Knowledge

Doping (semiconductor)

Source đź“ť

1801:
its acceptor level is only 0.26 eV below conduction band; as the acceptor level in n-type silicon is shallower, the space charge generation rate is lower and therefore the leakage current is also lower than for gold doping. At high injection levels platinum performs better for lifetime reduction. Reverse recovery of bipolar devices is more dependent on the low-level lifetime, and its reduction is better performed by gold. Gold provides a good tradeoff between forward voltage drop and reverse recovery time for fast switching bipolar devices, where charge stored in base and collector regions must be minimized. Conversely, in many power transistors a long minority carrier lifetime is required to achieve good gain, and the gold/platinum impurities must be kept low.
419:, there are approximately 5Ă—10 atoms/cm. Doping concentration for silicon semiconductors may range anywhere from 10 cm to 10 cm. Doping concentration above about 10 cm is considered degenerate at room temperature. Degenerately doped silicon contains a proportion of impurity to silicon on the order of parts per thousand. This proportion may be reduced to parts per billion in very lightly doped silicon. Typical concentration values fall somewhere in this range and are tailored to produce the desired properties in the device that the semiconductor is intended for. 31: 2149:
semiconductor material. New applications have become available that require the discrete character of a single dopant, such as single-spin devices in the area of quantum information or single-dopant transistors. Dramatic advances in the past decade towards observing, controllably creating and manipulating single dopants, as well as their application in novel devices have allowed opening the new field of solotronics (solitary dopant optoelectronics).
3223: 428: 1926:
In most cases many types of impurities will be present in the resultant doped semiconductor. If an equal number of donors and acceptors are present in the semiconductor, the extra core electrons provided by the former will be used to satisfy the broken bonds due to the latter, so that doping produces
1486:
to receive the neutrons. As neutrons continue to pass through the silicon, more and more phosphorus atoms are produced by transmutation, and therefore the doping becomes more and more strongly n-type. NTD is a far less common doping method than diffusion or ion implantation, but it has the advantage
2287: 1800:
are used for minority carrier lifetime control. They are used in some infrared detection applications. Gold introduces a donor level 0.35 eV above the valence band and an acceptor level 0.54 eV below the conduction band. Platinum introduces a donor level also at 0.35 eV above the valence band, but
1728:
is a n-type dopant. It has a small diffusion coefficient. Used for buried layers. Has diffusivity similar to arsenic, is used as its alternative. Its diffusion is virtually purely substitutional, with no interstitials, so it is free of anomalous effects. For this superior property, it is sometimes
2157:
Electrons or holes introduced by doping are mobile, and can be spatially separated from dopant atoms they have dissociated from. Ionized donors and acceptors however attract electrons and holes, respectively, so this spatial separation requires abrupt changes of dopant levels, of band gap (e.g. a
2088:
Molecular dopants are preferred in doping molecular semiconductors due to their compatibilities of processing with the host, that is, similar evaporation temperatures or controllable solubility. Additionally, the relatively large sizes of molecular dopants compared with those of metal ion dopants
1575:
of choice for silicon integrated circuit production because it diffuses at a rate that makes junction depths easily controllable. Phosphorus is typically used for bulk-doping of silicon wafers, while arsenic is used to diffuse junctions, because it diffuses more slowly than phosphorus and is thus
1677:
is a dopant used for long-wavelength infrared photoconduction silicon detectors in the 8–14 μm atmospheric window. Gallium-doped silicon is also promising for solar cells, due to its long minority carrier lifetime with no lifetime degradation; as such it is gaining importance as a replacement of
1721:
is a n-type dopant. Its slower diffusion allows using it for diffused junctions. Used for buried layers. Has similar atomic radius to silicon, high concentrations can be achieved. Its diffusivity is about a tenth of phosphorus or boron, so it is used where the dopant should stay in place during
2148:
The sensitive dependence of a semiconductor's properties on dopants has provided an extensive range of tunable phenomena to explore and apply to devices. It is possible to identify the effects of a solitary dopant on commercial device performance as well as on the fundamental properties of a
434:
of PN junction operation in forward bias mode showing reducing depletion width. Both p and n junctions are doped at a 1Ă—10/cm doping level, leading to built-in potential of ~0.59 V. Reducing depletion width can be inferred from the shrinking charge profile, as fewer dopants are exposed with
1285:
is added, and sulfur is incorporated into the structure. This process is characterized by a constant concentration of sulfur on the surface. In the case of semiconductors in general, only a very thin layer of the wafer needs to be doped in order to obtain the desired electronic properties.
1745:
solar cells. The lithium presence anneals defects in the lattice produced by protons and neutrons. Lithium can be introduced to boron-doped p+ silicon, in amounts low enough to maintain the p character of the material, or in large enough amount to counterdope it to low-resistivity n
1480: 752: 2268: 1938:
Partial compensation, where donors outnumber acceptors or vice versa, allows device makers to repeatedly reverse (invert) the type of a certain layer under the surface of a bulk semiconductor by diffusing or implanting successively higher doses of dopants, so-called
1206: 542:
For low levels of doping, the relevant energy states are populated sparsely by electrons (conduction band) or holes (valence band). It is possible to write simple expressions for the electron and hole carrier concentrations, by ignoring Pauli exclusion (via
948: 1943:. Most modern semiconductor devices are made by successive selective counterdoping steps to create the necessary P and N type areas under the surface of bulk silicon. This is an alternative to successively growing such layers by epitaxy. 1729:
used in VLSI instead of arsenic. Heavy doping with antimony is important for power devices. Heavily antimony-doped silicon has lower concentration of oxygen impurities; minimal autodoping effects make it suitable for epitaxial substrates.
3005:
Lin, Xin; Purdum, Geoffrey E.; Zhang, Yadong; Barlow, Stephen; Marder, Seth R.; Loo, Yueh-Lin; Kahn, Antoine (2016-04-26). "Impact of a Low Concentration of Dopants on the Distribution of Gap States in a Molecular Semiconductor".
183:
is not used in it, his US Patent issued in 1950 describes methods for adding tiny amounts of solid elements from the nitrogen column of the periodic table to germanium to produce rectifying devices. The demands of his work on
2776: 1351: 2123:
Research on magnetic doping has shown that considerable alteration of certain properties such as specific heat may be affected by small concentrations of an impurity; for example, dopant impurities in semiconducting
167:, and in 1930 the German scientist Bernhard Gudden, each independently reported that the properties of semiconductors were due to the impurities they contained. A doping process was formally developed by 1761:
engineering. Germanium layer also inhibits diffusion of boron during the annealing steps, allowing ultrashallow p-MOSFET junctions. Germanium bulk doping suppresses large void defects, increases internal
1665:
gas. The only acceptor with sufficient solubility for efficient emitters in transistors and other applications requiring extremely high dopant concentrations. Boron diffuses about as fast as phosphorus.
553: 2128:
alloys can generate different properties as first predicted by White, Hogan, Suhl and Nakamura. The inclusion of dopant elements to impart dilute magnetism is of growing significance in the field of
399:
In general, increased doping leads to increased conductivity due to the higher concentration of carriers. Degenerate (very highly doped) semiconductors have conductivity levels comparable to
1722:
subsequent thermal processing. Useful for shallow diffusions where well-controlled abrupt boundary is desired. Preferred dopant in VLSI circuits. Preferred dopant in low resistivity ranges.
351: 1010: 511:'s properties are due to the band bending that happens as a result of the necessity to line up the bands in contacting regions of p-type and n-type material. This effect is shown in a 415:
would indicate a very lightly doped p-type material. Even degenerate levels of doping imply low concentrations of impurities with respect to the base semiconductor. In intrinsic
499:. The energy band that corresponds with the dopant with the greatest concentration ends up closer to the Fermi level. Since the Fermi level must remain constant in a system in 1595:
elements, which are missing the fourth valence electron, creates "broken bonds" (holes) in the silicon lattice that are free to move. The result is an electrically conductive
1626:
A very heavily doped semiconductor behaves more like a good conductor (metal) and thus exhibits more linear positive thermal coefficient. Such effect is used for instance in
1318:
and dopants (in a solvent) onto a wafer surface by spin-coating and then stripping it and baking it at a certain temperature in the furnace at constant nitrogen+oxygen flow.
2301: 1790:
is important for growing defect-free silicon crystal. Improves mechanical strength of the lattice, increases bulk microdefect generation, suppresses vacancy agglomeration.
284: 794: 2893:
Lin, Xin; Wegner, Berthold; Lee, Kyung Min; Fusella, Michael A.; Zhang, Fengyu; Moudgil, Karttikay; Rand, Barry P.; Barlow, Stephen; Marder, Seth R. (2017-11-13).
1975:
within the already potentially conducting system. There are two primary methods of doping a conductive polymer, both of which use an oxidation-reduction (i.e.,
73:
can change the ability of a semiconductor to conduct electricity. When on the order of one dopant atom is added per 100 million atoms, the doping is said to be
1735:
is a promising dopant for long-wavelength infrared photoconduction silicon detectors, a viable n-type alternative to the p-type gallium-doped material.
1277:. In vapor-phase epitaxy, a gas containing the dopant precursor can be introduced into the reactor. For example, in the case of n-type gas doping of 455:
impurities create states near the valence band. The gap between these energy states and the nearest energy band is usually referred to as dopant-site
407:
as a replacement for metal. Often superscript plus and minus symbols are used to denote relative doping concentration in semiconductors. For example,
1338:
doping (NTD) is an unusual doping method for special applications. Most commonly, it is used to dope silicon n-type in high-power electronics and
2140:(DFT) the temperature dependent magnetic behaviour of dopants within a given lattice can be modeled to identify candidate semiconductor systems. 377:
is the material's intrinsic carrier concentration. The intrinsic carrier concentration varies between materials and is dependent on temperature.
515:. The band diagram typically indicates the variation in the valence band and conduction band edges versus some spatial dimension, often denoted 2285:, Sparks, Morgan & Teal, Gordon K., "Method of Making P-N Junctions in Semiconductor Materials", issued March 17, 1953 1475:{\displaystyle ^{30}\mathrm {Si} \,(n,\gamma )\,^{31}\mathrm {Si} \rightarrow \,^{31}\mathrm {P} +\beta ^{-}\;(T_{1/2}=2.62\mathrm {h} ).} 1866:
n-type: silicon (substituting Ga), germanium (substituting Ga, better lattice match), carbon (substituting Ga, naturally embedding into
530:, which is the Fermi level in the absence of doping, is shown. These diagrams are useful in explaining the operation of many kinds of 3248: 747:{\displaystyle n_{e}=N_{\rm {C}}(T)\exp((E_{\rm {F}}-E_{\rm {C}})/kT),\quad n_{h}=N_{\rm {V}}(T)\exp((E_{\rm {V}}-E_{\rm {F}})/kT),} 1784:
of silicon wafer surfaces. Formation of an amorphous layer beneath the surface allows forming ultrashallow junctions for p-MOSFETs.
2101:. However, similar to the problem encountered in doping conductive polymers, air-stable n-dopants suitable for materials with low 3227: 1699:. It diffuses fast, so is usually used for bulk doping, or for well formation. Used in solar cells. Can be added by diffusion of 17: 2089:(such as Li and Mo) are generally beneficial, yielding excellent spatial confinement for use in multilayer structures, such as 2849: 2822: 2755: 2697: 2667: 2629: 2528: 2491: 2466: 2441: 2410: 1234: 62:
for the purpose of modulating its electrical, optical and structural properties. The doped material is referred to as an
2508:"Computer History Museum – The Silicon Engine|1955 – Photolithography Techniques Are Used to Make Silicon Devices" 2326:
Sproul, A. B; Green, M. A (1991). "Improved value for the silicon intrinsic carrier concentration from 275 to 375 K".
3243: 2874: 2604: 2579: 1715:. Phosphorus also traps gold atoms, which otherwise quickly diffuse through silicon and act as recombination centers. 1274: 2507: 2064:(i.e., reoxidize to the neutral state) the polymer. Thus, chemical n-doping must be performed in an environment of 1946:
Although compensation can be used to increase or decrease the number of donors or acceptors, the electron and hole
1201:{\displaystyle N_{\rm {C}}(T)=2(2\pi m_{e}^{*}kT/h^{2})^{3/2}\quad N_{\rm {V}}(T)=2(2\pi m_{h}^{*}kT/h^{2})^{3/2}.} 544: 295: 81:. When many more dopant atoms are added, on the order of one per ten thousand atoms, the doping is referred to as 2197: 1684:
is a dopant used for long-wavelength infrared photoconduction silicon detectors in the 3–5 μm atmospheric window.
2958:"Molecular Electrical Doping of Organic Semiconductors: Fundamental Mechanisms and Emerging Dopant Design Rules" 503:, stacking layers of materials with different properties leads to many useful electrical properties induced by 2364:
Green, M. A. (1990). "Intrinsic concentration, effective densities of states, and effective mass in silicon".
1587:
are added that become unbounded from individual atoms and allow the compound to be an electrically conductive
788:
is the maximum energy of the valence band. These are related to the value of the intrinsic concentration via
2774:, Weinberg, Irving & Brandhorst, Henry W. Jr., "Lithium counterdoped silicon solar cell" 1950:
is always decreased by compensation because mobility is affected by the sum of the donor and acceptor ions.
2105:(EA) are still elusive. Recently, photoactivation with a combination of cleavable dimeric dopants, such as 448: 222:
The concentration of the dopant used affects many electrical properties. Most important is the material's
2072:). Electrochemical n-doping is far more common in research, because it is easier to exclude oxygen from a 1889:
Mg, hydrogen complexes passivating of Mg acceptors and by Mg self-compensation at higher concentrations)
1812:
In the following list the "(substituting X)" refers to all of the materials preceding said parenthesis.
3076:
Zhang, X. Y; Suhl, H (1985). "Spin-wave-related period doublings and chaos under transverse pumping".
2771: 2282: 2263: 2226: 1306:, the latter method being more popular in large production runs because of increased controllability. 2137: 1861: 1650: 1615: 1572: 1540: 500: 452: 156: 3119:
Assadi, M.H.N; Hanaor, D.A.H. (2013). "Theoretical study on copper's energetics and magnetism in TiO
943:{\displaystyle n_{i}^{2}=n_{h}n_{e}=N_{\rm {V}}(T)N_{\rm {C}}(T)\exp((E_{\rm {V}}-E_{\rm {C}})/kT),} 152:
The effects of impurities in semiconductors (doping) were long known empirically in such devices as
2044:
to enter the polymer in the form of electron addition (i.e., n-doping) or removal (i.e., p-doping).
289:
In a non-intrinsic semiconductor under thermal equilibrium, the relation becomes (for low doping):
172: 118: 244: 2747:
Solar Cell Array Design Handbook: The Principles and Technology of Photovoltaic Energy Conversion
2192: 2187: 1824:
p-type: beryllium, zinc, chromium (substituting Ga); silicon, germanium, carbon (substituting As)
1671:, used for deep p-diffusions. Not popular in VLSI and ULSI. Also a common unintentional impurity. 63: 59: 411:
denotes an n-type semiconductor with a high, often degenerate, doping concentration. Similarly,
2956:
Salzmann, Ingo; Heimel, Georg; Oehzelt, Martin; Winkler, Stefanie; Koch, Norbert (2016-03-15).
2129: 2118: 2060:
environment. An electron-rich, n-doped polymer will react immediately with elemental oxygen to
1857: 1696: 1605: 1548: 1501: 1339: 444: 2745: 2687: 2657: 2400: 2895:"Beating the thermodynamic limit with photo-activation of n-doping in organic semiconductors" 2839: 2812: 2715:
Bismuth-Doped Silicon: An Extrinsic Detector For Long-Wavelength Infrared (LWIR) Applications
2049: 1704: 1536: 1335: 1237:
of electrons and holes, respectively, quantities that are roughly constant over temperature.
2266:, Woodyard, John R., "Nonlinear circuit device utilizing germanium", issued 1950 3185: 3142: 3085: 3050: 2906: 2373: 2335: 2033: 1886: 1841: 1596: 1588: 531: 168: 137: 122: 114: 102: 94: 8: 2132:. The presence of disperse ferromagnetic species is key to the functionality of emerging 1742: 1314:
Spin-on glass or spin-on dopant doping is a two-step process of applying a mixture of SiO
1267: 443:, but very close to the energy band that corresponds to the dopant type. In other words, 416: 227: 160: 3189: 3146: 3089: 3054: 2910: 2377: 2339: 477:
in silicon bulk is 0.045 eV, compared with silicon's band gap of about 1.12 eV. Because
3158: 3132: 2726: 2171: 2094: 2080:. However, it is unlikely that n-doped conductive polymers are available commercially. 1964: 1959: 1327: 1263: 485: 404: 38:
array. Silicon based intrinsic semiconductor becomes extrinsic when impurities such as
2790: 1840:
isoelectric: nitrogen (substituting P) is added to enable luminescence in older green
1821:
n-type: tellurium, sulfur (substituting As); tin, silicon, germanium (substituting Ga)
3201: 3101: 3023: 2987: 2979: 2938: 2930: 2922: 2870: 2845: 2818: 2751: 2730: 2693: 2663: 2625: 2600: 2575: 2487: 2462: 2437: 2406: 2167: 2102: 1947: 1894: 1874: 1845: 1829: 1781: 1584: 439:
Doping a semiconductor in a good crystal introduces allowed energy states within the
141: 3162: 3041:
Hogan, C. Michael (1969). "Density of States of an Insulating Ferromagnetic Alloy".
2546: 495:
Dopants also have the important effect of shifting the energy bands relative to the
3193: 3150: 3093: 3058: 3015: 2969: 2914: 2718: 2381: 2343: 2202: 2175: 2077: 2036:
is created between the electrodes that causes a charge and the appropriate counter
1971:, or sometimes reduce, the system so that electrons are pushed into the conducting 1816: 1303: 1295: 1282: 1278: 393: 164: 3176:
Koenraad, Paul M.; Flatté, Michael E. (2011). "Single dopants in semiconductors".
3019: 2974: 2957: 2247: 1907: 1853: 1712: 1532: 1483: 1259: 30: 2163: 2007: 1972: 1600: 1580: 1552: 489: 456: 223: 196: 108: 144:
in semiconductors. Doping is also used to control the color in some pigments.
3237: 3097: 3027: 2983: 2926: 2136:, a class of systems that utilise electron spin in addition to charge. Using 2125: 2011: 235: 200: 153: 51: 3062: 3205: 2991: 2942: 2207: 2159: 1932: 1878: 1516: 1509: 512: 508: 504: 431: 188:
prevented Woodyard from pursuing further research on semiconductor doping.
176: 133: 3105: 519:. The Fermi level is also usually indicated in the diagram. Sometimes the 2133: 2109:, suggests a new path to realize effective n-doping in low-EA materials. 2041: 2025: 1873:
p-type: magnesium (substituting Ga) - challenging due to relatively high
1610: 1592: 1544: 1504:, semiconductor physicists always use an older notation, not the current 767: 496: 211: 1902:
p-type: phosphorus (substituting Te); lithium, sodium (substituting Cd)
1899:
n-type: indium, aluminium (substituting Cd); chlorine (substituting Te)
1631: 1564: 1343: 1273:
Alternately, synthesis of semiconductor devices may involve the use of
3154: 2934: 2894: 2722: 113:) A semiconductor doped to such high levels that it acts more like a 27:
Intentional introduction of impurities into an intrinsic semiconductor
3197: 2918: 2385: 2347: 2065: 2057: 2029: 2021: 1991: 1882: 1763: 1700: 1654: 1627: 1620: 1528: 1299: 1294:
To define circuit elements, selected areas — typically controlled by
537: 192: 2770: 2717:. Mosaic Focal Plane Methodologies I. Vol. 0244. pp. 2–8. 1912:
n-type: gallium (substituting Cd); iodine, fluorine (substituting S)
1758: 1662: 970: 440: 231: 129: 43: 3137: 2032:
along with separate counter and reference electrodes. An electric
2073: 2003: 1995: 1987: 1968: 1708: 1568: 1560: 1524: 1520: 1332: 1255: 507:, if the interfaces can be made cleanly enough. For example, the 378: 35: 2459:
Process Engineering Analysis in Semiconductor Device Fabrication
3222: 2053: 1999: 1837:
p-type: zinc, magnesium (substituting Ga); tin (substituting P)
1251: 389: 207: 953:
an expression which is independent of the doping level, since
2281: 2083: 2069: 1976: 1927:
no free carriers of either type. This phenomenon is known as
1867: 1834:
n-type: tellurium, selenium, sulfur (substituting phosphorus)
1630:. Lower dosage of doping is used in other types (NTC or PTC) 1556: 1505: 474: 400: 185: 39: 2955: 2090: 1658: 70: 2659:
Crystal Growth and Evaluation of Silicon for VLSI and ULSI
1342:. It is based on the conversion of the Si-30 isotope into 427: 2037: 2010:; this method is far less common, and typically involves 2750:. Springer Science & Business Media. pp. 157–. 2692:. Springer Science & Business Media. pp. 437–. 2302:"John Robert Woodyard, Electrical Engineering: Berkeley" 111:
for a more detailed description of the doping mechanism.
2620:
Cheruku, Dharma Raj; Krishna, Battula Tirumala (2008).
1657:
rate allows easy control of junction depths. Common in
58:
is the intentional introduction of impurities into an
2713:
Parry, Christopher M. (1981). Chan, William S. (ed.).
1487:
of creating an extremely uniform dopant distribution.
2743: 2712: 2599:. Electrochemical Society Proceedings. Vol. 98. 2097:. Typical p-type dopants include F4-TCNQ and Mo(tfd) 1354: 1240: 1013: 797: 556: 298: 247: 125:
if it has been doped in equal quantities of p and n.
3004: 1482:
In practice, the silicon is typically placed near a
488:
practically all of the dopant atoms and create free
210:
proved to be the grounds of extensive litigation by
2892: 2529:"1954: Diffusion Process Developed for Transistors" 2143: 1678:
boron doped substrates for solar cell applications.
779:is the minimum energy of the conduction band, and 226:concentration. In an intrinsic semiconductor under 2624:(2nd ed.). Delhi, India: Dorling Kindersley. 1474: 1200: 942: 746: 538:Relationship to carrier concentration (low doping) 345: 278: 3040: 2814:Field-Effect and Bipolar Power Transistor Physics 2262: 2006:. Alternatively, the polymer can be exposed to a 3235: 2837: 2597:High Resistivity NTD Production and Applications 2481: 2436:. Cambridge University Press. pp. 241–243. 2162:), or built-in electric fields (e.g. in case of 1953: 2810: 2431: 1935:in the vast majority of semiconductor devices. 1321: 1245: 484:is so small, room temperature is hot enough to 3175: 2619: 2020:involves suspending a polymer-coated, working 363:is the concentration of conducting electrons, 2685: 2681: 2679: 2655: 2456: 2245: 1967:can be doped by adding chemical reactants to 3118: 2594: 2405:. Dordrecht: Kluwer Academic. pp. 6–7. 2363: 1619:. This is a key concept in the physics of a 388:, for example, is roughly 1.08Ă—10 cm at 300 346:{\displaystyle n_{0}\cdot p_{0}=n_{i}^{2}\ } 2651: 2649: 2647: 2645: 2643: 2641: 2325: 2252:(2md ed.). Cambridge University Press. 422: 2676: 2227:"Faraday to Shockley – Transistor History" 2084:Doping in organic molecular semiconductors 1495: 1433: 466:and is relatively small. For example, the 370:is the conducting hole concentration, and 3136: 3075: 2973: 2450: 2048:N-doping is much less common because the 1915:p-type: lithium, sodium (substituting Cd) 1766:, and improves wafer mechanical strength. 1661:technology. Can be added by diffusion of 1603:element is said to behave as an electron 1408: 1389: 1372: 1298:— are further doped by such processes as 117:than a semiconductor is referred to as a 2864: 2638: 2170:and is advantageous owing to suppressed 426: 217: 29: 2425: 2402:Microelectronic Materials and Processes 2359: 2357: 1807: 1571:are used to dope silicon. Boron is the 1512:is called "Group IV", not "Group 14".) 1346:atom by neutron absorption as follows: 14: 3236: 2569: 1707:, by irradiation of pure silicon with 2888: 2886: 2461:. McGraw-Hill. pp. 29, 330–337. 2306:University of California: In Memoriam 1289: 2791:"2. Semiconductor Doping Technology" 2475: 2398: 2354: 2166:crystals). This technique is called 2152: 1986:involves exposing a polymer such as 1703:gas. Bulk doping can be achieved by 492:in the conduction or valence bands. 121:. A semiconductor can be considered 2689:Neutron-Transmutation-Doped Silicon 1870:-grown layers in low concentration) 1583:elements such as phosphorus, extra 203:, with a US Patent issued in 1953. 24: 2883: 2595:Schmidt, P. E.; Vedde, J. (1998). 2574:. Wiley-Interscience. p. 32. 2112: 1637: 1490: 1462: 1416: 1400: 1397: 1368: 1365: 1270:an almost uniform initial doping. 1241:Techniques of doping and synthesis 1235:density of states effective masses 1111: 1020: 914: 899: 866: 845: 718: 703: 670: 624: 609: 576: 447:impurities create states near the 140:; this is not to be confused with 25: 3260: 3215: 2028:solution in which the polymer is 1780:can be used as ion beams for pre- 1508:group notation. For example, the 60:intrinsic (undoped) semiconductor 3249:Semiconductor device fabrication 3221: 2570:Baliga, B. Jayant (1987-03-10). 2144:Single dopants in semiconductors 1309: 3169: 3112: 3069: 3034: 2998: 2949: 2869:(2nd ed.). Prentice Hall. 2858: 2831: 2804: 2783: 2764: 2737: 2706: 2622:Electronic Devices and Circuits 2613: 2588: 2563: 2539: 2521: 2500: 2484:Analysis of Transport Phenomena 2198:List of semiconductor materials 1921: 1741:is used for doping silicon for 1104: 973:) does not change with doping. 650: 2793:. Iue.tuwien.ac.at. 2002-02-01 2744:Rauschenbach, Hans S. (2012). 2434:Doping in III-V Semiconductors 2392: 2319: 2294: 2275: 2256: 2239: 2219: 1539:, the most common dopants are 1466: 1434: 1404: 1385: 1373: 1178: 1132: 1123: 1117: 1087: 1041: 1032: 1026: 934: 920: 890: 887: 878: 872: 857: 851: 738: 724: 694: 691: 682: 676: 644: 630: 600: 597: 588: 582: 191:Similar work was performed at 13: 1: 3020:10.1021/acs.chemmater.6b00165 2962:Accounts of Chemical Research 2213: 1954:Doping in conductive polymers 2975:10.1021/acs.accounts.5b00438 2662:. CRC Press. pp. 253–. 2399:Levy, Roland Albert (1989). 1579:By doping pure silicon with 1322:Neutron transmutation doping 1246:Doping during crystal growth 545:Maxwell–Boltzmann statistics 279:{\displaystyle n=p=n_{i}.\ } 136:, doping is better known as 7: 2865:Hastings, Ray Alan (2006). 2844:. CRC Press. pp. 19–. 2486:. Oup USA. pp. 91–94. 2181: 10: 3265: 3125:Journal of Applied Physics 2817:. Elsevier. pp. 93–. 2366:Journal of Applied Physics 2116: 1957: 1325: 1254:are added as the (usually 976:The concentration factors 147: 2841:Microelectronic Materials 2838:Grovenor, C.R.M. (1989). 2482:Deen, William M. (1998). 2138:density functional theory 1862:Aluminium gallium nitride 501:thermodynamic equilibrium 238:are equivalent. That is, 89:. This is often shown as 3244:Semiconductor properties 3098:10.1103/PhysRevA.32.2530 2867:The Art of Analog Layout 2811:Blicher, Adolph (2012). 2432:Schubert, E. F. (2005). 2172:carrier-donor scattering 2056:-rich, thus creating an 435:increasing forward bias. 423:Effect on band structure 230:, the concentrations of 173:Sperry Gyroscope Company 163:. For instance, in 1885 119:degenerate semiconductor 69:Small numbers of dopant 3131:(23): 233913–233913–5. 3063:10.1103/PhysRev.188.870 2533:Computer History Museum 2193:Intrinsic semiconductor 2188:Extrinsic semiconductor 2130:magnetic semiconductors 1519:semiconductors such as 1500:(Note: When discussing 1496:Group IV semiconductors 1340:semiconductor detectors 64:extrinsic semiconductor 18:Doping (semiconductors) 3228:Doping (semiconductor) 3008:Chemistry of Materials 2686:Jens Guldberg (2013). 2656:Eranna, Golla (2014). 2457:Middleman, S. (1993). 2246:Wilson, A. H. (1965). 2119:Magnetic semiconductor 2018:Electrochemical doping 1858:Indium gallium nitride 1476: 1202: 944: 748: 436: 403:and are often used in 347: 280: 47: 2772:US patent 4608452 2510:. Computerhistory.org 2283:US patent 2631356 2264:US patent 2530110 2174:, allowing very high 1705:nuclear transmutation 1599:. In this context, a 1502:periodic table groups 1477: 1203: 945: 749: 532:semiconductor devices 521:intrinsic Fermi level 430: 348: 281: 218:Carrier concentration 33: 3230:at Wikimedia Commons 2572:Modern Power Devices 2249:The Theory of Metals 2034:potential difference 1931:, and occurs at the 1808:Other semiconductors 1597:p-type semiconductor 1589:n-type semiconductor 1352: 1011: 795: 554: 296: 245: 169:John Robert Woodyard 123:i-type semiconductor 3190:2011NatMa..10...91K 3147:2013JAP...113w3913A 3090:1985PhRvA..32.2530Z 3055:1969PhRv..188..870H 2911:2017NatMa..16.1209L 2378:1990JAP....67.2944G 2340:1991JAP....70..846S 2095:Organic solar cells 1965:Conductive polymers 1576:more controllable. 1567:, and occasionally 1275:vapor-phase epitaxy 1155: 1064: 812: 417:crystalline silicon 405:integrated circuits 339: 228:thermal equilibrium 161:selenium rectifiers 107:See the article on 2164:noncentrosymmetric 2050:Earth's atmosphere 1960:Conductive polymer 1743:radiation hardened 1643:Acceptors, p-type 1472: 1328:Neutron activation 1290:Post-growth doping 1264:Czochralski method 1198: 1141: 1050: 940: 798: 744: 437: 343: 325: 276: 179:. Though the word 128:In the context of 48: 3226:Media related to 3155:10.1063/1.4811539 3078:Physical Review A 2905:(12): 1209–1215. 2851:978-0-85274-270-9 2824:978-0-323-15540-3 2757:978-94-011-7915-7 2723:10.1117/12.959299 2699:978-1-4613-3261-9 2669:978-1-4822-3282-0 2631:978-81-317-0098-3 2493:978-0-19-508494-8 2468:978-0-07-041853-0 2443:978-0-521-01784-8 2412:978-0-7923-0154-7 2168:modulation doping 2153:Modulation doping 2103:electron affinity 1895:Cadmium telluride 1875:ionisation energy 1846:indirect band gap 1830:Gallium phosphide 1585:valence electrons 1537:silicon–germanium 453:electron acceptor 342: 275: 206:Woodyard's prior 142:dopant activation 34:Doping of a pure 16:(Redirected from 3256: 3225: 3210: 3209: 3198:10.1038/nmat2940 3178:Nature Materials 3173: 3167: 3166: 3140: 3116: 3110: 3109: 3084:(4): 2530–2533. 3073: 3067: 3066: 3038: 3032: 3031: 3014:(8): 2677–2684. 3002: 2996: 2995: 2977: 2953: 2947: 2946: 2919:10.1038/nmat5027 2899:Nature Materials 2890: 2881: 2880: 2862: 2856: 2855: 2835: 2829: 2828: 2808: 2802: 2801: 2799: 2798: 2787: 2781: 2780: 2779: 2775: 2768: 2762: 2761: 2741: 2735: 2734: 2710: 2704: 2703: 2683: 2674: 2673: 2653: 2636: 2635: 2617: 2611: 2610: 2592: 2586: 2585: 2567: 2561: 2560: 2558: 2557: 2551:inside.mines.edu 2543: 2537: 2536: 2525: 2519: 2518: 2516: 2515: 2504: 2498: 2497: 2479: 2473: 2472: 2454: 2448: 2447: 2429: 2423: 2422: 2420: 2419: 2396: 2390: 2389: 2386:10.1063/1.345414 2361: 2352: 2351: 2348:10.1063/1.349645 2323: 2317: 2316: 2314: 2313: 2298: 2292: 2291: 2290: 2286: 2279: 2273: 2272: 2271: 2267: 2260: 2254: 2253: 2243: 2237: 2236: 2234: 2233: 2223: 2203:Monolayer doping 2178:to be attained. 1817:Gallium arsenide 1757:can be used for 1481: 1479: 1478: 1473: 1465: 1454: 1453: 1449: 1432: 1431: 1419: 1414: 1413: 1403: 1395: 1394: 1371: 1363: 1362: 1304:ion implantation 1296:photolithography 1283:hydrogen sulfide 1279:gallium arsenide 1232: 1221: 1207: 1205: 1204: 1199: 1194: 1193: 1189: 1176: 1175: 1166: 1154: 1149: 1116: 1115: 1114: 1103: 1102: 1098: 1085: 1084: 1075: 1063: 1058: 1025: 1024: 1023: 1003: 989: 968: 949: 947: 946: 941: 927: 919: 918: 917: 904: 903: 902: 871: 870: 869: 850: 849: 848: 835: 834: 825: 824: 811: 806: 787: 778: 765: 753: 751: 750: 745: 731: 723: 722: 721: 708: 707: 706: 675: 674: 673: 660: 659: 637: 629: 628: 627: 614: 613: 612: 581: 580: 579: 566: 565: 486:thermally ionize 394:room temperature 352: 350: 349: 344: 340: 338: 333: 321: 320: 308: 307: 285: 283: 282: 277: 273: 269: 268: 165:Shelford Bidwell 21: 3264: 3263: 3259: 3258: 3257: 3255: 3254: 3253: 3234: 3233: 3218: 3213: 3174: 3170: 3122: 3117: 3113: 3074: 3070: 3043:Physical Review 3039: 3035: 3003: 2999: 2954: 2950: 2891: 2884: 2877: 2863: 2859: 2852: 2836: 2832: 2825: 2809: 2805: 2796: 2794: 2789: 2788: 2784: 2777: 2769: 2765: 2758: 2742: 2738: 2711: 2707: 2700: 2684: 2677: 2670: 2654: 2639: 2632: 2618: 2614: 2607: 2593: 2589: 2582: 2568: 2564: 2555: 2553: 2547:"Spin-on Glass" 2545: 2544: 2540: 2527: 2526: 2522: 2513: 2511: 2506: 2505: 2501: 2494: 2480: 2476: 2469: 2455: 2451: 2444: 2430: 2426: 2417: 2415: 2413: 2397: 2393: 2362: 2355: 2324: 2320: 2311: 2309: 2300: 2299: 2295: 2288: 2280: 2276: 2269: 2261: 2257: 2244: 2240: 2231: 2229: 2225: 2224: 2220: 2216: 2184: 2155: 2146: 2121: 2115: 2113:Magnetic doping 2108: 2100: 2086: 1984:Chemical doping 1962: 1956: 1924: 1908:Cadmium sulfide 1854:Gallium nitride 1810: 1713:nuclear reactor 1689:Donors, n-type 1640: 1638:Silicon dopants 1533:silicon carbide 1498: 1493: 1491:Dopant elements 1484:nuclear reactor 1461: 1445: 1441: 1437: 1427: 1423: 1415: 1409: 1407: 1396: 1390: 1388: 1364: 1358: 1355: 1353: 1350: 1349: 1330: 1324: 1317: 1312: 1292: 1248: 1243: 1231: 1223: 1220: 1212: 1185: 1181: 1177: 1171: 1167: 1162: 1150: 1145: 1110: 1109: 1105: 1094: 1090: 1086: 1080: 1076: 1071: 1059: 1054: 1019: 1018: 1014: 1012: 1009: 1008: 997: 991: 983: 977: 967: 960: 954: 923: 913: 912: 908: 898: 897: 893: 865: 864: 860: 844: 843: 839: 830: 826: 820: 816: 807: 802: 796: 793: 792: 786: 780: 777: 771: 764: 758: 727: 717: 716: 712: 702: 701: 697: 669: 668: 664: 655: 651: 633: 623: 622: 618: 608: 607: 603: 575: 574: 570: 561: 557: 555: 552: 551: 540: 528: 490:charge carriers 482: 471: 464: 449:conduction band 425: 386: 375: 369: 362: 334: 329: 316: 312: 303: 299: 297: 294: 293: 264: 260: 246: 243: 242: 220: 150: 46:are introduced. 28: 23: 22: 15: 12: 11: 5: 3262: 3252: 3251: 3246: 3232: 3231: 3217: 3216:External links 3214: 3212: 3211: 3168: 3120: 3111: 3068: 3049:(2): 870–874. 3033: 2997: 2968:(3): 370–378. 2948: 2882: 2875: 2857: 2850: 2830: 2823: 2803: 2782: 2763: 2756: 2736: 2705: 2698: 2675: 2668: 2637: 2630: 2612: 2605: 2587: 2580: 2562: 2538: 2520: 2499: 2492: 2474: 2467: 2449: 2442: 2424: 2411: 2391: 2353: 2318: 2293: 2274: 2255: 2238: 2217: 2215: 2212: 2211: 2210: 2205: 2200: 2195: 2190: 2183: 2180: 2154: 2151: 2145: 2142: 2117:Main article: 2114: 2111: 2106: 2098: 2085: 2082: 2046: 2045: 2015: 1990:, typically a 1958:Main article: 1955: 1952: 1923: 1920: 1919: 1918: 1917: 1916: 1913: 1905: 1904: 1903: 1900: 1892: 1891: 1890: 1871: 1851: 1850: 1849: 1838: 1835: 1827: 1826: 1825: 1822: 1809: 1806: 1805: 1804: 1803: 1802: 1791: 1785: 1767: 1749: 1748: 1747: 1736: 1730: 1723: 1716: 1687: 1686: 1685: 1679: 1672: 1666: 1639: 1636: 1613:element as an 1591:. Doping with 1497: 1494: 1492: 1489: 1471: 1468: 1464: 1460: 1457: 1452: 1448: 1444: 1440: 1436: 1430: 1426: 1422: 1418: 1412: 1406: 1402: 1399: 1393: 1387: 1384: 1381: 1378: 1375: 1370: 1367: 1361: 1357: 1323: 1320: 1315: 1311: 1308: 1291: 1288: 1266:, giving each 1247: 1244: 1242: 1239: 1227: 1216: 1209: 1208: 1197: 1192: 1188: 1184: 1180: 1174: 1170: 1165: 1161: 1158: 1153: 1148: 1144: 1140: 1137: 1134: 1131: 1128: 1125: 1122: 1119: 1113: 1108: 1101: 1097: 1093: 1089: 1083: 1079: 1074: 1070: 1067: 1062: 1057: 1053: 1049: 1046: 1043: 1040: 1037: 1034: 1031: 1028: 1022: 1017: 995: 981: 965: 958: 951: 950: 939: 936: 933: 930: 926: 922: 916: 911: 907: 901: 896: 892: 889: 886: 883: 880: 877: 874: 868: 863: 859: 856: 853: 847: 842: 838: 833: 829: 823: 819: 815: 810: 805: 801: 784: 775: 762: 755: 754: 743: 740: 737: 734: 730: 726: 720: 715: 711: 705: 700: 696: 693: 690: 687: 684: 681: 678: 672: 667: 663: 658: 654: 649: 646: 643: 640: 636: 632: 626: 621: 617: 611: 606: 602: 599: 596: 593: 590: 587: 584: 578: 573: 569: 564: 560: 539: 536: 526: 480: 469: 462: 457:bonding energy 445:electron donor 424: 421: 384: 373: 367: 360: 354: 353: 337: 332: 328: 324: 319: 315: 311: 306: 302: 287: 286: 272: 267: 263: 259: 256: 253: 250: 224:charge carrier 219: 216: 197:Gordon K. Teal 149: 146: 109:semiconductors 26: 9: 6: 4: 3: 2: 3261: 3250: 3247: 3245: 3242: 3241: 3239: 3229: 3224: 3220: 3219: 3207: 3203: 3199: 3195: 3191: 3187: 3184:(2): 91–100. 3183: 3179: 3172: 3164: 3160: 3156: 3152: 3148: 3144: 3139: 3134: 3130: 3126: 3123:polymorphs". 3115: 3107: 3103: 3099: 3095: 3091: 3087: 3083: 3079: 3072: 3064: 3060: 3056: 3052: 3048: 3044: 3037: 3029: 3025: 3021: 3017: 3013: 3009: 3001: 2993: 2989: 2985: 2981: 2976: 2971: 2967: 2963: 2959: 2952: 2944: 2940: 2936: 2932: 2928: 2924: 2920: 2916: 2912: 2908: 2904: 2900: 2896: 2889: 2887: 2878: 2876:0-13-146410-8 2872: 2868: 2861: 2853: 2847: 2843: 2842: 2834: 2826: 2820: 2816: 2815: 2807: 2792: 2786: 2773: 2767: 2759: 2753: 2749: 2748: 2740: 2732: 2728: 2724: 2720: 2716: 2709: 2701: 2695: 2691: 2690: 2682: 2680: 2671: 2665: 2661: 2660: 2652: 2650: 2648: 2646: 2644: 2642: 2633: 2627: 2623: 2616: 2608: 2606:9781566772075 2602: 2598: 2591: 2583: 2581:0-471-81986-7 2577: 2573: 2566: 2552: 2548: 2542: 2534: 2530: 2524: 2509: 2503: 2495: 2489: 2485: 2478: 2470: 2464: 2460: 2453: 2445: 2439: 2435: 2428: 2414: 2408: 2404: 2403: 2395: 2387: 2383: 2379: 2375: 2371: 2367: 2360: 2358: 2349: 2345: 2341: 2337: 2333: 2329: 2328:J. Appl. Phys 2322: 2307: 2303: 2297: 2284: 2278: 2265: 2259: 2251: 2250: 2242: 2228: 2222: 2218: 2209: 2206: 2204: 2201: 2199: 2196: 2194: 2191: 2189: 2186: 2185: 2179: 2177: 2173: 2169: 2165: 2161: 2150: 2141: 2139: 2135: 2131: 2127: 2126:ferromagnetic 2120: 2110: 2104: 2096: 2092: 2081: 2079: 2075: 2071: 2067: 2063: 2059: 2055: 2051: 2043: 2039: 2035: 2031: 2027: 2023: 2019: 2016: 2013: 2012:alkali metals 2009: 2005: 2001: 1997: 1993: 1989: 1985: 1982: 1981: 1980: 1978: 1974: 1970: 1966: 1961: 1951: 1949: 1944: 1942: 1941:counterdoping 1936: 1934: 1930: 1914: 1911: 1910: 1909: 1906: 1901: 1898: 1897: 1896: 1893: 1888: 1884: 1881:edge, strong 1880: 1876: 1872: 1869: 1865: 1864: 1863: 1859: 1855: 1852: 1847: 1843: 1839: 1836: 1833: 1832: 1831: 1828: 1823: 1820: 1819: 1818: 1815: 1814: 1813: 1799: 1795: 1792: 1789: 1786: 1783: 1782:amorphization 1779: 1775: 1771: 1768: 1765: 1760: 1756: 1753: 1752: 1750: 1744: 1740: 1737: 1734: 1731: 1727: 1724: 1720: 1717: 1714: 1710: 1706: 1702: 1698: 1697:n-type dopant 1694: 1691: 1690: 1688: 1683: 1680: 1676: 1673: 1670: 1667: 1664: 1660: 1656: 1652: 1651:p-type dopant 1648: 1645: 1644: 1642: 1641: 1635: 1633: 1629: 1624: 1622: 1618: 1617: 1612: 1608: 1607: 1602: 1598: 1594: 1590: 1586: 1582: 1577: 1574: 1573:p-type dopant 1570: 1566: 1562: 1558: 1554: 1550: 1546: 1542: 1538: 1534: 1530: 1526: 1522: 1518: 1513: 1511: 1507: 1503: 1488: 1485: 1469: 1458: 1455: 1450: 1446: 1442: 1438: 1428: 1424: 1420: 1410: 1391: 1382: 1379: 1376: 1359: 1356: 1347: 1345: 1341: 1337: 1336:transmutation 1334: 1329: 1319: 1310:Spin-on glass 1307: 1305: 1301: 1297: 1287: 1284: 1280: 1276: 1271: 1269: 1265: 1261: 1257: 1253: 1238: 1236: 1230: 1226: 1219: 1215: 1195: 1190: 1186: 1182: 1172: 1168: 1163: 1159: 1156: 1151: 1146: 1142: 1138: 1135: 1129: 1126: 1120: 1106: 1099: 1095: 1091: 1081: 1077: 1072: 1068: 1065: 1060: 1055: 1051: 1047: 1044: 1038: 1035: 1029: 1015: 1007: 1006: 1005: 1004:are given by 1001: 994: 987: 980: 974: 972: 964: 957: 937: 931: 928: 924: 909: 905: 894: 884: 881: 875: 861: 854: 840: 836: 831: 827: 821: 817: 813: 808: 803: 799: 791: 790: 789: 783: 774: 769: 761: 741: 735: 732: 728: 713: 709: 698: 688: 685: 679: 665: 661: 656: 652: 647: 641: 638: 634: 619: 615: 604: 594: 591: 585: 571: 567: 562: 558: 550: 549: 548: 546: 535: 533: 529: 522: 518: 514: 510: 506: 502: 498: 493: 491: 487: 483: 476: 472: 465: 458: 454: 450: 446: 442: 433: 429: 420: 418: 414: 410: 406: 402: 397: 395: 391: 387: 380: 376: 366: 359: 335: 330: 326: 322: 317: 313: 309: 304: 300: 292: 291: 290: 270: 265: 261: 257: 254: 251: 248: 241: 240: 239: 237: 233: 229: 225: 215: 213: 209: 204: 202: 201:Morgan Sparks 198: 194: 189: 187: 182: 178: 174: 170: 166: 162: 158: 155: 154:crystal radio 145: 143: 139: 135: 134:scintillators 131: 126: 124: 120: 116: 112: 110: 104: 100: 96: 92: 88: 84: 80: 76: 72: 67: 65: 61: 57: 53: 52:semiconductor 45: 41: 37: 32: 19: 3181: 3177: 3171: 3128: 3124: 3114: 3081: 3077: 3071: 3046: 3042: 3036: 3011: 3007: 3000: 2965: 2961: 2951: 2902: 2898: 2866: 2860: 2840: 2833: 2813: 2806: 2795:. Retrieved 2785: 2766: 2746: 2739: 2714: 2708: 2688: 2658: 2621: 2615: 2596: 2590: 2571: 2565: 2554:. Retrieved 2550: 2541: 2532: 2523: 2512:. Retrieved 2502: 2483: 2477: 2458: 2452: 2433: 2427: 2416:. Retrieved 2401: 2394: 2369: 2365: 2331: 2327: 2321: 2310:. Retrieved 2305: 2296: 2277: 2258: 2248: 2241: 2230:. Retrieved 2221: 2208:p-n junction 2160:quantum well 2156: 2147: 2122: 2087: 2076:in a sealed 2061: 2047: 2017: 1983: 1963: 1945: 1940: 1937: 1933:p-n junction 1929:compensation 1928: 1925: 1922:Compensation 1887:interstitial 1879:valence band 1811: 1797: 1793: 1787: 1777: 1773: 1769: 1754: 1738: 1732: 1725: 1718: 1692: 1681: 1674: 1668: 1646: 1625: 1614: 1604: 1578: 1514: 1510:carbon group 1499: 1348: 1331: 1313: 1293: 1272: 1262:is grown by 1249: 1228: 1224: 1217: 1213: 1210: 999: 992: 985: 978: 975: 962: 955: 952: 781: 772: 759: 756: 541: 524: 520: 516: 513:band diagram 509:p-n junction 505:band bending 494: 478: 467: 460: 438: 432:Band diagram 412: 408: 398: 382: 371: 364: 357: 355: 288: 221: 205: 190: 180: 177:World War II 151: 127: 106: 98: 90: 86: 82: 78: 74: 68: 55: 54:production, 49: 2372:(6): 2944. 2134:spintronics 2042:electrolyte 2026:electrolyte 1979:) process. 1632:thermistors 768:Fermi level 497:Fermi level 212:Sperry Rand 171:working at 3238:Categories 2797:2016-02-02 2556:2022-12-22 2514:2014-06-12 2418:2008-02-23 2334:(2): 846. 2312:2007-08-12 2232:2016-02-02 2214:References 1877:above the 1693:Phosphorus 1628:sensistors 1565:phosphorus 1555:elements. 1344:phosphorus 1326:See also: 138:activation 97:doping or 3138:1304.1854 3028:0897-4756 2984:0001-4842 2927:1476-4660 2731:136572510 2066:inert gas 2058:oxidizing 2040:from the 2030:insoluble 2022:electrode 2008:reductant 1992:thin film 1883:diffusion 1844:(GaP has 1774:germanium 1764:gettering 1755:Germanium 1701:phosphine 1655:diffusion 1611:Group III 1593:Group III 1545:Group III 1541:acceptors 1529:germanium 1429:− 1425:β 1405:→ 1383:γ 1300:diffusion 1152:∗ 1139:π 1061:∗ 1048:π 906:− 885:⁡ 710:− 689:⁡ 616:− 595:⁡ 310:⋅ 232:electrons 193:Bell Labs 157:detectors 130:phosphors 115:conductor 105:doping. ( 3206:21258352 3163:94599250 2992:26854611 2943:29170548 2182:See also 2176:mobility 1998:such as 1994:, to an 1973:orbitals 1948:mobility 1798:platinum 1788:Nitrogen 1759:band gap 1726:Antimony 1709:neutrons 1669:Aluminum 1663:diborane 1616:acceptor 1609:, and a 1517:Group IV 1515:For the 1233:are the 971:band gap 441:band gap 392:, about 44:Antimony 3186:Bibcode 3143:Bibcode 3106:9896377 3086:Bibcode 3051:Bibcode 2935:1595457 2907:Bibcode 2374:Bibcode 2336:Bibcode 2074:solvent 2068:(e.g., 2062:de-dope 2004:bromine 1996:oxidant 1988:melanin 1969:oxidize 1770:Silicon 1739:Lithium 1733:Bismuth 1719:Arsenic 1675:Gallium 1601:Group V 1581:Group V 1569:gallium 1561:arsenic 1553:Group V 1525:silicon 1521:diamond 1333:Neutron 1256:silicon 1252:dopants 766:is the 390:kelvins 379:Silicon 175:during 148:History 36:silicon 3204:  3161:  3104:  3026:  2990:  2982:  2941:  2933:  2925:  2873:  2848:  2821:  2778:  2754:  2729:  2696:  2666:  2628:  2603:  2578:  2490:  2465:  2440:  2409:  2308:. 1985 2289:  2270:  2054:oxygen 2024:in an 2000:iodine 1751:Other 1682:Indium 1653:. Its 1549:donors 1535:, and 1211:where 757:where 451:while 401:metals 356:where 341:  274:  208:patent 181:doping 103:p-type 95:n-type 56:doping 3159:S2CID 3133:arXiv 2727:S2CID 2091:OLEDs 2078:flask 2070:argon 1977:redox 1868:MOVPE 1778:xenon 1746:type. 1711:in a 1695:is a 1649:is a 1647:Boron 1621:diode 1606:donor 1557:Boron 1551:from 1543:from 1506:IUPAC 1268:wafer 1260:boule 1250:Some 969:(the 475:boron 236:holes 186:radar 87:heavy 79:light 71:atoms 40:Boron 3202:PMID 3102:PMID 3024:ISSN 2988:PMID 2980:ISSN 2939:PMID 2931:OSTI 2923:ISSN 2871:ISBN 2846:ISBN 2819:ISBN 2752:ISBN 2694:ISBN 2664:ISBN 2626:ISBN 2601:ISBN 2576:ISBN 2488:ISBN 2463:ISBN 2438:ISBN 2407:ISBN 2093:and 1842:LEDs 1796:and 1794:Gold 1776:and 1659:CMOS 1459:2.62 1302:and 1222:and 990:and 473:for 234:and 199:and 159:and 132:and 101:for 93:for 83:high 42:and 3194:doi 3151:doi 3129:113 3094:doi 3059:doi 3047:188 3016:doi 2970:doi 2915:doi 2719:doi 2382:doi 2344:doi 2052:is 2038:ion 2002:or 1885:of 1547:or 882:exp 686:exp 592:exp 547:): 459:or 381:'s 195:by 85:or 77:or 75:low 50:In 3240:: 3200:. 3192:. 3182:10 3180:. 3157:. 3149:. 3141:. 3127:. 3100:. 3092:. 3082:32 3080:. 3057:. 3045:. 3022:. 3012:28 3010:. 2986:. 2978:. 2966:49 2964:. 2960:. 2937:. 2929:. 2921:. 2913:. 2903:16 2901:. 2897:. 2885:^ 2725:. 2678:^ 2640:^ 2549:. 2531:. 2380:. 2370:67 2368:. 2356:^ 2342:. 2332:70 2330:. 2304:. 1860:, 1856:, 1772:, 1634:. 1623:. 1563:, 1559:, 1531:, 1527:, 1523:, 1411:31 1392:31 1360:30 1281:, 1258:) 961:– 770:, 534:. 523:, 396:. 214:. 99:p+ 91:n+ 66:. 3208:. 3196:: 3188:: 3165:. 3153:: 3145:: 3135:: 3121:2 3108:. 3096:: 3088:: 3065:. 3061:: 3053:: 3030:. 3018:: 2994:. 2972:: 2945:. 2917:: 2909:: 2879:. 2854:. 2827:. 2800:. 2760:. 2733:. 2721:: 2702:. 2672:. 2634:. 2609:. 2584:. 2559:. 2535:. 2517:. 2496:. 2471:. 2446:. 2421:. 2388:. 2384:: 2376:: 2350:. 2346:: 2338:: 2315:. 2235:. 2107:2 2099:3 2014:. 1848:) 1470:. 1467:) 1463:h 1456:= 1451:2 1447:/ 1443:1 1439:T 1435:( 1421:+ 1417:P 1401:i 1398:S 1386:) 1380:, 1377:n 1374:( 1369:i 1366:S 1316:2 1229:h 1225:m 1218:e 1214:m 1196:. 1191:2 1187:/ 1183:3 1179:) 1173:2 1169:h 1164:/ 1160:T 1157:k 1147:h 1143:m 1136:2 1133:( 1130:2 1127:= 1124:) 1121:T 1118:( 1112:V 1107:N 1100:2 1096:/ 1092:3 1088:) 1082:2 1078:h 1073:/ 1069:T 1066:k 1056:e 1052:m 1045:2 1042:( 1039:2 1036:= 1033:) 1030:T 1027:( 1021:C 1016:N 1002:) 1000:T 998:( 996:V 993:N 988:) 986:T 984:( 982:C 979:N 966:V 963:E 959:C 956:E 938:, 935:) 932:T 929:k 925:/ 921:) 915:C 910:E 900:V 895:E 891:( 888:( 879:) 876:T 873:( 867:C 862:N 858:) 855:T 852:( 846:V 841:N 837:= 832:e 828:n 822:h 818:n 814:= 809:2 804:i 800:n 785:V 782:E 776:C 773:E 763:F 760:E 742:, 739:) 736:T 733:k 729:/ 725:) 719:F 714:E 704:V 699:E 695:( 692:( 683:) 680:T 677:( 671:V 666:N 662:= 657:h 653:n 648:, 645:) 642:T 639:k 635:/ 631:) 625:C 620:E 610:F 605:E 601:( 598:( 589:) 586:T 583:( 577:C 572:N 568:= 563:e 559:n 527:i 525:E 517:x 481:B 479:E 470:B 468:E 463:B 461:E 413:p 409:n 385:i 383:n 374:i 372:n 368:0 365:p 361:0 358:n 336:2 331:i 327:n 323:= 318:0 314:p 305:0 301:n 271:. 266:i 262:n 258:= 255:p 252:= 249:n 20:)

Index

Doping (semiconductors)

silicon
Boron
Antimony
semiconductor
intrinsic (undoped) semiconductor
extrinsic semiconductor
atoms
n-type
p-type
semiconductors
conductor
degenerate semiconductor
i-type semiconductor
phosphors
scintillators
activation
dopant activation
crystal radio
detectors
selenium rectifiers
Shelford Bidwell
John Robert Woodyard
Sperry Gyroscope Company
World War II
radar
Bell Labs
Gordon K. Teal
Morgan Sparks

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑