Knowledge

Cosmic ray

Source 📝

2257:. Svensmark is one of several scientists outspokenly opposed to the mainstream scientific assessment of global warming, leading to concerns that the proposition that cosmic rays are connected to global warming could be ideologically biased rather than scientifically based. Other scientists have vigorously criticized Svensmark for sloppy and inconsistent work: one example is adjustment of cloud data that understates error in lower cloud data, but not in high cloud data; another example is "incorrect handling of the physical data" resulting in graphs that do not show the correlations they claim to show. Despite Svensmark's assertions, galactic cosmic rays have shown no statistically significant influence on changes in cloud cover, and have been demonstrated in studies to have no causal relationship to changes in global temperature. 9300: 2162: 737: 8044: 48: 1168: 9312: 1139:. Some of these subsequently decay into muons and neutrinos, which are able to reach the surface of the Earth. Some high-energy muons even penetrate for some distance into shallow mines, and most neutrinos traverse the Earth without further interaction. Others decay into photons, subsequently producing electromagnetic cascades. Hence, next to photons, electrons and positrons usually dominate in air showers. These particles as well as muons can be easily detected by many types of particle detectors, such as 60: 789: 852: 9273: 9360: 8026: 9237: 1065: 412: 8035: 9336: 1363: 9348: 9261: 1087: 1375:
prototypes for space and balloon-borne detection of air showers, currently operating experiments for high-energy cosmic rays are ground based. Generally direct detection is more accurate than indirect detection. However the flux of cosmic rays decreases with energy, which hampers direct detection for the energy range above 1 PeV. Both direct and indirect detection are realized by several techniques.
9249: 477: 9324: 462: 1000:. At higher energies, up to 500 GeV, the ratio of positrons to electrons begins to fall again. The absolute flux of positrons also begins to fall before 500 GeV, but peaks at energies far higher than electron energies, which peak about 10 GeV. These results on interpretation have been suggested to be due to positron production in annihilation events of massive 293:
surface of the Earth is such that about one per second passes through a volume the size of a person's head. Together with natural local radioactivity, these muons are a significant cause of the ground level atmospheric ionisation that first attracted the attention of scientists, leading to the eventual discovery of the primary cosmic rays arriving from beyond our atmosphere.
1484:) Collaboration released the first version of its completely open source app for Android devices. Since then the collaboration has attracted the interest and support of many scientific institutions, educational institutions, and members of the public around the world. Future research has to show in what aspects this new technique can compete with dedicated EAS arrays. 576:, unaware of Rossi's earlier report, detected the same phenomenon and investigated it in some detail. He concluded that high-energy primary cosmic-ray particles interact with air nuclei high in the atmosphere, initiating a cascade of secondary interactions that ultimately yield a shower of electrons, and photons that reach ground level. 677:
satellite gamma-ray observatories have mapped the gamma-ray sky. The most recent is the Fermi Observatory, which has produced a map showing a narrow band of gamma ray intensity produced in discrete and diffuse sources in our galaxy, and numerous point-like extra-galactic sources distributed over the celestial sphere.
755:, although the authors specifically stated that further investigation would be required to confirm Centaurus A as a source of cosmic rays. However, no correlation was found between the incidence of gamma-ray bursts and cosmic rays, causing the authors to set upper limits as low as 3.4 × 10×  5737: 4727:
Pierre Auger Collaboration; Aab, A.; Abreu, P.; Aglietta, M.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.;
1507:
Another method detects radio waves emitted by air showers. This technique has a high duty cycle similar to that of particle detectors. The accuracy of this technique was improved in the last years as shown by various prototype experiments, and may become an alternative to the detection of atmospheric
1435:
There are several ground-based methods of detecting cosmic rays currently in use, which can be divided in two main categories: the detection of secondary particles forming extensive air showers (EAS) by various types of particle detectors, and the detection of electromagnetic radiation emitted by EAS
1452:
to make them detectable. Therefore, several arrays use water/ice-Cherenkov detectors as alternative or in addition to scintillators. By the combination of several detectors, some EAS arrays have the capability to distinguish muons from lighter secondary particles (photons, electrons, positrons). The
1418:
solution, that removes the surface material at a slow, known rate. The caustic sodium hydroxide dissolves the plastic at a faster rate along the path of the ionized plastic. The net result is a conical etch pit in the plastic. The etch pits are measured under a high-power microscope (typically 1600×
1374:
There are two main classes of detection methods. First, the direct detection of the primary cosmic rays in space or at high altitude by balloon-borne instruments. Second, the indirect detection of secondary particle, i.e., extensive air showers at higher energies. While there have been proposals and
1007:
Cosmic ray antiprotons also have a much higher average energy than their normal-matter counterparts (protons). They arrive at Earth with a characteristic energy maximum of 2 GeV, indicating their production in a fundamentally different process from cosmic ray protons, which on average have only
1499:
in their medium, the atmosphere. While these telescopes are extremely good at distinguishing between background radiation and that of cosmic-ray origin, they can only function well on clear nights without the Moon shining, have very small fields of view, and are only active for a few percent of the
1345:
The magnitude of the energy of cosmic ray flux in interstellar space is very comparable to that of other deep space energies: cosmic ray energy density averages about one electron-volt per cubic centimetre of interstellar space, or ≈1 eV/cm, which is comparable to the energy density of visible
676:
MeV photons) were finally discovered in the primary cosmic radiation by an MIT experiment carried on the OSO-3 satellite in 1967. Components of both galactic and extra-galactic origins were separately identified at intensities much less than 1% of the primary charged particles. Since then, numerous
520:
who made measurements of ionization due to cosmic rays from deep under water to high altitudes and around the globe. Millikan believed that his measurements proved that the primary cosmic rays were gamma rays; i.e., energetic photons. And he proposed a theory that they were produced in interstellar
137:
Direct measurement of cosmic rays, especially at lower energies, has been possible since the launch of the first satellites in the late 1950s. Particle detectors similar to those used in nuclear and high-energy physics are used on satellites and space probes for research into cosmic rays. Data from
796:
Supernovae do not produce all cosmic rays, however, and the proportion of cosmic rays that they do produce is a question which cannot be answered without deeper investigation. To explain the actual process in supernovae and active galactic nuclei that accelerates the stripped atoms, physicists use
292:
Of secondary cosmic rays, the charged pions produced by primary cosmic rays in the atmosphere swiftly decay, emitting muons. Unlike pions, these muons do not interact strongly with matter, and can travel through the atmosphere to penetrate even below ground level. The rate of muons arriving at the
1422:
This technique yields a unique curve for each atomic nucleus from 1 to 92, allowing identification of both the charge and energy of the cosmic ray that traverses the plastic stack. The more extensive the ionization along the path, the higher the charge. In addition to its uses for cosmic-ray
808:
in the arrival directions of the highest energy cosmic rays. Since the Galactic Center is in the deficit region, this anisotropy can be interpreted as evidence for the extragalactic origin of cosmic rays at the highest energies. This implies that there must be a transition energy from galactic to
661:, and later by scientists of the international Pierre Auger Collaboration. Their aim is to explore the properties and arrival directions of the very highest-energy primary cosmic rays. The results are expected to have important implications for particle physics and cosmology, due to a theoretical 441:
observed simultaneous variations of the rate of ionization over a lake, over the sea, and at a depth of 3 metres from the surface. Pacini concluded from the decrease of radioactivity underwater that a certain part of the ionization must be due to sources other than the radioactivity of the Earth.
1503:
A second method detects the light from nitrogen fluorescence caused by the excitation of nitrogen in the atmosphere by particles moving through the atmosphere. This method is the most accurate for cosmic rays at highest energies, in particular when combined with EAS arrays of particle detectors.
995:
show that positrons in the cosmic rays arrive with no directionality. In September 2014, new results with almost twice as much data were presented in a talk at CERN and published in Physical Review Letters. A new measurement of positron fraction up to 500 GeV was reported, showing that positron
5984:
Vepsäläinen, Antti P.; Karamlou, Amir H.; Orrell, John L.; Dogra, Akshunna S.; Loer, Ben; Vasconcelos, Francisca; Kim, David K.; Melville, Alexander J.; Niedzielski, Bethany M.; Yoder, Jonilyn L.; Gustavsson, Simon; Formaggio, Joseph A.; VanDevender, Brent A.; Oliver, William D. (August 2020).
2225:
in 1975. It has been postulated that cosmic rays may have been responsible for major climatic change and mass extinction in the past. According to Adrian Mellott and Mikhail Medvedev, 62-million-year cycles in biological marine populations correlate with the motion of the Earth relative to the
554:
predicted a difference between the intensities of cosmic rays arriving from the east and the west that depends upon the charge of the primary particles—the so-called "east–west effect". Three independent experiments found that the intensity is, in fact, greater from the west, proving that most
605:, published in 1937 described how primary cosmic rays from space interact with the upper atmosphere to produce particles observed at the ground level. Bhabha and Heitler explained the cosmic ray shower formation by the cascade production of gamma rays and positive and negative electron pairs. 63:
Left image: cosmic ray muon passing through a cloud chamber undergoes scattering by a small angle in the middle metal plate and leaves the chamber. Right image: cosmic ray muon losing considerable energy after passing through the plate as indicated by the increased curvature of the track in a
1413:
in the plastic. At the top of the plastic stack the ionization is less, due to the high cosmic ray speed. As the cosmic ray speed decreases due to deceleration in the stack, the ionization increases along the path. The resulting plastic sheets are "etched" or slowly dissolved in warm caustic
979:
Satellite experiments have found evidence of positrons and a few antiprotons in primary cosmic rays, amounting to less than 1% of the particles in primary cosmic rays. These do not appear to be the products of large amounts of antimatter from the Big Bang, or indeed complex antimatter in the
571:
was larger than the expected accidental rate. In his report on the experiment, Rossi wrote "... it seems that once in a while the recording equipment is struck by very extensive showers of particles, which causes coincidences between the counters, even placed at large distances from one
453:
flight. He found the ionization rate increased approximately fourfold over the rate at ground level. Hess ruled out the Sun as the radiation's source by making a balloon ascent during a near-total eclipse. With the moon blocking much of the Sun's visible radiation, Hess still measured rising
859:
Cosmic rays originate as primary cosmic rays, which are those originally produced in various astrophysical processes. Primary cosmic rays are composed mainly of protons and alpha particles (99%), with a small amount of heavier nuclei (≈1%) and an extremely minute proportion of positrons and
1439:
Extensive air shower arrays made of particle detectors measure the charged particles which pass through them. EAS arrays can observe a broad area of the sky and can be active more than 90% of the time. However, they are less able to segregate background effects from cosmic rays than can
4728:
Avila, G.; Badescu, A. M.; Balaceanu, A.; Barbato, F.; Barreira Luz, R. J.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; et al. (The Pierre Auger Collaboration) (2017). "Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8×10eV".
4820:
Koch, L.; Engelmann, J. J.; Goret, P.; Juliusson, E.; Petrou, N.; Rio, Y.; Soutoul, A.; Byrnak, B.; Lund, N.; Peters, B. (October 1981). "The relative abundances of the elements scandium to manganese in relativistic cosmic rays and the possible radioactive decay of manganese 54".
537:
found evidence, later confirmed in many experiments, that cosmic ray intensity increases from the tropics to mid-latitudes, which indicated that the primary cosmic rays are deflected by the geomagnetic field and must therefore be charged particles, not photons. In 1929,
5744: 1158:
Cosmic rays impacting other planetary bodies in the Solar System are detected indirectly by observing high-energy gamma ray emissions by gamma-ray telescope. These are distinguished from radioactive decay processes by their higher energies above about 10 MeV.
5128:
Aguilar, M.; Alcaraz, J.; Allaby, J.; Alpat, B.; Ambrosi, G.; Anderhub, H.; et al. (AMS Collaboration) (August 2002). "The Alpha Magnetic Spectrometer (AMS) on the International Space Station: Part I – Results from the test flight on the space shuttle".
508:
stated in 1931 that "thanks to the fine experiments of Professor Millikan and the even more far-reaching experiments of Professor Regener, we have now got for the first time, a curve of absorption of these radiations in water which we may safely rely upon".
3157:"Potential benefit of retrospective use of neutron monitors in improving ionising radiation exposure assessment on international flights: issues raised by neutron passive dosimeter measurements and EPCARD simulations during sudden changes in solar activity" 1195:
acts as a barrier to cosmic rays, decreasing the flux at lower energies (≤ 1 GeV) by about 90%. However, the strength of the solar wind is not constant, and hence it has been observed that cosmic ray flux is correlated with solar activity.
496:
In the late 1920s and early 1930s the technique of self-recording electroscopes carried by balloons into the highest layers of the atmosphere or sunk to great depths under water was brought to an unprecedented degree of perfection by the German physicist
6171:
Zeitlin, C.; Hassler, D. M.; Cucinotta, F. A.; Ehresmann, B.; Wimmer-Schweingruber, R.F.; Brinza, D. E.; Kang, S.; Weigle, G.; et al. (31 May 2013). "Measurements of Energetic Particle Radiation in Transit to Mars on the Mars Science Laboratory".
2120:
Galactic cosmic rays are one of the most important barriers standing in the way of plans for interplanetary travel by crewed spacecraft. Cosmic rays also pose a threat to electronics placed aboard outgoing probes. In 2010, a malfunction aboard the
555:
primaries are positive. During the years from 1930 to 1945, a wide variety of investigations confirmed that the primary cosmic rays are mostly protons, and the secondary radiation produced in the atmosphere is primarily electrons, photons and
1214:
The combined effects of all of the factors mentioned contribute to the flux of cosmic rays at Earth's surface. The following table of participial frequencies reach the planet and are inferred from lower-energy radiation reaching the ground.
358:) baseball. As a result of these discoveries, there has been interest in investigating cosmic rays of even greater energies. Most cosmic rays, however, do not have such extreme energies; the energy distribution of cosmic rays peaks at 300 1341:
In the past, it was believed that the cosmic ray flux remained fairly constant over time. However, recent research suggests one-and-a-half- to two-fold millennium-timescale changes in the cosmic ray flux in the past forty thousand years.
1671:
mSv per year for higher-altitude cities, raising cosmic radiation exposure to a quarter of total background radiation exposure for populations of said cities. Airline crews flying long-distance high-altitude routes can be exposed to
454:
radiation at rising altitudes. He concluded that "The results of the observations seem most likely to be explained by the assumption that radiation of very high penetrating power enters from above into our atmosphere." In 1913–1914,
301:
Cosmic rays attract great interest practically, due to the damage they inflict on microelectronics and life outside the protection of an atmosphere and magnetic field, and scientifically, because the energies of the most energetic
774:, which revealed that "spectral shapes of are different and cannot be described well by a single power law", suggesting a more complex process of cosmic ray formation. In February 2013, though, research analyzing data from 1535:
Cosmic rays kept the level of carbon-14 in the atmosphere roughly constant (70 tons) for at least the past 100,000 years, until the beginning of above-ground nuclear weapons testing in the early 1950s. This fact is used in
402:
they produce. Measurements of increasing ionization rates at increasing heights above the ground during the decade from 1900 to 1910 could be explained as due to absorption of the ionizing radiation by the intervening air.
546:
discovered charged cosmic-ray particles that could penetrate 4.1 cm of gold. Charged particles of such high energy could not possibly be produced by photons from Millikan's proposed interstellar fusion process.
1460:
to detect the secondary muons created when a pion decays. Cloud chambers in particular can be built from widely available materials and can be constructed even in a high-school laboratory. A fifth method, involving
6870:
Fimiani, L.; Cook, D. L.; Faestermann, T.; Gómez-Guzmán, J. M.; Hain, K.; Herzog, G.; Knie, K.; Korschinek, G.; Ludwig, P.; Park, J.; Reedy, R. C.; Rugel, G. (2016). "Interstellar 60Fe on the Surface of the Moon".
233:
Of primary cosmic rays, which originate outside of Earth's atmosphere, about 99% are the bare nuclei of common atoms (stripped of their electron shells), and about 1% are solitary electrons (that is, one type of
637:. From that work, and from many other experiments carried out all over the world, the energy spectrum of the primary cosmic rays is now known to extend beyond 10 eV. A huge air shower experiment called the 6601: 2131:, probably caused by a cosmic ray. Strategies such as physical or magnetic shielding for spacecraft have been considered in order to minimize the damage to electronics and human beings caused by cosmic rays. 563:
carried by balloons to near the top of the atmosphere showed that approximately 10% of the primaries are helium nuclei (alpha particles) and 1% are nuclei of heavier elements such as carbon, iron, and lead.
5329:
Lal, D.; Jull, A.J.T.; Pollard, D.; Vacher, L. (2005). "Evidence for large century time-scale changes in solar activity in the past 32 Kyr, based on in-situ cosmogenic C in ice at Summit, Greenland".
3033: 792:
Shock front acceleration (theoretical model for supernovae and active galactic nuclei): Incident proton gets accelerated between two shock fronts up to energies of the high-energy component of cosmic rays.
2091:, resulting in injuries to multiple passengers and crew members. Cosmic rays were investigated among other possible causes of the data corruption, but were ultimately ruled out as being very unlikely. 2557: 965:
At high energies the composition changes and heavier nuclei have larger abundances in some energy ranges. Current experiments aim at more accurate measurements of the composition at high energies.
669:
origin of the universe. Currently the Pierre Auger Observatory is undergoing an upgrade to improve its accuracy and find evidence for the yet unconfirmed origin of the most energetic cosmic rays.
2768:
Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; et al. (15 February 2013). "Detection of the characteristic pion decay-signature in supernova remnants".
2473: 1521:
Cosmic rays ionize nitrogen and oxygen molecules in the atmosphere, which leads to a number of chemical reactions. Cosmic rays are also responsible for the continuous production of a number of
771: 778:
revealed through an observation of neutral pion decay that supernovae were indeed a source of cosmic rays, with each explosion producing roughly 3 × 10 – 3 × 10
6945:
R.G. Harrison and D.B. Stephenson, Detection of a galactic cosmic ray influence on clouds, Geophysical Research Abstracts, Vol. 8, 07661, 2006 SRef-ID: 1607-7962/gra/EGU06-A-07661
5018:"First result from the Alpha Magnetic Spectrometer on the International Space Station: Precision measurement of the positron fraction in primary cosmic rays of 0.5–350 GeV" 4629:
Adriani, O.; Barbarino, G.C.; Bazilevskaya, G.A.; Bellotti, R.; Boezio, M.; Bogomolov, E.A.; et al. (2011). "PAMELA measurements of cosmic-ray proton and helium spectra".
587:
to perform cosmic ray readings with an instrument carried to high altitude by a balloon. On 1 April 1935, he took measurements at heights up to 13.6 kilometres using a pair of
3563:(1912). "Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten" [On observations of penetrating radiation during seven free balloon flights]. 5058: 665:
to the energies of cosmic rays from long distances (about 160 million light years) which occurs above 10 eV because of interactions with the remnant photons from the
8586: 8356: 8316: 7808: 4850:"High statistics measurement of the positron fraction in primary cosmic rays of 0.5–500 GeV with the alpha magnetic spectrometer on the International Space Station" 2916:
Aartsen, Mark; et al. (IceCube Collaboration) (12 July 2018). "Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert".
2226:
galactic plane and increases in exposure to cosmic rays. The researchers suggest that this and gamma ray bombardments deriving from local supernovae could have affected
892:. When they interact with Earth's atmosphere, they are converted to secondary particles. The mass ratio of helium to hydrogen nuclei, 28%, is similar to the primordial 693:
through which cosmic rays propagate to Earth. This results in a modulation of the arriving fluxes at lower energies, as detected indirectly by the globally distributed
5371:(2012). "Astrophysics of Galactic charged cosmic rays". In Oswalt, T.D.; McLean, I.S.; Bond, H.E.; French, L.; Kalas, P.; Barstow, M.; Gilmore, G.F.; Keel, W. (eds.). 6609: 1155:
detectors. The observation of a secondary shower of particles in multiple detectors at the same time is an indication that all of the particles came from that event.
8517: 8492: 8482: 3975:
Freier, Phyllis; Lofgren, E.; Ney, E.; Oppenheimer, F.; Bradt, H.; Peters, B.; et al. (July 1948). "Evidence for Heavy Nuclei in the Primary Cosmic radiation".
5075:
Moskalenko, I.V.; Strong, A.W.; Ormes, J.F.; Potgieter, M.S. (January 2002). "Secondary antiprotons and propagation of cosmic rays in the Galaxy and heliosphere".
4113: 7139:
M. D. Ngobeni, Aspects of the modulation of cosmic rays in the outer heliosphere, MSc Dissertation, Northwest University (Potchefstroom campus) South Africa 2006.
3037: 5800: 8888: 8216: 8157: 8065: 6442:
Melott, A. L.; Thomas, B. C. (2009). "Late Ordovician geographic patterns of extinction compared with simulations of astrophysical ionizing radiation damage".
1199:
In addition, the Earth's magnetic field acts to deflect cosmic rays from its surface, giving rise to the observation that the flux is apparently dependent on
923:
This abundance difference is a result of the way in which secondary cosmic rays are formed. Carbon and oxygen nuclei collide with interstellar matter to form
8977: 8793: 8728: 8668: 8596: 8502: 8396: 8266: 8221: 7892: 5781: 4991: 1120:, mainly oxygen and nitrogen. The interaction produces a cascade of lighter particles, a so-called air shower secondary radiation that rains down, including 9057: 8522: 8366: 8336: 6255: 427:, a device to measure the rate of ion production inside a hermetically sealed container, and used it to show higher levels of radiation at the top of the 8452: 8432: 8105: 6583: 2839: 748:
by scientists at the Pierre Auger Observatory in Argentina showed ultra-high energy cosmic rays originating from a location in the sky very close to the
567:
During a test of his equipment for measuring the east–west effect, Rossi observed that the rate of near-simultaneous discharges of two widely separated
501:
and his group. To these scientists we owe some of the most accurate measurements ever made of cosmic-ray ionization as a function of altitude and depth.
8477: 5934: 4890: 1663:
mSv per year (13% of total background) for the Earth's population. However, the background radiation from cosmic rays increases with altitude, from 0.3
1409:
polycarbonate, are stacked together and exposed directly to cosmic rays in space or high altitude. The nuclear charge causes chemical bond breaking or
908:. These nuclei appear in cosmic rays in greater abundance (≈1%) than in the solar atmosphere, where they are only about 10 as abundant (by number) as 6420: 1128:. All of the secondary particles produced by the collision continue onward on paths within about one degree of the primary particle's original path. 896:
ratio of these elements, 24%. The remaining fraction is made up of the other heavier nuclei that are typical nucleosynthesis end products, primarily
5820: 8115: 7817: 2349: 8472: 7801: 4563: 4526: 2094:
In August 2020, scientists reported that ionizing radiation from environmental radioactive materials and cosmic rays may substantially limit the
3015: 2209:", seeded by cosmic ray secondaries. Subsequent development of the lightning discharge then occurs through "conventional breakdown" mechanisms. 8142: 4010:
Freier, Phyllis; Peters, B.; et al. (December 1948). "Investigation of the Primary Cosmic Radiation with Nuclear Photographic Emulsions".
3295:
Anchordoqui, L.; Paul, T.; Reucroft, S.; Swain, J. (2003). "Ultrahigh energy cosmic rays: The state of the art before the Auger Observatory".
8688: 8085: 7715: 6632: 5461: 5415: 3108: 5299: 8236: 6756:
Melott, Adrian L.; Marinho, F.; Paulucci, L. (2019). "Muon Radiation Dose and Marine Megafaunal Extinction at the end-Pliocene Supernova".
2414: 1481: 8147: 7700: 6227: 6066: 289:
composition of the particle cascade increases at lower elevations, reaching between 40% and 80% of the radiation at aircraft altitudes.
7794: 5457: 3273: 3250: 7233:
Carlson, Per; De Angelis, Alessandro (2011). "Nationalism and internationalism in science: the case of the discovery of cosmic rays".
4790: 9015: 8331: 3297: 766:
In 2009, supernovae were said to have been "pinned down" as a source of cosmic rays, a discovery made by a group using data from the
3593: 2014:. Human-made values by UNSCEAR are from the Japanese National Institute of Radiological Sciences, which summarized the UNSCEAR data. 1453:
fraction of muons among the secondary particles is one traditional way to estimate the mass composition of the primary cosmic rays.
3775: 3616: 3435: 2334: 2253:
modulates the cosmic ray flux on Earth, it would consequently affect the rate of cloud formation and hence be an indirect cause of
1148: 5017: 1476:
cameras have been proposed as a practical distributed network to detect air showers from ultra-high-energy cosmic rays. The first
5917: 4267:
Clark, G.; Earl, J.; Kraushaar, W.; Linsley, J.; Rossi, B.; Scherb, F.; Scott, D. (1961). "Cosmic-Ray Air Showers at Sea Level".
2275:
marine megafauna extinction event by substantially increasing radiation levels to hazardous amounts for large seafaring animals.
1387:, on satellites, or high-altitude balloons. However, there are constraints in weight and size limiting the choices of detectors. 5269: 8547: 8306: 8226: 7669: 744:
Later experiments have helped to identify the sources of cosmic rays with greater certainty. In 2009, a paper presented at the
6936: 5709: 5522: 5380: 5223: 3702: 2749: 2665: 2458: 2450: 662: 626: 327: 8928: 2853:
Abramowski, A.; et al. (HESS Collaboration) (2016). "Acceleration of petaelectronvolt protons in the Galactic Centre".
860:
antiprotons. Secondary cosmic rays, caused by a decay of primary cosmic rays as they impact an atmosphere, include photons,
7695: 7664: 7609: 3130: 2505: 5840: 7328: 5612: 5332: 4306: 4215: 745: 209:, which are quanta of electromagnetic radiation (and so have no intrinsic mass) are known by their common names, such as 5239: 4100: 3217: 2737: 721:
as a source of cosmic rays. Since then, a wide variety of potential sources for cosmic rays began to surface, including
458:
confirmed Victor Hess's earlier results by measuring the increased ionization enthalpy rate at an altitude of 9 km.
9180: 7644: 5486:
Chu, W.; Kim, Y.; Beam, W.; Kwak, N. (1970). "Evidence of a Quark in a High-Energy Cosmic-Ray Bubble-Chamber Picture".
4794: 2986: 2625: 2478: 2011: 809:
extragalactic sources, and there may be different types of cosmic-ray sources contributing to different energy ranges.
35: 7136:
M. D. Ngobeni and M. S. Potgieter, Cosmic ray anisotropies in the outer heliosphere, Advances in Space Research, 2007.
5797: 3242: 269:
Upon striking the atmosphere, cosmic rays violently burst atoms into other bits of matter, producing large amounts of
9080: 7174: 7157: 7147: 7066: 7052: 7042: 7028: 3418: 3391: 2060:
becoming smaller and smaller, this is becoming an increasing concern in ground-level electronics as well. Studies by
262:. The precise nature of this remaining fraction is an area of active research. An active search from Earth orbit for 4463:
Sekido, Y.; Masuda, T.; Yoshida, S.; Wada, M. (1951). "The Crab Nebula as an observed point source of cosmic rays".
1096:, in gamma rays with energies greater than 20 MeV. These are produced by cosmic ray bombardment on its surface. 980:
universe. Rather, they appear to consist of only these two elementary particles, newly made in energetic processes.
613:
Measurements of the energy and arrival directions of the ultra-high-energy primary cosmic rays by the techniques of
7710: 6495: 5243: 17: 9299: 6921:
Introduction to particle and astroparticle physics (multimessenger astronomy and its particle physics foundations)
4980: 4564:"Correlation of the highest energy cosmic rays with nearby extragalactic objects in Pierre Auger Observatory data" 4527:"Correlation of the Highest Energy Cosmic Rays with Nearby Extragalactic Objects in Pierre Auger Observatory Data" 250:. These fractions vary highly over the energy range of cosmic rays. A very small fraction are stable particles of 9205: 5560: 2445: 2344: 2064:
in the 1990s suggest that computers typically experience about one cosmic-ray-induced error per 256 megabytes of
1676:
mSv of extra radiation each year due to cosmic rays, nearly doubling their total exposure to ionizing radiation.
139: 6514: 6405: 6380: 6263: 4045:
Rossi, Bruno (1934). "Misure sulla distribuzione angolare di intensita della radiazione penetrante all'Asmara".
1543: 1171:
An overview of the space environment shows the relationship between the solar activity and galactic cosmic rays.
9405: 9385: 5699: 5401: 2598: 2515: 2463: 2115: 1655:
Cosmic rays constitute a fraction of the annual radiation exposure of human beings on the Earth, averaging 0.39
1480:
to exploit this proposition was the CRAYFIS (Cosmic RAYs Found in Smartphones) experiment. In 2017, the CREDO (
1015:
nuclei (i.e., anti-alpha particles), in cosmic rays. These are actively being searched for. A prototype of the
142:(2013) have been interpreted as evidence that a significant fraction of primary cosmic rays originate from the 6540: 3718:
Geiger, H.; Rutherford, Lord; Regener, E.; Lindemann, F.A.; Wilson, C.T.R.; Chadwick, J.; et al. (1931).
9130: 7776: 6985:
Boezio, M.; et al. (2000). "Measurement of the flux of atmospheric muons with the CAPRICE94 apparatus".
5448:"Cloud Chambers and Cosmic Rays: A Lesson Plan and Laboratory Activity for the High School Science Classroom" 4109: 2428: 2166: 2143: 1456:
An historic method of secondary particle detection still used for demonstration purposes involves the use of
1093: 6653: 5915:"In-flight upset, 154 km west of Learmonth, Western Australia, 7 October 2008, VH-QPA, Airbus A330-303" 5769: 4849: 4699: 181:) seems to have arisen from an initial belief, due to their penetrating power, that cosmic rays were mostly 9165: 5784: 2630: 2543: 2354: 2299: 2161: 1399: 303: 6428: 9390: 8361: 7532: 7235: 5817: 2835: 2568: 2563: 2534: 2433: 1351: 992: 984: 974: 634: 31: 5542: 9395: 9290: 7764: 7619: 7592: 7289: 6302: 6290: 3671: 3642: 2714: 2394: 2205:. It has been proposed that essentially all lightning is triggered through a relativistic process, or " 2102:
if they are not shielded adequately which may be critical for realizing fault-tolerant superconducting
1922: 1448:. Also water (liquid or frozen) is used as a detection medium through which particles pass and produce 801: 597:
derived an expression for the probability of scattering positrons by electrons, a process now known as
310:(This is slightly greater than 21 million times the design energy of particles accelerated by the 185:. Nevertheless, following wider recognition of cosmic rays as being various high-energy particles with 5881: 4574: 4537: 3204: 9120: 9115: 8296: 7649: 7502: 7047:
P. K. F. Grieder, Cosmic Rays at Earth: Researcher's Reference Manual and Data Book, Elsevier, 2001.
5594: 4499: 3940:
Rossi, Bruno (May 1934). "Directional Measurements on the Cosmic Rays Near the Geomagnetic Equator".
3019: 2619: 1180: 836: 433: 182: 116: 9410: 9400: 9160: 7587: 7497: 7361: 6570: 3359: 2577: – very-high-energy particles that flow into the Solar System from beyond the Milky Way galaxy 2574: 2384: 2304: 2165:
Comparison of radiation doses, including the amount detected on the trip from Earth to Mars by the
1347: 638: 521:
space as by-products of the fusion of hydrogen atoms into the heavier elements, and that secondary
263: 7072:
Kremer, J.; et al. (1999). "Measurement of Ground-Level Muons at Two Geomagnetic Locations".
5447: 5422: 3905:
Alvarez, Luis; Compton, Arthur Holly (May 1933). "A Positively Charged Component of Cosmic Rays".
3281: 3100: 9240: 7527: 7321: 6548: 5885: 5307: 2681: 2399: 2170: 2147: 1918: 1152: 1030: 465:
Increase of ionization with altitude as measured by Hess in 1912 (left) and by Kolhörster (right)
5959: 2319: 1419:
oil-immersion), and the etch rate is plotted as a function of the depth in the stacked plastic.
996:
fraction peaks at a maximum of about 16% of total electron+positron events, around an energy of
736: 9095: 8060: 7970: 7847: 7842: 7768: 7679: 7353: 7152:
C. E. Rolfs and S. R. William, Cauldrons in the Cosmos, The University of Chicago Press, 1988.
6565: 5180: 3351: 3057: 2607: 2284: 1192: 470: 331: 162: 131: 6319: 5016:
Aguilar, M.; Alberti, G.; Alpat, B.; Alvino, A.; Ambrosi, G.; Andeen, K.; et al. (2013).
3408: 713:
suggested that magnetic variable stars could be a source of cosmic rays. Subsequently, Sekido
9150: 9125: 8763: 8381: 7928: 7772: 7507: 6074: 3381: 3246: 2589: 2135: 1554: 1544:
Reaction products of primary cosmic rays, radioisotope half-lifetime, and production reaction
1109: 936: 650: 633:
arranged within a circle 460 metres in diameter on the grounds of the Agassiz Station of the
391: 311: 5595:"CREDO's first light: The global particle detector begins its collection of scientific data" 5345: 4834: 916:. Due to the high charge and heavy nature of HZE ions, their contribution to an astronaut's 449:
carried three enhanced-accuracy Wulf electrometers to an altitude of 5,300 metres in a
9380: 9211: 9195: 8820: 8191: 8162: 8043: 7867: 7629: 7517: 7474: 7424: 7254: 7229:
TRACER Long Duration Balloon Project: the largest cosmic ray detector launched on balloons.
7210: 7189: 7180:
Taylor, M.; Molla, M. (2010). "Towards a unified source-propagation model of cosmic rays".
7117: 7081: 7004: 6965: 6880: 6828: 6728: 6683: 6557: 6461: 6392: 6345: 6181: 6134: 6008: 5661: 5495: 5341: 5211: 5138: 5094: 5032: 4930: 4864: 4830: 4798: 4747: 4648: 4603: 4472: 4437: 4374: 4333: 4276: 4189: 4139: 4073: 4019: 3984: 3949: 3914: 3879: 3844: 3801: 3768:
Proceedings of the Section of Sciences, Koninklijke Akademie van Wetenschappen te Amsterdam
3731: 3646: 3526: 3478: 3316: 2935: 2874: 2789: 2454: 2374: 2065: 2037: 1491:, designed to detect low-energy (<200 GeV) cosmic rays by means of analyzing their 1402:
for use in high-altitude balloons. In this method, sheets of clear plastic, like 0.25 
841: 767: 622: 112: 104: 76: 6125:
Kerr, Richard (31 May 2013). "Radiation Will Make Astronauts' Trip to Mars Even Riskier".
3131:"Extremely powerful cosmic rays are raining down on us. No one knows where they come from" 1074:'s cosmic ray shadow, as seen in secondary muons detected 700 m below ground, at the 543: 455: 8: 9352: 9155: 9135: 8948: 8638: 8126: 7990: 7965: 7933: 7852: 7746: 7624: 7537: 7102: 6950: 6518: 5877: 5856: 5421:. Michigan State University National Superconducting Cyclotron Laboratory. Archived from 3667: 3638: 3596:[Measurements of the penetrating radiation in a free balloon at high altitudes]. 3560: 2439: 2271:
A handful of studies conclude that a nearby supernova or series of supernovas caused the
2222: 2095: 2024: 1492: 1449: 1167: 959: 893: 658: 573: 446: 351: 127: 100: 47: 7705: 7258: 7214: 7193: 7121: 7085: 7008: 6969: 6884: 6832: 6732: 6687: 6561: 6465: 6396: 6349: 6185: 6138: 6012: 5665: 5499: 5215: 5142: 5098: 5036: 4934: 4868: 4751: 4652: 4476: 4441: 4378: 4337: 4280: 4232:
Braunschweig, W.; et al. (1988). "A study of Bhabha scattering at PETRA energies".
4193: 4143: 4077: 4023: 3988: 3953: 3918: 3883: 3848: 3805: 3760: 3735: 3530: 3482: 3320: 3053:"Data-driven model of the cosmic-ray flux and mass composition from 10 GeV to 10^11 GeV" 2939: 2878: 2793: 1504:
Similar to the detection of Cherenkov-light, this method is restricted to clear nights.
645:
of Argentina by an international consortium of physicists. The project was first led by
9340: 9316: 9253: 9175: 9145: 9090: 8967: 8943: 8442: 8376: 8241: 8201: 8052: 8015: 7975: 7954: 7897: 7872: 7741: 7562: 7542: 7522: 7406: 7314: 7270: 7244: 6994: 6951:"Cloud Chamber Observations of Cosmic Rays at 4300 Meters Elevation and Near Sea-Level" 6852: 6818: 6791: 6765: 6741: 6716: 6477: 6451: 6361: 6232: 6205: 6040: 5998: 5677: 5651: 5454: 5162: 5110: 5084: 4962: 4920: 4771: 4737: 4680: 4638: 4405: 4392: 4362: 4249: 4155: 3817: 3572: 3542: 3516: 3494: 3468: 3332: 3306: 3181: 3156: 3082: 3062: 2967: 2925: 2898: 2864: 2813: 2779: 2613: 2128: 2033: 1591: 1537: 1191:, from supersonic to subsonic speeds. The region between the termination shock and the 855:
Primary cosmic particle collides with a molecule of atmosphere, creating an air shower.
654: 526: 347: 108: 7300: 7201:
Ziegler, J. F. (1981). "The Background in Detectors Caused By Sea Level Cosmic Rays".
5914: 5150: 5074: 4981:"New results from the Alpha Magnetic$ Spectrometer on the International Space Station" 2389: 2138:
may involve a greater radiation risk than previously believed, based on the amount of
1952:
Average annual occupational exposure is 0.7 mSv; mining workers have higher exposure.
705:
Early speculation on the sources of cosmic rays included a 1934 proposal by Baade and
9311: 9200: 8783: 8683: 8653: 8571: 8311: 8196: 8152: 8100: 7907: 7902: 7834: 7634: 7512: 7449: 7414: 7222: 7170: 7153: 7143: 7062: 7048: 7038: 7024: 6932: 6896: 6844: 6783: 6712: 6197: 6150: 6044: 6032: 6024: 5705: 5681: 5376: 5277: 5219: 5166: 5050: 4954: 4882: 4763: 4672: 4571:
Proceedings of the 31st ICRC, Łódź, Poland 2009 – International Cosmic Ray Conference
4410: 4253: 4207: 3821: 3698: 3546: 3498: 3457:
Pacini, D. (1912). "La radiazione penetrante alla superficie ed in seno alle acque".
3414: 3387: 3336: 3186: 2971: 2959: 2951: 2890: 2805: 2770: 2745: 2661: 2510: 2364: 2206: 2072:
has proposed a cosmic ray detector that could be integrated into future high-density
2069: 1188: 1184: 710: 598: 505: 379: 39: 7786: 6856: 6795: 6654:"Solar activity and terrestrial climate: an analysis of some purported correlations" 6481: 5986: 5898: 3672:"Unsolved Problems in Physics: Tasks for the Immediate Future in Cosmic Ray Studies" 3086: 2817: 2521: 9277: 9265: 9185: 9085: 8990: 8938: 8371: 8246: 8211: 8132: 8120: 8080: 7985: 7918: 7639: 7274: 7262: 7218: 7125: 7089: 7012: 6973: 6924: 6892: 6888: 6836: 6775: 6736: 6691: 6575: 6469: 6400: 6365: 6353: 6189: 6142: 6016: 5669: 5503: 5349: 5154: 5146: 5114: 5102: 5045: 5040: 4966: 4946: 4942: 4938: 4877: 4872: 4775: 4755: 4684: 4664: 4656: 4480: 4445: 4400: 4382: 4341: 4284: 4241: 4197: 4182:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
4159: 4147: 4081: 4027: 3992: 3957: 3922: 3887: 3852: 3809: 3792:
Bothe, Walther; Werner Kolhörster (November 1929). "Das Wesen der Höhenstrahlung".
3739: 3534: 3507: 3486: 3459: 3438:[Observations of radiation of high penetration power at the Eiffel tower]. 3436:"Beobachtungen über die Strahlung hoher Durchdringungsfähigkeit auf dem Eiffelturm" 3324: 3176: 3168: 3072: 2943: 2902: 2882: 2855: 2797: 2583: 2404: 2246: 2235: 2190: 2103: 2088: 1415: 848:
However, the term "cosmic ray" is often used to refer to only the extrasolar flux.
560: 7294: 6840: 6809:
Benitez, Narciso; et al. (2002). "Evidence for Nearby Supernova Explosions".
6209: 6146: 5860: 4130:
S. Vernoff (1935). "Radio-Transmission of Cosmic Ray Data from the Stratosphere".
3870:
Johnson, Thomas H. (May 1933). "The Azimuthal Asymmetry of the Cosmic Radiation".
2076:, allowing the processor to repeat the last command following a cosmic-ray event. 1954:
Populations near nuclear plants have an additional ≈0.02 mSv of exposure annually.
8873: 8848: 8386: 8326: 8110: 8010: 7995: 7980: 7887: 7877: 7751: 7736: 7552: 7464: 7454: 7306: 7266: 5921: 5844: 5824: 5804: 5642:
Letessier-Selvon, Antoine; Stanev, Todor (2011). "Ultrahigh energy cosmic rays".
5564: 5546: 5368: 4599: 4536:. International Cosmic Ray Conference. Łódź, Poland. pp. 6–9. Archived from 2538: 2250: 2234:, and might be linked to decisive alterations in the Earth's climate, and to the 1424: 1395: 840:, high-energy particles (predominantly protons) emitted by the sun, primarily in 730: 694: 517: 450: 438: 383: 30:"Cosmic radiation" redirects here. For some other types of cosmic radiation, see 7093: 6579: 2029:
Cosmic rays have sufficient energy to alter the states of circuit components in
398:
from radioactive elements in the ground or the radioactive gases or isotopes of
246:, identical to helium nuclei; and 1% are the nuclei of heavier elements, called 9364: 9304: 9110: 9075: 8858: 8748: 8713: 8698: 8633: 8628: 8527: 8427: 8346: 8321: 8286: 8231: 8206: 8075: 7923: 7599: 7557: 7547: 7469: 7459: 7429: 7016: 6473: 5837: 5695: 5507: 5353: 4367:
Proceedings of the National Academy of Sciences of the United States of America
3505:
de Angelis, A. (2010). "Penetrating Radiation at the Surface of and in Water".
2254: 2073: 1496: 1462: 1144: 917: 625:
were first carried out in 1954 by members of the Rossi Cosmic Ray Group at the
602: 594: 588: 568: 355: 326:).) One can show that such enormous energies might be achieved by means of the 243: 198: 186: 88: 59: 6928: 6696: 6671: 6284: 6097: 6020: 5673: 5620: 4819: 4302: 4174: 4085: 3619:[Measurements of the penetrating radiation up to heights of 9300 m.]. 3328: 3172: 2266: 2201:
Cosmic rays have been implicated in the triggering of electrical breakdown in
1495:, which for cosmic rays are gamma rays emitted as they travel faster than the 1423:
detection, the technique is also used to detect nuclei created as products of
9374: 9140: 8995: 8878: 8853: 8834: 8778: 8658: 8616: 8611: 8351: 8341: 8301: 8176: 8070: 8025: 8000: 7882: 7862: 7674: 7434: 7419: 6028: 5247: 4484: 4211: 2955: 2231: 2218: 1612: 1457: 1391: 1350:
energy density (assumed 3 microgauss) which is ≈0.25 eV/cm, or the
1175:
The flux of incoming cosmic rays at the upper atmosphere is dependent on the
1140: 1025: 580: 539: 498: 235: 222: 202: 158: 84: 6193: 4759: 4660: 4288: 4031: 3294: 2990: 2947: 2801: 797:
shock front acceleration as a plausibility argument (see picture at right).
9328: 9216: 9070: 8923: 8863: 8843: 8815: 8743: 8623: 8606: 8561: 8512: 8417: 8137: 8090: 7938: 7654: 7614: 7479: 7129: 6977: 6900: 6848: 6787: 6602:"No, a new study does not show cosmic-rays are connected to global warming" 6201: 6154: 6036: 5054: 4958: 4886: 4767: 4704: 4676: 4449: 4414: 4202: 3996: 3961: 3926: 3891: 3856: 3744: 3719: 3190: 2963: 2894: 2809: 2178: 1787: 1681: 1581: 1522: 1445: 1229: 1064: 885: 749: 706: 646: 630: 428: 424: 420: 359: 343: 323: 315: 96: 6779: 4726: 4387: 9190: 9100: 9065: 9032: 8958: 8933: 8773: 8678: 8648: 8532: 8447: 8437: 8167: 8095: 7396: 6823: 6286:"Converting Cosmic Rays to Sound During a Transatlantic Flight to Zurich" 5836:
Ministry of Education, Culture, Sports, Science, and Technology of Japan
5089: 4428:
Babcock, H. (1948). "Magnetic variable stars as sources of cosmic rays".
3835:
Rossi, Bruno (August 1930). "On the Magnetic Deflection of Cosmic Rays".
3594:"Messungen der durchdringenden Strahlung im Freiballon in größeren Höhen" 2558:
Central nervous system effects from radiation exposure during spaceflight
2186: 2084: 2049: 2030: 1627: 1001: 788: 752: 718: 686: 551: 489: 350:
recorded in 1991) have energies comparable to the kinetic energy of a 90-
190: 189:, the term "rays" was still consistent with then known particles such as 178: 120: 5935:"Quantum computers may be destroyed by high-energy particles from space" 5158: 4950: 3077: 3052: 2886: 912:. Cosmic rays composed of charged nuclei heavier than helium are called 851: 591:
in an anti-coincidence circuit to avoid counting secondary ray showers.
9047: 9010: 8985: 8883: 8693: 8556: 7391: 6999: 6336:
Ney, Edward P. (14 February 1959). "Cosmic Radiation and the Weather".
4245: 3813: 3538: 3490: 3311: 2239: 2080:
is used to protect data against data corruption caused by cosmic rays.
2077: 2057: 2045: 1642: 1550: 1477: 1473: 1410: 1403: 1383:
Direct detection is possible by all kinds of particle detectors at the
1176: 1131:
Typical particles produced in such collisions are neutrons and charged
1012: 832:, i.e., high-energy particles originating outside the solar system, and 805: 690: 584: 534: 387: 259: 251: 9359: 7169:
Martin Walt, Introduction to Geomagnetically Trapped Radiation, 1994.
5557: 4668: 4151: 709:
suggesting cosmic rays originated from supernovae. A 1948 proposal by
9037: 8902: 8738: 8542: 8422: 8276: 8251: 7731: 7604: 7439: 7386: 7376: 7337: 6421:"Ancient Mass Extinctions Caused by Cosmic Radiation, Scientists Say" 6357: 5738:"Natürliche, durch kosmische Strahlung laufend erzeugte Radionuklide" 5366: 4908: 4396: 3134: 2637:) – Cosmic-ray particle with a kinetic energy greater than 1 EeV 2490: 2484: 2289:
There are a number of cosmic-ray research initiatives, listed below.
2202: 2182: 2139: 2123: 2053: 1927:
For the United States, fallout is incorporated into other categories.
1587: 1526: 1204: 958:
in cosmic rays produced by collisions of iron and nickel nuclei with
952: 928: 901: 889: 722: 411: 395: 211: 194: 151: 143: 6170: 5715: 4628: 4098: 4064:
Auger, P.; et al. (July 1939), "Extensive Cosmic-Ray Showers",
3974: 3617:"Messungen der durchdringenden Strahlungen bis in Höhen von 9300 m." 2601: – Cancer causing exposure to ionizing radiation in spaceflight 2181:
are exposed to at least 10 times the cosmic ray dose that people at
2177:
Flying 12 kilometres (39,000 ft) high, passengers and crews of
1124:, protons, alpha particles, pions, muons, electrons, neutrinos, and 9005: 8917: 8718: 8581: 8566: 8537: 8406: 8181: 8005: 7949: 7943: 7912: 7857: 7825: 7381: 7366: 6770: 6003: 5857:"IBM experiments in soft fails in computer electronics (1978–1994)" 5395: 5106: 4925: 4742: 4346: 4321: 3577: 3205:
https://home.cern/science/physics/cosmic-rays-particles-outer-space
3067: 2930: 2869: 2369: 2329: 2272: 1566: 1560: 1508:
Cherenkov-light and fluorescence light, at least at high energies.
1390:
An example for the direct detection technique is a method based on
1200: 1117: 1075: 948: 944: 940: 913: 869: 666: 522: 282: 255: 247: 147: 7249: 7142:
D. Perkins, Particle Astrophysics, Oxford University Press, 2003.
6869: 6456: 5656: 4848:
Accardo, L.; et al. (AMS Collaboration) (18 September 2014).
4643: 3904: 3521: 3473: 2784: 1011:
There is no evidence of complex antimatter atomic nuclei, such as
130:
in 1912 in balloon experiments, for which he was awarded the 1936
9170: 9000: 8953: 8912: 8868: 8810: 8805: 8768: 8758: 8753: 8708: 8703: 8643: 8576: 8467: 8462: 8412: 8291: 8281: 8034: 7659: 5987:"Impact of ionizing radiation on superconducting qubit coherence" 2526: 2409: 2359: 1692: 1572: 1367: 1208: 1125: 924: 897: 386:
in 1896, it was generally believed that atmospheric electricity,
346:), the highest-energy ultra-high-energy cosmic rays (such as the 286: 206: 27:
High-energy particle, mainly originating outside the Solar System
7023:
R. Clay and B. Dawson, Cosmic Bullets, Allen & Unwin, 1997.
5704:. Washington, D.C.: American Geophysical Union. pp. 41–59. 4175:"The Passage of Fast Electrons and the Theory of Cosmic Showers" 3717: 1818:
Depends on soil composition and building material of structures.
1557:
from nitrogen and oxygen, decay of neutrons from such spallation
1487:
The first detection method in the second category is called the
1362: 1187:
from the Sun, the solar wind undergoes a transition, called the
920:
in space is significant even though they are relatively scarce.
876:. The latter three of these were first detected in cosmic rays. 9221: 9042: 9024: 8487: 8457: 7959: 4108:. Smithsonian Studies in History and Technology. Vol. 53. 3791: 2309: 2227: 2036:, causing transient errors to occur (such as corrupted data in 1121: 1036: 909: 865: 861: 726: 239: 155: 99:
in our own galaxy, and from distant galaxies. Upon impact with
80: 6496:"Did Supernova Explosion Contribute to Earth Mass Extinction?" 5983: 5619:. Los Alamos National Laboratory. 3 April 2002. Archived from 2767: 2083:
In 2008, data corruption in a flight control system caused an
1183:, and the energy of the cosmic rays. At distances of ≈94  770:. This analysis, however, was disputed in 2011 with data from 8256: 8186: 7484: 7371: 5539: 2531: 2468: 2339: 2324: 2314: 2151: 2099: 1406: 1132: 1086: 932: 905: 782: 642: 476: 399: 367: 335: 217: 6406:
10.1175/1520-0477(1975)056<1240:SVATLA>2.0.CO;2
5184: 2836:"Evidence shows that cosmic rays come from exploding stars" 2379: 2155: 1488: 1469: 1441: 1136: 1113: 1071: 1048: 873: 556: 530: 278: 274: 270: 52: 9323: 1039:
in June 1998. By not detecting any antihelium at all, the
461: 6633:"'Cosmoclimatology' – tired old arguments in new clothes" 5698:(2000). J. S. Noller; J. M. Sowers; W. R. Lettis (eds.). 5576: 5127: 5015: 4266: 3410:
Cosmos: An Illustrated History of Astronomy and Cosmology
2134:
On 31 May 2013, NASA scientists reported that a possible
2061: 2041: 1384: 1318: 1292: 1273: 1248: 955: 756: 92: 4063: 2571: – Radioactivity naturally present within the Earth 5276:. Cosmic rays. Pierre Auger Observatory. Archived from 4462: 3621:
Verhandlungen der Deutschen Physikalischen Gesellschaft
3218:"Astronomy without a telescope – 'Oh-my-God' particles" 2603:
Pages displaying short descriptions of redirect targets
939:. Spallation is also responsible for the abundances of 55:
versus particle energy at the top of Earth's atmosphere
5641: 884:
Primary cosmic rays mostly originate from outside the
740:
Sources of ionizing radiation in interplanetary space.
9288: 7816: 6755: 5523:"Cosmic ray particle shower? There's an app for that" 5398:
Nuclear tracks in solids: Principles and applications
4009: 2616: – Ultra-high-energy cosmic ray detected in 1991 649:, winner of the 1980 Nobel Prize in Physics from the 6658:
Journal of Atmospheric and Solar-Terrestrial Physics
6228:"Data Point to Radiation Risk for Travelers to Mars" 5328: 4909:"Synopsis: More dark matter hints from cosmic rays?" 2594:
Pages displaying wikidata descriptions as a fallback
2579:
Pages displaying wikidata descriptions as a fallback
2212: 1354:(CMB) radiation energy density at ≈0.25 eV/cm. 1223:
Relative particle energies and rates of cosmic rays
7100: 6948: 5876: 4788: 3154: 3018:. Goddard Space Flight Center. NASA. Archived from 2840:
American Association for the Advancement of Science
2715:"Nobel Prize in Physics 1936 – Presentation Speech" 2682:"Detecting cosmic rays from a galaxy far, far away" 2217:A role for cosmic rays in climate was suggested by 2109: 1516: 79:or clusters of particles (primarily represented by 7336: 6320:"Runaway Breakdown and the Mysteries of Lightning" 5701:Quaternary Geochronology: Methods and Applications 3869: 2833: 2260: 1925:; still high near nuclear test and accident sites. 1529:, in the Earth's atmosphere through the reaction: 1444:. Most state-of-the-art EAS arrays employ plastic 431:than at its base. However, his paper published in 7232: 6918: 6672:"Solar Influence on Global and Regional Climates" 6166: 6164: 6120: 6118: 4099:J.L. DuBois; R.P. Multhauf; C.A. Ziegler (2002). 2829: 2827: 2709: 2707: 2705: 2703: 983:Preliminary results from the presently operating 9372: 6221: 6219: 5867:, Vol. 40, No. 1, 1996. Retrieved 16 April 2008. 5396:R.L. Fleischer; P.B. Price; R.M. Walker (1975). 4598: 4319: 3383:Radioactivity: A History of a Mysterious Science 2763: 2761: 968: 6919:De Angelis, Alessandro; Pimenta, Mario (2018). 6710: 6385:Bulletin of the American Meteorological Society 6095: 5960:"Cosmic rays may soon stymie quantum computing" 4102:The Invention and Development of the Radiosonde 3271: 3010: 3008: 689:causes variations in the magnetic field of the 6161: 6115: 5485: 3504: 3215: 3044: 2824: 2744:. Vol. I. Eolss Publishers. p. 165. 2700: 2469:Langton Ultimate Cosmic-Ray Intensity Detector 1465:, can be used to detect cosmic ray particles. 266:as of 2019 had found no unequivocal evidence. 146:explosions of stars. Based on observations of 7802: 7322: 6717:"Cosmic rays, solar activity and the climate" 6541:"Influence of Cosmic Rays on Earth's Climate" 6216: 5181:"EGRET detection of gamma rays from the Moon" 4172: 3109:National Aeronautics and Space Administration 3050: 2758: 2742:Earth System: History and Natural Variability 2735: 2350:High Resolution Fly's Eye Cosmic Ray Detector 1584:(1.39 million years): N(n,p α)Be (spallation) 7103:"Note on the Nature of Cosmic-Ray Particles" 7101:Neddermeyer, S. H.; Anderson, C. D. (1937). 6949:Anderson, C. D.; Neddermeyer, S. H. (1936). 6441: 6381:"Solar Variability and the Lower Atmosphere" 4231: 4044: 3939: 3834: 3724:Proceedings of the Royal Society of London A 3413:. University of Chicago Press. p. 686. 3148: 3005: 2987:"Are cosmic rays electromagnetic radiation?" 2610: – Unit of nuclear and particle physics 2560: – Space radiation effects on the brain 2415:Washington Large Area Time Coincidence Array 1761:depends on indoor accumulation of radon gas. 1650: 1482:Cosmic-Ray Extremely Distributed Observatory 480:Hess lands after his balloon flight in 1912. 7179: 5924:(2011). Australian Transport Safety Bureau. 5770:"Sources and Effects of Ionizing Radiation" 4561: 4524: 4360: 3386:. Oxford University Press. pp. 78–79. 2984: 2278: 817:Cosmic rays can be divided into two types: 529:of gamma rays. In 1927, while sailing from 281:, which have a short half-life) as well as 7809: 7795: 7329: 7315: 6256:"The Effects of Space Weather on Aviation" 6064: 5458:Laboratory for Elementary-Particle Physics 5306:. Pierre Auger Observatory. Archived from 4129: 3666: 3637: 3614: 3591: 3559: 3456: 3251:European Organization for Nuclear Research 2852: 2622: – High-energy particles from the Sun 2068:per month. To alleviate this problem, the 7248: 6998: 6822: 6769: 6740: 6695: 6569: 6538: 6455: 6404: 6378: 6002: 5899:"Intel plans to tackle cosmic ray threat" 5861:"Terrestrial cosmic rays and soft errors" 5655: 5088: 5044: 4924: 4876: 4741: 4708:. London, UK: Guardian News and Media Ltd 4697: 4642: 4404: 4386: 4345: 4201: 3743: 3576: 3520: 3472: 3349: 3310: 3298:International Journal of Modern Physics A 3180: 3076: 3066: 2929: 2868: 2783: 1569:(stable): spallation producing alpha rays 7295:BBC news, Cosmic rays find uranium, 2003 6669: 6630: 6253: 5905:, 8 April 2008. Retrieved 16 April 2008. 5694: 5300:"The mystery of high-energy cosmic rays" 4906: 3758: 2660:. Pearson Education India. p. 478. 2586: – Decrease in cosmic ray intensity 2249:has controversially argued that because 2160: 2018: 1361: 1166: 1103: 850: 787: 735: 475: 460: 410: 87:) that move through space at nearly the 58: 46: 7200: 6808: 6515:"Sun's Shifts May Cause Global Warming" 5865:IBM Journal of Research and Development 5208:Introduction to Astronomy and Cosmology 5205: 4847: 4534:Proceedings of the 31st ICRC, Łódź 2009 4427: 3155:Sovilj MP, Vuković B, Stanić D (2020). 3128: 2915: 2834:Pinholster, Ginger (13 February 2013). 2522:HEAT (High Energy Antimatter Telescope) 2052:at extremely high-altitude, such as in 1667:mSv per year for sea-level areas to 1.0 1135:such as positive or negative pions and 641:is currently operated at a site on the 238:). Of the nuclei, about 90% are simple 14: 9373: 7670:Wireless electronic devices and health 7071: 6984: 6379:Dickinson, Robert E. (December 1975). 5520: 5210:. John Wiley & Sons. p. 198. 4997:from the original on 23 September 2014 4320:Kraushaar, W. L.; et al. (1972). 4309:from the original on 3 September 2018. 3720:"Discussion on Ultra-Penetrating Rays" 3674:. Nobel Lectures. The Nobel Foundation 3380:Malley, Marjorie C. (25 August 2011). 3379: 3161:Arhiv Za Higijenu Rada I Toksikologiju 2655: 879: 608: 7790: 7310: 6911: 6599: 6225: 4896:from the original on 17 October 2014. 3781:from the original on 6 February 2016. 3692: 3406: 2846: 2127:space probe was credited to a single 1430: 627:Massachusetts Institute of Technology 328:centrifugal mechanism of acceleration 7696:List of civilian radiation accidents 7665:Wireless device radiation and health 7660:Biological dose units and quantities 7610:Electromagnetic radiation and health 7037:, Cambridge University Press, 1990. 6631:Benestad, Rasmus E. (9 March 2007). 6512: 6124: 5064:from the original on 13 August 2017. 4497: 4221:from the original on 2 January 2016. 3433: 3354:. Physics and Astronomy Department. 2506:Advanced Thin Ionization Calorimeter 2196: 2010:Figures are for the time before the 1563:(stable): spallation or from tritium 1357: 804:published the observation of a weak 277:(produced from the decay of charged 165:also appear to produce cosmic rays. 6589:from the original on 9 August 2017. 6335: 6098:"Magnetic shielding for spacecraft" 6096:Atkinson, Nancy (24 January 2005). 5373:Planets, Stars, and Stellar Systems 5333:Earth and Planetary Science Letters 4604:"Source of cosmic rays pinned down" 4173:Bhabha, H. J.; Heitler, W. (1937). 3122: 3051:Dembinski, H.; et al. (2018). 2429:ACE (Advanced Composition Explorer) 1843:Generally increases with elevation. 1786:Mainly from radioisotopes in food ( 1680:Average annual radiation exposure ( 1575:(12.3 years): N(n, H)C (spallation) 1378: 763:cosmic rays from gamma-ray bursts. 746:International Cosmic Ray Conference 525:were produced in the atmosphere by 415:Pacini makes a measurement in 1910. 24: 9181:Nexus for Exoplanet System Science 7645:Radioactivity in the life sciences 7301:Introduction to Cosmic Ray Showers 6254:Phillips, Tony (25 October 2013). 4795:California Institute of Technology 4506:. NASA Goddard Space Flight Center 4498:Gibb, Meredith (3 February 2010). 2717:. Nobelprize.org. 10 December 1936 2626:Track Imaging Cherenkov Experiment 2479:Solar and Heliospheric Observatory 2012:Fukushima Daiichi nuclear disaster 1370:array of air Cherenkov telescopes. 1162: 1023:, was flown into space aboard the 601:. His classic paper, jointly with 437:was not widely accepted. In 1911, 36:Cosmic background (disambiguation) 25: 9422: 9081:Atomic and molecular astrophysics 7818:Molecules detected in outer space 7283: 6303:"NAIRAS Real-time radiation Dose" 6071:Space Settlements: A Design Study 5816:Washington state Dept. of Health 4119:from the original on 5 June 2011. 3643:"The Nobel Prize in Physics 1936" 3272:Gaensler, Brian (November 2011). 2838:(Press release). Washington, DC: 2213:Postulated role in climate change 1346:starlight at 0.3 eV/cm, the 629:. The experiment employed eleven 484: 9358: 9346: 9334: 9322: 9310: 9298: 9271: 9259: 9247: 9236: 9235: 8042: 8033: 8024: 7035:Cosmic Rays and Particle Physics 6863: 6802: 6749: 6704: 6663: 6646: 6624: 6593: 6532: 6506: 6488: 6435: 6413: 6372: 6329: 6313: 6295: 6278: 6247: 6089: 5521:Timmer, John (13 October 2014). 5467:from the original on 6 June 2013 5244:National Geophysical Data Center 3503:: Translated with commentary in 2738:"Cosmic Influences on the Earth" 2498: 2110:Significance to aerospace travel 1517:Changes in atmospheric chemistry 1085: 1063: 242:(i.e., hydrogen nuclei); 9% are 9206:Polycyclic aromatic hydrocarbon 7203:Nuclear Instruments and Methods 7061:, Pergamon Press, Oxford, 1972 6058: 5977: 5952: 5927: 5908: 5892: 5870: 5850: 5830: 5810: 5790: 5775: 5772:page 339 retrieved 29 June 2011 5762: 5730: 5688: 5635: 5605: 5587: 5569: 5551: 5533: 5514: 5479: 5440: 5408: 5389: 5360: 5322: 5292: 5262: 5232: 5199: 5173: 5121: 5068: 5009: 4973: 4900: 4841: 4813: 4782: 4720: 4691: 4622: 4592: 4555: 4518: 4491: 4456: 4421: 4354: 4313: 4295: 4260: 4225: 4166: 4123: 4092: 4057: 4038: 4003: 3968: 3933: 3898: 3863: 3828: 3785: 3752: 3711: 3693:Rossi, Bruno Benedetto (1964). 3686: 3660: 3631: 3608: 3585: 3553: 3450: 3427: 3400: 3373: 3343: 3288: 3265: 3235: 3216:Nerlich, Steve (12 June 2011). 3209: 3197: 3129:Resnick, Brian (25 July 2019). 3103:. Goddard Space Flight Center. 3093: 2446:Fermi Gamma-ray Space Telescope 2345:High Energy Stereoscopic System 2292: 2261:Possible mass extinction factor 1394:developed by Robert Fleischer, 888:and sometimes even outside the 306:have been observed to approach 126:Cosmic rays were discovered by 7290:Aspera European network portal 7166:, McGraw-Hill, New York, 1964. 6893:10.1103/PhysRevLett.116.151104 6721:Environmental Research Letters 6670:Lockwood, Mike (16 May 2012). 6600:Plait, Phil (31 August 2011). 6226:Chang, Kenneth (30 May 2013). 5613:"The Detection of Cosmic Rays" 5558:CRAYFIS detector array paper. 5402:University of California Press 5240:"Extreme Space Weather Events" 5046:10.1103/PhysRevLett.110.141102 4943:10.1103/PhysRevLett.113.121102 4878:10.1103/PhysRevLett.113.121101 4698:Jha, Alok (14 February 2013). 4363:"Cosmic rays from super-novae" 4361:Baade, W.; Zwicky, F. (1934). 4303:"The Pierre Auger Observatory" 2978: 2909: 2729: 2674: 2649: 2599:Health threat from cosmic rays 2516:Cosmic Ray Energetics and Mass 2464:Interstellar Boundary Explorer 2116:Health threat from cosmic rays 2048:". This has been a problem in 1043:established an upper limit of 672:High-energy gamma rays (>50 228: 105:showers of secondary particles 13: 1: 9131:Extraterrestrial liquid water 6841:10.1103/PhysRevLett.88.081101 6513:Long, Marion (25 June 2007). 6147:10.1126/science.340.6136.1031 5787:page 8 retrieved 29 June 2011 5617:Milagro Gamma-Ray Observatory 5151:10.1016/S0370-1573(02)00013-3 4110:Smithsonian Institution Press 3280:. No. 41. Archived from 2642: 1917:Peaked in 1963 (prior to the 1094:Compton Gamma Ray Observatory 1047:for the antihelium to helium 969:Primary cosmic ray antimatter 680: 663:Greisen–Zatsepin–Kuzmin limit 559:. In 1948, observations with 304:ultra-high-energy cosmic rays 7223:10.1016/0029-554x(81)91039-9 6742:10.1088/1748-9326/8/4/045022 6067:"Appendix E: Mass Shielding" 4789:Mewaldt, Richard A. (1996). 3407:North, John (15 July 2008). 3034:"mirror copy, also archived" 2631:Ultra-high-energy cosmic ray 2544:TRACER (cosmic ray detector) 2421: 2300:Akeno Giant Air Shower Array 2140:energetic particle radiation 2040:or incorrect performance of 406: 168: 7: 8362:Protonated hydrogen cyanide 7533:Cosmic background radiation 7236:European Physical Journal H 7094:10.1103/physrevlett.83.4241 6580:10.1103/PhysRevLett.81.5027 6065:Globus, Al (10 July 2002). 5743:(in German). Archived from 4700:"Cosmic ray mystery solved" 3592:Kolhörster, Werner (1913). 2736:Cilek, Vaclav, ed. (2009). 2569:Environmental radioactivity 2564:Cosmic ray visual phenomena 2550: 2434:Alpha Magnetic Spectrometer 1352:cosmic microwave background 1108:When cosmic rays enter the 993:International Space Station 985:Alpha Magnetic Spectrometer 975:Alpha Magnetic Spectrometer 635:Harvard College Observatory 473:in 1936 for his discovery. 32:Cosmic background radiation 10: 9427: 7762: 7620:Lasers and aviation safety 7267:10.1140/epjh/e2011-10033-6 7017:10.1103/physrevd.62.032007 6608:. Kalmbach. Archived from 6539:Svensmark, Henrik (1998). 6474:10.1666/0094-8373-35.3.311 5882:"Solar Storms: Fast Facts" 5838:"Radiation in environment" 5508:10.1103/PhysRevLett.24.917 5354:10.1016/j.epsl.2005.02.011 4907:Schirber, Michael (2014). 4823:Astronomy and Astrophysics 3249:. FAQ: Facts and figures. 2658:Atomic and Nuclear Physics 2656:Sharma, Shatendra (2008). 2592: – American physicist 2282: 2267:Pliocene § Supernovae 2264: 2113: 2022: 1633:Chlorine-38 (37.2 minutes) 1624:Chlorine-34 m (32 minutes) 1511: 972: 802:Pierre Auger Collaboration 725:, active galactic nuclei, 700: 373: 107:, some of which reach the 91:. They originate from the 29: 9230: 9121:Earliest known life forms 9116:Diffuse interstellar band 9056: 8976: 8901: 8792: 8727: 8667: 8595: 8587:Protonated cyanoacetylene 8501: 8395: 8357:Protonated carbon dioxide 8317:Hydromagnesium isocyanide 8265: 8051: 8022: 7833: 7824: 7760: 7724: 7688: 7650:Radioactive contamination 7575: 7503:Electromagnetic radiation 7493: 7405: 7352: 7345: 6929:10.1007/978-3-319-78181-5 6697:10.1007/s10712-012-9181-3 6021:10.1038/s41586-020-2619-8 5674:10.1103/RevModPhys.83.907 5644:Reviews of Modern Physics 5077:The Astrophysical Journal 4562:Hague, J.D. (July 2009). 4525:Hague, J.D. (July 2009). 4326:The Astrophysical Journal 4086:10.1103/RevModPhys.11.288 4066:Reviews of Modern Physics 3697:. New York: McGraw-Hill. 3598:Physikalische Zeitschrift 3565:Physikalische Zeitschrift 3440:Physikalische Zeitschrift 3329:10.1142/S0217751X03013879 3173:10.2478/aiht-2020-71-3403 2620:Solar energetic particles 2185:receive. Aircraft flying 2150:while traveling from the 2038:electronic memory devices 1983: 1872: 1735: 1705: 1691: 1688: 1651:Role in ambient radiation 1603:Magnesium-28 (20.9 hours) 1309: 1283: 1264: 1239: 1234: 1227: 1008:one-sixth of the energy. 837:solar energetic particles 830:extragalactic cosmic rays 434:Physikalische Zeitschrift 296: 205:. Meanwhile "cosmic" ray 183:electromagnetic radiation 9166:Iron–sulfur world theory 9161:Photodissociation region 8864:Methyl-cyano-diacetylene 7763:See also the categories 7701:1996 Costa Rica accident 7362:Acoustic radiation force 5375:(1 ed.). Springer. 4485:10.1103/PhysRev.83.658.2 4234:Zeitschrift für Physik C 3360:Georgia State University 2575:Extragalactic cosmic ray 2385:Pierre Auger Observatory 2305:Chicago Air Shower Array 2279:Research and experiments 2193:are at particular risk. 2044:) often referred to as " 1636:Chlorine-39 (56 minutes) 1590:(5730 years): N(n, p)C ( 1442:air Cherenkov telescopes 1092:The Moon as seen by the 872:, positrons, muons, and 812: 111:, although the bulk are 9241:Category:Astrochemistry 8831:, fullerene, buckyball) 8518:Cyanobutadiynyl radical 8493:Silicon-carbide cluster 8483:Protonated formaldehyde 7675:Radiation heat-transfer 7528:Gravitational radiation 6873:Physical Review Letters 6811:Physical Review Letters 6549:Physical Review Letters 6307:sol.spacenvironment.net 6194:10.1126/science.1235989 5886:Nature Publishing Group 5563:14 October 2014 at the 5545:14 October 2014 at the 5488:Physical Review Letters 5416:"What are cosmic rays?" 5367:Castellina, Antonella; 5346:2005E&PSL.234..335L 5025:Physical Review Letters 4913:Physical Review Letters 4857:Physical Review Letters 4835:1981A&A...102L...9K 4760:10.1126/science.aan4338 4661:10.1126/science.1199172 4573:: 36–39. Archived from 4289:10.1103/PhysRev.122.637 4032:10.1103/PhysRev.74.1828 3761:"Penetrating Radiation" 3615:Kolhörster, W. (1914). 3253:(CERN). 2021. p. 3 3016:"What are cosmic rays?" 2948:10.1126/science.aat2890 2802:10.1126/science.1231160 2400:Telescope Array Project 2148:Mars Science Laboratory 2089:plunge hundreds of feet 1919:Partial Test Ban Treaty 1659:mSv out of a total of 3 1578:Beryllium-7 (53.3 days) 1489:air Cherenkov telescope 1348:galactic magnetic field 1057:The moon in cosmic rays 631:scintillation detectors 512:In the 1920s, the term 378:After the discovery of 9254:Outer space portal 9096:Circumstellar envelope 8061:Aluminium(I) hydroxide 7971:Phosphorus mononitride 7848:Aluminium monofluoride 7843:Aluminium monochloride 7716:1990 Zaragoza accident 7711:1984 Moroccan accident 7680:Linear energy transfer 7354:Non-ionizing radiation 7182:Publ. Astron. Soc. Pac 7130:10.1103/physrev.51.884 6978:10.1103/physrev.50.263 6427:. 2007. Archived from 6262:. NASA. Archived from 6073:. NASA. Archived from 5847:retrieved 29 June 2011 5827:retrieved 29 June 2011 5818:"Background radiation" 5807:retrieved 29 June 2011 5798:"Background radiation" 4450:10.1103/PhysRev.74.489 4203:10.1098/rspa.1937.0082 3997:10.1103/PhysRev.74.213 3962:10.1103/PhysRev.45.212 3927:10.1103/PhysRev.43.835 3892:10.1103/PhysRev.43.834 3857:10.1103/PhysRev.36.606 3794:Zeitschrift für Physik 3745:10.1098/rspa.1931.0104 3434:Wulf, Theodor (1910). 3058:Proceedings of Science 2989:. NASA. Archived from 2608:Meter water equivalent 2285:Cosmic-ray observatory 2174: 2136:crewed mission to Mars 1621:Sulfur-38 (2.84 hours) 1609:Silicon-32 (101 years) 1606:Silicon-31 (2.6 hours) 1371: 1181:Earth's magnetic field 1172: 856: 793: 741: 717:(1951) identified the 503: 481: 471:Nobel Prize in Physics 466: 416: 332:active galactic nuclei 163:active galactic nuclei 132:Nobel Prize in Physics 115:off into space by the 103:, cosmic rays produce 95:, from outside of the 65: 56: 9406:Concepts in astronomy 9386:Astroparticle physics 9151:Interplanetary medium 9126:Extraterrestrial life 8764:Octatetraynyl radical 8382:Tricarbon monosulfide 7929:Magnesium monohydride 7706:1987 Goiânia accident 7508:Synchrotron radiation 7498:Earth's energy budget 7480:Radioactive materials 7475:Particle accelerators 6780:10.1089/ast.2018.1902 6676:Surveys in Geophysics 5843:22 March 2011 at the 5540:Collaboration website 5206:Morison, Ian (2008). 5187:. NASA. 1 August 2005 4388:10.1073/pnas.20.5.259 3350:Nave, Carl R. (ed.). 3247:Large Hadron Collider 3105:imagine.gsfc.nasa.gov 2590:Gilbert Jerome Perlow 2164: 2019:Effect on electronics 1758:Primarily from radon, 1618:Sulfur-35 (87.5 days) 1597:Sodium-22 (2.6 years) 1472:devices in pervasive 1400:Robert M. Walker 1365: 1305:(a few times a year) 1170: 1104:Secondary cosmic rays 937:cosmic ray spallation 854: 791: 739: 651:University of Chicago 623:extensive air showers 583:was the first to use 494: 479: 464: 414: 394:, was caused only by 312:Large Hadron Collider 221:, depending on their 140:Fermi Space Telescope 77:high-energy particles 62: 50: 9278:Chemistry portal 9266:Astronomy portal 9212:RNA world hypothesis 9196:PAH world hypothesis 8889:Heptatrienyl radical 8821:Buckminsterfullerene 8709:Methylcyanoacetylene 8217:Silicon carbonitride 8192:Methylidynephosphane 8158:Magnesium isocyanide 8066:Aluminium isocyanide 7868:Carbon monophosphide 7777:Radiation protection 7630:Radiation protection 7518:Black-body radiation 7425:Background radiation 7340:(physics and health) 6266:on 28 September 2019 4610:. Tech Media Network 4504:Imagine the Universe 3647:The Nobel Foundation 1639:Argon-39 (269 years) 1600:Sodium-24 (15 hours) 1396:P. Buford Price 1112:, they collide with 822:galactic cosmic rays 768:Very Large Telescope 533:to the Netherlands, 264:anti-alpha particles 38:. For the film, see 9156:Interstellar medium 9136:Forbidden mechanism 8949:Hydrogen isocyanide 8639:Hexatriynyl radical 8222:c-Silicon dicarbide 8127:Hydrogen isocyanide 7991:Silicon monosulfide 7966:Phosphorus monoxide 7934:Methylidyne radical 7893:Fluoromethylidynium 7853:Aluminium(II) oxide 7747:Radiation hardening 7689:Radiation incidents 7625:Medical radiography 7584:Radiation syndrome 7538:Cherenkov radiation 7303:by Konrad Bernlöhr. 7259:2010EPJH...35..309C 7215:1981NIMPR.191..419Z 7194:2010ASPC..424...98T 7122:1937PhRv...51..884N 7086:1999PhRvL..83.4241K 7009:2000PhRvD..62c2007B 6970:1936PhRv...50..263A 6885:2016PhRvL.116o1104F 6833:2002PhRvL..88h1101B 6733:2013ERL.....8d5022S 6715:(7 November 2013). 6688:2012SGeo...33..503L 6562:1998PhRvL..81.5027S 6466:2009Pbio...35..311M 6425:National Geographic 6397:1975BAMS...56.1240D 6350:1959Natur.183..451N 6186:2013Sci...340.1080Z 6180:(6136): 1080–1084. 6139:2013Sci...340.1031K 6013:2020Natur.584..551V 5878:Scientific American 5803:9 June 2011 at the 5785:UNSCEAR 2008 report 5666:2011RvMP...83..907L 5500:1970PhRvL..24..917C 5216:2008iac..book.....M 5143:2002PhR...366..331A 5099:2002ApJ...565..280M 5037:2013PhRvL.110n1102A 4935:2014PhRvL.113l1102A 4869:2014PhRvL.113l1101A 4752:2017Sci...357.1266P 4736:(6357): 1266–1270. 4653:2011Sci...332...69A 4477:1951PhRv...83..658S 4442:1948PhRv...74..489B 4379:1934PNAS...20..259B 4338:1972ApJ...177..341K 4281:1961PhRv..122..637C 4194:1937RSPSA.159..432B 4144:1935Natur.135.1072V 4138:(3426): 1072–1073. 4078:1939RvMP...11..288A 4047:Ricerca Scientifica 4024:1948PhRv...74.1828B 3989:1948PhRv...74..213F 3954:1934PhRv...45..212R 3919:1933PhRv...43..835A 3884:1933PhRv...43..834J 3849:1930PhRv...36..606R 3806:1929ZPhy...56..751B 3774:(9–10): 1115–1127. 3736:1931RSPSA.132..331G 3531:1912NCim....3...93P 3483:1912NCim....3...93P 3321:2003IJMPA..18.2229A 3107:. Science Toolbox. 3078:10.22323/1.301.0533 2940:2018Sci...361..147I 2887:10.1038/nature17147 2879:2016Natur.531..476H 2794:2013Sci...339..807A 2688:. 21 September 2017 2223:Robert E. Dickinson 2034:integrated circuits 2025:Radiation hardening 1685: 1493:Cherenkov radiation 1468:More recently, the 1450:Cherenkov radiation 1436:in the atmosphere. 1235:Particle rate (ms) 1224: 960:interstellar matter 894:elemental abundance 880:Primary cosmic rays 759:·cm on the flux of 659:University of Leeds 609:Energy distribution 572:another." In 1937, 9391:Ionizing radiation 9176:Molecules in stars 9146:Intergalactic dust 9091:Circumstellar dust 9033:Naphthalene cation 8968:Trihydrogen cation 8944:Hydrogen deuteride 8869:Methyltriacetylene 8704:Hexapentaenylidene 8523:E-Cyanomethanimine 8443:Cyclopropenylidene 8377:Tricarbon monoxide 8367:Silicon tricarbide 8337:Methylene amidogen 8327:Isothiocyanic acid 8242:Thioxoethenylidene 8202:Trihydrogen cation 8016:Titanium(II) oxide 7976:Potassium chloride 7955:Sulfur mononitride 7898:Helium hydride ion 7873:Carbon monosulfide 7742:Radioactive source 7563:Radiation exposure 7543:Askaryan radiation 7523:Particle radiation 7407:Ionizing radiation 6912:Further references 6612:on 12 January 2018 6233:The New York Times 5920:5 May 2022 at the 5823:2 May 2012 at the 5750:on 3 February 2010 5455:Cornell University 5280:on 12 October 2012 4246:10.1007/BF01579904 3814:10.1007/BF01340137 3800:(11–12): 751–777. 3539:10.1007/BF02957440 3491:10.1007/BF02957440 3022:on 28 October 2012 2614:Oh-My-God particle 2537:3 May 2012 at the 2175: 2087:airliner to twice 1679: 1592:neutron activation 1538:radiocarbon dating 1431:Indirect detection 1372: 1222: 1173: 1110:Earth's atmosphere 857: 794: 742: 527:Compton scattering 482: 469:Hess received the 467: 417: 352:kilometre-per-hour 101:Earth's atmosphere 66: 57: 9396:Stellar phenomena 9286: 9285: 9201:Pseudo-panspermia 8897: 8896: 8844:Cyanodecapentayne 8784:N-Methylformamide 8759:Methyldiacetylene 8684:Aminoacetonitrile 8654:Methyl isocyanate 8572:Methyl isocyanide 8453:Isocyanoacetylene 8433:Cyanoformaldehyde 8312:Hydrogen peroxide 8197:Potassium cyanide 8153:Magnesium cyanide 8106:Disilicon carbide 8101:Dicarbon monoxide 7908:Hydrogen fluoride 7903:Hydrogen chloride 7784: 7783: 7765:Radiation effects 7635:Radiation therapy 7571: 7570: 7513:Thermal radiation 7450:Neutron radiation 7415:Radioactive decay 7080:(21): 4241–4244. 6938:978-3-319-78181-5 6713:Wolfendale, A. W. 6660:65 (2003) 801–812 6556:(22): 5027–5030. 6431:on 23 April 2007. 6391:(12): 1240–1248. 6344:(4659): 451–452. 5997:(7822): 551–556. 5711:978-0-87590-950-9 5382:978-90-481-8817-8 5225:978-0-470-03333-3 4801:on 30 August 2009 4305:. Auger Project. 4152:10.1038/1351072c0 4018:(12): 1828–1837. 3759:Clay, J. (1927). 3704:978-0-07-053890-0 3305:(13): 2229–2366. 3061:. ICRC2017: 533. 2985:Christian, Eric. 2924:(6398): 147–151. 2863:(7595): 476–479. 2778:(6424): 807–811. 2751:978-1-84826-104-4 2667:978-81-317-1924-4 2245:Danish physicist 2207:runaway breakdown 2197:Role in lightning 2191:geomagnetic poles 2104:quantum computers 2070:Intel Corporation 2015: 2007: 2006: 1955: 1928: 1844: 1819: 1794: 1791: 1762: 1759: 1523:unstable isotopes 1358:Detection methods 1335: 1334: 1331:(once a century) 1228:Particle energy ( 1189:termination shock 711:Horace W. Babcock 599:Bhabha scattering 579:Soviet physicist 561:nuclear emulsions 506:Ernest Rutherford 456:Werner Kolhörster 360:megaelectronvolts 316:teraelectronvolts 40:Cosmic Ray (film) 16:(Redirected from 9418: 9363: 9362: 9351: 9350: 9349: 9339: 9338: 9337: 9327: 9326: 9315: 9314: 9303: 9302: 9294: 9276: 9275: 9274: 9264: 9263: 9262: 9252: 9251: 9250: 9239: 9238: 9186:Organic compound 9086:Chemical formula 8991:Dihydroxyacetone 8939:Hydrogen cyanide 8624:Cyanodiacetylene 8478:Propadienylidene 8372:Thioformaldehyde 8247:Titanium dioxide 8212:Sodium hydroxide 8133:Hydrogen sulfide 8121:Hydrogen cyanide 8081:Carbonyl sulfide 8046: 8037: 8028: 7986:Silicon monoxide 7919:Hydroxyl radical 7831: 7830: 7811: 7804: 7797: 7788: 7787: 7725:Related articles 7640:Radiation damage 7465:Nuclear reactors 7350: 7349: 7331: 7324: 7317: 7308: 7307: 7278: 7252: 7226: 7197: 7133: 7107: 7097: 7020: 7002: 6981: 6955: 6942: 6905: 6904: 6867: 6861: 6860: 6826: 6824:astro-ph/0201018 6806: 6800: 6799: 6773: 6753: 6747: 6746: 6744: 6708: 6702: 6701: 6699: 6682:(3–4): 503–534. 6667: 6661: 6650: 6644: 6643: 6641: 6639: 6628: 6622: 6621: 6619: 6617: 6597: 6591: 6590: 6588: 6573: 6545: 6536: 6530: 6529: 6527: 6525: 6510: 6504: 6503: 6492: 6486: 6485: 6459: 6439: 6433: 6432: 6417: 6411: 6410: 6408: 6376: 6370: 6369: 6358:10.1038/183451a0 6333: 6327: 6317: 6311: 6310: 6299: 6293: 6287: 6282: 6276: 6275: 6273: 6271: 6251: 6245: 6244: 6242: 6240: 6223: 6214: 6213: 6168: 6159: 6158: 6122: 6113: 6112: 6110: 6108: 6102:The Space Review 6093: 6087: 6086: 6084: 6082: 6062: 6056: 6055: 6053: 6051: 6006: 5981: 5975: 5974: 5972: 5970: 5956: 5950: 5949: 5947: 5945: 5931: 5925: 5912: 5906: 5896: 5890: 5889: 5880:(21 July 2008). 5874: 5868: 5854: 5848: 5834: 5828: 5814: 5808: 5794: 5788: 5779: 5773: 5766: 5760: 5759: 5757: 5755: 5749: 5742: 5734: 5728: 5727: 5725: 5723: 5714:. Archived from 5692: 5686: 5685: 5659: 5639: 5633: 5632: 5630: 5628: 5609: 5603: 5602: 5591: 5585: 5584: 5573: 5567: 5555: 5549: 5537: 5531: 5530: 5518: 5512: 5511: 5483: 5477: 5476: 5474: 5472: 5466: 5452: 5444: 5438: 5437: 5435: 5433: 5427: 5420: 5412: 5406: 5405: 5393: 5387: 5386: 5369:Donato, Fiorenza 5364: 5358: 5357: 5340:(3–4): 335–349. 5326: 5320: 5319: 5317: 5315: 5296: 5290: 5289: 5287: 5285: 5266: 5260: 5259: 5257: 5255: 5246:. Archived from 5236: 5230: 5229: 5203: 5197: 5196: 5194: 5192: 5177: 5171: 5170: 5125: 5119: 5118: 5092: 5090:astro-ph/0106567 5072: 5066: 5065: 5063: 5048: 5022: 5013: 5007: 5006: 5004: 5002: 4996: 4985: 4977: 4971: 4970: 4928: 4904: 4898: 4897: 4895: 4880: 4854: 4845: 4839: 4838: 4817: 4811: 4810: 4808: 4806: 4797:. Archived from 4786: 4780: 4779: 4745: 4724: 4718: 4717: 4715: 4713: 4695: 4689: 4688: 4646: 4626: 4620: 4619: 4617: 4615: 4602:(25 June 2009). 4600:Moskowitz, Clara 4596: 4590: 4589: 4587: 4585: 4579: 4568: 4559: 4553: 4552: 4550: 4548: 4542: 4531: 4522: 4516: 4515: 4513: 4511: 4495: 4489: 4488: 4460: 4454: 4453: 4425: 4419: 4418: 4408: 4390: 4358: 4352: 4351: 4349: 4317: 4311: 4310: 4299: 4293: 4292: 4264: 4258: 4257: 4229: 4223: 4222: 4220: 4205: 4188:(898): 432–458. 4179: 4170: 4164: 4163: 4127: 4121: 4120: 4118: 4107: 4096: 4090: 4089: 4072:(3–4): 288–291, 4061: 4055: 4054: 4042: 4036: 4035: 4007: 4001: 4000: 3972: 3966: 3965: 3937: 3931: 3930: 3902: 3896: 3895: 3867: 3861: 3860: 3832: 3826: 3825: 3789: 3783: 3782: 3780: 3765: 3756: 3750: 3749: 3747: 3715: 3709: 3708: 3690: 3684: 3683: 3681: 3679: 3664: 3658: 3657: 3655: 3653: 3635: 3629: 3628: 3612: 3606: 3605: 3589: 3583: 3582: 3580: 3557: 3551: 3550: 3524: 3508:Il Nuovo Cimento 3502: 3476: 3460:Il Nuovo Cimento 3454: 3448: 3447: 3431: 3425: 3424: 3404: 3398: 3397: 3377: 3371: 3370: 3368: 3366: 3347: 3341: 3340: 3314: 3292: 3286: 3285: 3284:on 7 April 2013. 3269: 3263: 3262: 3260: 3258: 3243:"LHC: The guide" 3239: 3233: 3232: 3230: 3228: 3213: 3207: 3201: 3195: 3194: 3184: 3152: 3146: 3145: 3143: 3141: 3126: 3120: 3119: 3117: 3115: 3097: 3091: 3090: 3080: 3070: 3048: 3042: 3041: 3040:on 4 March 2016. 3036:. Archived from 3031: 3029: 3027: 3012: 3003: 3002: 3000: 2998: 2982: 2976: 2975: 2933: 2913: 2907: 2906: 2872: 2850: 2844: 2843: 2831: 2822: 2821: 2787: 2765: 2756: 2755: 2733: 2727: 2726: 2724: 2722: 2711: 2698: 2697: 2695: 2693: 2678: 2672: 2671: 2653: 2636: 2604: 2595: 2584:Forbush decrease 2580: 2405:Tunka experiment 2247:Henrik Svensmark 2236:mass extinctions 2142:detected by the 2009: 1951: 1916: 1842: 1817: 1793:depends on diet. 1792: 1785: 1760: 1757: 1686: 1678: 1675: 1670: 1666: 1662: 1658: 1416:sodium hydroxide 1379:Direct detection 1330: 1328: 1316: 1314: 1304: 1302: 1290: 1288: 1271: 1269: 1260: 1258: 1246: 1244: 1225: 1221: 1089: 1067: 1046: 1028: 999: 935:, an example of 785:of cosmic rays. 781: 762: 731:gamma-ray bursts 675: 615:density sampling 365: 341: 321: 309: 308:3 × 10 eV  21: 18:Cosmic radiation 9426: 9425: 9421: 9420: 9419: 9417: 9416: 9415: 9411:1912 in science 9401:Solar phenomena 9371: 9370: 9369: 9357: 9347: 9345: 9335: 9333: 9321: 9309: 9297: 9289: 9287: 9282: 9272: 9270: 9260: 9258: 9248: 9246: 9226: 9052: 9028: 9019: 8972: 8962: 8905: 8893: 8874:Propionaldehyde 8849:Ethylene glycol 8838: 8830: 8826: 8797: 8795: 8788: 8744:Cyanohexatriyne 8730: 8723: 8670: 8663: 8598: 8591: 8551: 8504: 8497: 8468:Methoxy radical 8398: 8391: 8387:Thiocyanic acid 8268: 8261: 8171: 8111:Ethynyl radical 8047: 8041: 8040: 8039: 8038: 8032: 8031: 8030: 8029: 8020: 8011:Sulfur monoxide 7996:Sodium chloride 7981:Silicon carbide 7888:Diatomic carbon 7878:Carbon monoxide 7820: 7815: 7785: 7780: 7779: 7756: 7752:Havana syndrome 7737:Nuclear physics 7720: 7684: 7577: 7567: 7553:Unruh radiation 7489: 7470:Nuclear weapons 7455:Nuclear fission 7401: 7341: 7335: 7286: 7281: 7116:(10): 884–886. 7105: 7074:Phys. Rev. Lett 7033:T. K. Gaisser, 6953: 6939: 6914: 6909: 6908: 6868: 6864: 6807: 6803: 6754: 6750: 6709: 6705: 6668: 6664: 6651: 6647: 6637: 6635: 6629: 6625: 6615: 6613: 6598: 6594: 6586: 6543: 6537: 6533: 6523: 6521: 6511: 6507: 6502:. 11 July 2016. 6494: 6493: 6489: 6440: 6436: 6419: 6418: 6414: 6377: 6373: 6334: 6330: 6318: 6314: 6301: 6300: 6296: 6285: 6283: 6279: 6269: 6267: 6252: 6248: 6238: 6236: 6224: 6217: 6169: 6162: 6123: 6116: 6106: 6104: 6094: 6090: 6080: 6078: 6063: 6059: 6049: 6047: 5982: 5978: 5968: 5966: 5958: 5957: 5953: 5943: 5941: 5933: 5932: 5928: 5922:Wayback Machine 5913: 5909: 5897: 5893: 5875: 5871: 5855: 5851: 5845:Wayback Machine 5835: 5831: 5825:Wayback Machine 5815: 5811: 5805:Wayback Machine 5795: 5791: 5780: 5776: 5767: 5763: 5753: 5751: 5747: 5740: 5736: 5735: 5731: 5721: 5719: 5712: 5696:Trumbore, Susan 5693: 5689: 5640: 5636: 5626: 5624: 5623:on 5 March 2013 5611: 5610: 5606: 5593: 5592: 5588: 5575: 5574: 5570: 5565:Wayback Machine 5556: 5552: 5547:Wayback Machine 5538: 5534: 5519: 5515: 5494:(16): 917–923. 5484: 5480: 5470: 5468: 5464: 5450: 5446: 5445: 5441: 5431: 5429: 5428:on 12 July 2012 5425: 5418: 5414: 5413: 5409: 5394: 5390: 5383: 5365: 5361: 5327: 5323: 5313: 5311: 5310:on 8 March 2021 5298: 5297: 5293: 5283: 5281: 5268: 5267: 5263: 5253: 5251: 5238: 5237: 5233: 5226: 5204: 5200: 5190: 5188: 5179: 5178: 5174: 5131:Physics Reports 5126: 5122: 5073: 5069: 5061: 5020: 5014: 5010: 5000: 4998: 4994: 4983: 4979: 4978: 4974: 4905: 4901: 4893: 4852: 4846: 4842: 4818: 4814: 4804: 4802: 4787: 4783: 4725: 4721: 4711: 4709: 4696: 4692: 4637:(6025): 69–72. 4627: 4623: 4613: 4611: 4597: 4593: 4583: 4581: 4577: 4566: 4560: 4556: 4546: 4544: 4540: 4529: 4523: 4519: 4509: 4507: 4496: 4492: 4465:Physical Review 4461: 4457: 4430:Physical Review 4426: 4422: 4359: 4355: 4318: 4314: 4301: 4300: 4296: 4269:Physical Review 4265: 4261: 4230: 4226: 4218: 4177: 4171: 4167: 4128: 4124: 4116: 4105: 4097: 4093: 4062: 4058: 4043: 4039: 4012:Physical Review 4008: 4004: 3977:Physical Review 3973: 3969: 3942:Physical Review 3938: 3934: 3913:(10): 835–836. 3907:Physical Review 3903: 3899: 3878:(10): 834–835. 3872:Physical Review 3868: 3864: 3837:Physical Review 3833: 3829: 3790: 3786: 3778: 3763: 3757: 3753: 3716: 3712: 3705: 3691: 3687: 3677: 3675: 3665: 3661: 3651: 3649: 3636: 3632: 3613: 3609: 3590: 3586: 3558: 3554: 3455: 3451: 3432: 3428: 3421: 3405: 3401: 3394: 3378: 3374: 3364: 3362: 3348: 3344: 3293: 3289: 3274:"Extreme speed" 3270: 3266: 3256: 3254: 3241: 3240: 3236: 3226: 3224: 3214: 3210: 3202: 3198: 3153: 3149: 3139: 3137: 3127: 3123: 3113: 3111: 3099: 3098: 3094: 3049: 3045: 3032: 3025: 3023: 3014: 3013: 3006: 2996: 2994: 2983: 2979: 2914: 2910: 2851: 2847: 2832: 2825: 2766: 2759: 2752: 2734: 2730: 2720: 2718: 2713: 2712: 2701: 2691: 2689: 2680: 2679: 2675: 2668: 2654: 2650: 2645: 2640: 2634: 2602: 2593: 2578: 2553: 2548: 2539:Wayback Machine 2501: 2496: 2440:Cassini–Huygens 2424: 2419: 2395:Spaceship Earth 2295: 2287: 2281: 2269: 2263: 2251:solar variation 2221:in 1959 and by 2215: 2199: 2118: 2112: 2106:in the future. 2074:microprocessors 2027: 2021: 1953: 1926: 1923:a spike in 1986 1718: 1673: 1668: 1664: 1660: 1656: 1653: 1648: 1630:(300,000 years) 1546: 1533: 1519: 1514: 1463:bubble chambers 1433: 1425:nuclear fission 1381: 1360: 1326: 1324: 1312: 1310: 1300: 1298: 1286: 1284: 1267: 1265: 1256: 1254: 1242: 1240: 1165: 1163:Cosmic-ray flux 1149:water-Cherenkov 1145:bubble chambers 1106: 1101: 1100: 1099: 1098: 1097: 1090: 1081: 1080: 1079: 1068: 1059: 1058: 1044: 1024: 997: 991:) on board the 977: 971: 882: 842:solar eruptions 815: 779: 760: 703: 695:neutron monitor 683: 673: 611: 589:Geiger counters 569:Geiger counters 518:Robert Millikan 492:wrote in 1964: 487: 439:Domenico Pacini 409: 384:Henri Becquerel 376: 363: 339: 319: 307: 299: 244:alpha particles 231: 171: 64:magnetic field. 43: 28: 23: 22: 15: 12: 11: 5: 9424: 9414: 9413: 9408: 9403: 9398: 9393: 9388: 9383: 9368: 9367: 9355: 9343: 9331: 9319: 9307: 9284: 9283: 9281: 9280: 9268: 9256: 9244: 9231: 9228: 9227: 9225: 9224: 9219: 9214: 9209: 9203: 9198: 9193: 9188: 9183: 9178: 9173: 9168: 9163: 9158: 9153: 9148: 9143: 9138: 9133: 9128: 9123: 9118: 9113: 9111:Cosmochemistry 9108: 9103: 9098: 9093: 9088: 9083: 9078: 9076:Astrochemistry 9073: 9068: 9062: 9060: 9054: 9053: 9051: 9050: 9045: 9040: 9035: 9030: 9026: 9022: 9017: 9013: 9008: 9003: 8998: 8993: 8988: 8982: 8980: 8974: 8973: 8971: 8970: 8965: 8960: 8956: 8951: 8946: 8941: 8936: 8931: 8929:Formyl radical 8926: 8921: 8915: 8909: 8907: 8899: 8898: 8895: 8894: 8892: 8891: 8886: 8881: 8876: 8871: 8866: 8861: 8859:Methyl acetate 8856: 8851: 8846: 8841: 8836: 8832: 8828: 8824: 8818: 8813: 8808: 8802: 8800: 8790: 8789: 8787: 8786: 8781: 8776: 8771: 8766: 8761: 8756: 8751: 8749:Dimethyl ether 8746: 8741: 8735: 8733: 8725: 8724: 8722: 8721: 8716: 8714:Methyl formate 8711: 8706: 8701: 8699:Glycolaldehyde 8696: 8691: 8686: 8681: 8675: 8673: 8665: 8664: 8662: 8661: 8656: 8651: 8646: 8641: 8636: 8634:Glycolonitrile 8631: 8629:Ethylene oxide 8626: 8621: 8620: 8619: 8609: 8603: 8601: 8593: 8592: 8590: 8589: 8584: 8579: 8574: 8569: 8564: 8559: 8554: 8549: 8545: 8540: 8535: 8530: 8528:Cyclopropenone 8525: 8520: 8515: 8509: 8507: 8499: 8498: 8496: 8495: 8490: 8485: 8480: 8475: 8470: 8465: 8460: 8455: 8450: 8445: 8440: 8435: 8430: 8428:Cyanoacetylene 8425: 8420: 8415: 8410: 8403: 8401: 8393: 8392: 8390: 8389: 8384: 8379: 8374: 8369: 8364: 8359: 8354: 8349: 8347:Methyl radical 8344: 8339: 8334: 8329: 8324: 8322:Isocyanic acid 8319: 8314: 8309: 8304: 8299: 8294: 8289: 8287:Isocyanic acid 8284: 8279: 8273: 8271: 8263: 8262: 8260: 8259: 8254: 8249: 8244: 8239: 8234: 8232:Sulfur dioxide 8229: 8224: 8219: 8214: 8209: 8207:Sodium cyanide 8204: 8199: 8194: 8189: 8184: 8179: 8174: 8169: 8165: 8160: 8155: 8150: 8145: 8140: 8135: 8130: 8124: 8118: 8116:Formyl radical 8113: 8108: 8103: 8098: 8093: 8088: 8083: 8078: 8076:Carbon dioxide 8073: 8068: 8063: 8057: 8055: 8049: 8048: 8023: 8021: 8019: 8018: 8013: 8008: 8003: 7998: 7993: 7988: 7983: 7978: 7973: 7968: 7963: 7957: 7952: 7947: 7941: 7936: 7931: 7926: 7924:Iron(II) oxide 7921: 7916: 7910: 7905: 7900: 7895: 7890: 7885: 7880: 7875: 7870: 7865: 7860: 7855: 7850: 7845: 7839: 7837: 7828: 7822: 7821: 7814: 7813: 7806: 7799: 7791: 7782: 7781: 7761: 7758: 7757: 7755: 7754: 7749: 7744: 7739: 7734: 7728: 7726: 7722: 7721: 7719: 7718: 7713: 7708: 7703: 7698: 7692: 7690: 7686: 7685: 7683: 7682: 7677: 7672: 7667: 7662: 7657: 7652: 7647: 7642: 7637: 7632: 7627: 7622: 7617: 7612: 7607: 7602: 7600:Health physics 7597: 7596: 7595: 7590: 7581: 7579: 7573: 7572: 7569: 7568: 7566: 7565: 7560: 7558:Dark radiation 7555: 7550: 7548:Bremsstrahlung 7545: 7540: 7535: 7530: 7525: 7520: 7515: 7510: 7505: 7500: 7494: 7491: 7490: 7488: 7487: 7482: 7477: 7472: 7467: 7462: 7460:Nuclear fusion 7457: 7452: 7447: 7442: 7437: 7432: 7430:Alpha particle 7427: 7422: 7417: 7411: 7409: 7403: 7402: 7400: 7399: 7394: 7389: 7384: 7379: 7374: 7369: 7364: 7358: 7356: 7347: 7343: 7342: 7334: 7333: 7326: 7319: 7311: 7305: 7304: 7298: 7292: 7285: 7284:External links 7282: 7280: 7279: 7243:(4): 309–329. 7230: 7227: 7209:(1): 419–424. 7198: 7177: 7167: 7160: 7150: 7140: 7137: 7134: 7098: 7069: 7057:A. M. Hillas, 7055: 7045: 7031: 7021: 7000:hep-ex/0004014 6982: 6964:(4): 263–271. 6946: 6943: 6937: 6915: 6913: 6910: 6907: 6906: 6879:(15): 151104. 6862: 6801: 6764:(6): 825–830. 6748: 6703: 6662: 6645: 6623: 6592: 6571:10.1.1.522.585 6531: 6505: 6487: 6450:(3): 311–320. 6434: 6412: 6371: 6328: 6312: 6294: 6277: 6246: 6215: 6160: 6133:(6136): 1031. 6114: 6088: 6077:on 31 May 2010 6057: 5976: 5951: 5926: 5907: 5891: 5869: 5849: 5829: 5809: 5796:Princeton.edu 5789: 5774: 5761: 5729: 5718:on 21 May 2013 5710: 5687: 5650:(3): 907–942. 5634: 5604: 5586: 5568: 5550: 5532: 5513: 5478: 5439: 5407: 5388: 5381: 5359: 5321: 5291: 5261: 5250:on 22 May 2012 5231: 5224: 5198: 5172: 5137:(6): 331–405. 5120: 5107:10.1086/324402 5083:(1): 280–296. 5067: 5031:(14): 141102. 5008: 4988:AMS-02 at NASA 4972: 4919:(12): 121102. 4899: 4863:(12): 121101. 4840: 4812: 4781: 4719: 4690: 4621: 4591: 4580:on 28 May 2013 4554: 4543:on 28 May 2013 4517: 4490: 4471:(3): 658–659. 4455: 4420: 4373:(5): 259–263. 4353: 4347:10.1086/151713 4312: 4294: 4275:(2): 637–654. 4259: 4240:(2): 171–177. 4224: 4165: 4122: 4091: 4056: 4037: 4002: 3983:(2): 213–217. 3967: 3948:(3): 212–214. 3932: 3897: 3862: 3827: 3784: 3751: 3710: 3703: 3685: 3659: 3630: 3607: 3584: 3552: 3449: 3426: 3419: 3399: 3392: 3372: 3342: 3312:hep-ph/0206072 3287: 3264: 3234: 3222:Universe Today 3208: 3196: 3167:(2): 152–157. 3147: 3121: 3092: 3043: 3004: 2993:on 31 May 2000 2977: 2908: 2845: 2823: 2757: 2750: 2728: 2699: 2673: 2666: 2647: 2646: 2644: 2641: 2639: 2638: 2628: 2623: 2617: 2611: 2605: 2596: 2587: 2581: 2572: 2566: 2561: 2554: 2552: 2549: 2547: 2546: 2541: 2529: 2524: 2519: 2513: 2508: 2502: 2500: 2497: 2495: 2494: 2481: 2476: 2471: 2466: 2461: 2448: 2443: 2436: 2431: 2425: 2423: 2420: 2418: 2417: 2412: 2407: 2402: 2397: 2392: 2387: 2382: 2377: 2372: 2367: 2362: 2357: 2352: 2347: 2342: 2337: 2332: 2327: 2322: 2317: 2312: 2307: 2302: 2296: 2294: 2291: 2280: 2277: 2262: 2259: 2255:global warming 2232:mutation rates 2214: 2211: 2198: 2195: 2158:in 2011–2012. 2114:Main article: 2111: 2108: 2020: 2017: 2005: 2004: 2002: 1999: 1996: 1993: 1990: 1987: 1981: 1980: 1978: 1975: 1972: 1969: 1966: 1963: 1957: 1956: 1949: 1946: 1943: 1940: 1937: 1934: 1930: 1929: 1914: 1911: 1908: 1905: 1902: 1899: 1895: 1894: 1892: 1889: 1886: 1883: 1880: 1877: 1874: 1870: 1869: 1867: 1864: 1861: 1858: 1855: 1852: 1846: 1845: 1840: 1837: 1834: 1831: 1828: 1825: 1821: 1820: 1815: 1812: 1809: 1806: 1803: 1800: 1796: 1795: 1783: 1780: 1777: 1774: 1771: 1768: 1764: 1763: 1755: 1752: 1749: 1746: 1743: 1740: 1737: 1733: 1732: 1729: 1726: 1723: 1720: 1715: 1712: 1708: 1707: 1704: 1701: 1698: 1695: 1690: 1652: 1649: 1647: 1646: 1640: 1637: 1634: 1631: 1625: 1622: 1619: 1616: 1610: 1607: 1604: 1601: 1598: 1595: 1585: 1579: 1576: 1570: 1564: 1558: 1547: 1545: 1542: 1531: 1518: 1515: 1513: 1510: 1497:speed of light 1458:cloud chambers 1432: 1429: 1392:nuclear tracks 1380: 1377: 1359: 1356: 1339: 1338: 1337: 1336: 1333: 1332: 1322: 1307: 1306: 1296: 1281: 1280: 1277: 1262: 1261: 1252: 1237: 1236: 1233: 1164: 1161: 1141:cloud chambers 1105: 1102: 1091: 1084: 1083: 1082: 1069: 1062: 1061: 1060: 1056: 1055: 1054: 1053: 970: 967: 918:radiation dose 881: 878: 846: 845: 833: 814: 811: 702: 699: 682: 679: 610: 607: 603:Walter Heitler 595:Homi J. Bhabha 516:was coined by 486: 485:Identification 483: 408: 405: 375: 372: 298: 295: 230: 227: 187:intrinsic mass 170: 167: 89:speed of light 73:astroparticles 26: 9: 6: 4: 3: 2: 9423: 9412: 9409: 9407: 9404: 9402: 9399: 9397: 9394: 9392: 9389: 9387: 9384: 9382: 9379: 9378: 9376: 9366: 9361: 9356: 9354: 9344: 9342: 9332: 9330: 9325: 9320: 9318: 9313: 9308: 9306: 9301: 9296: 9295: 9292: 9279: 9269: 9267: 9257: 9255: 9245: 9243: 9242: 9233: 9232: 9229: 9223: 9220: 9218: 9215: 9213: 9210: 9207: 9204: 9202: 9199: 9197: 9194: 9192: 9189: 9187: 9184: 9182: 9179: 9177: 9174: 9172: 9169: 9167: 9164: 9162: 9159: 9157: 9154: 9152: 9149: 9147: 9144: 9142: 9141:Homochirality 9139: 9137: 9134: 9132: 9129: 9127: 9124: 9122: 9119: 9117: 9114: 9112: 9109: 9107: 9104: 9102: 9099: 9097: 9094: 9092: 9089: 9087: 9084: 9082: 9079: 9077: 9074: 9072: 9069: 9067: 9064: 9063: 9061: 9059: 9055: 9049: 9046: 9044: 9041: 9039: 9036: 9034: 9031: 9029: 9023: 9021: 9014: 9012: 9009: 9007: 9004: 9002: 8999: 8997: 8996:Methoxyethane 8994: 8992: 8989: 8987: 8984: 8983: 8981: 8979: 8975: 8969: 8966: 8964: 8957: 8955: 8952: 8950: 8947: 8945: 8942: 8940: 8937: 8935: 8932: 8930: 8927: 8925: 8922: 8919: 8916: 8914: 8911: 8910: 8908: 8904: 8900: 8890: 8887: 8885: 8882: 8880: 8879:Butyronitrile 8877: 8875: 8872: 8870: 8867: 8865: 8862: 8860: 8857: 8855: 8854:Ethyl formate 8852: 8850: 8847: 8845: 8842: 8840: 8833: 8822: 8819: 8817: 8814: 8812: 8809: 8807: 8804: 8803: 8801: 8799: 8791: 8785: 8782: 8780: 8779:Propionitrile 8777: 8775: 8772: 8770: 8767: 8765: 8762: 8760: 8757: 8755: 8752: 8750: 8747: 8745: 8742: 8740: 8737: 8736: 8734: 8732: 8726: 8720: 8717: 8715: 8712: 8710: 8707: 8705: 8702: 8700: 8697: 8695: 8692: 8690: 8687: 8685: 8682: 8680: 8677: 8676: 8674: 8672: 8666: 8660: 8659:Vinyl alcohol 8657: 8655: 8652: 8650: 8647: 8645: 8642: 8640: 8637: 8635: 8632: 8630: 8627: 8625: 8622: 8618: 8617:Vinyl cyanide 8615: 8614: 8613: 8612:Acrylonitrile 8610: 8608: 8605: 8604: 8602: 8600: 8594: 8588: 8585: 8583: 8580: 8578: 8577:Pentynylidyne 8575: 8573: 8570: 8568: 8565: 8563: 8560: 8558: 8555: 8553: 8546: 8544: 8541: 8539: 8536: 8534: 8531: 8529: 8526: 8524: 8521: 8519: 8516: 8514: 8511: 8510: 8508: 8506: 8500: 8494: 8491: 8489: 8486: 8484: 8481: 8479: 8476: 8474: 8473:Methylenimine 8471: 8469: 8466: 8464: 8461: 8459: 8456: 8454: 8451: 8449: 8446: 8444: 8441: 8439: 8436: 8434: 8431: 8429: 8426: 8424: 8421: 8419: 8416: 8414: 8411: 8408: 8405: 8404: 8402: 8400: 8394: 8388: 8385: 8383: 8380: 8378: 8375: 8373: 8370: 8368: 8365: 8363: 8360: 8358: 8355: 8353: 8352:Propynylidyne 8350: 8348: 8345: 8343: 8342:Methyl cation 8340: 8338: 8335: 8333: 8330: 8328: 8325: 8323: 8320: 8318: 8315: 8313: 8310: 8308: 8305: 8303: 8302:Fulminic acid 8300: 8298: 8295: 8293: 8290: 8288: 8285: 8283: 8280: 8278: 8275: 8274: 8272: 8270: 8264: 8258: 8255: 8253: 8250: 8248: 8245: 8243: 8240: 8238: 8235: 8233: 8230: 8228: 8225: 8223: 8220: 8218: 8215: 8213: 8210: 8208: 8205: 8203: 8200: 8198: 8195: 8193: 8190: 8188: 8185: 8183: 8180: 8178: 8177:Nitrous oxide 8175: 8173: 8166: 8164: 8161: 8159: 8156: 8154: 8151: 8149: 8146: 8144: 8141: 8139: 8136: 8134: 8131: 8128: 8125: 8122: 8119: 8117: 8114: 8112: 8109: 8107: 8104: 8102: 8099: 8097: 8094: 8092: 8089: 8087: 8084: 8082: 8079: 8077: 8074: 8072: 8071:Amino radical 8069: 8067: 8064: 8062: 8059: 8058: 8056: 8054: 8050: 8045: 8036: 8027: 8017: 8014: 8012: 8009: 8007: 8004: 8002: 8001:Sodium iodide 7999: 7997: 7994: 7992: 7989: 7987: 7984: 7982: 7979: 7977: 7974: 7972: 7969: 7967: 7964: 7961: 7958: 7956: 7953: 7951: 7948: 7945: 7942: 7940: 7937: 7935: 7932: 7930: 7927: 7925: 7922: 7920: 7917: 7914: 7911: 7909: 7906: 7904: 7901: 7899: 7896: 7894: 7891: 7889: 7886: 7884: 7883:Cyano radical 7881: 7879: 7876: 7874: 7871: 7869: 7866: 7864: 7863:Carbon cation 7861: 7859: 7856: 7854: 7851: 7849: 7846: 7844: 7841: 7840: 7838: 7836: 7832: 7829: 7827: 7823: 7819: 7812: 7807: 7805: 7800: 7798: 7793: 7792: 7789: 7778: 7774: 7770: 7769:Radioactivity 7766: 7759: 7753: 7750: 7748: 7745: 7743: 7740: 7738: 7735: 7733: 7730: 7729: 7727: 7723: 7717: 7714: 7712: 7709: 7707: 7704: 7702: 7699: 7697: 7694: 7693: 7691: 7687: 7681: 7678: 7676: 7673: 7671: 7668: 7666: 7663: 7661: 7658: 7656: 7653: 7651: 7648: 7646: 7643: 7641: 7638: 7636: 7633: 7631: 7628: 7626: 7623: 7621: 7618: 7616: 7613: 7611: 7608: 7606: 7603: 7601: 7598: 7594: 7591: 7589: 7586: 7585: 7583: 7582: 7580: 7574: 7564: 7561: 7559: 7556: 7554: 7551: 7549: 7546: 7544: 7541: 7539: 7536: 7534: 7531: 7529: 7526: 7524: 7521: 7519: 7516: 7514: 7511: 7509: 7506: 7504: 7501: 7499: 7496: 7495: 7492: 7486: 7483: 7481: 7478: 7476: 7473: 7471: 7468: 7466: 7463: 7461: 7458: 7456: 7453: 7451: 7448: 7446: 7443: 7441: 7438: 7436: 7435:Beta particle 7433: 7431: 7428: 7426: 7423: 7421: 7420:Cluster decay 7418: 7416: 7413: 7412: 7410: 7408: 7404: 7398: 7395: 7393: 7390: 7388: 7385: 7383: 7380: 7378: 7375: 7373: 7370: 7368: 7365: 7363: 7360: 7359: 7357: 7355: 7351: 7348: 7346:Main articles 7344: 7339: 7332: 7327: 7325: 7320: 7318: 7313: 7312: 7309: 7302: 7299: 7296: 7293: 7291: 7288: 7287: 7276: 7272: 7268: 7264: 7260: 7256: 7251: 7246: 7242: 7238: 7237: 7231: 7228: 7224: 7220: 7216: 7212: 7208: 7204: 7199: 7195: 7191: 7187: 7183: 7178: 7176: 7175:0-521-43143-3 7172: 7168: 7165: 7162:B. B. Rossi, 7161: 7159: 7158:0-226-72456-5 7155: 7151: 7149: 7148:0-19-850951-0 7145: 7141: 7138: 7135: 7131: 7127: 7123: 7119: 7115: 7111: 7104: 7099: 7095: 7091: 7087: 7083: 7079: 7075: 7070: 7068: 7067:0-08-016724-1 7064: 7060: 7056: 7054: 7053:0-444-50710-8 7050: 7046: 7044: 7043:0-521-32667-2 7040: 7036: 7032: 7030: 7029:1-86448-204-4 7026: 7022: 7018: 7014: 7010: 7006: 7001: 6996: 6993:(3): 032007. 6992: 6988: 6983: 6979: 6975: 6971: 6967: 6963: 6959: 6952: 6947: 6944: 6940: 6934: 6930: 6926: 6922: 6917: 6916: 6902: 6898: 6894: 6890: 6886: 6882: 6878: 6874: 6866: 6858: 6854: 6850: 6846: 6842: 6838: 6834: 6830: 6825: 6820: 6817:(8): 081101. 6816: 6812: 6805: 6797: 6793: 6789: 6785: 6781: 6777: 6772: 6767: 6763: 6759: 6752: 6743: 6738: 6734: 6730: 6727:(4): 045022. 6726: 6722: 6718: 6714: 6707: 6698: 6693: 6689: 6685: 6681: 6677: 6673: 6666: 6659: 6655: 6649: 6634: 6627: 6611: 6607: 6603: 6596: 6585: 6581: 6577: 6572: 6567: 6563: 6559: 6555: 6551: 6550: 6542: 6535: 6520: 6516: 6509: 6501: 6497: 6491: 6483: 6479: 6475: 6471: 6467: 6463: 6458: 6453: 6449: 6445: 6438: 6430: 6426: 6422: 6416: 6407: 6402: 6398: 6394: 6390: 6386: 6382: 6375: 6367: 6363: 6359: 6355: 6351: 6347: 6343: 6339: 6332: 6325: 6324:Physics Today 6321: 6316: 6308: 6304: 6298: 6292: 6288: 6281: 6265: 6261: 6257: 6250: 6235: 6234: 6229: 6222: 6220: 6211: 6207: 6203: 6199: 6195: 6191: 6187: 6183: 6179: 6175: 6167: 6165: 6156: 6152: 6148: 6144: 6140: 6136: 6132: 6128: 6121: 6119: 6103: 6099: 6092: 6076: 6072: 6068: 6061: 6046: 6042: 6038: 6034: 6030: 6026: 6022: 6018: 6014: 6010: 6005: 6000: 5996: 5992: 5988: 5980: 5965: 5961: 5955: 5940: 5939:New Scientist 5936: 5930: 5923: 5919: 5916: 5911: 5904: 5900: 5895: 5887: 5883: 5879: 5873: 5866: 5862: 5858: 5853: 5846: 5842: 5839: 5833: 5826: 5822: 5819: 5813: 5806: 5802: 5799: 5793: 5786: 5783: 5778: 5771: 5765: 5746: 5739: 5733: 5717: 5713: 5707: 5703: 5702: 5697: 5691: 5683: 5679: 5675: 5671: 5667: 5663: 5658: 5653: 5649: 5645: 5638: 5622: 5618: 5614: 5608: 5600: 5596: 5590: 5582: 5581:credo.science 5578: 5572: 5566: 5562: 5559: 5554: 5548: 5544: 5541: 5536: 5528: 5524: 5517: 5509: 5505: 5501: 5497: 5493: 5489: 5482: 5463: 5459: 5456: 5449: 5443: 5424: 5417: 5411: 5403: 5399: 5392: 5384: 5378: 5374: 5370: 5363: 5355: 5351: 5347: 5343: 5339: 5335: 5334: 5325: 5309: 5305: 5301: 5295: 5279: 5275: 5271: 5265: 5249: 5245: 5241: 5235: 5227: 5221: 5217: 5213: 5209: 5202: 5186: 5182: 5176: 5168: 5164: 5160: 5156: 5152: 5148: 5144: 5140: 5136: 5132: 5124: 5116: 5112: 5108: 5104: 5100: 5096: 5091: 5086: 5082: 5078: 5071: 5060: 5056: 5052: 5047: 5042: 5038: 5034: 5030: 5026: 5019: 5012: 4993: 4989: 4982: 4976: 4968: 4964: 4960: 4956: 4952: 4948: 4944: 4940: 4936: 4932: 4927: 4922: 4918: 4914: 4910: 4903: 4892: 4888: 4884: 4879: 4874: 4870: 4866: 4862: 4858: 4851: 4844: 4836: 4832: 4828: 4824: 4816: 4800: 4796: 4792: 4791:"Cosmic Rays" 4785: 4777: 4773: 4769: 4765: 4761: 4757: 4753: 4749: 4744: 4739: 4735: 4731: 4723: 4707: 4706: 4701: 4694: 4686: 4682: 4678: 4674: 4670: 4666: 4662: 4658: 4654: 4650: 4645: 4640: 4636: 4632: 4625: 4609: 4605: 4601: 4595: 4576: 4572: 4565: 4558: 4539: 4535: 4528: 4521: 4505: 4501: 4500:"Cosmic rays" 4494: 4486: 4482: 4478: 4474: 4470: 4466: 4459: 4451: 4447: 4443: 4439: 4435: 4431: 4424: 4416: 4412: 4407: 4402: 4398: 4394: 4389: 4384: 4380: 4376: 4372: 4368: 4364: 4357: 4348: 4343: 4339: 4335: 4331: 4327: 4323: 4316: 4308: 4304: 4298: 4290: 4286: 4282: 4278: 4274: 4270: 4263: 4255: 4251: 4247: 4243: 4239: 4235: 4228: 4217: 4213: 4209: 4204: 4199: 4195: 4191: 4187: 4183: 4176: 4169: 4161: 4157: 4153: 4149: 4145: 4141: 4137: 4133: 4126: 4115: 4111: 4104: 4103: 4095: 4087: 4083: 4079: 4075: 4071: 4067: 4060: 4053:(1): 579–589. 4052: 4048: 4041: 4033: 4029: 4025: 4021: 4017: 4013: 4006: 3998: 3994: 3990: 3986: 3982: 3978: 3971: 3963: 3959: 3955: 3951: 3947: 3943: 3936: 3928: 3924: 3920: 3916: 3912: 3908: 3901: 3893: 3889: 3885: 3881: 3877: 3873: 3866: 3858: 3854: 3850: 3846: 3842: 3838: 3831: 3823: 3819: 3815: 3811: 3807: 3803: 3799: 3795: 3788: 3777: 3773: 3769: 3762: 3755: 3746: 3741: 3737: 3733: 3729: 3725: 3721: 3714: 3706: 3700: 3696: 3689: 3673: 3669: 3663: 3648: 3644: 3640: 3634: 3626: 3623:(in German). 3622: 3618: 3611: 3603: 3600:(in German). 3599: 3595: 3588: 3579: 3574: 3571:: 1084–1091. 3570: 3567:(in German). 3566: 3562: 3556: 3548: 3544: 3540: 3536: 3532: 3528: 3523: 3518: 3515:(1): 93–100. 3514: 3510: 3509: 3500: 3496: 3492: 3488: 3484: 3480: 3475: 3470: 3467:(1): 93–100. 3466: 3462: 3461: 3453: 3445: 3442:(in German). 3441: 3437: 3430: 3422: 3420:9780226594415 3416: 3412: 3411: 3403: 3395: 3393:9780199766413 3389: 3385: 3384: 3376: 3361: 3357: 3353: 3352:"Cosmic rays" 3346: 3338: 3334: 3330: 3326: 3322: 3318: 3313: 3308: 3304: 3300: 3299: 3291: 3283: 3279: 3275: 3268: 3252: 3248: 3244: 3238: 3223: 3219: 3212: 3206: 3200: 3192: 3188: 3183: 3178: 3174: 3170: 3166: 3162: 3158: 3151: 3136: 3132: 3125: 3110: 3106: 3102: 3101:"Cosmic Rays" 3096: 3088: 3084: 3079: 3074: 3069: 3064: 3060: 3059: 3054: 3047: 3039: 3035: 3021: 3017: 3011: 3009: 2992: 2988: 2981: 2973: 2969: 2965: 2961: 2957: 2953: 2949: 2945: 2941: 2937: 2932: 2927: 2923: 2919: 2912: 2904: 2900: 2896: 2892: 2888: 2884: 2880: 2876: 2871: 2866: 2862: 2858: 2857: 2849: 2841: 2837: 2830: 2828: 2819: 2815: 2811: 2807: 2803: 2799: 2795: 2791: 2786: 2781: 2777: 2773: 2772: 2764: 2762: 2753: 2747: 2743: 2739: 2732: 2716: 2710: 2708: 2706: 2704: 2687: 2686:Science Daily 2683: 2677: 2669: 2663: 2659: 2652: 2648: 2632: 2629: 2627: 2624: 2621: 2618: 2615: 2612: 2609: 2606: 2600: 2597: 2591: 2588: 2585: 2582: 2576: 2573: 2570: 2567: 2565: 2562: 2559: 2556: 2555: 2545: 2542: 2540: 2536: 2533: 2530: 2528: 2525: 2523: 2520: 2517: 2514: 2512: 2509: 2507: 2504: 2503: 2499:Balloon-borne 2493: 2492: 2487: 2486: 2482: 2480: 2477: 2475: 2472: 2470: 2467: 2465: 2462: 2460: 2456: 2452: 2449: 2447: 2444: 2442: 2441: 2437: 2435: 2432: 2430: 2427: 2426: 2416: 2413: 2411: 2408: 2406: 2403: 2401: 2398: 2396: 2393: 2391: 2388: 2386: 2383: 2381: 2378: 2376: 2373: 2371: 2368: 2366: 2363: 2361: 2358: 2356: 2353: 2351: 2348: 2346: 2343: 2341: 2338: 2336: 2333: 2331: 2328: 2326: 2323: 2321: 2318: 2316: 2313: 2311: 2308: 2306: 2303: 2301: 2298: 2297: 2290: 2286: 2276: 2274: 2268: 2258: 2256: 2252: 2248: 2243: 2241: 2237: 2233: 2229: 2224: 2220: 2219:Edward P. Ney 2210: 2208: 2204: 2194: 2192: 2188: 2184: 2180: 2179:jet airliners 2172: 2168: 2163: 2159: 2157: 2153: 2149: 2145: 2141: 2137: 2132: 2130: 2126: 2125: 2117: 2107: 2105: 2101: 2097: 2092: 2090: 2086: 2081: 2079: 2075: 2071: 2067: 2063: 2059: 2055: 2051: 2047: 2043: 2039: 2035: 2032: 2026: 2016: 2013: 2003: 2000: 1997: 1994: 1991: 1988: 1986: 1982: 1979: 1976: 1973: 1970: 1967: 1964: 1962: 1959: 1958: 1950: 1947: 1944: 1941: 1938: 1935: 1932: 1931: 1924: 1920: 1915: 1912: 1909: 1906: 1903: 1900: 1897: 1896: 1893: 1890: 1887: 1884: 1881: 1878: 1875: 1871: 1868: 1865: 1862: 1859: 1856: 1853: 1851: 1848: 1847: 1841: 1838: 1835: 1832: 1829: 1826: 1823: 1822: 1816: 1813: 1810: 1807: 1804: 1801: 1798: 1797: 1789: 1784: 1781: 1778: 1775: 1772: 1769: 1766: 1765: 1756: 1753: 1750: 1747: 1744: 1741: 1738: 1734: 1730: 1727: 1724: 1722:Typical range 1721: 1716: 1713: 1710: 1709: 1702: 1699: 1696: 1694: 1687: 1683: 1682:millisieverts 1677: 1644: 1641: 1638: 1635: 1632: 1629: 1626: 1623: 1620: 1617: 1614: 1613:Phosphorus-32 1611: 1608: 1605: 1602: 1599: 1596: 1593: 1589: 1586: 1583: 1580: 1577: 1574: 1571: 1568: 1565: 1562: 1559: 1556: 1552: 1549: 1548: 1541: 1539: 1532:n + N → p + C 1530: 1528: 1524: 1509: 1505: 1501: 1498: 1494: 1490: 1485: 1483: 1479: 1475: 1471: 1466: 1464: 1459: 1454: 1451: 1447: 1446:scintillators 1443: 1437: 1428: 1426: 1420: 1417: 1412: 1408: 1405: 1401: 1397: 1393: 1388: 1386: 1376: 1369: 1364: 1355: 1353: 1349: 1343: 1323: 1320: 1308: 1297: 1294: 1282: 1278: 1275: 1263: 1253: 1250: 1238: 1231: 1226: 1220: 1219: 1218: 1217: 1216: 1212: 1210: 1209:azimuth angle 1206: 1202: 1197: 1194: 1190: 1186: 1182: 1178: 1169: 1160: 1156: 1154: 1153:scintillation 1150: 1146: 1142: 1138: 1134: 1129: 1127: 1123: 1119: 1115: 1111: 1095: 1088: 1077: 1076:Soudan 2 1073: 1066: 1052: 1050: 1042: 1038: 1034: 1033: 1027: 1026:Space Shuttle 1022: 1018: 1014: 1009: 1005: 1003: 994: 990: 986: 981: 976: 966: 963: 961: 957: 954: 950: 946: 942: 938: 934: 930: 926: 921: 919: 915: 911: 907: 903: 899: 895: 891: 887: 877: 875: 871: 867: 863: 853: 849: 843: 839: 838: 834: 831: 827: 823: 820: 819: 818: 810: 807: 803: 800:In 2017, the 798: 790: 786: 784: 777: 773: 769: 764: 761:1 GeV – 1 TeV 758: 754: 751: 747: 738: 734: 732: 728: 724: 720: 716: 712: 708: 698: 696: 692: 688: 678: 670: 668: 664: 660: 656: 652: 648: 644: 640: 639:Auger Project 636: 632: 628: 624: 620: 616: 606: 604: 600: 596: 592: 590: 586: 582: 581:Sergei Vernov 577: 575: 570: 565: 562: 558: 553: 548: 545: 541: 536: 532: 528: 524: 519: 515: 510: 507: 502: 500: 499:Erich Regener 493: 491: 478: 474: 472: 463: 459: 457: 452: 448: 443: 440: 436: 435: 430: 426: 423:developed an 422: 413: 404: 401: 397: 393: 389: 385: 381: 380:radioactivity 371: 369: 361: 357: 353: 349: 345: 337: 333: 329: 325: 317: 313: 305: 294: 290: 288: 284: 280: 276: 272: 267: 265: 261: 257: 253: 249: 245: 241: 237: 236:beta particle 226: 224: 223:photon energy 220: 219: 214: 213: 208: 204: 200: 196: 192: 188: 184: 180: 176: 166: 164: 160: 157: 153: 149: 145: 141: 135: 133: 129: 124: 122: 118: 117:magnetosphere 114: 110: 106: 102: 98: 94: 90: 86: 85:atomic nuclei 82: 78: 74: 70: 61: 54: 49: 45: 41: 37: 33: 19: 9353:Solar System 9234: 9217:Spectroscopy 9105: 9071:Astrobiology 8924:Formaldehyde 8816:Benzonitrile 8607:Acetaldehyde 8562:Methanethiol 8513:Acetonitrile 8418:Carbodiimide 8297:Formaldehyde 8292:Cyanoethynyl 8143:Iron cyanide 8138:Hydroperoxyl 7939:Nitric oxide 7773:Radiobiology 7655:Radiobiology 7615:Laser safety 7444: 7240: 7234: 7206: 7202: 7185: 7181: 7163: 7113: 7109: 7077: 7073: 7058: 7034: 6990: 6987:Phys. Rev. D 6986: 6961: 6957: 6923:. Springer. 6920: 6876: 6872: 6865: 6814: 6810: 6804: 6761: 6758:Astrobiology 6757: 6751: 6724: 6720: 6706: 6679: 6675: 6665: 6657: 6652:Peter Laut, 6648: 6636:. Retrieved 6626: 6614:. Retrieved 6610:the original 6605: 6595: 6553: 6547: 6534: 6522:. Retrieved 6508: 6499: 6490: 6447: 6444:Paleobiology 6443: 6437: 6429:the original 6424: 6415: 6388: 6384: 6374: 6341: 6337: 6331: 6323: 6315: 6306: 6297: 6280: 6268:. Retrieved 6264:the original 6260:Science News 6259: 6249: 6237:. Retrieved 6231: 6177: 6173: 6130: 6126: 6105:. Retrieved 6101: 6091: 6079:. Retrieved 6075:the original 6070: 6060: 6048:. Retrieved 5994: 5990: 5979: 5967:. Retrieved 5963: 5954: 5942:. Retrieved 5938: 5929: 5910: 5902: 5894: 5872: 5864: 5852: 5832: 5812: 5792: 5777: 5764: 5752:. Retrieved 5745:the original 5732: 5720:. Retrieved 5716:the original 5700: 5690: 5647: 5643: 5637: 5625:. Retrieved 5621:the original 5616: 5607: 5598: 5589: 5580: 5571: 5553: 5535: 5527:Ars Technica 5526: 5516: 5491: 5487: 5481: 5469:. Retrieved 5442: 5430:. Retrieved 5423:the original 5410: 5397: 5391: 5372: 5362: 5337: 5331: 5324: 5312:. Retrieved 5308:the original 5303: 5294: 5282:. Retrieved 5278:the original 5273: 5264: 5252:. Retrieved 5248:the original 5234: 5207: 5201: 5189:. Retrieved 5175: 5159:2078.1/72661 5134: 5130: 5123: 5080: 5076: 5070: 5028: 5024: 5011: 5001:21 September 4999:. Retrieved 4987: 4975: 4951:1721.1/90426 4916: 4912: 4902: 4860: 4856: 4843: 4826: 4822: 4815: 4803:. Retrieved 4799:the original 4784: 4733: 4729: 4722: 4710:. Retrieved 4705:The Guardian 4703: 4693: 4634: 4630: 4624: 4612:. Retrieved 4607: 4594: 4582:. Retrieved 4575:the original 4570: 4557: 4545:. Retrieved 4538:the original 4533: 4520: 4508:. Retrieved 4503: 4493: 4468: 4464: 4458: 4433: 4429: 4423: 4370: 4366: 4356: 4329: 4325: 4315: 4297: 4272: 4268: 4262: 4237: 4233: 4227: 4185: 4181: 4168: 4135: 4131: 4125: 4101: 4094: 4069: 4065: 4059: 4050: 4046: 4040: 4015: 4011: 4005: 3980: 3976: 3970: 3945: 3941: 3935: 3910: 3906: 3900: 3875: 3871: 3865: 3840: 3836: 3830: 3797: 3793: 3787: 3771: 3767: 3754: 3730:(819): 331. 3727: 3723: 3713: 3694: 3688: 3676:. Retrieved 3662: 3650:. Retrieved 3633: 3624: 3620: 3610: 3604:: 1153–1156. 3601: 3597: 3587: 3568: 3564: 3555: 3512: 3506: 3464: 3458: 3452: 3443: 3439: 3429: 3409: 3402: 3382: 3375: 3363:. Retrieved 3356:HyperPhysics 3355: 3345: 3302: 3296: 3290: 3282:the original 3277: 3267: 3255:. Retrieved 3237: 3225:. Retrieved 3221: 3211: 3199: 3164: 3160: 3150: 3138:. Retrieved 3124: 3112:. Retrieved 3104: 3095: 3056: 3046: 3038:the original 3024:. Retrieved 3020:the original 2995:. Retrieved 2991:the original 2980: 2921: 2917: 2911: 2860: 2854: 2848: 2775: 2769: 2741: 2731: 2719:. Retrieved 2690:. Retrieved 2685: 2676: 2657: 2651: 2489: 2483: 2438: 2293:Ground-based 2288: 2270: 2244: 2216: 2200: 2187:polar routes 2176: 2173:(2011–2013). 2133: 2122: 2119: 2093: 2082: 2028: 2008: 1984: 1960: 1849: 1654: 1645:(10.7 years) 1582:Beryllium-10 1534: 1520: 1506: 1502: 1486: 1467: 1455: 1438: 1434: 1421: 1389: 1382: 1373: 1344: 1340: 1213: 1198: 1174: 1157: 1130: 1107: 1040: 1031: 1020: 1016: 1010: 1006: 998:275 ± 32 GeV 988: 982: 978: 964: 922: 886:Solar System 883: 858: 847: 835: 829: 825: 821: 816: 799: 795: 775: 765: 750:radio galaxy 743: 714: 704: 684: 671: 647:James Cronin 618: 614: 612: 593: 578: 574:Pierre Auger 566: 549: 513: 511: 504: 495: 488: 468: 451:free balloon 444: 432: 429:Eiffel Tower 425:electrometer 421:Theodor Wulf 418: 377: 348:OMG particle 300: 291: 268: 232: 216: 210: 191:cathode rays 174: 172: 159:TXS 0506+056 136: 125: 97:Solar System 72: 68: 67: 44: 9381:Cosmic rays 9341:Spaceflight 9317:Mathematics 9191:Outer space 9101:Cosmic dust 9066:Abiogenesis 8978:Unconfirmed 8934:Heavy water 8774:Ethanethiol 8689:Cyanoallene 8679:Acetic acid 8649:Methylamine 8533:Diacetylene 8448:Formic acid 8438:Cyanomethyl 8096:Diazenylium 8086:CCP radical 7962:(molecular) 7946:(molecular) 7915:(molecular) 7397:Ultraviolet 7392:Radio waves 7164:Cosmic Rays 7059:Cosmic Rays 6711:Sloan, T.; 6638:13 November 6326:, May 2005. 6107:24 February 6081:24 February 6050:7 September 5969:7 September 5944:7 September 5754:11 February 5627:22 February 5599:EurekAlert! 5471:23 February 5432:23 February 5270:"How many?" 5191:11 February 4805:26 December 3695:Cosmic Rays 3678:11 February 3652:11 February 3365:17 February 3227:17 February 3140:14 December 2997:11 December 2721:27 February 2692:26 December 2129:flipped bit 2085:Airbus A330 2058:transistors 2056:, but with 2050:electronics 2046:soft errors 1799:Terrestrial 1628:Chlorine-36 1615:(14.3 days) 1019:designated 1004:particles. 1002:dark matter 753:Centaurus A 719:Crab Nebula 687:solar cycle 655:Alan Watson 619:fast timing 585:radiosondes 552:Bruno Rossi 490:Bruno Rossi 447:Victor Hess 260:antiprotons 229:Composition 179:optical ray 128:Victor Hess 121:heliosphere 69:Cosmic rays 9375:Categories 9106:Cosmic ray 9048:Silylidyne 9011:Hemolithin 8986:Anthracene 8903:Deuterated 8884:Pyrimidine 8694:Ethanimine 8557:Ketenimine 8413:Butadiynyl 8237:Thioformyl 8091:Chloronium 7578:and health 7576:Radiation 7445:Cosmic ray 6771:1712.09367 6616:11 January 6004:2001.09190 5782:Japan NIRS 5722:28 October 4926:1701.07305 4829:(11): L9. 4743:1709.07321 4669:2108/55474 4436:(4): 489. 3843:(3): 606. 3668:Hess, V.F. 3639:Hess, V.F. 3627:: 719–721. 3578:1808.02927 3561:Hess, V.F. 3446:: 811–813. 3068:1711.11432 3026:31 October 2931:1807.08794 2870:1603.07730 2643:References 2283:See also: 2265:See also: 2240:Ordovician 2078:ECC memory 2054:satellites 2031:electronic 2023:See also: 1873:Artificial 1790:, C, etc.) 1697:Princeton 1689:Radiation 1643:Krypton-85 1555:spallation 1553:(stable): 1551:Hydrogen-1 1525:, such as 1474:smartphone 1411:ionization 1317:(100  1193:heliopause 1177:solar wind 1013:antihelium 973:See also: 868:, such as 806:anisotropy 723:supernovae 691:solar wind 681:Modulation 544:Kolhörster 535:Jacob Clay 514:cosmic ray 388:ionization 254:, such as 252:antimatter 212:gamma rays 199:alpha rays 195:canal rays 152:gamma rays 9038:Phosphine 8906:molecules 8839:fullerene 8739:Acetamide 8543:Formamide 8423:Cyanamide 8277:Acetylene 8252:Tricarbon 8163:Methylene 8148:Isoformyl 8053:Triatomic 7826:Molecules 7732:Half-life 7605:Dosimetry 7440:Gamma ray 7387:Microwave 7377:Starlight 7338:Radiation 7250:1012.5068 7110:Phys. Rev 6958:Phys. Rev 6566:CiteSeerX 6500:Space.com 6457:0809.0899 6045:210920566 6029:1476-4687 5682:119237295 5657:1103.0031 5304:Auger.org 5284:17 August 5274:Auger.org 5167:122726107 4644:1103.4055 4608:Space.com 4254:121904361 4212:1364-5021 3822:123901197 3547:118487938 3522:1002.1810 3499:118487938 3474:1002.1810 3337:119407673 3257:9 October 3135:Vox Media 2972:133261745 2956:0036-8075 2785:1302.3307 2491:Voyager 2 2485:Voyager 1 2422:Satellite 2203:lightning 2189:near the 2183:sea level 2124:Voyager 2 2098:times of 2096:coherence 1992:0 to tens 1968:0 to tens 1700:Wa State 1588:Carbon-14 1527:carbon-14 1291:(10  1205:longitude 1118:molecules 1032:Discovery 953:manganese 929:beryllium 902:beryllium 890:Milky Way 870:electrons 697:network. 550:In 1930, 523:electrons 445:In 1912, 419:In 1909, 407:Discovery 396:radiation 354:(56  283:neutrinos 256:positrons 203:beta rays 173:The term 169:Etymology 161:in 2018, 148:neutrinos 144:supernova 113:deflected 9025:Linear C 9006:Graphene 8918:Ammonium 8719:Acrolein 8582:Propynal 8567:Methanol 8538:Ethylene 8407:Ammonium 8182:Nitroxyl 8006:Sulfanyl 7950:Imidogen 7944:Nitrogen 7913:Hydrogen 7858:Argonium 7835:Diatomic 7382:Sunlight 7367:Infrared 6901:27127953 6857:41229823 6849:11863949 6796:33930965 6788:30481053 6606:Discover 6584:Archived 6519:Discover 6482:11942132 6202:23723233 6155:23723213 6037:32848227 5964:phys.org 5918:Archived 5903:BBC News 5841:Archived 5821:Archived 5801:Archived 5768:UNSCEAR 5561:Archived 5543:Archived 5462:Archived 5460:. 2006. 5254:19 April 5059:Archived 5055:25166975 4992:Archived 4959:25279617 4891:Archived 4887:25279616 4768:28935800 4712:21 March 4677:21385721 4614:20 March 4584:17 March 4547:17 March 4510:17 March 4415:16587882 4322:"(none)" 4307:Archived 4216:Archived 4114:Archived 3776:Archived 3670:(1936). 3641:(1936). 3191:32975102 3114:23 March 3087:85540966 2964:30002248 2895:26982725 2818:29815601 2810:23413352 2551:See also 2535:Archived 2390:QuarkNet 2370:MARIACHI 2330:GRAPES-3 2273:Pliocene 1961:Subtotal 1882:0.03–2.0 1857:1.0–13.0 1850:Subtotal 1767:Internal 1745:0.2–10.0 1567:Helium-4 1561:Helium-3 1201:latitude 1126:neutrons 1078:detector 1045:1.1 × 10 949:vanadium 945:titanium 941:scandium 914:HZE ions 667:Big Bang 366:10  342:10  334:. At 50 322:10  248:HZE ions 9365:Science 9305:Physics 9291:Portals 9171:Kerogen 9058:Related 9001:Glycine 8954:Propyne 8913:Ammonia 8811:Benzene 8806:Acetone 8798:or more 8769:Propene 8754:Ethanol 8644:Propyne 8463:Methane 8332:Ketenyl 8282:Ammonia 7593:chronic 7275:7635998 7255:Bibcode 7211:Bibcode 7190:Bibcode 7118:Bibcode 7082:Bibcode 7005:Bibcode 6966:Bibcode 6881:Bibcode 6829:Bibcode 6729:Bibcode 6684:Bibcode 6558:Bibcode 6462:Bibcode 6393:Bibcode 6366:4157226 6346:Bibcode 6291:YouTube 6270:12 July 6182:Bibcode 6174:Science 6135:Bibcode 6127:Science 6009:Bibcode 5662:Bibcode 5577:"CREDO" 5496:Bibcode 5342:Bibcode 5314:15 July 5212:Bibcode 5139:Bibcode 5115:5863020 5095:Bibcode 5033:Bibcode 4967:2585508 4931:Bibcode 4865:Bibcode 4831:Bibcode 4776:3679232 4748:Bibcode 4730:Science 4685:1234739 4649:Bibcode 4631:Science 4473:Bibcode 4438:Bibcode 4406:1076396 4375:Bibcode 4334:Bibcode 4332:: 341. 4277:Bibcode 4190:Bibcode 4160:4132258 4140:Bibcode 4074:Bibcode 4020:Bibcode 3985:Bibcode 3950:Bibcode 3915:Bibcode 3880:Bibcode 3845:Bibcode 3802:Bibcode 3732:Bibcode 3527:Bibcode 3479:Bibcode 3317:Bibcode 3182:7968484 2936:Bibcode 2918:Science 2903:4461199 2875:Bibcode 2790:Bibcode 2771:Science 2527:PERDaix 2518:(CREAM) 2410:VERITAS 2375:Milagro 2360:KASCADE 2355:IceCube 2238:of the 2169:on the 2146:on the 1921:) with 1898:Fallout 1876:Medical 1830:0.3–1.0 1805:0.3–1.0 1773:0.2–1.0 1736:Natural 1719:average 1706:Remark 1693:UNSCEAR 1573:Tritium 1512:Effects 1368:VERITAS 1051:ratio. 925:lithium 898:lithium 866:leptons 862:hadrons 727:quasars 701:Sources 657:of the 390:of the 374:History 287:neutron 240:protons 207:photons 177:(as in 119:or the 109:surface 81:protons 51:Cosmic 9222:Tholin 9043:Pyrene 8488:Silane 8458:Ketene 7960:Oxygen 7775:, and 7273:  7188:: 98. 7173:  7156:  7146:  7065:  7051:  7041:  7027:  6935:  6899:  6855:  6847:  6794:  6786:  6568:  6524:7 July 6480:  6364:  6338:Nature 6239:31 May 6210:604569 6208:  6200:  6153:  6043:  6035:  6027:  5991:Nature 5708:  5680:  5379:  5222:  5165:  5113:  5053:  4965:  4957:  4885:  4774:  4766:  4683:  4675:  4413:  4403:  4395:  4252:  4210:  4158:  4132:Nature 3820:  3701:  3545:  3497:  3417:  3390:  3335:  3278:COSMOS 3189:  3179:  3085:  2970:  2962:  2954:  2901:  2893:  2856:Nature 2816:  2808:  2748:  2664:  2474:PAMELA 2459:HEAO 3 2455:HEAO 2 2451:HEAO 1 2310:CHICOS 2228:cancer 2100:qubits 1936:0.0052 1933:Others 1824:Cosmic 1731:Japan 1714:Source 1674:  1669:  1665:  1661:  1657:  1500:time. 1398:, and 1207:, and 1179:, the 1133:mesons 1122:x-rays 1041:AMS-01 1037:STS-91 1021:AMS-01 1017:AMS-02 989:AMS-02 951:, and 931:, and 910:helium 904:, and 864:, and 828:) and 780:  772:PAMELA 729:, and 715:et al. 707:Zwicky 674:  653:, and 643:Pampas 336:joules 297:Energy 285:. The 218:X-rays 201:, and 156:blazar 9329:Stars 9208:(PAH) 8796:atoms 8731:atoms 8671:atoms 8669:Eight 8599:atoms 8597:Seven 8505:atoms 8399:atoms 8269:atoms 8257:Water 8187:Ozone 8129:(HNC) 8123:(HCN) 7588:acute 7485:X-ray 7372:Light 7271:S2CID 7245:arXiv 7106:(PDF) 6995:arXiv 6954:(PDF) 6853:S2CID 6819:arXiv 6792:S2CID 6766:arXiv 6587:(PDF) 6544:(PDF) 6478:S2CID 6452:arXiv 6362:S2CID 6206:S2CID 6041:S2CID 5999:arXiv 5859:. In 5748:(PDF) 5741:(PDF) 5678:S2CID 5652:arXiv 5465:(PDF) 5451:(PDF) 5426:(PDF) 5419:(PDF) 5163:S2CID 5111:S2CID 5085:arXiv 5062:(PDF) 5021:(PDF) 4995:(PDF) 4984:(PDF) 4963:S2CID 4921:arXiv 4894:(PDF) 4853:(PDF) 4772:S2CID 4738:arXiv 4681:S2CID 4639:arXiv 4578:(PDF) 4567:(PDF) 4541:(PDF) 4530:(PDF) 4397:86841 4393:JSTOR 4250:S2CID 4219:(PDF) 4178:(PDF) 4156:S2CID 4117:(PDF) 4106:(PDF) 3818:S2CID 3779:(PDF) 3764:(PDF) 3573:arXiv 3543:S2CID 3517:arXiv 3495:S2CID 3469:arXiv 3333:S2CID 3307:arXiv 3203:CERN 3083:S2CID 3063:arXiv 2968:S2CID 2926:arXiv 2899:S2CID 2865:arXiv 2814:S2CID 2780:arXiv 2635:UHECR 2532:TIGER 2365:MAGIC 2340:HEGRA 2325:GAMMA 2320:CRIPT 2315:CLOUD 2152:Earth 1985:Total 1977:2.311 1948:0.001 1901:0.007 1717:World 1703:MEXT 1407:Lexan 1151:, or 1137:kaons 1114:atoms 1029: 933:boron 906:boron 874:pions 813:Types 776:Fermi 557:muons 540:Bothe 400:radon 314:, 14 279:pions 275:muons 271:pions 154:from 8729:Nine 8397:Five 8307:HCCN 8267:Four 8227:SiNC 7171:ISBN 7154:ISBN 7144:ISBN 7063:ISBN 7049:ISBN 7039:ISBN 7025:ISBN 6933:ISBN 6897:PMID 6845:PMID 6784:PMID 6640:2013 6618:2018 6526:2013 6272:2017 6241:2013 6198:PMID 6151:PMID 6109:2013 6083:2013 6052:2020 6033:PMID 6025:ISSN 5971:2020 5946:2020 5756:2010 5724:2011 5706:ISBN 5629:2013 5473:2013 5434:2013 5377:ISBN 5316:2015 5286:2012 5256:2012 5220:ISBN 5193:2010 5185:GSFC 5051:PMID 5003:2014 4955:PMID 4883:PMID 4807:2012 4764:PMID 4714:2013 4673:PMID 4616:2013 4586:2013 4549:2013 4512:2013 4411:PMID 4208:ISSN 3699:ISBN 3680:2010 3654:2010 3415:ISBN 3388:ISBN 3367:2013 3259:2022 3229:2013 3187:PMID 3142:2022 3116:2019 3028:2012 2999:2012 2960:PMID 2952:ISSN 2891:PMID 2806:PMID 2746:ISBN 2723:2013 2694:2017 2662:ISBN 2511:BESS 2488:and 2380:NMDB 2335:HAWC 2230:and 2156:Mars 2042:CPUs 2001:3.81 1998:3.61 1995:6.20 1989:3.00 1974:0.66 1971:3.25 1945:0.13 1942:0.25 1939:0–20 1913:0.01 1904:0–1+ 1891:2.30 1888:0.53 1885:3.00 1879:0.60 1866:1.50 1863:2.95 1860:2.95 1854:2.40 1839:0.30 1836:0.26 1833:0.31 1827:0.39 1814:0.40 1811:0.29 1808:0.19 1802:0.48 1782:0.40 1779:0.40 1776:0.16 1770:0.29 1754:0.40 1751:2.00 1748:2.29 1742:1.26 1711:Type 1470:CMOS 1366:The 1116:and 1072:Moon 1070:The 1049:flux 956:ions 685:The 617:and 542:and 531:Java 362:(4.8 338:(3.1 318:(1.4 273:and 150:and 138:the 75:are 53:flux 34:and 9020:NCO 8920:ion 8827:, C 8794:Ten 8503:Six 8409:ion 7263:doi 7219:doi 7207:191 7186:424 7126:doi 7090:doi 7013:doi 6974:doi 6925:doi 6889:doi 6877:116 6837:doi 6776:doi 6737:doi 6692:doi 6576:doi 6470:doi 6401:doi 6354:doi 6342:183 6289:on 6190:doi 6178:340 6143:doi 6131:340 6017:doi 5995:584 5670:doi 5504:doi 5350:doi 5338:234 5155:hdl 5147:doi 5135:366 5103:doi 5081:565 5041:doi 5029:110 4947:hdl 4939:doi 4917:113 4873:doi 4861:113 4827:102 4756:doi 4734:357 4665:hdl 4657:doi 4635:332 4481:doi 4446:doi 4401:PMC 4383:doi 4342:doi 4330:177 4285:doi 4273:122 4242:doi 4198:doi 4186:159 4148:doi 4136:135 4082:doi 4028:doi 3993:doi 3958:doi 3923:doi 3888:doi 3853:doi 3810:doi 3740:doi 3728:132 3535:doi 3487:doi 3325:doi 3177:PMC 3169:doi 3073:doi 2944:doi 2922:361 2883:doi 2861:531 2798:doi 2776:339 2171:MSL 2167:RAD 2154:to 2144:RAD 2066:RAM 2062:IBM 1965:0.6 1739:Air 1672:2.2 1478:app 1385:ISS 1319:EeV 1293:PeV 1274:TeV 1249:GeV 1035:on 826:GCR 757:erg 621:of 392:air 382:by 370:). 356:mph 344:GeV 330:in 258:or 215:or 175:ray 93:Sun 83:or 71:or 9377:: 8837:70 8829:60 8825:60 8823:(C 8548:HC 7771:, 7767:, 7269:. 7261:. 7253:. 7241:35 7239:. 7217:. 7205:. 7184:. 7124:. 7114:51 7112:. 7108:. 7088:. 7078:83 7076:. 7011:. 7003:. 6991:62 6989:. 6972:. 6962:50 6960:. 6956:. 6931:. 6895:. 6887:. 6875:. 6851:. 6843:. 6835:. 6827:. 6815:88 6813:. 6790:. 6782:. 6774:. 6762:19 6760:. 6735:. 6723:. 6719:. 6690:. 6680:33 6678:. 6674:. 6656:, 6604:. 6582:. 6574:. 6564:. 6554:81 6552:. 6546:. 6517:. 6498:. 6476:. 6468:. 6460:. 6448:35 6446:. 6423:. 6399:. 6389:56 6387:. 6383:. 6360:. 6352:. 6340:. 6322:, 6305:. 6258:. 6230:. 6218:^ 6204:. 6196:. 6188:. 6176:. 6163:^ 6149:. 6141:. 6129:. 6117:^ 6100:. 6069:. 6039:. 6031:. 6023:. 6015:. 6007:. 5993:. 5989:. 5962:. 5937:. 5901:. 5884:. 5863:, 5676:. 5668:. 5660:. 5648:83 5646:. 5615:. 5597:. 5579:. 5525:. 5502:. 5492:24 5490:. 5453:. 5400:. 5348:. 5336:. 5302:. 5272:. 5242:. 5218:. 5183:. 5161:. 5153:. 5145:. 5133:. 5109:. 5101:. 5093:. 5079:. 5057:. 5049:. 5039:. 5027:. 5023:. 4990:. 4986:. 4961:. 4953:. 4945:. 4937:. 4929:. 4915:. 4911:. 4889:. 4881:. 4871:. 4859:. 4855:. 4825:. 4793:. 4770:. 4762:. 4754:. 4746:. 4732:. 4702:. 4679:. 4671:. 4663:. 4655:. 4647:. 4633:. 4606:. 4569:. 4532:. 4502:. 4479:. 4469:83 4467:. 4444:. 4434:74 4432:. 4409:. 4399:. 4391:. 4381:. 4371:20 4369:. 4365:. 4340:. 4328:. 4324:. 4283:. 4271:. 4248:. 4238:37 4236:. 4214:. 4206:. 4196:. 4184:. 4180:. 4154:. 4146:. 4134:. 4112:. 4080:, 4070:11 4068:, 4049:. 4026:. 4016:74 4014:. 3991:. 3981:74 3979:. 3956:. 3946:45 3944:. 3921:. 3911:43 3909:. 3886:. 3876:43 3874:. 3851:. 3841:36 3839:. 3816:. 3808:. 3798:56 3796:. 3772:30 3770:. 3766:. 3738:. 3726:. 3722:. 3645:. 3625:16 3602:14 3569:13 3541:. 3533:. 3525:. 3511:. 3493:. 3485:. 3477:. 3463:. 3444:11 3358:. 3331:. 3323:. 3315:. 3303:18 3301:. 3276:. 3245:. 3220:. 3185:. 3175:. 3165:71 3163:. 3159:. 3133:. 3081:. 3071:. 3055:. 3007:^ 2966:. 2958:. 2950:. 2942:. 2934:. 2920:. 2897:. 2889:. 2881:. 2873:. 2859:. 2826:^ 2812:. 2804:. 2796:. 2788:. 2774:. 2760:^ 2740:. 2702:^ 2684:. 2457:, 2453:, 2242:. 1728:US 1725:US 1684:) 1540:. 1427:. 1404:mm 1329:10 1321:) 1315:10 1303:10 1295:) 1289:10 1279:1 1276:) 1270:10 1259:10 1251:) 1245:10 1232:) 1230:eV 1211:. 1203:, 1185:AU 1147:, 1143:, 962:. 947:, 943:, 927:, 900:, 733:. 324:eV 225:. 197:, 193:, 134:. 123:. 9293:: 9027:5 9018:2 9016:H 8963:D 8961:2 8959:N 8835:C 8552:N 8550:4 8172:H 8170:2 8168:N 7810:e 7803:t 7796:v 7330:e 7323:t 7316:v 7297:. 7277:. 7265:: 7257:: 7247:: 7225:. 7221:: 7213:: 7196:. 7192:: 7132:. 7128:: 7120:: 7096:. 7092:: 7084:: 7019:. 7015:: 7007:: 6997:: 6980:. 6976:: 6968:: 6941:. 6927:: 6903:. 6891:: 6883:: 6859:. 6839:: 6831:: 6821:: 6798:. 6778:: 6768:: 6745:. 6739:: 6731:: 6725:8 6700:. 6694:: 6686:: 6642:. 6620:. 6578:: 6560:: 6528:. 6484:. 6472:: 6464:: 6454:: 6409:. 6403:: 6395:: 6368:. 6356:: 6348:: 6309:. 6274:. 6243:. 6212:. 6192:: 6184:: 6157:. 6145:: 6137:: 6111:. 6085:. 6054:. 6019:: 6011:: 6001:: 5973:. 5948:. 5888:. 5758:. 5726:. 5684:. 5672:: 5664:: 5654:: 5631:. 5601:. 5583:. 5529:. 5510:. 5506:: 5498:: 5475:. 5436:. 5404:. 5385:. 5356:. 5352:: 5344:: 5318:. 5288:. 5258:. 5228:. 5214:: 5195:. 5169:. 5157:: 5149:: 5141:: 5117:. 5105:: 5097:: 5087:: 5043:: 5035:: 5005:. 4969:. 4949:: 4941:: 4933:: 4923:: 4875:: 4867:: 4837:. 4833:: 4809:. 4778:. 4758:: 4750:: 4740:: 4716:. 4687:. 4667:: 4659:: 4651:: 4641:: 4618:. 4588:. 4551:. 4514:. 4487:. 4483:: 4475:: 4452:. 4448:: 4440:: 4417:. 4385:: 4377:: 4350:. 4344:: 4336:: 4291:. 4287:: 4279:: 4256:. 4244:: 4200:: 4192:: 4162:. 4150:: 4142:: 4088:. 4084:: 4076:: 4051:5 4034:. 4030:: 4022:: 3999:. 3995:: 3987:: 3964:. 3960:: 3952:: 3929:. 3925:: 3917:: 3894:. 3890:: 3882:: 3859:. 3855:: 3847:: 3824:. 3812:: 3804:: 3748:. 3742:: 3734:: 3707:. 3682:. 3656:. 3581:. 3575:: 3549:. 3537:: 3529:: 3519:: 3513:3 3501:. 3489:: 3481:: 3471:: 3465:3 3423:. 3396:. 3369:. 3339:. 3327:: 3319:: 3309:: 3261:. 3231:. 3193:. 3171:: 3144:. 3118:. 3089:. 3075:: 3065:: 3030:. 3001:. 2974:. 2946:: 2938:: 2928:: 2905:. 2885:: 2877:: 2867:: 2842:. 2820:. 2800:: 2792:: 2782:: 2754:. 2725:. 2696:. 2670:. 2633:( 1910:– 1907:– 1788:K 1594:) 1327:× 1325:1 1313:× 1311:1 1301:× 1299:1 1287:× 1285:1 1272:( 1268:× 1266:1 1257:× 1255:1 1247:( 1243:× 1241:1 987:( 844:. 824:( 783:J 368:J 364:× 340:× 320:× 42:. 20:)

Index

Cosmic radiation
Cosmic background radiation
Cosmic background (disambiguation)
Cosmic Ray (film)

flux

high-energy particles
protons
atomic nuclei
speed of light
Sun
Solar System
Earth's atmosphere
showers of secondary particles
surface
deflected
magnetosphere
heliosphere
Victor Hess
Nobel Prize in Physics
Fermi Space Telescope
supernova
neutrinos
gamma rays
blazar
TXS 0506+056
active galactic nuclei
optical ray
electromagnetic radiation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.