3461: 3454: 3446: 3442: 3438: 3434: 3430: 3426: 3419: 3417: 3415: 3413: 3404: 3400: 3396: 3392: 3388: 3384: 3380: 3376: 3368: 3354: 3350: 3343: 3335: 3331: 3327: 3323: 3316: 3314: 3305: 3301: 3297: 3293: 3289: 3285: 3278: 3276: 3274: 3272: 3270: 3261: 3257: 3253: 3249: 3245: 3241: 3237: 3233: 3226: 3218: 3214: 3207: 3205: 3196: 3192: 3188: 3184: 3181:(3): 327–39. 3180: 3176: 3169: 3161: 3157: 3152: 3147: 3143: 3139: 3135: 3128: 3120: 3116: 3112: 3108: 3104: 3100: 3093: 3085: 3081: 3077: 3073: 3070:(3): 518–28. 3069: 3065: 3058: 3050: 3046: 3042: 3038: 3034: 3030: 3026: 3022: 3018: 3014: 3007: 3005: 2996: 2992: 2988: 2984: 2977: 2975: 2966: 2962: 2958: 2954: 2950: 2946: 2942: 2938: 2937:Europhys Lett 2931: 2923: 2917: 2913: 2906: 2897: 2892: 2888: 2884: 2880: 2873: 2871: 2869: 2860: 2856: 2852: 2848: 2844: 2840: 2833: 2831: 2829: 2820: 2816: 2812: 2808: 2804: 2800: 2793: 2791: 2789: 2787: 2778: 2774: 2769: 2764: 2760: 2756: 2752: 2748: 2744: 2737: 2729: 2725: 2720: 2715: 2711: 2707: 2703: 2699: 2695: 2688: 2680: 2676: 2672: 2668: 2664: 2660: 2653: 2645: 2641: 2637: 2633: 2629: 2625: 2618: 2610: 2606: 2601: 2596: 2592: 2588: 2584: 2580: 2576: 2569: 2561: 2557: 2553: 2549: 2545: 2541: 2538:: 1100–1104. 2537: 2533: 2529: 2522: 2514: 2510: 2506: 2502: 2498: 2494: 2491:(13): 51851. 2490: 2486: 2482: 2474: 2466: 2462: 2458: 2454: 2450: 2446: 2442: 2438: 2434: 2427: 2419: 2415: 2411: 2407: 2403: 2399: 2396:(1–2): 8–16. 2395: 2391: 2384: 2382: 2373: 2369: 2365: 2361: 2357: 2353: 2349: 2345: 2341: 2337: 2333: 2326: 2318: 2314: 2307: 2299: 2295: 2288: 2280: 2276: 2272: 2268: 2264: 2257: 2249: 2245: 2241: 2237: 2233: 2226: 2218: 2214: 2210: 2206: 2202: 2198: 2194: 2190: 2183: 2175: 2162: 2151: 2143: 2139: 2132: 2125: 2123: 2121: 2112: 2108: 2104: 2100: 2096: 2092: 2084: 2082: 2073: 2069: 2064: 2059: 2055: 2051: 2047: 2043: 2039: 2035: 2031: 2024: 2016: 2012: 2006: 1998: 1991: 1989: 1980: 1976: 1972: 1968: 1963: 1958: 1954: 1950: 1946: 1942: 1935: 1933: 1924: 1920: 1915: 1910: 1906: 1902: 1898: 1891: 1889: 1880: 1876: 1872: 1868: 1864: 1860: 1853: 1851: 1842: 1838: 1834: 1830: 1823: 1821: 1812: 1808: 1803: 1798: 1794: 1790: 1786: 1782: 1775: 1773: 1771: 1762: 1758: 1754: 1750: 1743: 1741: 1732: 1731:The Economist 1728: 1722: 1720: 1711: 1707: 1703: 1699: 1692: 1690: 1688: 1679: 1675: 1670: 1665: 1661: 1657: 1653: 1646: 1644: 1635: 1631: 1626: 1621: 1617: 1613: 1609: 1605: 1601: 1594: 1592: 1590: 1588: 1579: 1575: 1570: 1565: 1561: 1557: 1553: 1549: 1545: 1538: 1536: 1534: 1525: 1521: 1516: 1511: 1506: 1501: 1497: 1493: 1489: 1485: 1481: 1474: 1466: 1462: 1458: 1454: 1450: 1446: 1442: 1435: 1427: 1423: 1419: 1415: 1411: 1407: 1403: 1396: 1388: 1384: 1380: 1376: 1372: 1368: 1365:(3): 202–21. 1364: 1360: 1353: 1351: 1342: 1338: 1334: 1330: 1326: 1322: 1315: 1313: 1304: 1300: 1296: 1292: 1288: 1284: 1280: 1273: 1271: 1269: 1267: 1258: 1254: 1249: 1248:2027.42/34415 1244: 1240: 1236: 1232: 1228: 1221: 1219: 1217: 1215: 1213: 1204: 1200: 1196: 1192: 1188: 1184: 1180: 1176: 1169: 1167: 1165: 1163: 1161: 1152: 1148: 1144: 1140: 1136: 1132: 1128: 1124: 1120: 1113: 1105: 1099: 1095: 1088: 1080: 1076: 1072: 1068: 1063: 1058: 1054: 1050: 1046: 1039: 1030: 1025: 1021: 1017: 1013: 1006: 1004: 1002: 1000: 998: 996: 994: 992: 990: 988: 986: 984: 975: 971: 966: 961: 956: 951: 947: 943: 939: 932: 930: 928: 926: 924: 922: 920: 918: 916: 914: 912: 907: 897: 894: 892: 889: 887: 884: 883: 879: 873: 868: 865: 859: 854: 847: 845: 841: 836: 833: 830: 821: 812: 810: 806: 802: 798: 794: 790: 785: 783: 779: 774: 772: 763: 754: 752: 747: 742: 739: 735: 734:photochemical 730: 728: 724: 718: 716: 706: 688: 683: 681: 672: 668: 665: 664:carbon fibers 661: 657: 653: 643: 635: 631: 628: 623: 622:Liquid biopsy 619: 616: 612: 602: 598: 595: 591: 586: 577: 571:Drug delivery 568: 565: 563: 559: 555: 549: 547: 543: 539: 535: 531: 527: 523: 518: 516: 515:proteoglycans 512: 511:glycoproteins 508: 504: 500: 496: 491: 487: 479: 465: 463: 459: 455: 451: 447: 443: 439: 434: 432: 428: 424: 420: 416: 412: 407: 403: 399: 395: 391: 387: 383: 379: 375: 371: 367: 357: 348: 346: 342: 338: 334: 330: 326: 322: 318: 314: 307:Self-assembly 304: 302: 298: 288: 279: 275: 273: 272:freeze-drying 269: 265: 261: 257: 253: 252:thermodynamic 243: 241: 236: 234: 233:rotating drum 230: 225: 221: 217: 213: 205: 197: 192: 182: 174: 171: 167: 165: 161: 157: 153: 149: 148:Lord Rayleigh 145: 140: 136: 132: 122: 118: 116: 112: 111:self-assembly 108: 103: 101: 97: 93: 89: 85: 81: 77: 73: 69: 65: 61: 57: 53: 49: 45: 41: 37: 33: 29: 21: 4420: 4416: 4410: 4388:(4): 495–9. 4385: 4381: 4375: 4342: 4338: 4332: 4302:(8): 16111. 4299: 4295: 4289: 4264: 4260: 4254: 4229: 4225: 4219: 4176: 4172: 4162: 4119: 4115: 4105: 4070: 4066: 4056: 4021: 4017: 4007: 3972: 3968: 3958: 3933: 3929: 3919: 3886: 3882: 3876: 3851: 3847: 3806:(5): 910–5. 3803: 3799: 3761: 3757: 3751: 3726: 3722: 3716: 3697: 3691: 3658: 3654: 3648: 3623: 3620:Biomaterials 3619: 3613: 3591:(2): 232–8. 3588: 3584: 3578: 3553: 3550:Biomaterials 3549: 3539: 3514: 3510: 3504: 3470:(5): 235–8. 3467: 3463: 3453: 3428: 3424: 3378: 3374: 3367: 3356:. Retrieved 3353:ResearchGate 3352: 3342: 3325: 3321: 3287: 3284:Biomaterials 3283: 3235: 3231: 3225: 3216: 3212: 3178: 3174: 3168: 3141: 3137: 3127: 3102: 3098: 3092: 3067: 3063: 3057: 3016: 3012: 2989:(2): 61–68. 2986: 2983:Acc Chem Res 2982: 2940: 2936: 2930: 2911: 2905: 2889:(5): 30–40. 2886: 2882: 2842: 2839:Biomaterials 2838: 2802: 2798: 2759:10.3791/2494 2753:(47): 2494. 2750: 2746: 2736: 2701: 2697: 2687: 2662: 2658: 2652: 2627: 2624:Fibers Polym 2623: 2617: 2585:(1): 13403. 2582: 2578: 2568: 2535: 2531: 2521: 2488: 2484: 2473: 2440: 2436: 2426: 2393: 2389: 2342:(1): 120–8. 2339: 2335: 2325: 2316: 2306: 2297: 2287: 2270: 2266: 2256: 2239: 2235: 2225: 2192: 2188: 2182: 2161:cite journal 2150: 2141: 2137: 2097:(2): 76–85. 2094: 2090: 2037: 2033: 2023: 2014: 2005: 1996: 1962:1721.1/81271 1944: 1940: 1904: 1900: 1862: 1858: 1832: 1828: 1784: 1780: 1752: 1748: 1730: 1701: 1697: 1659: 1655: 1610:(1): 62–70. 1607: 1603: 1551: 1548:Theranostics 1547: 1487: 1483: 1473: 1448: 1444: 1434: 1409: 1405: 1395: 1362: 1358: 1324: 1320: 1286: 1282: 1233:(1): 60–72. 1230: 1226: 1178: 1174: 1126: 1122: 1112: 1093: 1087: 1052: 1048: 1038: 1019: 1015: 948:(1): 15–30. 945: 941: 840:polyurethane 837: 834: 831: 827: 818: 786: 775: 768: 743: 738:quantum dots 731: 719: 712: 687:cobalt oxide 684: 677: 649: 640: 620: 608: 599: 582: 566: 550: 546:allografting 542:osteogenesis 526:autografting 519: 492: 488: 484: 468:Applications 456:(PLLA), and 446:polyurethane 435: 374:silk fibroin 362: 310: 294: 285: 276: 249: 237: 211: 210: 180: 172: 168: 128: 119: 114: 104: 90:(PHBV), and 80:polyurethane 48:silk fibroin 27: 26: 3975:(5): 1–11. 3425:Orthopedics 3219:(3): 74–90. 2845:: 121–143. 2267:Philos. Mag 2236:Philos. Mag 1704:: 319–380. 530:iliac crest 431:bioactivity 256:dissolution 229:Taylor cone 152:equilibrium 144:Taylor cone 4459:Categories 4067:Oncotarget 3358:2017-05-22 3238:(9): 143. 3138:Stem Cells 2659:Polym Chem 2443:: 126203. 2311:Harold S. 2292:Cooley J. 1055:: 110308. 1022:(3): n/a. 902:References 844:recyclable 715:wavelength 615:biomarkers 522:resections 499:trabecular 321:amino acid 264:extraction 100:microfiber 28:Nanofibers 3729:: 12–21. 3403:208733153 2965:250737386 2644:137021572 2560:202207593 2552:2214-7853 2513:243969095 2505:1097-4628 2465:224924026 2457:0257-8972 2372:205976678 2336:Nanoscale 2317:Espacenet 2298:Espacenet 2054:1944-8244 1797:CiteSeerX 1781:Nano Lett 1465:219914870 1426:209709462 1203:137659394 1175:Adv Mater 1079:245075252 1071:0264-1275 805:allergens 782:cellulose 609:Although 538:diffusion 534:avascular 462:catalysts 370:cellulose 220:electrode 44:cellulose 32:nanometer 4437:21766349 4402:17193073 4367:52238312 4246:96799565 4211:23255101 4154:23529932 4097:26575023 4048:23816790 3999:24832787 3950:18591556 3911:24627745 3903:23289491 3868:17048469 3830:15492575 3778:19643152 3743:24768792 3675:15696794 3640:14738852 3605:11888306 3570:15722130 3531:10586100 3496:12932283 3445:12038843 3395:35021533 3304:11055282 3260:23987237 3252:27550014 3195:16150508 3160:17071856 3119:25375351 3099:ACS Nano 3084:12741765 3049:45456343 3041:17836514 2859:27880892 2777:21304466 2728:21461344 2609:21522493 2418:27016959 2364:26369731 2217:15067908 2144:: 63–73. 2111:27009122 2072:34939406 1971:21888418 1923:21374740 1678:15735118 1634:25495128 1604:ACS Nano 1578:27375790 1524:28472087 1484:PLOS ONE 1379:25539071 1303:33440580 1257:10357136 974:17722259 850:See also 793:bacteria 746:charcoal 701:, and Li 452:(PLGA), 423:alginate 419:chitosan 398:Collagen 394:alginate 390:chitosan 388:such as 366:collagen 268:freezing 260:gelation 86:(PLGA), 68:alginate 64:chitosan 62:such as 40:collagen 36:polymers 4445:6264401 4347:Bibcode 4304:Bibcode 4269:Bibcode 4261:RSC Adv 4202:3786692 4181:Bibcode 4145:3875622 4124:Bibcode 4088:4792591 4039:3834112 4018:Methods 3990:4112925 3821:1356499 3683:2990409 3021:Bibcode 3013:Science 2945:Bibcode 2819:4511766 2768:3182658 2719:3065832 2667:Bibcode 2600:3082340 2398:Bibcode 2344:Bibcode 2197:Bibcode 2063:8763375 2017:. 2022. 1979:7486858 1867:Bibcode 1789:Bibcode 1625:4310634 1569:4924510 1515:5417607 1492:Bibcode 1387:8398004 1329:Bibcode 1321:RSC Adv 1183:Bibcode 1151:4498522 1131:Bibcode 965:2426767 789:viruses 680:cathode 495:compact 444:(PCL), 440:(PLA), 415:gelatin 411:keratin 382:gelatin 378:keratin 313:peptide 301:tubules 297:fibrils 282:Drawing 78:(PCL), 74:(PLA), 56:gelatin 52:keratin 4465:Fibers 4443:  4435:  4400:  4365:  4324:366009 4322:  4244:  4209:  4199:  4152:  4142:  4095:  4085:  4046:  4036:  3997:  3987:  3948:  3909:  3901:  3866:  3828:  3818:  3776:  3741:  3704:  3681:  3673:  3638:  3603:  3568:  3529:  3494:  3487:193737 3484:  3443:  3401:  3393:  3302:  3258:  3250:  3193:  3158:  3117:  3082:  3047:  3039:  2963:  2918:  2857:  2817:  2775:  2765:  2726:  2716:  2642:  2607:  2597:  2558:  2550:  2511:  2503:  2463:  2455:  2416:  2370:  2362:  2215:  2109:  2070:  2060:  2052:  1977:  1969:  1921:  1799:  1676:  1632:  1622:  1576:  1566:  1522:  1512:  1463:  1424:  1385:  1377:  1301:  1255:  1201:  1149:  1100:  1077:  1069:  972:  962:  809:oxygen 560:, and 448:(PU), 82:(PU), 4441:S2CID 4382:Small 4363:S2CID 4320:S2CID 4242:S2CID 3907:S2CID 3679:S2CID 3399:S2CID 3256:S2CID 3045:S2CID 2961:S2CID 2815:S2CID 2640:S2CID 2556:S2CID 2509:S2CID 2461:S2CID 2368:S2CID 2213:S2CID 2134:(PDF) 1975:S2CID 1461:S2CID 1422:S2CID 1383:S2CID 1199:S2CID 1147:S2CID 1075:S2CID 4433:PMID 4398:PMID 4207:PMID 4150:PMID 4093:PMID 4044:PMID 3995:PMID 3946:PMID 3899:PMID 3864:PMID 3826:PMID 3774:PMID 3739:PMID 3702:ISBN 3671:PMID 3636:PMID 3601:PMID 3566:PMID 3527:PMID 3492:PMID 3441:PMID 3391:PMID 3300:PMID 3248:PMID 3191:PMID 3156:PMID 3115:PMID 3080:PMID 3037:PMID 2916:ISBN 2855:PMID 2773:PMID 2724:PMID 2605:PMID 2548:ISSN 2501:ISSN 2453:ISSN 2414:PMID 2360:PMID 2174:help 2107:PMID 2068:PMID 2050:ISSN 1967:PMID 1919:PMID 1674:PMID 1630:PMID 1574:PMID 1520:PMID 1375:PMID 1299:PMID 1253:PMID 1098:ISBN 1067:ISSN 970:PMID 801:dust 797:smog 656:ions 592:and 585:drug 513:and 429:and 421:and 392:and 384:and 343:and 335:and 270:and 158:and 115:i.e. 66:and 58:and 4425:doi 4390:doi 4355:doi 4312:doi 4277:doi 4234:doi 4197:PMC 4189:doi 4140:PMC 4132:doi 4083:PMC 4075:doi 4034:PMC 4026:doi 3985:PMC 3977:doi 3973:106 3938:doi 3891:doi 3856:doi 3816:PMC 3808:doi 3804:240 3766:doi 3731:doi 3727:185 3663:doi 3628:doi 3593:doi 3558:doi 3519:doi 3482:PMC 3472:doi 3433:doi 3383:doi 3330:doi 3292:doi 3240:doi 3183:doi 3179:120 3146:doi 3107:doi 3072:doi 3029:doi 3017:266 2991:doi 2953:doi 2891:doi 2847:doi 2843:114 2807:doi 2763:PMC 2755:doi 2714:PMC 2706:doi 2675:doi 2632:doi 2595:PMC 2587:doi 2540:doi 2493:doi 2489:139 2445:doi 2441:399 2406:doi 2394:106 2352:doi 2275:doi 2244:doi 2205:doi 2193:280 2099:doi 2058:PMC 2042:doi 1957:hdl 1949:doi 1909:doi 1875:doi 1837:doi 1833:110 1807:doi 1757:doi 1706:doi 1664:doi 1620:PMC 1612:doi 1564:PMC 1556:doi 1510:PMC 1500:doi 1453:doi 1414:doi 1367:doi 1337:doi 1291:doi 1243:hdl 1235:doi 1191:doi 1139:doi 1057:doi 1053:213 1024:doi 1020:133 960:PMC 950:doi 497:or 4461:: 4439:. 4431:. 4421:23 4419:. 4396:. 4384:. 4361:. 4353:. 4343:20 4341:. 4318:. 4310:. 4298:. 4275:. 4263:. 4240:. 4228:. 4205:. 4195:. 4187:. 4177:25 4175:. 4171:. 4148:. 4138:. 4130:. 4120:25 4118:. 4114:. 4091:. 4081:. 4069:. 4065:. 4042:. 4032:. 4022:64 4020:. 4016:. 3993:. 3983:. 3971:. 3967:. 3944:. 3934:26 3932:. 3928:. 3905:. 3897:. 3887:10 3885:. 3862:. 3850:. 3838:^ 3824:. 3814:. 3802:. 3798:. 3786:^ 3772:. 3762:61 3760:. 3737:. 3725:. 3677:. 3669:. 3659:15 3657:. 3634:. 3624:25 3622:. 3599:. 3587:. 3564:. 3554:26 3552:. 3548:. 3525:. 3513:. 3490:. 3480:. 3466:. 3462:. 3439:. 3429:25 3427:. 3411:^ 3397:. 3389:. 3377:. 3351:. 3326:39 3324:. 3312:^ 3298:. 3288:21 3286:. 3268:^ 3254:. 3246:. 3236:27 3234:. 3215:. 3203:^ 3189:. 3177:. 3154:. 3142:24 3140:. 3136:. 3113:. 3101:. 3078:. 3066:. 3043:. 3035:. 3027:. 3015:. 3003:^ 2987:28 2985:. 2973:^ 2959:. 2951:. 2941:42 2939:. 2885:. 2881:. 2867:^ 2853:. 2841:. 2827:^ 2813:. 2803:63 2801:. 2785:^ 2771:. 2761:. 2751:47 2749:. 2745:. 2722:. 2712:. 2702:29 2700:. 2696:. 2673:. 2663:41 2661:. 2638:. 2626:. 2603:. 2593:. 2581:. 2577:. 2554:. 2546:. 2536:17 2530:. 2507:. 2499:. 2487:. 2483:. 2459:. 2451:. 2439:. 2435:. 2412:. 2404:. 2392:. 2380:^ 2366:. 2358:. 2350:. 2338:. 2334:. 2315:. 2296:. 2271:23 2269:. 2265:. 2240:14 2238:. 2234:. 2211:. 2203:. 2191:. 2165:: 2163:}} 2159:{{ 2140:. 2136:. 2119:^ 2105:. 2093:. 2080:^ 2066:. 2056:. 2048:. 2038:14 2036:. 2032:. 2013:. 1987:^ 1973:. 1965:. 1955:. 1943:. 1931:^ 1917:. 1905:23 1903:. 1899:. 1887:^ 1873:. 1861:. 1849:^ 1831:. 1819:^ 1805:. 1795:. 1783:. 1769:^ 1753:11 1751:. 1739:^ 1729:. 1718:^ 1702:76 1700:. 1686:^ 1672:. 1660:23 1658:. 1654:. 1642:^ 1628:. 1618:. 1606:. 1602:. 1586:^ 1572:. 1562:. 1550:. 1546:. 1532:^ 1518:. 1508:. 1498:. 1488:12 1486:. 1482:. 1459:. 1447:. 1443:. 1420:. 1408:. 1404:. 1381:. 1373:. 1363:23 1361:. 1349:^ 1335:. 1323:. 1311:^ 1297:. 1285:. 1281:. 1265:^ 1251:. 1241:. 1231:46 1229:. 1211:^ 1197:. 1189:. 1179:16 1177:. 1159:^ 1145:. 1137:. 1125:. 1121:. 1073:. 1065:. 1051:. 1047:. 1018:. 1014:. 982:^ 968:. 958:. 944:. 940:. 910:^ 846:. 803:, 799:, 795:, 791:, 556:, 417:, 413:, 396:. 380:, 376:, 372:, 368:, 347:. 345:pH 331:, 327:, 262:, 109:, 54:, 50:, 46:, 42:, 4447:. 4427:: 4404:. 4392:: 4386:2 4369:. 4357:: 4349:: 4326:. 4314:: 4306:: 4300:1 4283:. 4279:: 4271:: 4265:6 4248:. 4236:: 4230:4 4213:. 4191:: 4183:: 4156:. 4134:: 4126:: 4099:. 4077:: 4071:6 4050:. 4028:: 4001:. 3979:: 3952:. 3940:: 3913:. 3893:: 3870:. 3858:: 3852:6 3832:. 3810:: 3780:. 3768:: 3745:. 3733:: 3710:. 3685:. 3665:: 3642:. 3630:: 3607:. 3595:: 3589:3 3572:. 3560:: 3533:. 3521:: 3515:5 3498:. 3474:: 3468:5 3447:. 3435:: 3405:. 3385:: 3379:2 3361:. 3336:. 3332:: 3306:. 3294:: 3262:. 3242:: 3217:9 3197:. 3185:: 3162:. 3148:: 3121:. 3109:: 3103:8 3086:. 3074:: 3068:4 3051:. 3031:: 3023:: 2997:. 2993:: 2967:. 2955:: 2947:: 2924:. 2899:. 2893:: 2887:7 2861:. 2849:: 2821:. 2809:: 2779:. 2757:: 2730:. 2708:: 2681:. 2677:: 2669:: 2646:. 2634:: 2628:5 2611:. 2589:: 2583:5 2562:. 2542:: 2515:. 2495:: 2467:. 2447:: 2420:. 2408:: 2400:: 2374:. 2354:: 2346:: 2340:8 2319:. 2300:. 2281:. 2277:: 2250:. 2246:: 2219:. 2207:: 2199:: 2176:) 2172:( 2142:7 2113:. 2101:: 2095:9 2074:. 2044:: 1999:. 1981:. 1959:: 1951:: 1945:3 1925:. 1911:: 1881:. 1877:: 1869:: 1863:7 1843:. 1839:: 1813:. 1809:: 1791:: 1785:2 1763:. 1759:: 1712:. 1708:: 1680:. 1666:: 1636:. 1614:: 1608:9 1580:. 1558:: 1552:6 1526:. 1502:: 1494:: 1467:. 1455:: 1449:8 1428:. 1416:: 1410:7 1389:. 1369:: 1343:. 1339:: 1331:: 1325:5 1305:. 1293:: 1287:2 1259:. 1245:: 1237:: 1205:. 1193:: 1185:: 1153:. 1141:: 1133:: 1127:7 1106:. 1081:. 1059:: 1032:. 1026:: 976:. 952:: 946:1 703:2 699:2 697:O 695:2 691:2

Index


nanometer
polymers
collagen
cellulose
silk fibroin
keratin
gelatin
polysaccharides
chitosan
alginate
poly(lactic acid)
polycaprolactone
polyurethane
poly(lactic-co-glycolic acid)
poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
poly(ethylene-co-vinylacetate)
covalent bonds
microfiber
electrospinning
self-assembly
electrospinning
William Gilbert
electrostatic attraction
Taylor cone
Lord Rayleigh
equilibrium
surface tension
electrostatic force
Charles Vernon Boys

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑