Knowledge

Dendritic spine

Source 📝

376:
activates Cdc42, after which no feedback signaling occurs upstream to calcium and CaMKII. If tagged with monomeric-enhanced green fluorescent protein, one can see that the activation of Cdc42 is limited to just the stimulated spine of a dendrite. This is because the molecule is continuously activated during plasticity and immediately inactivates after diffusing out of the spine. Despite its compartmentalized activity, Cdc42 is still mobile out of the stimulated spine, just like RhoA. Cdc42 activates PAK, which is a protein kinase that specifically phosphorylates and, therefore, inactivates ADF/cofilin. Inactivation of cofilin leads to increased actin polymerization and expansion of the spine's volume. Activation of Cdc42 is required for this increase in spinal volume to be sustained.
412: 385: 743:, dendrites rapidly sprout and retract filopodia, small membrane organelle-lacking membranous protrusions. Recently, I-BAR protein MIM was found to contribute to the initiation process. During the first week of birth, the brain is predominated by filopodia, which eventually develop synapses. However, after this first week, filopodia are replaced by spiny dendrites but also small, stubby spines that protrude from spiny dendrites. In the development of certain filopodia into spines, filopodia recruit presynaptic contact to the dendrite, which encourages the production of spines to handle specialized postsynaptic contact with the presynaptic protrusions. 138:. Dendritic spines serve as a storage site for synaptic strength and help transmit electrical signals to the neuron's cell body. Most spines have a bulbous head (the spine head), and a thin neck that connects the head of the spine to the shaft of the dendrite. The dendrites of a single neuron can contain hundreds to thousands of spines. In addition to spines providing an anatomical substrate for memory storage and synaptic transmission, they may also serve to increase the number of possible contacts between neurons. It has also been suggested that changes in the activity of neurons have a positive effect on spine morphology. 421:
this growth, suggesting that the Rho-Rock pathway is necessary for more persistent increases in spinal volume. In addition, administration of the Cdc42 binding domain of Wasp or inhibitor targeting Pak1 activation-3 (IPA3) decreases this sustained growth in volume, demonstrating that the Cdc42-Pak pathway is needed for this growth in spinal volume as well. This is important because sustained changes in structural plasticity may provide a mechanism for the encoding, maintenance, and retrieval of memories. The observations made may suggest that Rho GTPases are necessary for these processes.
319:
process that stimulates actin polymerization, which in turn increases the size and shape of the spine. Large spines are more stable than smaller ones and may be resistant to modification by additional synaptic activity. Because changes in the shape and size of dendritic spines are correlated with the strength of excitatory synaptic connections and heavily depend on remodeling of its underlying actin cytoskeleton, the specific mechanisms of actin regulation, and therefore the Rho family of GTPases, are integral to the formation, maturation, and
580: 795:
admitted that spines were formed during embryonic development and then would remain stable after birth. In this paradigm, variations of synaptic weight were considered as sufficient to explain memory processes at the cellular level. But since about a decade ago, new techniques of confocal microscopy demonstrated that dendritic spines are indeed motile and dynamic structures that undergo a constant turnover, even after birth.
45: 664:
dendritic spine densities or sizes can affect neuronal network properties, which could lead to cognitive or mood alterations, impaired learning and memory, as well as pain hypersensitivity. Moreover, the findings suggest that maintaining spine health through therapies such as exercise, cognitive stimulation and lifestyle modifications may be helpful in preserving neuronal plasticity and improving neurological symptoms.
782:, may be resultant from abnormalities in dendritic spines, especially the number of spines and their maturity. The ratio of matured to immature spines is important in their signaling, as immature spines have impaired synaptic signaling. Fragile X syndrome is characterized by an overabundance of immature spines that have multiple filopodia in cortical dendrites. 389:
primarily by these members of the Rho family of GTPases. In the transient stage, the signaling cascade caused by synaptic activity results in LIMK1 phosphorylating ADF/cofilin via both the RhoA and Cdc42 pathways, which in turn inhibits the depolymerization of F-actin and increases the volume of the dendritic spine drastically while also inducing LTP.
621:
of a new skill involves a rewiring process of neural circuits. Since the extent of spine remodeling correlates with success of learning, this suggests a crucial role of synaptic structural plasticity in memory formation. In addition, changes in spine stability and strengthening occur rapidly and have been observed within hours after training.
617:
plasticity. On the one hand, experience and activity may drive the discrete formation of relevant synaptic connections that store meaningful information in order to allow for learning. On the other hand, synaptic connections may be formed in excess, and experience and activity may lead to the pruning of extraneous synaptic connections.
707:
approximation and instead uses a passive dendrite coupled to excitable spines at discrete points. Membrane dynamics in the spines are modelled using integrate and fire processes. The spike events are modelled in a discrete fashion with the wave form conventionally represented as a rectangular function.
663:
Overall, the evidence suggests that dendritic spines are crucial for normal brain and spinal cord function. Alterations in spine morphology may not only influence synaptic plasticity and information processing but also have a key role in many neurological diseases. Furthermore, even subtle changes in
620:
In lab animals of all ages, environmental enrichment has been related to dendritic branching, spine density, and overall number of synapses. In addition, skill training has been shown to lead to the formation and stabilization of new spines while destabilizing old spines, suggesting that the learning
420:
After the transient changes described above take place, the spine's volume decreases until it is elevated by 70 to 80 percent of the original volume. This sustained change in structural plasticity will last about thirty minutes. Once again, administration of C3 transferase and Glycyl-H1152 suppressed
603:
is mediated in part by the growth of new dendritic spines (or the enlargement of pre-existing spines) to reinforce a particular neural pathway. Because dendritic spines are plastic structures whose lifespan is influenced by input activity, spine dynamics may play an important role in the maintenance
366:
during structural plasticity brought on by long-term potentiation stimuli. Concurrent RhoA and Cdc42 activation led to a transient increase in spine growth of up to 300% for five minutes, which decayed into a smaller but sustained growth for thirty minutes. The activation of RhoA diffused around the
517:
Spines are particularly advantageous to neurons by compartmentalizing biochemical signals. This can help to encode changes in the state of an individual synapse without necessarily affecting the state of other synapses of the same neuron. The length and width of the spine neck has a large effect on
415:
In contrast, the sustained stage is focused more on activating the RhoA pathway, which ultimately results in a higher concentration of profilin, which prevents additional polymerization of actin and decreases the size of the dendritic spine from the transient stage, though still allows it to remain
402:
Applying a low-frequency train of two-photon glutamate uncaging in a single dendritic spine can elicit rapid activation of both RhoA and Cdc42. During the next two minutes, the volume of the stimulated spine can expand to 300 percent of its original size. However, this change in spine morphology is
688:
provides the theoretical framework behind the most "simple" method for modelling the flow of electrical currents along passive neural fibres. Each spine can be treated as two compartments, one representing the neck, the other representing the spine head. The compartment representing the spine head
681:
Theoreticians have for decades hypothesized about the potential electrical function of spines, yet our inability to examine their electrical properties has until recently stopped theoretical work from progressing too far. Recent advances in imaging techniques along with increased use of two-photon
318:
and spine motility has important implications for memory. If the dendritic spine is the basic unit of information storage, then the spine's ability to extend and retract spontaneously must be constrained. If not, information may be lost. Rho family of GTPases makes significant contributions to the
474:
Glutamate receptors (GluRs) are localized to the postsynaptic density, and are anchored by cytoskeletal elements to the membrane. They are positioned directly above their signalling machinery, which is typically tethered to the underside of the plasma membrane, allowing signals transmitted by the
375:
Cdc42 has been implicated in many different functions including dendritic growth, branching, and branch stability. Calcium influx into the cell through NMDA receptors binds to calmodulin and activates the Ca2+/calmodulin-dependent protein kinases II (CaMKII). In turn, CaMKII is activated and this
794:
on cerebellar neurons. Ramón y Cajal then proposed that dendritic spines could serve as contacting sites between neurons. This was demonstrated more than 50 years later thanks to the emergence of electron microscopy. Until the development of confocal microscopy on living tissues, it was commonly
706:
The SDS model was intended as a computationally simple version of the full Baer and Rinzel model. It was designed to be analytically tractable and have as few free parameters as possible while retaining those of greatest significance, such as spine neck resistance. The model drops the continuum
607:
Age-dependent changes in the rate of spine turnover suggest that spine stability impacts developmental learning. In youth, dendritic spine turnover is relatively high and produces a net loss of spines. This high rate of spine turnover may characterize critical periods of development and reflect
403:
only temporary; the volume of the spine decreases after five minutes. Administration of C3 transferase, a Rho inhibitor, or glycyl-H1152, a Rock inhibitor, inhibits the transient expansion of the spine, indicating that activation of the Rho-Rock pathway is required in some way for this process.
673:
lifelong learning. In addition, the formation of new spines may not significantly contribute to the connectivity of the brain, and spine formation may not bear as much of an influence on memory retention as other properties of structural plasticity, such as the increase in size of spine heads.
659:
There is also some evidence for loss of dendritic spines as a consequence of aging. One study using mice has noted a correlation between age-related reductions in spine densities in the hippocampus and age-dependent declines in hippocampal learning and memory. Emerging evidence has also shown
388:
Calcium influx through NMDA receptors activates CAMKII. CAMKII then regulates several other signaling cascades that modulate the activity of the actin-binding proteins cofilin and profilin. These cascades can be divided into two primary pathways, the RhoA and Cdc42 pathways, which are mediated
697:
To facilitate the analysis of interactions between many spines, Baer & Rinzel formulated a new cable theory for which the distribution of spines is treated as a continuum. In this representation, spine head voltage is the local spatial average of membrane potential in adjacent spines. The
672:
Despite experimental findings that suggest a role for dendritic spine dynamics in mediating learning and memory, the degree of structural plasticity's importance remains debatable. For instance, studies estimate that only a small portion of spines formed during training actually contribute to
616:
Experience-induced changes in dendritic spine stability also point to spine turnover as a mechanism involved in the maintenance of long-term memories, though it is unclear how sensory experience affects neural circuitry. Two general models might describe the impact of experience on structural
146:
Dendritic spines are small with spine head volumes ranging 0.01 μm to 0.8 μm. Spines with strong synaptic contacts typically have a large spine head, which connects to the dendrite via a membranous neck. The most notable classes of spine shape are "thin", "stubby", "mushroom", and
628:
leads to an increase in the rate of spine elimination and therefore impacts long-term neural circuitry. Upon restoring sensory experience after deprivation in adolescence, spine elimination is accelerated, suggesting that experience plays an important role in the net loss of spines during
612:
for specific brain regions. In adulthood, however, most spines remain persistent, and the half-life of spines increases. This stabilization occurs due to a developmentally regulated slow-down of spine elimination, a process which may underlie the stabilization of memories in maturity.
719:, which have a high permeability for calcium, only conduct ions if the membrane potential is sufficiently depolarized. The amount of calcium entering a spine during synaptic activity therefore depends on the depolarization of the spine head. Evidence from calcium imaging experiments ( 234:; without a dynamic cytoskeleton, spines would be unable to rapidly change their volumes or shapes in responses to stimuli. These changes in shape might affect the electrical properties of the spine. The cytoskeleton of dendritic spines is primarily made of filamentous actin ( 462:
of its synapsing axon and comprises ~10% of the spine's membrane surface area; neurotransmitters released from the active zone bind receptors in the postsynaptic density of the spine. Half of the synapsing axons and dendritic spines are physically tethered by
547:. Furthermore, spine number is very variable and spines come and go; in a matter of hours, 10-20% of spines can spontaneously appear or disappear on the pyramidal cells of the cerebral cortex, although the larger "mushroom"-shaped spines are the most stable. 656:. Because significant changes in spine density occur in various brain and spinal cord diseases, this suggests a balanced state of spine dynamics in normal circumstances, which may be susceptible to disequilibrium under varying pathological conditions. 746:
Spines, however, require maturation after formation. Immature spines have impaired signaling capabilities, and typically lack "heads" (or have very small heads), only necks, while matured spines maintain both heads and necks.
250:
are present. Because spines have a cytoskeleton of primarily actin, this allows them to be highly dynamic in shape and size. The actin cytoskeleton directly determines the morphology of the spine, and actin regulators, small
1422:
Kiss C, Li J, Szeles A, Gizatullin RZ, Kashuba VI, Lushnikova T, et al. (1 January 1997). "Assignment of the ARHA and GPX1 genes to human chromosome bands 3p21.3 by in situ hybridization and with somatic cell hybrids".
636:, a marked increase in structural plasticity occurs near the trauma site, and a five- to eightfold increase from control rates in spine turnover has been observed. Dendrites disintegrate and reassemble rapidly during 483:. The localization of signalling elements to their GluRs is particularly important in ensuring signal cascade activation, as GluRs would be unable to affect particular downstream effects without nearby signallers. 393:
Murakoshi, Wang, and Yasuda (2011) examined the effects of Rho GTPase activation on the structural plasticity of single dendritic spines elucidating differences between the transient and sustained phases.
151:
studies have shown that there is a continuum of shapes between these categories. The variable spine shape and volume is thought to be correlated with the strength and maturity of each spine-synapse.
335:, a protein that also modulates the regulation and timing of cell division. In the context of activity in neurons, RhoA is activated in the following manner: once calcium has entered a cell through 358:
A study conducted by Murakoshi et al. in 2011 implicated the Rho GTPases RhoA and Cdc42 in dendritic spine morphogenesis. Both GTPases were quickly activated in single dendritic spines of
355:. Cofilin's function is to reorganize the actin cytoskeleton of a cell; namely, it depolymerizes actin segments and thus inhibits the growth of growth cones and the repair of axons. 29: 698:
formulation maintains the feature that there is no direct electrical coupling between neighboring spines; voltage spread along dendrites is the only way for spines to interact.
367:
vicinity of the spine undergoing stimulation, and it was determined that RhoA is necessary for the transient phase and most likely the sustained phase as well of spine growth.
2623:
Ngo-Anh TJ, Bloodgood BL, Lin M, Sabatini BL, Maylie J, Adelman JP (May 2005). "SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines".
682:
glutamate uncaging have led to a wealth of new discoveries; we now suspect that there are voltage-dependent sodium, potassium, and calcium channels in the spine heads.
660:
dendritic spine abnormalities in the pain processing regions of the spinal cord nociceptive system, including superficial and intermediate zones of the dorsal horn.
454:
is also expressed on the spine surface, and is believed to play a role in spine survival. The tip of the spine contains an electron-dense region referred to as the "
2254:
von Bohlen und Halbach O, Zacher C, Gass P, Unsicker K (March 2006). "Age-related alterations in hippocampal spines and deficiencies in spatial memory in mice".
486:
Signalling from GluRs is mediated by the presence of an abundance of proteins, especially kinases, that are localized to the postsynaptic density. These include
164: 536:
Dendritic spines are very "plastic", that is, spines change significantly in shape, volume, and number in small time courses. Because spines have a primarily
1215:
Tashiro A, Yuste R (July 2004). "Regulation of dendritic spine motility and stability by Rac1 and Rho kinase: evidence for two forms of spine motility".
608:
learning capacity in adolescence—different cortical areas exhibit differing levels of synaptic turnover during development, possibly reflecting varying
2125:
Brown CE, Murphy TH (April 2008). "Livin' on the edge: imaging dendritic spine turnover in the peri-infarct zone during ischemic stroke and recovery".
274:
In addition to their electrophysiological activity and their receptor-mediated activity, spines appear to be vesicularly active and may even translate
3569: 2025:
Holtmaat A, Wilbrecht L, Knott GW, Welker E, Svoboda K (June 2006). "Experience-dependent and cell-type-specific spine growth in the neocortex".
347:, which leads to the activation of RhoA. The activation of the RhoA protein will activate ROCK, a RhoA kinase, which leads to the stimulation of 629:
development. In addition, other sensory deprivation paradigms—such as whisker trimming—have been shown to increase the stability of new spines.
495: 344: 2297:
Benson, Curtis A.; Fenrich, Keith K.; Olson, Kai-Lan; Patwa, Siraj; Bangalore, Lakshmi; Waxman, Stephen G.; Tan, Andrew M. (2020-05-27).
1326:
Kasai H, Matsuzaki M, Noguchi J, Yasumatsu N, Nakahara H (July 2003). "Structure-stability-function relationships of dendritic spines".
1585:"Dendritic BDNF synthesis is required for late-phase spine maturation and recovery of cortical responses following sensory deprivation" 314:, either in globular (G-actin) or filamentous (F-actin) forms. The role of Rho family of GTPases and its effects in the stability of 3596: 566:
and confocal microscopy have shown that spine volume changes depending on the types of stimuli that are presented to a synapse.
222:
onto their equally numerous spines, whereas the number of spines on Purkinje neuron dendrites is an order of magnitude larger.
167:. Excitatory axon proximity to dendritic spines is not sufficient to predict the presence of a synapse, as demonstrated by the 1758:"Deafening drives cell-type-specific changes to dendritic spines in a sensorimotor nucleus important to learned vocalizations" 3340: 3321: 2413:"Dendritic spine remodeling following early and late Rac1 inhibition after spinal cord injury: evidence for a pain biomarker" 3408:
Lynch G, Rex CS, Gall CM (January 2007). "LTP consolidation: substrates, explanatory power, and functional significance".
4420: 2411:
Zhao, Peng; Hill, Myriam; Liu, Shujun; Chen, Lubin; Bangalore, Lakshmi; Waxman, Stephen G.; Tan, Andrew M. (2016-06-01).
2211:
Benson, Curtis A.; King, Jared F.; Reimer, Marike L.; Kauer, Sierra D.; Waxman, Stephen G.; Tan, Andrew M. (2022-12-03).
543:, they are dynamic, and the majority of spines change their shape within seconds to minutes because of the dynamicity of 3525:
Yuste R, Majewska A, Holthoff K (July 2000). "From form to function: calcium compartmentalization in dendritic spines".
632:
Research in neurological diseases and injuries shed further light on the nature and importance of spine turnover. After
411: 384: 640:—as with stroke, survivors showed an increase in dendritic spine turnover. While a net loss of spines is observed in 2761:
Baer SM, Rinzel J (April 1991). "Propagation of dendritic spikes mediated by excitable spines: a continuum theory".
4220: 4150: 563: 101: 4215: 4145: 3760: 859:
Tackenberg C, Ghori A, Brandt R (June 2009). "Thin, stubby or mushroom: spine pathology in Alzheimer's disease".
2722:"Local postsynaptic voltage-gated sodium channel activation in dendritic spines of olfactory bulb granule cells" 727:
indicates that spines with high resistance necks experience larger calcium transients during synaptic activity.
624:
Conversely, while enrichment and training are related to increases in spine formation and stability, long-term
243: 3835: 1507:
Calabrese B, Wilson MS, Halpain S (February 2006). "Development and regulation of dendritic spine synapses".
1158:"Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus" 1056:
Kapitein LC, Schlager MA, Kuijpers M, Wulf PS, van Spronsen M, MacKintosh FC, Hoogenraad CC (February 2010).
648:, cocaine and amphetamine use have been linked to increases in dendritic branching and spine density in the 294:
have also been identified in spines, supporting the vesicular activity in dendritic spines. The presence of
3830: 3818: 3589: 3153:
Gray EG (June 1959). "Electron microscopy of synaptic contacts on dendrite spines of the cerebral cortex".
2078:"Extensive turnover of dendritic spines and vascular remodeling in cortical tissues recovering from stroke" 279: 3870: 3808: 1544:"Activity-dependent PSD formation and stabilization of newly formed spines in hippocampal slice cultures" 1015:
Kasthuri N, Hayworth KJ, Berger DR, Schalek RL, Conchello JA, Knowles-Barley S, et al. (July 2015).
544: 480: 2993:
Saarikangas J, Kourdougli N, Senju Y, Chazal G, Segerstråle M, Minkeviciene R, et al. (June 2015).
3865: 298:
in spines also suggests protein translational activity in the spine itself, not just in the dendrite.
94: 4375: 4225: 4160: 3788: 3036:"Dendritic Spines in Alzheimer's Disease: How the Actin Cytoskeleton Contributes to Synaptic Failure" 2900:"Spine neck plasticity controls postsynaptic calcium signals through electrical compartmentalization" 1914:
Holtmaat AJ, Trachtenberg JT, Wilbrecht L, Shepherd GM, Zhang X, Knott GW, Svoboda K (January 2005).
2810: 791: 4155: 3881: 2796:
Bressloff PC, Coombes S (2000). "Solitary Waves in a Model of Dendritic Cable with Active Spines".
2666:
Yuste R, Denk W (June 1995). "Dendritic spines as basic functional units of neuronal integration".
518:
the degree of compartmentalization, with thin spines being the most biochemically isolated spines.
89: 77: 2720:
Bywalez WG, Patirniche D, Rupprecht V, Stemmler M, Herz AV, Pálfi D, et al. (February 2015).
956:"Preventing adolescent synaptic pruning in mouse prelimbic cortex via local knockdown of α4βδ GABA 4415: 3854: 3582: 775: 724: 645: 163:
from axons, although sometimes both inhibitory and excitatory connections are made onto the same
2356:"Dendritic spine dysgenesis in superficial dorsal horn sensory neurons after spinal cord injury" 4322: 3849: 3613: 2805: 824:
Alvarez VA, Sabatini BL (2007). "Anatomical and physiological plasticity of dendritic spines".
767: 641: 307: 4180: 4170: 4105: 3509: 2950:
Yoshihara Y, De Roo M, Muller D (April 2009). "Dendritic spine formation and stabilization".
896:"Ultrastructural analysis of dendritic spine necks reveals a continuum of spine morphologies" 720: 507: 3496:
Nimchinsky EA, Sabatini BL, Svoboda K (2002). "Structure and function of dendritic spines".
2212: 4305: 4202: 4132: 3958: 3813: 3458: 3162: 2675: 2577: 2034: 1981: 1712: 1650: 1282: 1169: 971: 837: 455: 2184: 1867:"Development of long-term dendritic spine stability in diverse regions of cerebral cortex" 1271:"Local, persistent activation of Rho GTPases during plasticity of single dendritic spines" 8: 4345: 4190: 4185: 3720: 3653: 1701:"Rapid spine stabilization and synaptic enhancement at the onset of behavioural learning" 736: 625: 527: 320: 231: 191: 148: 3462: 3166: 2679: 2581: 2521:
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
2299:"Dendritic Spine Dynamics after Peripheral Nerve Injury: An Intravital Structural Study" 2038: 1985: 1716: 1654: 1286: 1173: 975: 4380: 4350: 4281: 4250: 4240: 4235: 4230: 4175: 3951: 3861: 3715: 3550: 3479: 3446: 3433: 3396: 3310: 3286: 3232: 3222: 3205: 3186: 3111: 3086: 3062: 3035: 2975: 2924: 2899: 2875: 2850: 2831: 2823: 2699: 2648: 2600: 2565: 2541: 2516: 2470:"Dendritic Spine Remodeling After Spinal Cord Injury Alters Neuronal Signal Processing" 2469: 2445: 2412: 2388: 2355: 2331: 2298: 2279: 2150: 2102: 2077: 2058: 2002: 1969: 1945: 1896: 1833: 1806: 1782: 1757: 1733: 1700: 1671: 1638: 1609: 1584: 1484: 1475: 1459: 1399: 1374: 1351: 1303: 1270: 1240: 1133: 1123: 1106: 1087: 992: 955: 933: 920: 895: 779: 435: 160: 3384: 3273: 3256: 1339: 4365: 4355: 4340: 4245: 4110: 3891: 3843: 3648: 3643: 3542: 3513: 3484: 3425: 3421: 3388: 3359: 3336: 3317: 3278: 3237: 3178: 3116: 3067: 3016: 2967: 2929: 2880: 2778: 2743: 2691: 2640: 2605: 2546: 2497: 2489: 2450: 2432: 2393: 2375: 2354:
Cao, Xiaoyu C; Pappalardo, Laura W; Waxman, Stephen G; Tan, Andrew M (January 2017).
2336: 2318: 2271: 2236: 2228: 2188: 2142: 2107: 2050: 2007: 1937: 1888: 1838: 1807:"LTP promotes a selective long-term stabilization and clustering of dendritic spines" 1787: 1738: 1676: 1639:"Rapid formation and selective stabilization of synapses for enduring motor memories" 1614: 1565: 1524: 1489: 1440: 1404: 1370: 1343: 1308: 1232: 1197: 1192: 1157: 1138: 1079: 1038: 997: 937: 925: 876: 841: 653: 649: 3554: 3437: 3290: 2468:
Tan, Andrew M.; Choi, Jin-Sung; Waxman, Stephen G.; Hains, Bryan C. (October 2009).
2283: 2154: 1949: 1900: 1355: 1244: 1091: 4332: 4295: 4290: 3638: 3534: 3505: 3474: 3466: 3417: 3400: 3380: 3268: 3227: 3217: 3190: 3170: 3106: 3098: 3057: 3047: 3006: 2979: 2959: 2919: 2915: 2911: 2870: 2866: 2862: 2835: 2815: 2770: 2733: 2703: 2683: 2632: 2595: 2585: 2536: 2528: 2481: 2440: 2424: 2383: 2367: 2326: 2314: 2310: 2263: 2220: 2180: 2134: 2097: 2093: 2089: 2062: 2042: 1997: 1989: 1927: 1878: 1828: 1818: 1777: 1769: 1728: 1720: 1666: 1658: 1637:
Xu T, Yu X, Perlik AJ, Tobin WF, Zweig JA, Tennant K, et al. (December 2009).
1604: 1600: 1596: 1555: 1516: 1479: 1471: 1432: 1394: 1386: 1335: 1298: 1290: 1224: 1187: 1177: 1128: 1118: 1069: 1028: 987: 979: 915: 907: 868: 833: 756: 609: 600: 503: 499: 359: 291: 168: 2652: 558:
activity is necessary to maintain spine survival, and synaptic activity involving
4100: 4069: 3946: 3941: 3765: 3011: 2994: 2738: 2721: 1932: 1915: 1883: 1866: 1823: 1773: 550:
Spine maintenance and plasticity is activity-dependent and activity-independent.
283: 82: 3352:
Nihon Shinkei Seishin Yakurigaku Zasshi = Japanese Journal of Psychopharmacology
1460:"Small GTPase Cdc42 is required for multiple aspects of dendritic morphogenesis" 4390: 4360: 4317: 4137: 4095: 4073: 3993: 3876: 3700: 3605: 2963: 2570:
Proceedings of the National Academy of Sciences of the United States of America
1520: 1162:
Proceedings of the National Academy of Sciences of the United States of America
1033: 1016: 983: 872: 740: 514:. Certain signallers, such as CaMKII, are upregulated in response to activity. 215: 183: 3371:
Lieshoff C, Bischof HJ (March 2003). "The dynamics of spine density changes".
2819: 2517:"Structural changes at dendritic spine synapses during long-term potentiation" 2224: 1228: 1107:"A role of actin filament in synaptic transmission and long-term potentiation" 1074: 1057: 4409: 4039: 4024: 3705: 2774: 2493: 2436: 2379: 2371: 2322: 2232: 2138: 716: 559: 555: 443: 439: 336: 199: 2590: 1560: 1543: 4285: 4207: 4120: 4001: 3931: 3710: 3633: 3546: 3517: 3488: 3429: 3392: 3363: 3282: 3182: 3134:
Ramón y Cajal S (1888). "Estructura de los centros nerviosos de las aves".
3120: 3071: 3020: 2971: 2933: 2884: 2747: 2644: 2609: 2550: 2532: 2501: 2454: 2397: 2340: 2275: 2240: 2192: 2146: 2111: 2054: 2011: 1941: 1892: 1842: 1791: 1742: 1680: 1618: 1569: 1528: 1493: 1408: 1347: 1312: 1236: 1201: 1182: 1142: 1083: 1042: 1001: 929: 880: 845: 685: 540: 295: 287: 256: 3241: 2782: 2695: 2485: 2428: 1970:"Stably maintained dendritic spines are associated with lifelong memories" 1444: 1390: 4300: 4115: 4019: 3977: 3909: 3904: 3725: 3663: 3658: 3628: 3052: 479:
to be further propagated by their nearby signalling elements to activate
459: 363: 247: 211: 3470: 3085:
Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM (March 2011).
2253: 2046: 1993: 1724: 1662: 1294: 790:
Dendritic spines were first described at the end of the 19th century by
715:
Calcium transients in spines are a key trigger for synaptic plasticity.
290:
and is believed to play an important role in calcium handling. "Smooth"
230:
The cytoskeleton of dendritic spines is particularly important in their
4370: 4059: 3936: 3899: 3447:"Structural basis of long-term potentiation in single dendritic spines" 2827: 1058:"Mixed microtubules steer dynein-driven cargo transport into dendrites" 911: 588: 491: 348: 340: 203: 3206:"The dynamics of dendritic structure in developing hippocampal slices" 3174: 2267: 1436: 306:
The morphogenesis of dendritic spines is critical to the induction of
107: 4385: 3919: 3770: 3743: 3735: 2687: 1913: 218:
may receive tens of thousands of mostly excitatory inputs from other
187: 16:
Small protrusion on a dendrite that receives input from a single axon
3102: 1916:"Transient and persistent dendritic spines in the neocortex in vivo" 735:
Dendritic spines can develop directly from dendritic shafts or from
282:(SERs) have been identified in dendritic spines. Formation of this " 4049: 4034: 4029: 3753: 3748: 3675: 3670: 2636: 637: 592: 531: 471:, which forms cell-to-cell adherent junctions between two neurons. 468: 195: 175: 127: 34: 28: 3538: 2995:"MIM-Induced Membrane Bending Promotes Dendritic Spine Initiation" 2719: 1542:
De Roo M, Klauser P, Mendez P, Poglia L, Muller D (January 2008).
44: 4312: 4273: 4165: 3574: 3444: 3350:
Kasai H, Matsuzaki M, Noguchi J, Yasumatsu N (October 2002). "".
2898:
Grunditz A, Holbro N, Tian L, Zuo Y, Oertner TG (December 2008).
894:
Ofer N, Berger DR, Kasthuri N, Lichtman JW, Yuste R (July 2021).
755:
Emerging research has indicate abnormalities in spine density in
579: 487: 476: 464: 352: 275: 239: 235: 219: 135: 2992: 331:
One of the major Rho GTPases involved in spine morphogenesis is
3972: 3927: 3692: 771: 633: 596: 252: 179: 3445:
Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (June 2004).
3349: 2171:
Bhatt DH, Zhang S, Gan WB (2009). "Dendritic spine dynamics".
1325: 2076:
Brown CE, Li P, Boyd JD, Delaney KR, Murphy TH (April 2007).
1014: 537: 406: 397: 315: 311: 264: 65: 2563: 2024: 1699:
Roberts TF, Tschida KA, Klein ME, Mooney R (February 2010).
1375:"Actin in dendritic spines: connecting dynamics to function" 1055: 379: 310:(LTP). The morphology of the spine depends on the states of 207: 4011: 3084: 2851:"Spine Ca2+ signaling in spike-timing-dependent plasticity" 2622: 763: 551: 451: 447: 332: 268: 260: 131: 893: 206:. Dendritic spines occur at a density of up to 5 spines/1 3495: 3257:"Spine motility. Phenomenology, mechanisms, and function" 3087:"Dendritic spine pathology in neuropsychiatric disorders" 2564:
Araya R, Nikolenko V, Eisenthal KB, Yuste R (July 2007).
1698: 1541: 511: 3033: 416:
at an elevated level compared to an unpotentiated spine.
2296: 1583:
Kaneko M, Xie Y, An JJ, Stryker MP, Xu B (April 2012).
2353: 1506: 1421: 3524: 3316:(Third ed.). New York: Oxford University Press. 2949: 2897: 2210: 1155: 858: 554:
partially determines spine levels, and low levels of
3027: 1368: 710: 692: 583:
Experience-dependent spine formation and elimination
569: 3034:Pelucchi S, Stringhi R, Marcello E (January 2020). 1804: 1268: 1264: 1262: 1260: 1258: 1256: 1254: 1017:"Saturated Reconstruction of a Volume of Neocortex" 1008: 126:) is a small membranous protrusion from a neuron's 3330: 3309: 2514: 2467: 2075: 1582: 960:receptors increases anxiety response in adulthood" 954:Evrard MR, Li M, Shen H, Smith SS (October 2021). 271:results in consistently smaller dendritic spines. 3335:. Baltimore: The Johns Hopkins University Press. 2945: 2943: 1535: 953: 4407: 3307: 2795: 1805:De Roo M, Klauser P, Muller D (September 2008). 1251: 323:of dendritic spines and to learning and memory. 3370: 3254: 2410: 1636: 823: 267:, rapidly modify this cytoskeleton. Overactive 2940: 1864: 1457: 1156:Krucker T, Siggins GR, Halpain S (June 2000). 225: 3590: 3133: 2848: 2515:Harris KM, Fiala JC, Ostroff L (April 2003). 2170: 1755: 3407: 2986: 1865:Zuo Y, Lin A, Chang P, Gan WB (April 2005). 1269:Murakoshi H, Wang H, Yasuda R (April 2011). 1214: 701: 130:that typically receives input from a single 3203: 3040:International Journal of Molecular Sciences 2124: 1049: 852: 3597: 3583: 2760: 2715: 2713: 2566:"Sodium channels amplify spine potentials" 1967: 1694: 1692: 1690: 1576: 689:alone should carry the active properties. 498:(calmodulin-dependent protein kinase II), 407:Sustained changes in structural plasticity 398:Transient changes in structural plasticity 3478: 3272: 3231: 3221: 3110: 3061: 3051: 3010: 2923: 2874: 2809: 2737: 2665: 2599: 2589: 2540: 2444: 2387: 2330: 2101: 2001: 1931: 1882: 1832: 1822: 1781: 1732: 1670: 1608: 1559: 1483: 1458:Scott EK, Reuter JE, Luo L (April 2003). 1398: 1302: 1191: 1181: 1132: 1122: 1104: 1073: 1032: 991: 919: 819: 817: 815: 813: 811: 809: 807: 574: 380:Observed changes in structural plasticity 3510:10.1146/annurev.physiol.64.081501.160008 3331:Sudhof TC, Stevens CF, Cowan WM (2001). 3255:Bonhoeffer T, Yuste R (September 2002). 2166: 2164: 1907: 750: 578: 410: 383: 3570:Spiny Dendrite - Cell Centered Database 2710: 1968:Yang G, Pan F, Gan WB (December 2009). 1963: 1961: 1959: 1749: 1687: 667: 4408: 3312:The Neuron: Cell and Molecular Biology 1860: 1858: 1856: 1854: 1852: 838:10.1146/annurev.neuro.30.051606.094222 804: 562:encourages spine growth. Furthermore, 458:" (PSD). The PSD directly apposes the 3578: 2206: 2204: 2202: 2185:10.1146/annurev.physiol.010908.163140 2161: 1632: 1630: 1628: 351:, which in turn inhibits the protein 3152: 2849:Nevian T, Sakmann B (October 2006). 1956: 1217:Molecular and Cellular Neurosciences 949: 947: 564:two-photon laser scanning microscopy 429: 2798:SIAM Journal on Applied Mathematics 1849: 1756:Tschida KA, Mooney R (March 2012). 13: 3604: 3300: 3223:10.1523/JNEUROSCI.16-09-02983.1996 2213:"Dendritic Spines and Pain Memory" 2199: 1625: 1476:10.1523/JNEUROSCI.23-08-03118.2003 1124:10.1523/JNEUROSCI.19-11-04314.1999 587:Spine plasticity is implicated in 246:(MAPs) are present, and organized 14: 4432: 3563: 3308:Levitan IB, Kaczmarek LK (2002). 944: 711:Modeling spine calcium transients 693:Baer and Rinzel's continuum model 570:Importance to learning and memory 159:Dendritic spines usually receive 49:Common types of dendritic spines. 3422:10.1016/j.neuropharm.2006.07.027 3204:Dailey ME, Smith SJ (May 1996). 2256:Journal of Neuroscience Research 370: 301: 102:Anatomical terms of microanatomy 43: 27: 3761:Oligodendrocyte progenitor cell 3248: 3197: 3146: 3127: 3078: 2952:Current Opinion in Neurobiology 2891: 2842: 2789: 2754: 2659: 2616: 2557: 2508: 2461: 2404: 2347: 2290: 2247: 2118: 2069: 2018: 1798: 1500: 1451: 1415: 1362: 1319: 1105:Kim CH, Lisman JE (June 1999). 326: 244:microtubule-associated proteins 154: 2916:10.1523/JNEUROSCI.2702-08.2008 2867:10.1523/JNEUROSCI.1749-06.2006 2315:10.1523/JNEUROSCI.2858-19.2020 2094:10.1523/JNEUROSCI.4295-06.2007 1601:10.1523/JNEUROSCI.4462-11.2012 1425:Cytogenetics and Cell Genetics 1208: 1149: 1098: 887: 730: 1: 3385:10.1016/S0166-4328(02)00271-1 3274:10.1016/s0896-6273(02)00906-6 1340:10.1016/S0166-2236(03)00162-0 826:Annual Review of Neuroscience 798: 521: 424: 362:in the CA1 region of the rat 3136:Rev. Trim. Histol. Norm. Pat 3012:10.1016/j.devcel.2015.04.014 2739:10.1016/j.neuron.2014.12.051 1933:10.1016/j.neuron.2005.01.003 1884:10.1016/j.neuron.2005.04.001 1824:10.1371/journal.pbio.0060219 1774:10.1016/j.neuron.2011.12.038 762:Cognitive disorders such as 481:signal transduction cascades 280:smooth endoplasmic reticulum 182:in the brain, including the 141: 7: 3871:Postganglionic nerve fibers 3498:Annual Review of Physiology 3210:The Journal of Neuroscience 2904:The Journal of Neuroscience 2855:The Journal of Neuroscience 2303:The Journal of Neuroscience 2173:Annual Review of Physiology 2082:The Journal of Neuroscience 1589:The Journal of Neuroscience 1464:The Journal of Neuroscience 1379:The Journal of Cell Biology 1111:The Journal of Neuroscience 676: 604:of memory over a lifetime. 226:Cytoskeleton and organelles 10: 4437: 4421:Computational neuroscience 3866:Preganglionic nerve fibers 3373:Behavioural Brain Research 2964:10.1016/j.conb.2009.05.013 2763:Journal of Neurophysiology 2474:Journal of Neurophysiology 2417:Journal of Neurophysiology 1521:10.1152/physiol.00042.2005 1034:10.1016/j.cell.2015.06.054 984:10.1038/s41598-021-99965-8 900:Developmental Neurobiology 873:10.2174/156720509788486554 861:Current Alzheimer Research 785: 525: 4376:Olfactory receptor neuron 4331: 4272: 4265: 4201: 4131: 4088: 4048: 4040:Neurofibril/neurofilament 4010: 3992: 3985: 3971: 3918: 3890: 3796: 3787: 3734: 3691: 3684: 3621: 3612: 2820:10.1137/s0036139999356600 2225:10.1177/10738584221138251 1229:10.1016/j.mcn.2004.04.001 1075:10.1016/j.cub.2009.12.052 702:Spike-diffuse-spike model 434:Dendritic spines express 286:" depends on the protein 100: 88: 76: 64: 59: 54: 42: 26: 21: 2775:10.1152/jn.1991.65.4.874 2372:10.1177/1744806916688016 2139:10.1177/1073858407309854 446:) on their surface. The 174:Spines are found on the 2591:10.1073/pnas.0705282104 1328:Trends in Neurosciences 776:intellectual disability 725:compartmental modelling 646:intellectual disability 278:. Stacked discs of the 4323:Neuromuscular junction 4186:III or Aδ or fast pain 2533:10.1098/rstb.2002.1254 1183:10.1073/pnas.100139797 792:Santiago Ramón y Cajal 584: 575:Evidence of importance 417: 390: 308:long-term potentiation 2486:10.1152/jn.00095.2009 2429:10.1152/jn.01057.2015 1561:10.1093/cercor/bhm041 1391:10.1083/jcb.201003008 751:Clinical significance 721:two-photon microscopy 582: 508:Protein Phosphatase-1 414: 387: 210:stretch of dendrite. 4341:Meissner's corpuscle 4306:Postsynaptic density 4203:Efferent nerve fiber 4191:IV or C or slow pain 4133:Afferent nerve fiber 3959:Satellite glial cell 3053:10.3390/ijms21030908 668:Importance contested 506:(Protein Kinase A), 502:(Protein Kinase C), 456:postsynaptic density 192:medium spiny neurons 37:medium spiny neuron. 33:Spiny dendrite of a 4346:Merkel nerve ending 3527:Nature Neuroscience 3471:10.1038/nature02617 3463:2004Natur.429..761M 3167:1959Natur.183.1592G 3161:(4675): 1592–1593. 3091:Nature Neuroscience 2910:(50): 13457–13466. 2861:(43): 11001–11013. 2680:1995Natur.375..682Y 2625:Nature Neuroscience 2582:2007PNAS..10412347A 2576:(30): 12347–12352. 2366:: 174480691668801. 2219:: 107385842211382. 2047:10.1038/nature04783 2039:2006Natur.441..979H 1994:10.1038/nature08577 1986:2009Natur.462..920Y 1725:10.1038/nature08759 1717:2010Natur.463..948R 1663:10.1038/nature08389 1655:2009Natur.462..915X 1295:10.1038/nature09823 1287:2011Natur.472..100M 1174:2000PNAS...97.6856K 976:2021NatSR..1121059E 768:Alzheimer's disease 737:dendritic filopodia 642:Alzheimer's disease 626:sensory deprivation 528:Synaptic plasticity 512:Fyn tyrosine kinase 436:glutamate receptors 232:synaptic plasticity 149:Electron microscopy 4381:Photoreceptor cell 4351:Pacinian corpuscle 4282:Electrical synapse 4236:Lower motor neuron 4231:Upper motor neuron 3952:Internodal segment 3892:Connective tissues 3862:Autonomic ganglion 2999:Developmental Cell 2217:The Neuroscientist 2127:The Neuroscientist 964:Scientific Reports 912:10.1002/dneu.22829 780:fragile X syndrome 585: 418: 391: 178:of most principal 95:H2.00.06.1.00036 71:gemmula dendritica 4403: 4402: 4399: 4398: 4366:Free nerve ending 4333:Sensory receptors 4261: 4260: 4176:Ib or Golgi or Aα 4084: 4083: 3967: 3966: 3844:Ramus communicans 3783: 3782: 3779: 3778: 3649:Commissural fiber 3644:Association fiber 3639:Projection fibers 3457:(6993): 761–766. 3410:Neuropharmacology 3342:978-0-8018-6498-8 3323:978-0-19-514522-9 3175:10.1038/1831592a0 2674:(6533): 682–684. 2527:(1432): 745–748. 2309:(22): 4297–4308. 2268:10.1002/jnr.20759 2088:(15): 4101–4109. 2033:(7096): 979–983. 1980:(7275): 920–924. 1711:(7283): 948–952. 1649:(7275): 915–919. 1595:(14): 4790–4802. 1437:10.1159/000134729 1281:(7341): 100–104. 1168:(12): 6856–6861. 1117:(11): 4314–4324. 654:nucleus accumbens 650:prefrontal cortex 599:. In particular, 430:Receptor activity 360:pyramidal neurons 216:pyramidal neurons 184:pyramidal neurons 116: 115: 111: 4428: 4296:Synaptic vesicle 4291:Chemical synapse 4270: 4269: 3990: 3989: 3983: 3982: 3794: 3793: 3689: 3688: 3619: 3618: 3599: 3592: 3585: 3576: 3575: 3558: 3521: 3492: 3482: 3441: 3404: 3367: 3346: 3327: 3315: 3295: 3294: 3276: 3267:(6): 1019–1027. 3252: 3246: 3245: 3235: 3225: 3216:(9): 2983–2994. 3201: 3195: 3194: 3150: 3144: 3143: 3131: 3125: 3124: 3114: 3082: 3076: 3075: 3065: 3055: 3031: 3025: 3024: 3014: 2990: 2984: 2983: 2947: 2938: 2937: 2927: 2895: 2889: 2888: 2878: 2846: 2840: 2839: 2813: 2793: 2787: 2786: 2758: 2752: 2751: 2741: 2717: 2708: 2707: 2688:10.1038/375682a0 2663: 2657: 2656: 2620: 2614: 2613: 2603: 2593: 2561: 2555: 2554: 2544: 2512: 2506: 2505: 2480:(4): 2396–2409. 2465: 2459: 2458: 2448: 2423:(6): 2893–2910. 2408: 2402: 2401: 2391: 2351: 2345: 2344: 2334: 2294: 2288: 2287: 2251: 2245: 2244: 2208: 2197: 2196: 2168: 2159: 2158: 2122: 2116: 2115: 2105: 2073: 2067: 2066: 2022: 2016: 2015: 2005: 1965: 1954: 1953: 1935: 1911: 1905: 1904: 1886: 1862: 1847: 1846: 1836: 1826: 1802: 1796: 1795: 1785: 1768:(5): 1028–1039. 1753: 1747: 1746: 1736: 1696: 1685: 1684: 1674: 1634: 1623: 1622: 1612: 1580: 1574: 1573: 1563: 1539: 1533: 1532: 1504: 1498: 1497: 1487: 1470:(8): 3118–3123. 1455: 1449: 1448: 1431:(3–4): 228–230. 1419: 1413: 1412: 1402: 1366: 1360: 1359: 1323: 1317: 1316: 1306: 1266: 1249: 1248: 1212: 1206: 1205: 1195: 1185: 1153: 1147: 1146: 1136: 1126: 1102: 1096: 1095: 1077: 1053: 1047: 1046: 1036: 1012: 1006: 1005: 995: 951: 942: 941: 923: 891: 885: 884: 856: 850: 849: 821: 610:critical periods 601:long-term memory 545:actin remodeling 161:excitatory input 108:edit on Wikidata 105: 47: 31: 19: 18: 4436: 4435: 4431: 4430: 4429: 4427: 4426: 4425: 4406: 4405: 4404: 4395: 4327: 4257: 4206: 4197: 4181:II or Aβ and Aγ 4136: 4127: 4080: 4070:Apical dendrite 4065:Dendritic spine 4044: 4006: 3976: 3963: 3947:Node of Ranvier 3942:Myelin incisure 3914: 3886: 3775: 3766:Oligodendrocyte 3749:Ependymal cells 3730: 3680: 3608: 3603: 3566: 3561: 3343: 3324: 3303: 3301:Further reading 3298: 3253: 3249: 3202: 3198: 3151: 3147: 3132: 3128: 3103:10.1038/nn.2741 3083: 3079: 3032: 3028: 2991: 2987: 2948: 2941: 2896: 2892: 2847: 2843: 2811:10.1.1.104.1307 2794: 2790: 2759: 2755: 2718: 2711: 2664: 2660: 2621: 2617: 2562: 2558: 2513: 2509: 2466: 2462: 2409: 2405: 2352: 2348: 2295: 2291: 2252: 2248: 2209: 2200: 2169: 2162: 2123: 2119: 2074: 2070: 2023: 2019: 1966: 1957: 1912: 1908: 1863: 1850: 1803: 1799: 1754: 1750: 1697: 1688: 1635: 1626: 1581: 1577: 1548:Cerebral Cortex 1540: 1536: 1505: 1501: 1456: 1452: 1420: 1416: 1367: 1363: 1324: 1320: 1267: 1252: 1213: 1209: 1154: 1150: 1103: 1099: 1062:Current Biology 1054: 1050: 1013: 1009: 959: 952: 945: 892: 888: 857: 853: 822: 805: 801: 788: 753: 733: 713: 704: 695: 679: 670: 577: 572: 534: 524: 475:GluRs into the 432: 427: 409: 400: 382: 373: 329: 304: 284:spine apparatus 228: 157: 144: 120:dendritic spine 112: 50: 38: 22:Dendritic spine 17: 12: 11: 5: 4434: 4424: 4423: 4418: 4416:Neurohistology 4401: 4400: 4397: 4396: 4394: 4393: 4391:Taste receptor 4388: 4383: 4378: 4373: 4368: 4363: 4361:Muscle spindle 4358: 4356:Ruffini ending 4353: 4348: 4343: 4337: 4335: 4329: 4328: 4326: 4325: 4320: 4318:Ribbon synapse 4315: 4310: 4309: 4308: 4303: 4298: 4288: 4278: 4276: 4267: 4263: 4262: 4259: 4258: 4256: 4255: 4254: 4253: 4248: 4243: 4233: 4228: 4223: 4218: 4212: 4210: 4199: 4198: 4196: 4195: 4194: 4193: 4188: 4183: 4178: 4173: 4163: 4158: 4153: 4148: 4142: 4140: 4138:Sensory neuron 4129: 4128: 4126: 4125: 4124: 4123: 4113: 4108: 4106:Pseudounipolar 4103: 4098: 4092: 4090: 4086: 4085: 4082: 4081: 4079: 4078: 4077: 4076: 4074:Basal dendrite 4067: 4062: 4054: 4052: 4046: 4045: 4043: 4042: 4037: 4032: 4027: 4025:Axon terminals 4022: 4016: 4014: 4008: 4007: 4005: 4004: 3998: 3996: 3987: 3980: 3969: 3968: 3965: 3964: 3962: 3961: 3956: 3955: 3954: 3949: 3944: 3939: 3924: 3922: 3916: 3915: 3913: 3912: 3907: 3902: 3896: 3894: 3888: 3887: 3885: 3884: 3879: 3877:Nerve fascicle 3874: 3868: 3859: 3858: 3857: 3852: 3840: 3839: 3838: 3833: 3823: 3822: 3821: 3816: 3811: 3800: 3798: 3791: 3785: 3784: 3781: 3780: 3777: 3776: 3774: 3773: 3768: 3763: 3758: 3757: 3756: 3746: 3740: 3738: 3732: 3731: 3729: 3728: 3723: 3718: 3713: 3708: 3703: 3697: 3695: 3686: 3682: 3681: 3679: 3678: 3673: 3668: 3667: 3666: 3661: 3656: 3651: 3646: 3641: 3631: 3625: 3623: 3616: 3610: 3609: 3606:Nervous tissue 3602: 3601: 3594: 3587: 3579: 3573: 3572: 3565: 3564:External links 3562: 3560: 3559: 3533:(7): 653–659. 3522: 3493: 3442: 3405: 3379:(1–2): 87–95. 3368: 3358:(5): 159–164. 3347: 3341: 3328: 3322: 3304: 3302: 3299: 3297: 3296: 3247: 3196: 3145: 3126: 3097:(3): 285–293. 3077: 3026: 3005:(6): 644–659. 2985: 2939: 2890: 2841: 2804:(2): 432–453. 2788: 2769:(4): 874–890. 2753: 2732:(3): 590–601. 2709: 2658: 2637:10.1038/nn1449 2631:(5): 642–649. 2615: 2556: 2507: 2460: 2403: 2360:Molecular Pain 2346: 2289: 2262:(4): 525–531. 2246: 2198: 2160: 2133:(2): 139–146. 2117: 2068: 2017: 1955: 1926:(2): 279–291. 1906: 1877:(2): 181–189. 1848: 1797: 1748: 1686: 1624: 1575: 1554:(1): 151–161. 1534: 1499: 1450: 1414: 1385:(4): 619–629. 1369:Hotulainen P, 1361: 1334:(7): 360–368. 1318: 1250: 1223:(3): 429–440. 1207: 1148: 1097: 1048: 1027:(3): 648–661. 1007: 957: 943: 906:(5): 746–757. 886: 851: 802: 800: 797: 787: 784: 752: 749: 741:synaptogenesis 732: 729: 717:NMDA receptors 712: 709: 703: 700: 694: 691: 678: 675: 669: 666: 576: 573: 571: 568: 560:NMDA receptors 523: 520: 431: 428: 426: 423: 408: 405: 399: 396: 381: 378: 372: 369: 343:and activates 339:, it binds to 337:NMDA receptors 328: 325: 303: 300: 227: 224: 200:Purkinje cells 156: 153: 147:"bifurcated". 143: 140: 114: 113: 104: 98: 97: 92: 86: 85: 80: 74: 73: 68: 62: 61: 57: 56: 52: 51: 48: 40: 39: 32: 24: 23: 15: 9: 6: 4: 3: 2: 4433: 4422: 4419: 4417: 4414: 4413: 4411: 4392: 4389: 4387: 4384: 4382: 4379: 4377: 4374: 4372: 4369: 4367: 4364: 4362: 4359: 4357: 4354: 4352: 4349: 4347: 4344: 4342: 4339: 4338: 4336: 4334: 4330: 4324: 4321: 4319: 4316: 4314: 4311: 4307: 4304: 4302: 4299: 4297: 4294: 4293: 4292: 4289: 4287: 4283: 4280: 4279: 4277: 4275: 4271: 4268: 4264: 4252: 4251:γ motorneuron 4249: 4247: 4246:β motorneuron 4244: 4242: 4241:α motorneuron 4239: 4238: 4237: 4234: 4232: 4229: 4227: 4224: 4222: 4219: 4217: 4214: 4213: 4211: 4209: 4204: 4200: 4192: 4189: 4187: 4184: 4182: 4179: 4177: 4174: 4172: 4169: 4168: 4167: 4164: 4162: 4159: 4157: 4154: 4152: 4149: 4147: 4144: 4143: 4141: 4139: 4134: 4130: 4122: 4119: 4118: 4117: 4114: 4112: 4109: 4107: 4104: 4102: 4099: 4097: 4094: 4093: 4091: 4087: 4075: 4071: 4068: 4066: 4063: 4061: 4058: 4057: 4056: 4055: 4053: 4051: 4047: 4041: 4038: 4036: 4033: 4031: 4028: 4026: 4023: 4021: 4018: 4017: 4015: 4013: 4009: 4003: 4000: 3999: 3997: 3995: 3991: 3988: 3984: 3981: 3979: 3974: 3970: 3960: 3957: 3953: 3950: 3948: 3945: 3943: 3940: 3938: 3935: 3934: 3933: 3929: 3926: 3925: 3923: 3921: 3917: 3911: 3908: 3906: 3903: 3901: 3898: 3897: 3895: 3893: 3889: 3883: 3880: 3878: 3875: 3872: 3869: 3867: 3863: 3860: 3856: 3853: 3851: 3848: 3847: 3846: 3845: 3841: 3837: 3834: 3832: 3829: 3828: 3827: 3824: 3820: 3817: 3815: 3812: 3810: 3807: 3806: 3805: 3802: 3801: 3799: 3795: 3792: 3790: 3786: 3772: 3769: 3767: 3764: 3762: 3759: 3755: 3752: 3751: 3750: 3747: 3745: 3742: 3741: 3739: 3737: 3733: 3727: 3724: 3722: 3719: 3717: 3714: 3712: 3709: 3707: 3704: 3702: 3699: 3698: 3696: 3694: 3690: 3687: 3683: 3677: 3674: 3672: 3669: 3665: 3662: 3660: 3657: 3655: 3652: 3650: 3647: 3645: 3642: 3640: 3637: 3636: 3635: 3632: 3630: 3627: 3626: 3624: 3620: 3617: 3615: 3611: 3607: 3600: 3595: 3593: 3588: 3586: 3581: 3580: 3577: 3571: 3568: 3567: 3556: 3552: 3548: 3544: 3540: 3539:10.1038/76609 3536: 3532: 3528: 3523: 3519: 3515: 3511: 3507: 3503: 3499: 3494: 3490: 3486: 3481: 3476: 3472: 3468: 3464: 3460: 3456: 3452: 3448: 3443: 3439: 3435: 3431: 3427: 3423: 3419: 3415: 3411: 3406: 3402: 3398: 3394: 3390: 3386: 3382: 3378: 3374: 3369: 3365: 3361: 3357: 3353: 3348: 3344: 3338: 3334: 3329: 3325: 3319: 3314: 3313: 3306: 3305: 3292: 3288: 3284: 3280: 3275: 3270: 3266: 3262: 3258: 3251: 3243: 3239: 3234: 3229: 3224: 3219: 3215: 3211: 3207: 3200: 3192: 3188: 3184: 3180: 3176: 3172: 3168: 3164: 3160: 3156: 3149: 3141: 3137: 3130: 3122: 3118: 3113: 3108: 3104: 3100: 3096: 3092: 3088: 3081: 3073: 3069: 3064: 3059: 3054: 3049: 3045: 3041: 3037: 3030: 3022: 3018: 3013: 3008: 3004: 3000: 2996: 2989: 2981: 2977: 2973: 2969: 2965: 2961: 2958:(2): 146–53. 2957: 2953: 2946: 2944: 2935: 2931: 2926: 2921: 2917: 2913: 2909: 2905: 2901: 2894: 2886: 2882: 2877: 2872: 2868: 2864: 2860: 2856: 2852: 2845: 2837: 2833: 2829: 2825: 2821: 2817: 2812: 2807: 2803: 2799: 2792: 2784: 2780: 2776: 2772: 2768: 2764: 2757: 2749: 2745: 2740: 2735: 2731: 2727: 2723: 2716: 2714: 2705: 2701: 2697: 2693: 2689: 2685: 2681: 2677: 2673: 2669: 2662: 2654: 2650: 2646: 2642: 2638: 2634: 2630: 2626: 2619: 2611: 2607: 2602: 2597: 2592: 2587: 2583: 2579: 2575: 2571: 2567: 2560: 2552: 2548: 2543: 2538: 2534: 2530: 2526: 2522: 2518: 2511: 2503: 2499: 2495: 2491: 2487: 2483: 2479: 2475: 2471: 2464: 2456: 2452: 2447: 2442: 2438: 2434: 2430: 2426: 2422: 2418: 2414: 2407: 2399: 2395: 2390: 2385: 2381: 2377: 2373: 2369: 2365: 2361: 2357: 2350: 2342: 2338: 2333: 2328: 2324: 2320: 2316: 2312: 2308: 2304: 2300: 2293: 2285: 2281: 2277: 2273: 2269: 2265: 2261: 2257: 2250: 2242: 2238: 2234: 2230: 2226: 2222: 2218: 2214: 2207: 2205: 2203: 2194: 2190: 2186: 2182: 2178: 2174: 2167: 2165: 2156: 2152: 2148: 2144: 2140: 2136: 2132: 2128: 2121: 2113: 2109: 2104: 2099: 2095: 2091: 2087: 2083: 2079: 2072: 2064: 2060: 2056: 2052: 2048: 2044: 2040: 2036: 2032: 2028: 2021: 2013: 2009: 2004: 1999: 1995: 1991: 1987: 1983: 1979: 1975: 1971: 1964: 1962: 1960: 1951: 1947: 1943: 1939: 1934: 1929: 1925: 1921: 1917: 1910: 1902: 1898: 1894: 1890: 1885: 1880: 1876: 1872: 1868: 1861: 1859: 1857: 1855: 1853: 1844: 1840: 1835: 1830: 1825: 1820: 1816: 1812: 1808: 1801: 1793: 1789: 1784: 1779: 1775: 1771: 1767: 1763: 1759: 1752: 1744: 1740: 1735: 1730: 1726: 1722: 1718: 1714: 1710: 1706: 1702: 1695: 1693: 1691: 1682: 1678: 1673: 1668: 1664: 1660: 1656: 1652: 1648: 1644: 1640: 1633: 1631: 1629: 1620: 1616: 1611: 1606: 1602: 1598: 1594: 1590: 1586: 1579: 1571: 1567: 1562: 1557: 1553: 1549: 1545: 1538: 1530: 1526: 1522: 1518: 1514: 1510: 1503: 1495: 1491: 1486: 1481: 1477: 1473: 1469: 1465: 1461: 1454: 1446: 1442: 1438: 1434: 1430: 1426: 1418: 1410: 1406: 1401: 1396: 1392: 1388: 1384: 1380: 1376: 1372: 1371:Hoogenraad CC 1365: 1357: 1353: 1349: 1345: 1341: 1337: 1333: 1329: 1322: 1314: 1310: 1305: 1300: 1296: 1292: 1288: 1284: 1280: 1276: 1272: 1265: 1263: 1261: 1259: 1257: 1255: 1246: 1242: 1238: 1234: 1230: 1226: 1222: 1218: 1211: 1203: 1199: 1194: 1189: 1184: 1179: 1175: 1171: 1167: 1163: 1159: 1152: 1144: 1140: 1135: 1130: 1125: 1120: 1116: 1112: 1108: 1101: 1093: 1089: 1085: 1081: 1076: 1071: 1067: 1063: 1059: 1052: 1044: 1040: 1035: 1030: 1026: 1022: 1018: 1011: 1003: 999: 994: 989: 985: 981: 977: 973: 969: 965: 961: 950: 948: 939: 935: 931: 927: 922: 917: 913: 909: 905: 901: 897: 890: 882: 878: 874: 870: 866: 862: 855: 847: 843: 839: 835: 831: 827: 820: 818: 816: 814: 812: 810: 808: 803: 796: 793: 783: 781: 777: 773: 769: 765: 760: 758: 748: 744: 742: 738: 728: 726: 722: 718: 708: 699: 690: 687: 683: 674: 665: 661: 657: 655: 651: 647: 644:and cases of 643: 639: 635: 630: 627: 622: 618: 614: 611: 605: 602: 598: 594: 590: 581: 567: 565: 561: 557: 556:AMPA receptor 553: 548: 546: 542: 539: 533: 529: 519: 515: 513: 509: 505: 501: 497: 493: 489: 484: 482: 478: 472: 470: 466: 461: 457: 453: 450:receptor for 449: 445: 444:NMDA receptor 441: 440:AMPA receptor 437: 422: 413: 404: 395: 386: 377: 371:Cdc42 pathway 368: 365: 361: 356: 354: 350: 346: 342: 338: 334: 324: 322: 317: 313: 309: 302:Morphogenesis 299: 297: 296:polyribosomes 293: 289: 285: 281: 277: 272: 270: 266: 262: 258: 254: 249: 245: 242:Monomers and 241: 237: 233: 223: 221: 217: 214:and cortical 213: 209: 205: 201: 197: 193: 189: 185: 181: 177: 172: 171:lab in 2015. 170: 166: 162: 152: 150: 139: 137: 133: 129: 125: 121: 109: 103: 99: 96: 93: 91: 87: 84: 81: 79: 75: 72: 69: 67: 63: 58: 53: 46: 41: 36: 30: 25: 20: 4286:Gap junction 4208:Motor neuron 4064: 4002:Axon hillock 3978:nerve fibers 3932:Schwann cell 3842: 3825: 3803: 3721:Medium spiny 3634:White matter 3622:Tissue Types 3530: 3526: 3501: 3497: 3454: 3450: 3416:(1): 12–23. 3413: 3409: 3376: 3372: 3355: 3351: 3332: 3311: 3264: 3260: 3250: 3213: 3209: 3199: 3158: 3154: 3148: 3139: 3135: 3129: 3094: 3090: 3080: 3043: 3039: 3029: 3002: 2998: 2988: 2955: 2951: 2907: 2903: 2893: 2858: 2854: 2844: 2801: 2797: 2791: 2766: 2762: 2756: 2729: 2725: 2671: 2667: 2661: 2628: 2624: 2618: 2573: 2569: 2559: 2524: 2520: 2510: 2477: 2473: 2463: 2420: 2416: 2406: 2363: 2359: 2349: 2306: 2302: 2292: 2259: 2255: 2249: 2216: 2176: 2172: 2130: 2126: 2120: 2085: 2081: 2071: 2030: 2026: 2020: 1977: 1973: 1923: 1919: 1909: 1874: 1870: 1814: 1811:PLOS Biology 1810: 1800: 1765: 1761: 1751: 1708: 1704: 1646: 1642: 1592: 1588: 1578: 1551: 1547: 1537: 1515:(1): 38–47. 1512: 1508: 1502: 1467: 1463: 1453: 1428: 1424: 1417: 1382: 1378: 1373:(May 2010). 1364: 1331: 1327: 1321: 1278: 1274: 1220: 1216: 1210: 1165: 1161: 1151: 1114: 1110: 1100: 1068:(4): 290–9. 1065: 1061: 1051: 1024: 1020: 1010: 970:(1): 21059. 967: 963: 903: 899: 889: 867:(3): 261–8. 864: 860: 854: 829: 825: 789: 761: 754: 745: 734: 714: 705: 696: 686:Cable theory 684: 680: 671: 662: 658: 631: 623: 619: 615: 606: 586: 549: 541:cytoskeleton 535: 516: 510:(PP-1), and 485: 473: 433: 419: 401: 392: 374: 357: 330: 327:RhoA pathway 305: 288:synaptopodin 273: 248:microtubules 229: 173: 158: 155:Distribution 145: 123: 119: 117: 70: 4301:Active zone 4266:Termination 4116:Interneuron 4020:Telodendron 3928:Myelination 3910:Endoneurium 3905:Perineurium 3726:Interneuron 3716:Von Economo 3664:Decussation 3659:Nerve tract 3629:Grey matter 3504:: 313–353. 2179:: 261–282. 1817:(9): e219. 759:disorders. 731:Development 723:) and from 490:-dependent 467:-dependent 460:active zone 364:hippocampus 212:Hippocampal 60:Identifiers 4410:Categories 4371:Nociceptor 4111:Multipolar 4060:Nissl body 3937:Neurilemma 3900:Epineurium 3685:Cell Types 3046:(3): 908. 1509:Physiology 799:References 589:motivation 526:See also: 522:Plasticity 492:calmodulin 425:Physiology 349:LIM kinase 341:calmodulin 321:plasticity 204:cerebellum 198:, and the 165:spine head 4386:Hair cell 3920:Neuroglia 3882:Funiculus 3771:Microglia 3744:Astrocyte 3701:Pyramidal 3654:Lemniscus 2806:CiteSeerX 2494:0022-3077 2437:0022-3077 2380:1744-8069 2323:0270-6474 2233:1073-8584 938:234472935 832:: 79–97. 739:. During 188:neocortex 176:dendrites 142:Structure 4171:Ia or Aα 4101:Unipolar 4050:Dendrite 4035:Axolemma 4030:Axoplasm 3814:Ganglion 3754:Tanycyte 3706:Purkinje 3693:Neuronal 3676:Meninges 3671:Neuropil 3555:33466678 3547:10862697 3518:11826272 3489:15190253 3438:22652804 3430:16949110 3393:12644282 3364:12451686 3333:Synapses 3291:10183317 3283:12354393 3183:13666826 3121:21346746 3072:32019166 3021:26051541 2972:19523814 2934:19074019 2885:17065442 2748:25619656 2645:15852011 2610:17640908 2551:12740121 2502:19692517 2455:26936986 2398:28326929 2341:32371602 2284:30838296 2276:16447268 2241:36461773 2193:19575680 2155:46267737 2147:18039977 2112:17428988 2055:16791195 2012:19946265 1950:13320649 1942:15664179 1901:16232150 1893:15848798 1843:18788894 1792:22405211 1743:20164928 1681:19946267 1619:22492034 1570:17517683 1529:16443821 1494:12716918 1409:20457765 1356:18436944 1348:12850432 1313:21423166 1245:21100601 1237:15234347 1202:10823894 1143:10341235 1092:12180359 1084:20137950 1043:26232230 1002:34702942 930:33977655 881:19519307 846:17280523 677:Modeling 652:and the 638:ischemia 593:learning 532:Dendrite 469:cadherin 292:vesicles 276:proteins 255:such as 196:striatum 169:Lichtman 128:dendrite 35:striatal 4313:Autapse 4274:Synapse 4121:Renshaw 4096:Bipolar 3973:Neurons 3826:Ventral 3797:General 3711:Granule 3480:4158816 3459:Bibcode 3401:2275781 3242:8622128 3233:6579052 3191:4258584 3163:Bibcode 3142:: 1–10. 3112:3530413 3063:7036943 2980:5054448 2925:6671740 2876:6674669 2836:3058796 2828:3061734 2783:2051208 2704:4271356 2696:7791901 2676:Bibcode 2601:1924793 2578:Bibcode 2542:1693146 2446:4922610 2389:5302173 2332:7252482 2103:6672555 2063:4428322 2035:Bibcode 2003:4724802 1982:Bibcode 1834:2531136 1783:3299981 1734:2918377 1713:Bibcode 1672:2844762 1651:Bibcode 1610:3356781 1485:6742332 1445:9605859 1400:2872912 1304:3105377 1283:Bibcode 1170:Bibcode 1134:6782630 993:8548505 972:Bibcode 921:8852350 786:History 757:anxiety 488:calcium 477:cytosol 465:calcium 353:cofilin 253:GTPases 240:tubulin 236:F-actin 220:neurons 202:of the 194:of the 186:of the 180:neurons 136:synapse 134:at the 83:D049229 55:Details 4166:fibers 3804:Dorsal 3553:  3545:  3516:  3487:  3477:  3451:Nature 3436:  3428:  3399:  3391:  3362:  3339:  3320:  3289:  3281:  3261:Neuron 3240:  3230:  3189:  3181:  3155:Nature 3119:  3109:  3070:  3060:  3019:  2978:  2970:  2932:  2922:  2883:  2873:  2834:  2826:  2808:  2781:  2746:  2726:Neuron 2702:  2694:  2668:Nature 2653:385712 2651:  2643:  2608:  2598:  2549:  2539:  2500:  2492:  2453:  2443:  2435:  2396:  2386:  2378:  2339:  2329:  2321:  2282:  2274:  2239:  2231:  2191:  2153:  2145:  2110:  2100:  2061:  2053:  2027:Nature 2010:  2000:  1974:Nature 1948:  1940:  1920:Neuron 1899:  1891:  1871:Neuron 1841:  1831:  1790:  1780:  1762:Neuron 1741:  1731:  1705:Nature 1679:  1669:  1643:Nature 1617:  1607:  1568:  1527:  1492:  1482:  1443:  1407:  1397:  1354:  1346:  1311:  1301:  1275:Nature 1243:  1235:  1200:  1190:  1141:  1131:  1090:  1082:  1041:  1000:  990:  936:  928:  918:  879:  844:  778:, and 772:autism 634:stroke 597:memory 595:, and 496:CaMKII 438:(e.g. 345:CaMKII 263:, and 190:, the 4089:Types 3986:Parts 3855:White 3836:Ramus 3819:Ramus 3736:Glial 3551:S2CID 3434:S2CID 3397:S2CID 3287:S2CID 3187:S2CID 2976:S2CID 2832:S2CID 2824:JSTOR 2700:S2CID 2649:S2CID 2280:S2CID 2151:S2CID 2059:S2CID 1946:S2CID 1897:S2CID 1352:S2CID 1241:S2CID 1193:18765 1088:S2CID 934:S2CID 538:actin 316:actin 312:actin 265:CDC42 124:spine 106:[ 66:Latin 4012:Axon 3994:Soma 3850:Gray 3831:Root 3809:Root 3543:PMID 3514:PMID 3485:PMID 3426:PMID 3389:PMID 3360:PMID 3337:ISBN 3318:ISBN 3279:PMID 3238:PMID 3179:PMID 3117:PMID 3068:PMID 3017:PMID 2968:PMID 2930:PMID 2881:PMID 2779:PMID 2744:PMID 2692:PMID 2641:PMID 2606:PMID 2547:PMID 2498:PMID 2490:ISSN 2451:PMID 2433:ISSN 2394:PMID 2376:ISSN 2337:PMID 2319:ISSN 2272:PMID 2237:PMID 2229:ISSN 2189:PMID 2143:PMID 2108:PMID 2051:PMID 2008:PMID 1938:PMID 1889:PMID 1839:PMID 1788:PMID 1739:PMID 1677:PMID 1615:PMID 1566:PMID 1525:PMID 1490:PMID 1441:PMID 1405:PMID 1344:PMID 1309:PMID 1233:PMID 1198:PMID 1139:PMID 1080:PMID 1039:PMID 1021:Cell 998:PMID 926:PMID 877:PMID 842:PMID 764:ADHD 552:BDNF 530:and 452:BDNF 448:TrkB 442:and 333:RhoA 269:Rac1 261:RhoA 132:axon 122:(or 78:MeSH 4226:SVE 4221:GVE 4216:GSE 4161:SVA 4156:SSA 4151:GVA 4146:GSA 3789:PNS 3614:CNS 3535:doi 3506:doi 3475:PMC 3467:doi 3455:429 3418:doi 3381:doi 3377:140 3269:doi 3228:PMC 3218:doi 3171:doi 3159:183 3107:PMC 3099:doi 3058:PMC 3048:doi 3007:doi 2960:doi 2920:PMC 2912:doi 2871:PMC 2863:doi 2816:doi 2771:doi 2734:doi 2684:doi 2672:375 2633:doi 2596:PMC 2586:doi 2574:104 2537:PMC 2529:doi 2525:358 2482:doi 2478:102 2441:PMC 2425:doi 2421:115 2384:PMC 2368:doi 2327:PMC 2311:doi 2264:doi 2221:doi 2181:doi 2135:doi 2098:PMC 2090:doi 2043:doi 2031:441 1998:PMC 1990:doi 1978:462 1928:doi 1879:doi 1829:PMC 1819:doi 1778:PMC 1770:doi 1729:PMC 1721:doi 1709:463 1667:PMC 1659:doi 1647:462 1605:PMC 1597:doi 1556:doi 1517:doi 1480:PMC 1472:doi 1433:doi 1395:PMC 1387:doi 1383:189 1336:doi 1299:PMC 1291:doi 1279:472 1225:doi 1188:PMC 1178:doi 1129:PMC 1119:doi 1070:doi 1029:doi 1025:162 988:PMC 980:doi 916:PMC 908:doi 869:doi 834:doi 504:PKA 500:PKC 257:Rac 238:). 4412:: 3930:: 3549:. 3541:. 3529:. 3512:. 3502:64 3500:. 3483:. 3473:. 3465:. 3453:. 3449:. 3432:. 3424:. 3414:52 3412:. 3395:. 3387:. 3375:. 3356:22 3354:. 3285:. 3277:. 3265:35 3263:. 3259:. 3236:. 3226:. 3214:16 3212:. 3208:. 3185:. 3177:. 3169:. 3157:. 3138:. 3115:. 3105:. 3095:14 3093:. 3089:. 3066:. 3056:. 3044:21 3042:. 3038:. 3015:. 3003:33 3001:. 2997:. 2974:. 2966:. 2956:19 2954:. 2942:^ 2928:. 2918:. 2908:28 2906:. 2902:. 2879:. 2869:. 2859:26 2857:. 2853:. 2830:. 2822:. 2814:. 2802:61 2800:. 2777:. 2767:65 2765:. 2742:. 2730:85 2728:. 2724:. 2712:^ 2698:. 2690:. 2682:. 2670:. 2647:. 2639:. 2627:. 2604:. 2594:. 2584:. 2572:. 2568:. 2545:. 2535:. 2523:. 2519:. 2496:. 2488:. 2476:. 2472:. 2449:. 2439:. 2431:. 2419:. 2415:. 2392:. 2382:. 2374:. 2364:13 2362:. 2358:. 2335:. 2325:. 2317:. 2307:40 2305:. 2301:. 2278:. 2270:. 2260:83 2258:. 2235:. 2227:. 2215:. 2201:^ 2187:. 2177:71 2175:. 2163:^ 2149:. 2141:. 2131:14 2129:. 2106:. 2096:. 2086:27 2084:. 2080:. 2057:. 2049:. 2041:. 2029:. 2006:. 1996:. 1988:. 1976:. 1972:. 1958:^ 1944:. 1936:. 1924:45 1922:. 1918:. 1895:. 1887:. 1875:46 1873:. 1869:. 1851:^ 1837:. 1827:. 1813:. 1809:. 1786:. 1776:. 1766:73 1764:. 1760:. 1737:. 1727:. 1719:. 1707:. 1703:. 1689:^ 1675:. 1665:. 1657:. 1645:. 1641:. 1627:^ 1613:. 1603:. 1593:32 1591:. 1587:. 1564:. 1552:18 1550:. 1546:. 1523:. 1513:21 1511:. 1488:. 1478:. 1468:23 1466:. 1462:. 1439:. 1429:79 1427:. 1403:. 1393:. 1381:. 1377:. 1350:. 1342:. 1332:26 1330:. 1307:. 1297:. 1289:. 1277:. 1273:. 1253:^ 1239:. 1231:. 1221:26 1219:. 1196:. 1186:. 1176:. 1166:97 1164:. 1160:. 1137:. 1127:. 1115:19 1113:. 1109:. 1086:. 1078:. 1066:20 1064:. 1060:. 1037:. 1023:. 1019:. 996:. 986:. 978:. 968:11 966:. 962:. 946:^ 932:. 924:. 914:. 904:81 902:. 898:. 875:. 863:. 840:. 830:30 828:. 806:^ 774:, 770:, 766:, 591:, 494:, 259:, 208:μm 118:A 90:TH 4284:/ 4205:/ 4135:/ 4072:/ 3975:/ 3873:) 3864:( 3598:e 3591:t 3584:v 3557:. 3537:: 3531:3 3520:. 3508:: 3491:. 3469:: 3461:: 3440:. 3420:: 3403:. 3383:: 3366:. 3345:. 3326:. 3293:. 3271:: 3244:. 3220:: 3193:. 3173:: 3165:: 3140:1 3123:. 3101:: 3074:. 3050:: 3023:. 3009:: 2982:. 2962:: 2936:. 2914:: 2887:. 2865:: 2838:. 2818:: 2785:. 2773:: 2750:. 2736:: 2706:. 2686:: 2678:: 2655:. 2635:: 2629:8 2612:. 2588:: 2580:: 2553:. 2531:: 2504:. 2484:: 2457:. 2427:: 2400:. 2370:: 2343:. 2313:: 2286:. 2266:: 2243:. 2223:: 2195:. 2183:: 2157:. 2137:: 2114:. 2092:: 2065:. 2045:: 2037:: 2014:. 1992:: 1984:: 1952:. 1930:: 1903:. 1881:: 1845:. 1821:: 1815:6 1794:. 1772:: 1745:. 1723:: 1715:: 1683:. 1661:: 1653:: 1621:. 1599:: 1572:. 1558:: 1531:. 1519:: 1496:. 1474:: 1447:. 1435:: 1411:. 1389:: 1358:. 1338:: 1315:. 1293:: 1285:: 1247:. 1227:: 1204:. 1180:: 1172:: 1145:. 1121:: 1094:. 1072:: 1045:. 1031:: 1004:. 982:: 974:: 958:A 940:. 910:: 883:. 871:: 865:6 848:. 836:: 110:]

Index


striatal

Latin
MeSH
D049229
TH
H2.00.06.1.00036
Anatomical terms of microanatomy
edit on Wikidata
dendrite
axon
synapse
Electron microscopy
excitatory input
spine head
Lichtman
dendrites
neurons
pyramidal neurons
neocortex
medium spiny neurons
striatum
Purkinje cells
cerebellum
μm
Hippocampal
pyramidal neurons
neurons
synaptic plasticity

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.