Knowledge

Cluster of Excellence Frankfurt Macromolecular Complexes

Source đź“ť

1483:
biomolecular processes over a broad resolution range, from quantum mechanics to chemical kinetics, from atomistic descriptions of physical processes and chemical reactions in molecular dynamics (MD) simulations to highly coarse-grained models of the non-equilibrium operation of molecular machines and network descriptions of protein interactions. Their goal is to develop detailed and quantitative descriptions of key biomolecular processes, including energy conversion, molecular transport, signal transduction, and enzymatic catalysis. Within CEF, they worked in close collaboration with experimental scientists who employ a wide variety of methods. Their computational and theoretical studies aided in the interpretation of increasingly complex measurements, and guided the design of future experiments. The interdisciplinary field of bioinformatics opened new perspectives on molecular processes and cellular function. CEF scientists used custom-tailored code and pipelines for fast and efficient analysis of omics data, with a primary focus on protein-RNA interactions and posttranscriptional regulation. They also develops algorithms to solve problems in molecular biology, ranging from atomic protein structure analysis to computational systems biology. Their tools leverage on graph theory, Petri nets and Boolean networks with broad applications within CEF. Their collaborations cover diverse topics from plant metabolomics, to human signal transduction networks and the dissection of the macromolecular complexome.
1387:. PELDOR spectroscopy proved to be a versatile tool for structural investigations of proteins, even in the cellular environment. In order to investigate for example the structural implications of the asymmetric nucleotide-binding domains and the trans-inhibition mechanism in TAP orthologs, spin-label pairs were introduced via double cysteine mutants at the nucleotide-binding domains and transmembrane domains in TmrAB (a functional homologue of the human antigen translocation complex TAP) and the conformational changes and the equilibrium populations followed using PELDOR spectroscopy. This study defined the mechanistic basis for trans-inhibition, which operates by a reverse transition from the outward-facing state through an occluded conformation. The results uncovered the central role of reversible conformational equilibrium in the function and regulation of an ABC exporter and established a mechanistic framework for future investigations on other medically important transporters with imprinted asymmetry. The study also demonstrated for the first-time the feasibility to resolve equilibrium populations at multiple domains and their interdependence for global conformational changes in a large membrane protein complex. 1264:
large amount of data produced by advanced light microscopy has made automated image analysis a necessity and CEF has contributed to improved data processing and modelling of advanced light microscopy data. Other novel light microscopy techniques used by CEF scientists include techniques that provide single-molecule sensitivity and a spatial resolution below the diffraction limit to study the structural organization of biomolecules in cells. Software tools developed by CEF scientists include for example SuReSim, a software developed in collaboration with Heidelberg University, that simulates localization data of arbitrary three-dimensional structures represented by ground truth models, allowing users to systematically explore how changing experimental parameters can affect potential imaging outcomes. Using the newly developed techniques, CEF scientists were able to establish the role of the linear
559:, also known as p63, has shown that this protein plays essential roles both for the proliferation and differentiation of stratified epithelial tissues as well as for the surveillance of the genetic quality in female germ cells. Investigations by CEF scientists showed that a specific isoform of p63 is highly expressed in primordial oocytes which are arrested in prophase of meiosis I. This isoform adopts a closed, inactive and only dimeric conformation in which both, the interaction with the DNA as well as with the transcriptional machinery is significantly reduced The inhibition is achieved by blocking the tetramerization interface of the oligomerization domain with a six-stranded anti-parallel beta-sheet. Activation requires phosphorylation and follows a spring-loaded, irreversible activation mechanism. These discoveries open the possibility to develop a therapy for preserving oocytes during 1470:
optical switches, natural and non-natural photosynthetic model systems and membrane protein complexes. Fundamental processes in molecular physical chemistry were investigated, such as photoisomerization, energy and electron transfer and reaction dynamics at surfaces. Modern methods in quantum optics for the generation of appropriately shaped and tunable femtosecond pulses in the visible and infrared spectral range were employed and further developed. Examples of these studies include the investigation and deciphering of the dynamics of photoswitchable or photolabile compounds as basis for the design of photoresponsive biomacromolecules, of the primary reaction dynamics of channelrhodopsin-2 (ChR2) and of the conformational dynamics of antibiotic-binding aptamers:
393:, cytochrome cbb3 oxidase, cytochrome bd oxidase, a sulfide:quinone oxidoreductase, a fungal TOM core complex, a bacterial double-pore K+ uptake system KtrAB, the Na+-independent carnitine/butyrobetaine antiporter CaiT, the betaine/Na+ symporter BetP, the multidrug efflux transporter AcrB and the chaperone and editing TAPBPR–MHC I complex and the human MHC-I peptide-loading complex. Antigenic peptide recognition on TAP was resolved by DNP-enhanced solid-state NMR spectroscopy. The conformational coupling and trans-inhibition in the human antigen transporter ortholog TmrAB was resolved with the aid of dipolar EPR spectroscopy. The progress in 3D structure determination of membrane proteins by 398:
solid-state (MAS) NMR enables bridging the gap between 'static' structures and biochemical data by probing membrane proteins directly within the bilayer environment. Such experiments are challenging and breakthroughs could only be achieved thanks to the availability of dynamic nuclear polarization for sensitivity enhancement and very high magnetic fields for spectral resolution. CEF scientists were able to provide new insights into the catalytic mechanism of ABC transporters. Based on real-time 31P-MAS-NMR they found that the homodimeric lipid A
373:. In the crowded conditions of the cell membrane, most membrane proteins associate into complex dynamic assemblies to carry out their various tasks. For this reason, and because they are embedded in the lipid bilayer of the membrane, most membrane proteins are difficult to study and their functions have often been intractable. CEF scientists have done groundbreaking work to overcome some of these challenges and made major contributions to elucidating the structure, mechanisms and regulation of a number of important large complexes, including 567:. CEF scientists also helped to identify the molecular mechanism causing ankyloblepharon-ectodermal dysplasia-cleft lip/palate syndrome, a disease characterized by skin erosions, oral clefting abnormalities and fused eyelids, which is based on mutations in the SAM domain or in the C-terminus of p63. Complexes involved in tumorigenesis were studied by several CEF groups, including the leukemogenic AF4-MLL fusion protein and RIP1-containing cytosolic complexes that are critical for the initiation and fine-tuning of different forms of 850:. Local maturation of the miRNA was found to be associated with a local reduction in protein synthesis, showing that localized miRNA maturation can modulate target gene expression with local and temporal precision. LncRNA Meg3 was found to control endothelial cell aging and its inhibition may serve as a potential therapeutic strategy to rescue aging-mediated impairment of endothelial cell function. LncRNA MALAT1 was found to regulate endothelial cell function and vessel growth. and protects against atherosclerosis by regulating 590:(SGC) in 2017, an international consortium and public-private partnership dedicated to the determination of structures of important proteins and the development of inhibitors and probes for biological macromolecules to be used in functional investigations. Goethe University has also become the home and reference center for the SGC's donated probes programme, that makes small molecules no longer being further pursued by industry as drug targets freely available to researchers worldwide). CEF scientists have developed 1325:. This unique device is based on a metallo-dielectric waveguide system, which guarantees ultra-low losses combined with a high degree of flexibility in terms of instrument design. CEF's scientists demonstrated a proton NMR signal enhancement in aqueous liquids by up to 80-fold at magnetic fields of 9. T, thus exceeding theoretical predictions by more than a factor of 20. First applications to macromolecular complexes have been equally successful. They also recorded signal enhancements by a factor up to 40 under 940:. Several CEF groups joined forces not only to unravel the photocycle of ChR2 at different time scales but also provided, in collaboration with the Research Centre Juelich, structural insights into ion conduction by ChR2. They also generated several mutant ChR2 versions with altered ion conductance (for example increased Ca-permeability in "CatCh", a Ca transporting channelrhodopsin) or kinetics, representing highly useful additions to the optogenetic toolbox . In 2015, CEF scientists presented the first 1106:. Making macromolecules further accessible on the nano-scale for manipulation, CEF developed generally applicable methods to organize macromolecular complexes in two dimensions with very high precision, as well as small synthetic gatekeepers and novel "light switches" to control biomolecular interactions and assembly of macromolecular complexes An approach to assemble three-dimensional protein networks by two-photon activation was developed. CEF scientists also achieved optical control of 956:) enhanced the detection sensitivity 60-fold so that metastable intermediates could be detected. In this way, first unambiguous evidence was provided for an exclusive all-trans retinal conformation in the dark state and a new photointermediate could be identified. The study showed that DNP-enhanced solid-state NMR is a key method for bridging the gap between X-ray–based structure analysis and functional studies towards a highly resolved molecular picture . 122: 22: 63: 689:, the conformation of the full-length transcripts is static: it exclusively populates the functional off-state but cannot switch to the on-state, regardless of the presence or absence of ligand. Only the combined matching of transcription rates and ligand binding enables transcription intermediates to undergo ligand-dependent conformational refolding(Steinert et al., 2017). 1428:(MALDI) reliably deliver valuable results for soluble proteins, they are not universally applicable to the more challenging matrices which are often required for membrane protein complexes. Generally an artificial membrane mimetic environment is required to maintain a membrane protein complex in its native state outside of the cellular environment. With LILBID the 902:(ChR2) is a light-gated cation channel that can depolarize the cells in which it is expressed. During CEF, the Bamberg lab continued to work in this field and contributed several seminal papers, e.g. on the characterization but also on the engineering of ChR2 to optogenetic tools with different properties. The first utilization of ChR2 for depolarization of 1233:. Cryo-ET is the only technique that can obtain molecular resolution images of intact cells in a quasi-native environment. Such tomograms contain a large amount of information as they are essentially a three-dimensional map of the cellular proteome and depict the whole network of macromolecular interactions. Information-mining 457:. A particular focus of research in CEF has been on protein quality control mechanisms that are the basis for the autophagic and the ubiquitin/proteasomal pathways, the two cellular systems used to degrade faulty or superfluous proteins, complexes and organelles. Additional foci of CEF research were genetic quality control in 1420:, or the conformation of the protein complex, during the transfer from the solution to the gas phase. This is an essential prerequisite to allow conclusions about the solution state protein complex, based on the gas phase measurements. Therefore, soft ionization techniques are required. While standard methods, such as 485:, cargo is specifically targeted for degradation, and distinct cargo receptors have been described that regulate selectivity. This process is facilitated by autophagy receptors specifically recognizing and binding their cargo, and delivering it to the phagophore. In humans, there are six different LC3/ 1411:
are for instance its lower limits of detection, its speed and its capability to deal with heterogeneous samples. CEF contributed to the development of laser-induced liquid bead ion desorption mass spectrometry (LILBID), a method developed at Goethe University that is especially suited to the analysis
349:
The five research areas of CEF included: (A) Structure, mechanisms and dynamics of complexes in the membrane, (B) Composition and dynamics of macromolecular complexes in quality control and signalling, (C) Dynamics of ribonucleic acid-protein-complexes, (D) Design of macromolecular complexes, and (E)
3912:
Tuppi M, Kehrloesser S, Coutandin DW, Rossi V, Luh LM, Strubel A, Hötte K, Hoffmeister M, Schäfer B, De Oliveira T, Greten F, Stelzer EH, Knapp S, De Felici M, Behrends C, Klinger FG, Dötsch V (2018). "Oocyte DNA damage quality control requires consecutive interplay of CHK2 and CK1 to activate p63".
728:
impairs its nucleolar localisation and RNA binding. Another study, in collaboration with Edinburg University, analysed the RNA helicase Prp43 by crosslinking of RNA and analysis of cDNA (CRAC) and provided first insights into the functional roles of this enzyme in ribosome biogenesis CEF scientists
5407:
Stellos K, Gatsiou A, Stamatelopoulos K, Perisic Matic L, John D, Lunella FF, Jae N, Rossbach O, Amrhein C, Sigala F, Boon RA, Furtig B, Manavski Y, You X, Uchida S, Keller T, Boeckel JN, Franco-Cereceda A, Maegdefessel L, Chen W, Schwalbe H, Bindereif A, Eriksson P, Hedin U, Zeiher AM, Dimmeler S
1357:
and health. This work was the first NMR study of a eukaryotic transporter protein complex and demonstrated the power of solid-state NMR in this field They also demonstrated the power of DNP-enhanced solid-state NMR to bridge the gap between functional and structural data and models. In parallel to
1152:
to create a baker's yeast able to produce short-chain fatty acids. A rational and minimally invasive protein engineering approach was used that left the molecular mechanisms of FASs unchanged and identified five mutations that can make baker's yeast produce short-chain fatty acids. To manipulate a
1283:
tubules. The close collaborative teamwork of the consortium allowed tackling two major challenges in live-cell as well as single-molecule localization microscopy: efficient delivery of fluorophores across cell membranes and high-density protein tracing by ultra small labels. Collectively, the new
1263:
elected it as the "Method of the Year 2014". CEF scientists used LSFM, for example, to image in detail the complete embryonic development of different evolutionary unrelated insects and to establish the rules and self-organizing properties of post-embryonic plant organ cell division patterns. The
534:
bacteria, SidJ, opposes the toxicity of SidE in yeast and mammalian cells. Mass spectrometry analysis revealed that SidJ is a glutamylase that modifies the catalytic glutamate in the mono-ADP ribosyl transferase domain of the SdeA, thus blocking the ubiquitin ligase activity of SdeA. They further
440:
The characterization of function and structural composition of signalling complexes controlling cellular quality control programs was one of the major topics of CEF research. The view that proteins act as single entities has been replaced with the concept suggesting that dynamic reorganization of
423:
approaches specifically suitable for large membrane protein complexes. Laser induced liquid beam/bead ion desorption mass spectrometry (LILBID) enables mass analysis of whole membrane protein complexes of 1 MDa or more. A team of CEF scientists resolved the mechanism of the subtype selectivity of
341:
for the analysis of membrane complexes was improved. PELDOR-EPR was developed to a resolution that allows in-cell measurements. The Cluster promoted scientific exchange through a range of programmes as well as through workshops, international conferences and lecture series. Optogenetics and light
4140:
Müller S; Ackloo S; Arrowsmith CH; Bauser M; Baryza JL; Blagg J; Böttcher J; Bountra C; Brown PJ; Bunnage ME; Carter AJ; Damerell D; Dötsch V; Drewry DH; Edwards AM; Edwards J; Elkins JM; Fischer C; Frye SV; Gollner A; Grimshaw CE; Ijzerman A; Hanke T; Hartung IV; Hitchcock S; Howe T; Hughes TV;
1469:
was used by CEF scientists to study molecular dynamics and function. This method enables the observation of extremely fast chemical and biological reactions in real time involving a wide variety of molecules from small organic compounds to complex enzymes. Studies included molecular systems like
1432:
is transferred into the mass spectrometer in small droplets (30 or 50 ÎĽm diameter) of the sample solution produced by a piezo-driven droplet generator and is desorbed from the aqueous solution by irradiation with a mid-IR laser. This results in biomolecular ions with lower, more native-like
982:
CEF scientists together with colleagues from other German universities developed a novel approach to alter the functional properties of rhodopsin optogenetic tools, namely by modifications of the retinal chromophore. Synthetic retinal analogs were introduced into ChR2 or other rhodopsin tools in
397:
and cryo electron microscopy has created an increasing demand and opportunity for in-depth mechanistic studies by magnetic resonance methods. Due to the challenges intrinsic to membrane proteins, progress relies on the availability of techniques at the forefront of method development. Especially
1491:
The CEF Assembly coordinated the research and elected the CEF Speaker and the CEF Board of Directors. The CEF Assembly consisted of the Principal Investigators, Adjunct Investigators, Senior Investigators as well as Associated Members. Speakers of CEF included Werner MĂĽller-Esterl (Nov 2006-Jan
1482:
Method development in theoretical biophysics plays an increasingly important role in the study of macromolecular complexes and has made essential contributions to many studies in the other research areas of CEF. Bridging between fundamental physics, chemistry and biology, CEF scientists studied
332:
as well as biochemical methods for light regulation. They also developed biophysical techniques for the structural and functional characterization of macromolecules. Example include light-switchable molecules designed for in-cell applications and time-resolved techniques to study RNA folding.
445:(PTMs) of proteins. Domains that recognize these modifications play decisive roles in a cell's ability to respond to alterations in their microenvironment. Significant progress has been accomplished by CEF in characterizing several signalling pathways and their regulation by PTMs including 654:
is notably different from a two-state switch mechanism in that it involves three distinct stable conformations. This translational adenine-sensing riboswitch represented the first example of a temperature-compensated regulatory RNA element . The composition and structure of the
9966:
Maciejko J, Mehler M, Kaur J, Lieblein T, Morgner N, Ouari O, Tordo P, Becker-Baldus J, Glaubitz C (2015). "Visualizing specific cross-protomer interactions in the homo-oligomeric membrane protein proteorhodopsin by dynamic-nuclear-polarization-enhanced solid-state NMR".
6710:
Maciejko J, Mehler M, Kaur J, Lieblein T, Morgner N, Ouari O, Tordo P, Becker-Baldus J, Glaubitz C (2015). "Visualizing specific cross-protomer interactions in the homo-oligomeric membrane protein proteorhodopsin by dynamic-nuclear-polarization-enhanced solid-state NMR".
1050:
two-colour two-photon uncaging. CEF scientists developed a red-shifted two-photon-only caging group for three-dimensional photorelease. They also developed a minimal light-switchable module enabling the formation of an intermolecular and conformationally well-defined DNA
614:
at the synaptic membrane. The mechanism of membrane insertion of tail-anchored proteins was studied by structural and biochemical characterization of the interaction of the soluble Get3 protein with the cytoplasmatic domains of the membrane-bound receptors Get1 and Get2.
9255:
van Wijk SJ, Fricke F, Herhaus L, Gupta J, Hötte K, Pampaloni F, Grumati P, Kaulich M, Sou YS, Komatsu M, Greten FR, Fulda S, Heilemann M, Dikic I (2017). "Linear ubiquitination of cytosolic Salmonella Typhimurium activates NF-κB and restricts bacterial proliferation".
3724:
van Wijk SJ, Fricke F, Herhaus L, Gupta J, Hötte K, Pampaloni F, Grumati P, Kaulich M, Sou YS, Komatsu M, Greten FR, Fulda S, Heilemann M, Dikic I (2017). "Linear ubiquitination of cytosolic Salmonella Typhimurium activates NF-κB and restricts bacterial proliferation".
3408:
Khaminets A, Heinrich T, Mari M, Grumati P, Huebner AK, Akutsu M, Liebmann L, Stolz A, Nietzsche S, Koch N, Mauthe M, Katona I, Qualmann B, Weis J, Reggiori F, Kurth I, HĂĽbner CA, Dikic I (2015). "Regulation of endoplasmic reticulum turnover by selective autophagy".
627:
and regulatory RNA elements has broadened the perspective on RNA function from a passive carrier of information to an active cellular component. Its structural and functional description is required to understand the molecular interactions and the dynamics involved.
493:
membranes and cargo-loaded autophagy receptors to facilitate engulfment, sometimes mediated or supported by additional adaptor proteins. CEF scientists showed that GABARAP proteins are not only involved in autophagy but also in the ubiquitin-dependent degradation of
1433:
charge states in comparison to nESI. At ultra-soft desorption conditions, even weakly interacting subunits of large protein complexes remain associated, so that the mass of the whole complex can be determined. At higher laser intensities, the complex dissociates by
418:
are involved in trans-membrane transport processes. For example, fundamental contributions were made towards the structural and functional description of proteorhodopsin, a pentameric light-driven proton pump by groups within CEF. CEF researchers have developed
1224:
previously used and have led to amazing progress in structural biology. By investing in this new technology, CEF members have been able to speed up structure determination and also solve the structures of macromolecular complexes that were not amenable to
6674:
Mao JF, Do NN, Scholz F, Reggie L, Mehler M, Lakatos A, Ong YS, Ullrich SJ, Brown LJ, Brown RC, Becker-Baldus J, Wachtveitl J, Glaubitz C (2014). "Structural basis of the green-blue color switching in proteorhodopsin as determined by NMR spectroscopy".
846:(miRNAs), on cellular function. miRNAs regulate gene expression by binding to target mRNAs and preventing their translation. One of the CEF Focus Projects succeeded in observing the activity-dependent spatially-localized miRNA maturation in neuronal 328:. The efforts in these three research areas were accompanied by approaches to design or reprogram macromolecular complexes and new methods developed to expand the already strong expertise. CEF scientists established and advanced the principles of 979:, found in marine microbes, which is the most abundant retinal-based photoreceptor on our planet. Variants of proteorhodopsins show high levels of environmental adaptation, as their colours are tuned to the optimal wavelength of available light. 231:
molecules and strengthened research efforts in these fields by recruiting further scientists to Frankfurt/Main. CEF brought together the research activities of up to 45 research groups, the majority of which were based on Riedberg Campus in
3625:
Ikeda F, Deribe YL, SkĂĄnland SS, Stieglitz B, Grabbe C, Franz-Wachtel M, van Wijk SJ, Goswami P, Nagy V, Terzic J, Tokunaga F, Androulidaki A, Nakagawa T, Pasparakis M, Iwai K, Sundberg JP, Schaefer L, Rittinger K, Macek B, Dikic I (2011).
5691:
Cremer S, Michalik KM, Fischer A, Pfisterer L, Jaé N, Winter C, Boon RA, Muhly-Reinholz M, John D, Uchida S, Weber C, Poller W, Günther S, Braun T, Li DY, Maegdefessel L, Matic Perisic L, Hedin U, Soehnlein O, Zeiher A, Dimmeler S (2019).
1320:
to one liquid- and one solid-state 400 MHz NMR spectrometer. The microwave board, which detects the EPR signal and connects the high-power microwave source to the NMR probe, was constructed in collaboration with scientists from the
5961:
Neumann-Verhoefen MK, Neumann K, Bamann C, Radu I, Heberle J, Bamberg E, Wachtveitl J (2013). "Ultrafast infrared spectroscopy on channelrhodopsin-2 reveals efficient energy transfer from the retinal chromophore to the protein".
4196:
Wu Q, Heidenreich D, Zhou S, Ackloo S, Krämer A, Nakka K, Lima-Fernandes E, Deblois G, Duan S, Vellanki RN, Li F, Vedadi M, Dilworth J, Lupien M, Brennan PE, Arrowsmith CH, Müller S, Fedorov O, Filippakopoulos P, Knapp S (2019).
3809:
Deutsch GB, Zielonka EM, Coutandin D, Weber TA, Schäfer B, Hannewald J, Luh LM, Durst FG, Ibrahim M, Hoffmann J, Niesen FH, Sentürk A, Kunkel H, Brutschy B, Schleiff E, Knapp S, Acker-Palmer A, Grez M, McKeon F, Dötsch V (2011).
1037:
of position-specifically modified RNA for biophysical studies including light control. Furthermore, light-activatable interaction of DNA nanoarchitectures, light-dependent conformational changes in nucleic acids, light-dependent
4629:
Weinrich T, Jaumann EA, Scheffer U, Prisner TF, Göbel MW (2018). "A cytidine phosphoramidite with protected nitroxide spin label: synthesis of a full-length TAR RNA and investigation by in-line probing and EPR spectroscopy".
1297: 498:. Breakthroughs were achieved in how cells fight intracellular pathogens and how intracellular bacteria try to evade these counter measures. The kinase Tbk1 was identified as important for mediating optineurin based 1362:(PELDOR) spectrometer with a magnetic field of 6.4 T was constructed. A protein concentration of only 10 pMol is sufficient for a measurement at 40 K. With this instrument, CEF scientists were able to determine the 8791:
Eltsov M, Dube N, Yu Z, Pasakarnis L, Haselmann-Weiss U, Brunner D, Frangakis AS (2015). "Quantitative analysis of cytoskeletal reorganization during epithelial tissue sealing by large-volume electron tomography".
8502:
Eltsov M, Dube N, Yu Z, Pasakarnis L, Haselmann-Weiss U, Brunner D, Frangakis AS (2015). "Quantitative analysis of cytoskeletal reorganization during epithelial tissue sealing by large-volume electron tomography".
4585:
Schiemann O, Piton N, Plackmeyer J, Bode BE, Prisner TF, Engels JW (2007). "Spin labeling of oligonucleotides with the nitroxide TPA and use of PELDOR, a pulse EPR method, to measure intramolecular distances".
1220:. Direct electron detectors, in the development of which the MPI of Biophysics was involved, have exceeded all expectations With these detectors, images can be captured with much higher contrast than with the 1341:
for their peptide agonists was resolved. DNP-enhanced solid-state NMR spectroscopy enabled CEF scientists to determine the atomic-resolution backbone conformation of an antigenic peptide bound to the human
441:
multimeric soluble complexes annotated as signalosomes is essential for signal transmission in the cell. Regulation of the activity of these complexes is achieved by their dynamic composition as well as by
7635:
Sambandan S, Akbalik G, Kochen L, Rinne J, Kahlstatt J, Glock C, Tushev G, Alvarez-Castelao B, Heckel A, Schuman EM (2017). "Activity-dependent spatially localized miRNA maturation in neuronal dendrites".
5557:
Sambandan S, Akbalik G, Kochen L, Rinne J, Kahlstatt J, Glock C, Tushev G, Alvarez-Castelao B, Heckel A, Schuman EM (2017). "Activity-dependent spatially localized miRNA maturation in neuronal dendrites".
9640:
Barth K, Hank S, Spindler PE, Prisner TF, Tampé R, Joseph B (2018). "Conformational coupling and trans-inhibition in the human antigen transporter ortholog TmrAB resolved with dipolar EPR spectroscopy".
2673:
Barth K, Hank S, Spindler PE, Prisner TF, Tampé R, Joseph B (2018). "Conformational coupling and trans-inhibition in the human antigen transporter ortholog TmrAB resolved with dipolar EPR spectroscopy".
5997:
Kleinlogel S, Terpitz U, Legrum B, Gokbuget D, Boyden ES, Bamann C, Wood PG, Bamberg E (2011). "A gene-fusion strategy for stoichiometric and co-localized expression of light-gated membrane proteins".
10413:
Lehnert E, Mao J, Mehdipour AR, Hummer G, Abele R, Glaubitz C, Tampé R (2016). "Antigenic peptide recognition on the human ABC transporter TAP resolved by DNP-enhanced solid-state NMR spectroscopy".
9528:
Lehnert E, Mao J, Mehdipour AR, Hummer G, Abele R, Glaubitz C, Tampé R (2016). "Antigenic peptide recognition on the human ABC transporter TAP resolved by DNP-enhanced solid-state NMR spectroscopy".
7600:
Thevarpadam J, Bessi I, Binas O, Gonçalves DP, Slavov C, Jonker HR, Richter C, Wachtveitl J, Schwalbe H, Heckel A (2016). "Photoresponsive formation of an intermolecular minimal G-quadruplex motif".
7514:
Fichte MA, Weyel XM, Junek S, Schäfer F, Herbivo C, Goeldner M, Specht A, Wachtveitl J, Heckel A (2016). "Three-dimensional control of DNA hybridization by orthogonal two-color two-photon uncaging".
2638:
Lehnert E, Mao J, Mehdipour AR, Hummer G, Abele R, Glaubitz C, Tampé R (2016). "Antigenic peptide recognition on the human ABC transporter TAP resolved by DNP-enhanced solid-state NMR spectroscopy".
1237:
exploit structural data from various techniques, identify distinct macromolecules and computationally fit atomic resolution structures in the cellular tomograms, thereby bridging the resolution gap.
7342:
Keyhani S, Goldau T, BlĂĽmler A, Heckel A, Schwalbe H (2018). "Chemo-enzymatic synthesis of position-specifically modified RNA for biophysical studies including light control and NMR spectroscopy".
35: 4550:
Krstic I, Frolow O, Sezer D, Endeward B, Weigand JE, Suess B, Engels JW, Prisner TF (2010). "PELDOR spectroscopy reveals preorganization of the neomycin-responsive riboswitch tertiary structure".
1500:
CEF scientists published more than 2600 original research publications (incl. 479 research papers in journals with an impact factor of ≥10) during the Cluster's lifetime. A full list can be found
2768:
Hellmich UA, Lyubenova S, Kaltenborn E, Doshi R, van Veen HW, Prisner TF, Glaubitz C (2012). "Probing the ATP hydrolysis cycle of the ABC multidrug transporter LmrA by pulsed EPR spectroscopy".
759:
The dynamics of RNPs in native environments in eukaryotic cells were visualized and quantified using high-resolution microscopy. Adenosine-to-inosine (A-to-I) RNA editing, which is catalyzed by
1253:
and phototoxic effects. Because with LSFM biological specimens survive long-term three-dimensional imaging at high spatiotemporal resolution, such microscopes have become the tool of choice in
4970:
Duchardt-Ferner E, Weigand JE, Ohlenschlager O, Schtnidtke SR, Suess B, Wöhnert J (2010). "Highly modular structure and ligand binding by conformational capture in a minimalistic riboswitch".
547:. Several groups of CEF have contributed to advances in understanding how ubiquitin signalling is not only used as a degradation signal but also involved in several other cellular processes 5005:
Steinert H, Sochor F, Wacker A, Buck J, Helmling C, Hiller F, Keyhani S, Noeske J, Grimm SK, Rudolph MM, Keller H, Mooney RA, Landick R, Suess B, Fürtig B, Wöhnert J, Schwalbe H (2017).
3861:
Coutandin D, Osterburg C, Srivastav RK, Sumyk M, Kehrloesser S, Gebel J, Tuppi M, Hannewald J, Schafer B, Salah E, Mathea S, Müller-Kuller U, Doutch J, Grez M, Knapp S, Dötsch V (2016).
818:
emerged as the most potent NXF1 adaptor, conferring sequence specificity to RNA binding by NXF1 in last exons. Numerous human diseases are characterised by a widespread dysregulation of
4145:; Schneider NS; Scholten C; Singh Saikatendu K; Simeonov A; Takizawa M; Tse C; Thompson PR; Treiber DK; Viana AYI; Wells CI; Willson TM; Zuercher WJ; Knapp S; Mueller-Fahrnow A (2018). 5109:"The Bowen-Conradi syndrome protein Nep1 (Emg1) has a dual role in eukaryotic ribosome biogenesis, as an essential assembly factor and in the methylation of Psi 1191 in yeast 18S rRNA" 7037:
Oranth A, Schultheis C, Tolstenkov O, Erbguth K, Nagpal J, Hain D, Brauner M, Wabnig S, Steuer Costa W, McWhirter RD, Zels S, Palumbos S, Miller Iii DM, Beets I, Gottschalk A (2018).
6882:
Azimi Hashemi N, Erbguth K, Vogt A, Riemensperger T, Rauch E, Woodmansee D, Nagpal J, Brauner M, Sheves M, Fiala A, Kattner L, Trauner D, Hegemann P, Gottschalk A, Liewald JF (2014).
6091:
Oranth A, Schultheis C, Tolstenkov O, Erbguth K, Nagpal J, Hain D, Brauner M, Wabnig S, Steuer Costa W, McWhirter RD, Zels S, Palumbos S, Miller Iii DM, Beets I, Gottschalk A (2018).
6040:
Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K (2007). "Multimodal fast optical interrogation of neural circuitry".
4305:
Essmann CL, Martinez E, Geiger JC, Zimmer M, Traut MH, Stein V, Klein R, Acker-Palmer A (2008). "Serine phosphorylation of ephrinB2 regulates trafficking of synaptic AMPA receptors".
369:
happen in membranes, every sensory stimulus and the information processing in the brain is mediated by them. This array of diverse actions is performed by a large number of different
6342:
AzimiHashemi N, Erbguth K, Vogt A, Riemensperger T, Rauch E, Woodmansee D, Nagpal J, Brauner M, Sheves M, Fiala A, Kattner L, Trauner D, Hegemann P, Gottschalk A, Liewald JF (2014).
8546:
Neyer S, Kunz M, Geiss C, Hantsche M, Hodirnau VV, Seybert A, Engel C, Scheffer MP, Cramer P, Frangakis AS (2016). "Structure of RNA polymerase I transcribing ribosomal DNA genes".
5056:
Neyer S, Kunz M, Geiss C, Hantsche M, Hodirnau VV, Seybert A, Engel C, Scheffer MP, Cramer P, Frangakis AS (2016). "Structure of RNA polymerase I transcribing ribosomal DNA genes".
1275:
as the local NF-ÎşB signalling platform and provided insights into the function of OTULIN in NF-ÎşB activation during bacterial pathogenesis. Another example is the identification of
594:
that can be used to study the function of these acetyl-lysine modification binding domains. A set of probes has been characterized and validated as tools for specific bromodomains
4800:
Ferner J, Suhartono M, Breitung S, Jonker HR, Hennig M, Wöhnert J, Gobel M, Schwalbe H (2009). "Structures of HIV TAR RNA-ligand complexes reveal higher binding stoichiometries".
1296:
methods for biological applications were available within CEF and CEF scientists have made significant progress in further developing biomolecular NMR and EPR. The members of the
1245:
The Cluster also strongly support new developments in advanced light microscopy. A particularly important technique CEF added to the research technique portfolio in Frankfurt is
6448:
Verhoefen MK, Bamann C, Blöcher R, Förster U, Bamberg E, Wachtveitl J (2010). "The photocycle of channelrhodopsin-2: ultrafast reaction dynamics and subsequent reaction steps".
1284:
tools provide additional avenues to specifically manipulate and trap cellular proteins, and, at the same time, for high-resolution read-out by single-molecule based microscopy.
636:
The combination of high-resolution NMR-based analysis of RNA structures and time-resolved ligand-induced refolding of RNAs by caging distinct conformations together with pulsed
5500:
Braun S, Enculescu M, Setty ST, Cortes-Lopez M, de Almeida BP, Sutandy FX, Schulz L, Busch A, Seiler M, Ebersberger S, Barbosa-Morais NL, Legewie S, König J, Zarnack K (2018).
4254:
Sawamiphak S, Seidel S, Essmann CL, Wilkinson GA, Pitulescu ME, Acker T, Acker-Palmer A (2010). "Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis".
361:
have a very important role in life processes as everything a cell needs to live, grow and respond has to either pass through or act on them. The energy conversion processes of
248:
CEF scientists set out to investigate the structure and function of large macromolecular complexes, in particular membrane proteins and their assemblies, complexes involved in
7078:
Steuer Costa W, Van der Auwera P, Glock C, Liewald JF, Bach M, SchĂĽler C, Wabnig S, Oranth A, Masurat F, Bringmann H, Schoofs L, Stelzer EH, Fischer SC, Gottschalk A (2019).
826:
patterns. CEF scientists used computational methods to study the mechanisms of posttranscriptional regulation on a transcriptomic scale, in collaboration with researchers at
77: 142: 41: 8451:
Allegretti M, Klusch N, Mills DJ, Vonck J, KĂĽhlbrandt W, Davies KM (2015). "Horizontal membrane-intrinsic alpha-helices in the stator a-subunit of an F-type ATP synthase".
4056:
Schmidt N, Kowald L, Wijk S, Fulda S (2019). "Differential involvement of TAK1, RIPK1 and NF-kappaB signaling in Smac mimetic-induced cell death in breast cancer cells".
1353:
peptide and TAP. Their findings revealed a structural and chemical basis of substrate selection rules, which define the crucial function of this ABC transporter in human
2803:
Ong YS, Lakatos A, Becker-Baldus J, Pos KM, Glaubitz C (2013). "Detecting substrates bound to the secondary multidrug efflux pump EmrE by DNP-enhanced solid-state NMR".
6805:
Hempelmann F, Hölper S, Verhoefen MK, Woerner AC, Köhler T, Fiedler SA, Pfleger N, Wachtveitl J, Glaubitz C (2011). "The His75-Asp97 cluster in green proteorhodopsin".
2838:
Hempelmann F, Hölper S, Verhoefen MK, Woerner AC, Köhler T, Fiedler SA, Pfleger N, Wachtveitl J, Glaubitz C (2011). "The His75-Asp97 cluster in green proteorhodopsin".
886:
or pumps, as well as light-activated enzymes. Optochemical approaches, in contrast, use chemically engineered molecules to achieve light-effects in biological tissue.
406:
LmrA was probed by site-directed spin labeling and pulsed electron–electron double resonance (PELDOR/DEER) spectroscopy. The secondary multidrug efflux pump EmrE from
2873:
Reckel S, Gottstein D, Stehle J, Löhr F, Verhoefen MK, Takeda M, Silvers R, Kainosho M, Glaubitz C, Wachtveitl J, Bernhard F, Schwalbe H, Güntert P, Dötsch V (2011).
9676:
Morgner N, Hoffmann J, Barth HD, Meier T, Brutschy B (2008). "LILBID-mass spectrometry applied to the mass analysis of RNA polymerase II and an F1Fo-ATP synthase".
10942: 9605:
Krstić I, Hänsel R, Romainczyk O, Engels JW, Dötsch V, Prisner TF (2011). "Long-range distance measurements on nucleic acids in cells by pulsed EPR spectroscopy".
9010:
Strobl F, Schmitz A, Stelzer EH (2017). "Improving your four-dimensional image: traveling through a decade of light-sheet-based fluorescence microscopy research".
8251:
Gajewski J, Buelens F, Serdjukow S, Janszen M, Cortina N, GrubmĂĽller H, Grininger M (2017). "Engineering fatty acid synthases for directed polyketide production".
7444:
Steinert HS, Schäfer F, Jonker HR, Heckel A, Schwalbe H (2014). "Influence of the absolute configuration of NPE-caged cytosine on DNA single base pair stability".
3956:
Russo C, Osterburg C, Sirico A, Antonini D, Ambrosio R, Würz JM, Rinnenthal J, Ferniani M, Kehrloesser S, Schäfer B, Güntert P, Sinha S, Dötsch V, Missero (2018).
644:
of RNA dynamics has led to the description of the structural dynamics of several RNAs. CEF scientists showed that the regulation mechanism of the adenine-sensing
1337:. By integrating DNP-enhanced solid-state NMR spectroscopy with advanced molecular modeling and docking, the mechanism of the subtype selectivity of human kinin 1042:
and light-dependent transcription were realized. Wavelength-selective light-triggering was established for nucleic acids as well as three-dimensional control of
8167:
Gatterdam V, Ramadass R, Stoess T, Fichte MA, Wachtveitl J, Heckel A, Tampé R (2014). "Three-dimensional protein networks assembled by two-photon activation".
7272:
Rohrbach F, Schäfer F, Fichte MA, Pfeiffer F, Müller J, Pötzsch B, Heckel A, Mayer G (2013). "Aptamer-guided caging for selective masking of protein domains".
4884:
Manoharan V, FĂĽrtig B, Jaschke A, Schwalbe H (2009). "Metal-induced folding of diels-alderase ribozymes studied by static and time-resolved NMR spectroscopy".
342:
sheet fluorescence microscopy were selected as the "Method of the Year" across all fields of science and engineering by the interdisciplinary research journal
11116: 11058: 11030: 237: 6483:
Volkov O, Kovalev K, Polovinkin V, Borshchevskiy V, Bamann C, Astashkin R, Marin E, Popov A, Balandin T, Willbold D, Buldt G, Bamberg E, Gordeliy V (2017).
7857:
Reining A, Nozinovic S, Schlepckow K, Buhr F, FĂĽrtig B, Schwalbe H (2013). "Three-state mechanism couples ligand and temperature sensing in riboswitches".
4749:
Reining A, Nozinovic S, Schlepckow K, Buhr F, FĂĽrtig B, Schwalbe H (2013). "Three-state mechanism couples ligand and temperature sensing in riboswitches".
8355:
Staudt H, Hoesl MG, Dreuw A, Serdjukow S, Oesterhelt D, Budisa N, Wachtveitl J, Grininger M (2013). "Directed manipulation of a flavoprotein photocycle".
963:. With the new rhodopsins came the observation that they represent a rather versatile family of proteins while retaining the structural scaffold of seven 11068: 5408:(2016). "Adenosine-to-inosine RNA editing controls cathepsin S expression in atherosclerosis by enabling HuR-mediated post-transcriptional regulation". 810:-wide RNA-binding profiles of NXF1 and SRSF1–7 were determined in parallel by individual-nucleotide-resolution UV crosslinking and immunoprecipitation ( 9106:"Robust and automated three-dimensional segmentation of densely packed cell nuclei in different biological specimens with Lines-of-Sight decomposition" 2587:
Blees A, Januliene D, Hofmann T, Koller N, Schmidt C, Trowitzsch S, Moeller A, Tampé R (2017). "Structure of the human MHC-I peptide-loading complex".
7307:
Seyfried P, Eiden L, Grebenovsky N, Mayer G, Heckel A (2017). "Photo-tethers for the (multi-)cyclic, conformational caging of long oligonucleotides".
4665:
Förster U, Grunewald C, Engels JW, Wachtveitl J (2010). "Ultrafast dynamics of 1-ethynylpyrene-modified RNA: a photophysical probe of intercalation".
10037:
Steinwand S, Yu Z, Hecht S, Wachtveitl J (2016). "Ultrafast dynamics of photoisomerization and subsequent unfolding of an oligoazobenzene foldamer".
9212:
Venkataramani V, Herrmannsdorfer F, Heilemann M, Kuner T (2016). "SuReSim: simulating localization microscopy experiments from ground truth models".
8967:
Strobl F, Schmitz A, Stelzer EH (2015). "Live imaging of Tribolium castaneum embryonic development using light-sheet-based fluorescence microscopy".
6988:
Husson SJ, Steuer Costa W, Wabnig S, Stirman JN, Watson JD, Spencer WC, Akerboom J, Looger LL, Treinin M, Miller DM 3rd, Lu H, Gottschalk A (2012).
1208:, Nature Method of the Year 2015 and the method for which a Nobel prize was awarded in 2017, was extensively employed by several CEF groups, at the 260:
Important structures of macromolecular complexes were determined in CEF. Examples for important membrane complexes include the atomic structures of
11155: 9858:
Diskowski M, Mehdipour AR, Wunnicke D, Mills DJ, Mikusevic V, Bärland N, Hoffmann J, Morgner N, Steinhoff HJ, Hummer G, Vonck J, Hänelt I (2017).
2261:
Diskowski M, Mehdipour AR, Wunnicke D, Mills DJ, Mikusevic V, Bärland N, Hoffmann J, Morgner N, Steinhoff HJ, Hummer G, Vonck J, Hänelt I (2017).
5107:
Meyer B, Wurm JP, Kotter P, Leisegang MS, Schilling V, Buchhaupt M, Held M, Bahr U, Karas M, Heckel A, Bohnsack MT, Wöhnert J, Entian KD (2011).
5800:
Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005). "Millisecond-timescale, genetically targeted optical control of neural activity".
1346: 1217: 906:
cells and generation of the first ChR2-transgenic animal took place in Frankfurt. The Gottschalk lab introduced ChR2, the light-driven Cl—pump
698: 273: 4845:"Binding sites of the viral RNA element TAR and of TAR mutants for various peptide ligands, probed with LILBID: A new laser mass spectrometry" 1412:
of large membrane protein complexes. A challenge in native mass spectrometry is maintaining the features of the proteins of interest, such as
402:
MsbA is able to catalyze a reverse adenylate kinase-like reaction in addition to ATP hydrolysis. In addition, the ATP hydrolysis cycle of the
3576:
Rahighi S, Ikeda F, Kawasaki M, Akutsu M, Suzuki N, Kato R, Kensche T, Uejima T, Bloor S, Komander D, Randow F, Wakatsuki S, Dikic I (2009).
10262:
Shin D, Mukherjee R, Liu Y, Gonzalez A, Bonn F, Liu Y, Rogov VV, Heinz M, Stolz A, Hummer G, Dötsch V, Luo ZQ, Bhogaraju S, Dikic I (2020).
7787:
Grebenovsky N, Goldau T, Bolte M, Heckel A (2018). "Light regulation of DNA minicircle dimerization by utilizing azobenzene C-nucleosides".
3155:
Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, Brady NR, Richter B, Korac J, Waidmann O, Choudhary C, Dötsch V, Bumann D, Dikic I (2011).
920:, to stimulate single neurons and correlate their function with a behavioural output. In addition, they studied synaptic transmission after 10735:"Modeling the metabolism of Arabidopsis thaliana: application of network decomposition and network reduction in the context of Petri nets" 9711:
Hellwig N, Peetz O, Ahdash Z, Tascon I, Booth PJ, Mikusevic V, Diskowski M, Politis A, Hellmich Y, Hanelt I, Reading E, Morgner N (2018).
9479:
Joedicke L, Mao J, Kuenze G, Reinhart C, Kalavacherla T, Jonker HR, Richter C, Schwalbe H, Meiler J, Preu J, Michel H, Glaubitz C (2018).
4405:
Cherepanov AV, Glaubitz C, Schwalbe H (2010). "High-resolution studies of uniformly 13C,15N-labeled RNA by solid-state NMR spectroscopy".
3022:
Joedicke L, Mao J, Kuenze G, Reinhart C, Kalavacherla T, Jonker HR, Richter C, Schwalbe H, Meiler J, Preu J, Michel H, Glaubitz C (2018).
1605:
Hunte C, Zickermann V, Brandt U (2010). "Functional modules and structural basis of conformational coupling in mitochondrial complex I".
1425: 603: 81: 10586:
Haberman N, Huppertz I, Attig J, König J, Wang Z, Hauer C, Hentze MW, Kulozik AE, Le Hir H, Curk T, Sibley CR, Zarnack K, Ule J (2017).
10121:
Halbritter T, Kaiser C, Wachtveitl J, Heckel A (2017). "Pyridine-spiropyran derivative as a persistent, reversible photoacid in water".
9444:
Prandolini MJ, Denysenkov VP, Gafurov M, Endeward B, Prisner TF (2009). "High-field dynamic nuclear polarization in aqueous solutions".
9350:
Wieneke R, Raulf A, Kollmannsperger A, Heilemann M, Tampé R (2015). "Small labeling pair for single-molecule super-resolution imaging".
8132:
Wieneke R, Raulf A, Kollmannsperger A, Heilemann M, Tampé R (2015). "Small labeling pair for single-molecule super-resolution imaging".
6181:
Liewald JF, Brauner M, Stephens GJ, Bouhours M, Schultheis C, Zhen M, Gottschalk A (2008). "Optogenetic analysis of synaptic function".
5650:
Michalik KM, You X, Manavski Y, Doddaballapur A, Zörnig M, Braun T, John D, Ponomareva Y, Chen W, Uchida S, Boon RA, Dimmeler S (2014).
6574:
Becker-Baldus J, Bamann C, Saxena K, Gustmann H, Brown LJ, Brown RC, Reiter C, Bamberg E, Wachtveitl J, Schwalbe H, Glaubitz C (2015).
5902:
Lorenz-Fonfria VA, Resler T, Krause N, Nack M, Gossing M, Fischer von Mollard G, Bamann C, Bamberg E, Schlesinger R, Heberle J (2013).
2481:"Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop" 9565:"Chromophore distortions in photointermediates of proteorhodopsin visualized by dynamic nuclear polarization-enhanced solid-state NMR" 6842:"Chromophore distortions in photointermediates of proteorhodopsin visualized by dynamic nuclear polarization-enhanced solid-state NMR" 6748:"Photocycle-dependent conformational changes in the proteorhodopsin cross-protomer Asp-His-Trp triad revealed by DNP-enhanced MAS-NMR" 4015:
Benedikt A, Baltruschat S, Scholz B, Bursen A, Arrey TN, Meyer B, Varagnolo L, MĂĽller AM, Karas M, Dingermann T, Marschalek R (2011).
2924:"Photocycle-dependent conformational changes in the proteorhodopsin cross-protomer Asp-His-Trp triad revealed by DNP-enhanced MAS-NMR" 1566:"Light-sheet fluorescence microscopy can image living samples in three dimensions with relatively low phototoxicity and at high speed" 11023: 9563:
Mehler M, Eckert CE, Leeder AJ, Kaur J, Fischer T, Kubatova N, Brown LJ, Brown RC, Becker-Baldus J, Wachtveitl J, Glaubitz C (2017).
6840:
Mehler M, Eckert CE, Leeder AJ, Kaur J, Fischer T, Kubatova N, Brown LJ, Brown RC, Becker-Baldus J, Wachtveitl J, Glaubitz C (2017).
3768:
Kniss A, Schuetz D, Kazemi S, Pluska L, Spindler PE, Rogov VV, Husnjak K, Dikic I, Güntert P, Sommer T, Prisner TF, Dötsch V (2018).
3351:
Bhogaraju S, Bonn F, Mukherjee R, Adams M, Pfleiderer MM, Galej WP, Matkovic V, Lopez-Mosqueda J, Kalayil S, Shin D, Dikic I (2019).
1988:"Conserved in situ arrangement of complex I and III2 in mitochondrial respiratory chain supercomplexes of mammals, yeast, and plants" 535:
discovered that reticulon-type proteins act as ER-specific autophagy receptors and simulated their effect on the membrane curvature.
212: 10535:
Di Liddo A, de Oliveira Freitas Machado C, Fischer S, Ebersberger S, Heumuller AW, Weigand JE, Muller-McNicoll M, Zarnack K (2019).
10451:; Schäfer T (2018). "Protein super-secondary structure and quaternary structure topology: theoretical description and application". 685:
complex were structurally and functionally analyzed. CEF scientists also showed that for the guanine-sensing xpt-pbuX riboswitch of
744: 740: 717:
elongation in which contracted and expanded polymerase conformations are associated with active and inactive states, respectively.
779:. A-to-I RNA editing controls cathepsin S expression in atherosclerosis by enabling HuR-mediated post-transcriptional regulation. 11160: 11140: 10205:
Hofmann S, Januliene D, Mehdipour AR, Thomas C, Stefan E, Brüchert S, Kuhn BT, Geertsma ER, Hummer G, Tampé R, Moeller A (2019).
10002:
Kohl-Landgraf J, Braun M, Ozcoban C, Goncalves DP, Heckel A, Wachtveitl J (2012). "Ultrafast dynamics of a spiropyran in water".
8648:
Hofmann S, Januliene D, Mehdipour AR, Thomas C, Stefan E, Brüchert S, Kuhn BT, Geertsma ER, Hummer G, Tampé R, Moeller A (2019).
4348:
Stefer S, Reitz S, Wang F, Wild K, Pang YY, Schwarz D, Bomke J, Hein C, Löhr F, Bernhard F, Denic V, Dötsch V, Sinning I (2011).
2479:
Eicher T, Cha HJ, Seeger MA, Brandstatter L, El-Delik J, Bohnert JA, Kern WV, Verrey F, Grutter MG, Diederichs K, Pos KM (2012).
1316:
source for DNP. The source operates at 260 GHz with an output power of 20 W, and is connected by a quasi-optical corrugated
1174: 815: 208: 2163:"The structure of Aquifex aeolicus sulfide:quinone oxidoreductase, a basis to understand sulfide detoxification and respiration" 1229:
studies. Another focus of CEFs electron microscopists was to reveal the macromolecular organisation of living cells by means of
1359: 1185:
and optochemical biology has been instrumental in the research efforts of CEF. The Cluster also integrated new developments in
953: 435: 429: 7479:
Schäfer F, Joshi KB, Fichte MA, Mack T, Wachtveitl J, Heckel A (2011). "Wavelength-selective uncaging of dA and dC residues".
5451:
MĂĽller-McNicoll M, Botti V, Domingues AM, Brandl H, Schwich OD, Steiner MC, Curk T, Poser I, Zarnack K, Neugebauer KM (2016).
1001:
CyclOp that enabled rapid light-triggered cGMP increase. CEF scientists have also used optogenetic tools for the analysis of
11150: 11145: 11016: 7186:
Joshi KB, Vlachos A, Mikat V, Deller T, Heckel A (2012). "Light-activatable molecular beacons with a caged loop sequence".
5158:"The ribosome assembly factor Nep1 responsible for Bowen-Conradi syndrome is a pseudouridine-N1-specific methyltransferase" 663:, leading to a description of the complexity of peptide binding sites in RNAs. Furthermore, the guanine-sensing riboswitch- 6525: 6224:
Kittelmann M, Liewald JF, Hegermann J, Schultheiss C, Brauner M, Steuer Costa W, Wabnig S, Eimer S, Gottschalk A (2013).
5609:
Boon RA, Hofmann P, Michalik KM, Lozano-Vidal N, Berghauser D, Fischer A, Knau A, Jae N, Schurmann C, Dimmeler S (2016).
2983:"A novel approach to analyze membrane proteins by laser mass spectrometry: From protein subunits to the integral complex" 2430:"Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB" 1437:
and subunit masses are recorded. A broad range of macromolecular complexes from CEF research areas A, C and D, including
1246: 334: 10876:
Heide H, Bleier L, Steger M, Ackermann J, Dröse S, Schwamb B, Zörnig M, Reichert AS, Koch I, Wittig I, Brandt U (2012).
5007:"Pausing guides RNA folding to populate transiently stable RNA structures for riboswitch-based transcription regulation" 3863:"Quality control in oocytes by p63 is based on a spring-loaded activation mechanism on the molecular and cellular level" 3460:
Bhaskara RM, Grumati P, Garcia-Pardo J, Kalayil S, Covarrubias-Pinto A, Chen W, Kudryashev M, Dikic I, Hummer G (2019).
2102:
Safarian S, Rajendran C, MĂĽller H, Preu J, Langer JD, Ovchinnikov S, Hirose T, Kusumoto T, Sakamoto J, Michel H (2016).
1349:. Their NMR data also provided unparalleled insights into the nature of the interactions between the side chains of the 1209: 895: 204: 9909:
Hoffmann J, Sokolova L, Preiss L, Hicks DB, Krulwich TA, Morgner N, Wittig I, Schägger H, Meier T, Brutschy B (2010).
6884:"Synthetic retinal analogues modify the spectral and kinetic characteristics of microbial rhodopsin optogenetic tools" 6344:"Synthetic retinal analogues modify the spectral and kinetic characteristics of microbial rhodopsin optogenetic tools" 8837:"Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy" 7221:
Lotz TS, Halbritter T, Kaiser C, Rudolph MM, Kraus L, Groher F, Steinwand S, Wachtveitl J, Heckel A, Suess B (2019).
178: 160: 103: 49: 6933:"Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp" 6393:"Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp" 543:
Ubiquitination plays a central role for marking proteins to be degraded either via the autophagy pathway or via the
10156:
Gustmann H, Segler AJ, Gophane DB, Reuss AJ, GrĂĽnewald C, Braun M, Weigand JE, Sigurdsson ST, Wachtveitl J (2019).
9817:
Angerer H, Schonborn S, Gorka J, Bahr U, Karas M, Wittig I, Heidler J, Hoffmann J, Morgner N, Zickermann V (2017).
6990:"Optogenetic analysis of a nociceptor neuron and network reveals ion channels acting downstream of primary sensors" 4700:
Gustmann H, Segler AJ, Gophane DB, Reuss AJ, GrĂĽnewald C, Braun M, Weigand JE, Sigurdsson ST, Wachtveitl J (2019).
4101:"Smac mimetic and glucocorticoids synergize to induce apoptosis in childhood ALL by promoting ripoptosome assembly" 1713:"Structure of a complete ATP synthase dimer reveals the molecular basis of inner mitochondrial membrane morphology" 932:
and electron microscopy, and introduced modified or novel optogenetic tools with altered properties, for blocking
502:
to remove the bacteria from the infected cells. Using mass spectrometry, a global analysis of the ubiquitinome of
5611:"Long noncoding RNA Meg3 controls endothelial cell aging and function implications for regenerative angiogenesis" 5156:
Wurm JP, Meyer B, Bahr U, Held M, Frolow O, Kotter P, Engels JW, Heckel A, Karas M, Entian KD, Wöhnert J (2010).
3116:"CUL3-KBTBD6/KBTBD7 ubiquitin ligase cooperates with GABARAP proteins to spatially restrict TIAM1-RAC1 signaling" 2428:
Eicher T, Seeger MA, Anselmi C, Zhou W, Brandstätter L, Verrey F, Diederichs K, Faraldo-Gómez JD, Pos KM (2014).
1170: 949: 637: 442: 269: 216: 138: 85: 9157:"Multiscale image analysis reveals structural heterogeneity of the cell microenvironment in homotypic spheroids" 7822:
Schmidt TL, Koeppel MB, Thevarpadam J, Goncalves DP, Heckel A (2011). "A light trigger for DNA nanotechnology".
7689:"Light-inducible antimiR-92a as a therapeutic strategy to promote skin repair in healing-impaired diabetic mice" 4141:
Laufer S; Li VMJ; Liras S; Marsden BD; Matsui H; Mathias J; O'Hagan RC; Owen DR; Pande V; Rauh D; Rosenberg SH;
516:
by the pathogens. CEF scientists also revealed the molecular mechanism of a novel type of phosphoribosyl-linked
9299:
Grumati P, Morozzi G, Holper S, Mari M, Harwardt MI, Yan R, MĂĽller S, Reggiori F, Heilemann M, Dikic I (2017).
5256:"Plant-specific ribosome biogenesis factors in Arabidopsis thaliana with essential function in rRNA processing" 827: 709:
genes in a cellular environment and solved its structure with and without nucleic acids at 3.8 Ă… resolution by
587: 131: 7744:
Ackermann D, Schmidt TL, Hannam JS, Purohit CS, Heckel A, Famulok M (2010). "A double-stranded DNA rotaxane".
7039:"Food sensation modulates locomotion by dopamine and neuropeptide signaling in a distributed neuronal network" 6093:"Food sensation modulates locomotion by dopamine and neuropeptide signaling in a distributed neuronal network" 944:
study which resolved structural details of the retinal cofactor of ChR2. This study was only possible because
11063: 5694:"Hematopoietic deficiency of the long non-coding RNA MALAT1 promotes atherosclerosis and plaque inflammation" 1322: 975:. CEF scientists have studied the structure as well as the function of microbial rhodopsins. One of these is 959:
It gradually emerged that rhodopsins have a wide spectrum of functions and distribution and are found in all
802:
to mRNA export. They found that >1000 endogenous mRNAs required individual SR proteins for nuclear export
10158:"Structure guided fluorescence labeling reveals a two-step binding mechanism of neomycin to its RNA aptamer" 9713:"ative mass spectrometry goes more native: investigation of membrane protein complexes directly from SMALPs" 4702:"Structure guided fluorescence labeling reveals a two-step binding mechanism of neomycin to its RNA aptamer" 3519:
Husnjak K, Elsasser S, Zhang NX, Chen X, Randles L, Shi Y, Hofmann K, Walters KJ, Finley D, Dikic I (2008).
3462:"Curvature induction and membrane remodeling by FAM134B reticulon homology domain assist selective ER-phagy" 436:
CEF Research Area B - Composition and dynamics of macromolecular complexes in quality control and signalling
11106: 11090: 7139:"Dependence of aptamer activity on opposed terminal extensions: improvement of light-regulation efficiency" 7080:"A GABAergic and peptidergic sleep neuron as a locomotion stop neuron with compartmentalized Ca2+ dynamics" 6283:
Azimi Hashemi N, Bergs AC, SchĂĽler C, Scheiwe AR, Steuer Costa W, Bach M, Liewald JF, Gottschalk A (2019).
4017:"The leukemogenic AF4-MLL fusion protein causes P-TEFb kinase activation and altered epigenetic signatures" 1305: 945: 882:
and other cells is achieved by expression of photosensor proteins, in most cases of microbial origin, e.g.
641: 7385:
Helmling C, Klötzner DP, Sochor F, Mooney RA, Wacker A, Landick R, Fürtig B, Heckel A, Schwalbe H (2018).
5502:"Decoding a cancer-relevant splicing decision in the RON proto-oncogene using high-throughput mutagenesis" 3770:"Chain assembly and disassembly processes differently affect the conformational space of ubiquitin chains" 11039: 10878:"Complexome profiling identifies TMEM126B as a component of the mitochondrial complex I assembly complex" 5741:
Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003).
3255:"Phosphoribosylation of ubiquitin promotes serine ubiquitination and impairs conventional ubiquitination" 1309: 1194: 1068: 200: 353: 6134:"Real-time multimodal optical control of neurons and muscles in freely behaving Caenorhabditis elegans" 1657: 1466: 1446: 1408: 1338: 508:-infected cells was carried out, that enabled CEF scientists to identify specific targets of bacterial 10537:"A combined computational pipeline to detect circular RNAs in human cancer cells under hypoxic stress" 6576:"Enlightening the photoactive site of channelrhodopsin-2 by DNP-enhanced solid-state NMR spectroscopy" 7908:
Diederichs T, Pugh G, Dorey A, Xing Y, Burns JR, Hung Nguyen Q, Tornow M, Tampé R, Howorka S (2019).
6526:"Ultra light-sensitive and fast neuronal activation with the Ca(2+)-permeable channelrhodopsin CatCh" 3958:"Protein aggregation of the p63 transcription factor underlies severe skin fragility in AEC syndrome" 3683:
von Delbrück M, Kniss A, Rogov VV, Pluska L, Bagola K, Löhr F, Güntert P, Sommer T, Dötsch V (2016).
3812:"DNA damage in oocytes induces a switch of the quality control factor TAp63a from dimer to tetramer" 3294:
Kalayil S, Bhogaraju S, Bonn F, Shin D, Liu Y, Gan N, Basquin J, Grumati P, Luo ZQ, Dikic I (2018).
3214:"Global analysis of host and bacterial ubiquitinome in response to Salmonella Typhimurium infection" 9385:
Kollmannsperger A, Sharei A, Raulf A, Heilemann M, Langer R, Jensen KF, Wieneke R, Tampé R (2016).
8073:
Kollmannsperger A, Sharei A, Raulf A, Heilemann M, Langer R, Jensen KF, Wieneke R, Tampé R (2016).
1927:
Davies KM, Strauss M, Daum B, Kief JH, Osiewacz HD, Rycovska A, Zickermann V, KĂĽhlbrandt W (2011).
1230: 1205: 1148: 1079:
wound healing and found that light can be used to locally activate therapeutically active antimiRs
1063:
which enabled the detection of activity-dependent spatially localized miRNA maturation in neuronal
1034: 8430: 5207:"Prp43 bound at different sites on the pre-rRNA performs distinct functions in ribosome synthesis" 2104:"Structure of a bd oxidase indicates similar mechanisms for membrane-integrated oxygen reductases" 993:
and human cells, to change the light sensitivity, photo cycle kinetics and colour spectrum of the
763:
acting on RNA (ADAR) enzymes, is important in the epitranscriptomic regulation of RNA metabolism.
4099:
Belz K, Schoeneberger H, Wehner S, Weigert A, Bonig H, Klingebiel T, Fichtner I, Fulda S (2014).
2313: 1711:
Hahn A, Parey K, Bublitz M, Mills Deryck J, Zickermann V, Vonck J, KĂĽhlbrandt W, Meier T (2016).
1421: 1178: 1127: 714: 6285:"Rhodopsin-based voltage imaging tools for use in muscles and neurons of Caenorhabditis elegans" 72:
may contain an excessive amount of intricate detail that may interest only a particular audience
11053: 10315:"Mechanism of the electroneutral sodium/proton antiporter PaNhaP from transition-path shooting" 9762:"LILBID and nESI: Different native mass spectrometry techniques as tools in structural biology" 7965:
Grunwald C, Schulze K, Reichel A, Weiss VU, Blaas D, Piehler J, Wiesmüller KH, Tampé R (2010).
1474:
spiropyrans are organic molecules that can be used for the triggering of biological reactions.
1269: 721: 9301:"Full length RTN3 regulates turnover of tubular endoplasmic reticulum via selective autophagy" 8204:"Optical control of the antigen translocation by synthetic photo-conditional viral inhibitors" 3628:"SHARPIN forms a linear ubiquitin ligase complex regulating NF-kappa B activity and apoptosis" 9104:
Mathew B, Schmitz A, Munoz-Descalzo S, Ansari N, Pampaloni F, Stelzer EH, Fischer SC (2015).
8026:"Live-cell labeling of endogenous proteins with nanometer precision by transduced nanobodies" 4350:"Structural basis for tail-anchored membrane protein biogenesis by the Get3-receptor complex" 1762:"Helical arrays of U-shaped ATP synthase dimers form tubular cristae in ciliate mitochondria" 1438: 1404: 1280: 1254: 1226: 964: 933: 591: 411: 394: 374: 280:
structure and function led to the definition of regulatory principles of temperature sensing
10917: 10372:
Halbleib K, Pesek K, Covino R, Hofbauer HF, Wunnicke D, Hänelt I, Hummer G, Ernst R (2017).
10264:"Regulation of phosphoribosyl-linked serine ubiquitination by deubiquitinases DupA and DupB" 7387:"Life times of metastable states guide regulatory signaling in transcriptional riboswitches" 2540:"Structure of the TAPBPR–MHC I complex defines the mechanism of peptide loading and editing" 1821:"Rotary substates of mitochondrial ATP synthase reveal the basis of flexible F1-Fo coupling" 1492:
2009), Harald Schwalbe (Feb 2009 - Feb 2013) and Volker Dötsch (March 2013 - October 2019).
10326: 9922: 9773: 9685: 9398: 9168: 9055:"Rules and self-organizing properties of post-embryonic plant organ cell division patterns" 8749: 8555: 8460: 8309: 8086: 7978: 7921: 7866: 7753: 7700: 7645: 7398: 7091: 6944: 6895: 6759: 6587: 6404: 6355: 6296: 6237: 6049: 5915: 5904:"Transient protonation changes in channelrhodopsin-2 and their relevance to channel gating" 5856: 5754: 5567: 5513: 5361: 5065: 4758: 4504: 4361: 4263: 4210: 3969: 3639: 3578:"Specific recognition of linear ubiquitin chains by NEMO is important for NF-ÎşB activation" 3532: 3473: 3418: 3364: 3307: 3168: 2935: 2722: 2596: 2551: 2492: 2386: 2371: 2328: 2174: 2115: 2058: 1999: 1940: 1832: 1773: 1669: 1614: 1326: 994: 731: 724:
by demonstrating that the disease-causing point mutation of the ribosome biogenesis factor
362: 358: 10983: 9081: 9053:
von Wangenheim D, Fangerau J, Schmitz A, Smith RS, Leitte H, Stelzer EH, Maizel A (2016).
8273: 7549:
Becker Y, Unger E, Fichte MA, Gacek DA, Dreuw A, Wachtveitl J, Walla PJ, Heckel A (2018).
3114:
Genau HM, Huber J, Baschieri F, Akutsu M, Dötsch V, Farhan H, Rogov V, Behrends C (2015).
563:
which in female cancer patients usually results in infertility and the premature onset of
8: 1190: 1186: 1119: 875: 839: 819: 799: 760: 425: 415: 308:, deciphered the role of linear ubiquitin chains and described macromolecules regulating 297: 249: 10330: 9926: 9777: 9689: 9564: 9402: 9172: 8753: 8559: 8464: 8313: 8090: 7982: 7925: 7870: 7757: 7704: 7649: 7402: 7095: 6948: 6899: 6841: 6763: 6591: 6408: 6359: 6300: 6241: 6053: 5919: 5860: 5758: 5571: 5517: 5365: 5305:"The 60S associated ribosome biogenesis factor LSG1-2 is required for 40S maturation in 5069: 4762: 4508: 4365: 4267: 4214: 3973: 3643: 3536: 3477: 3422: 3368: 3311: 3172: 2939: 2726: 2600: 2555: 2496: 2390: 2332: 2314:"Structural basis of Na+-independent and cooperative substrate/product antiport in CaiT" 2178: 2119: 2062: 2003: 1944: 1836: 1777: 1673: 1618: 10812: 10785: 10761: 10734: 10710: 10683: 10614: 10587: 10563: 10536: 10476: 10349: 10314: 10290: 10263: 10244: 10231: 10206: 10182: 10157: 10098: 10073: 9943: 9910: 9886: 9859: 9794: 9761: 9737: 9712: 9505: 9481:"The molecular basis of subtype selectivity of human kinin G-protein-coupled receptors" 9480: 9421: 9386: 9327: 9300: 9281: 9237: 9189: 9156: 9132: 9105: 9035: 8992: 8909: 8861: 8836: 8817: 8773: 8687: 8674: 8649: 8625: 8598: 8579: 8528: 8484: 8332: 8298:"Engineering fungal de novo fatty acid synthesis for short chain fatty acid production" 8297: 8228: 8203: 8109: 8074: 8050: 8025: 8001: 7966: 7942: 7909: 7890: 7721: 7688: 7669: 7577: 7550: 7421: 7386: 7367: 7249: 7222: 7163: 7138: 7114: 7079: 7014: 6989: 6965: 6932: 6782: 6747: 6610: 6575: 6556: 6425: 6392: 6319: 6284: 6260: 6225: 6206: 6158: 6133: 6073: 6022: 5938: 5903: 5879: 5844: 5825: 5723: 5591: 5534: 5501: 5477: 5452: 5433: 5384: 5349: 5280: 5255: 5231: 5206: 5182: 5157: 5133: 5108: 5089: 5033: 5006: 4947: 4920: 4825: 4782: 4726: 4701: 4611: 4527: 4492: 4468: 4441: 4382: 4349: 4330: 4287: 4231: 4198: 4173: 4146: 4081: 3992: 3957: 3938: 3889: 3862: 3838: 3811: 3750: 3685:"The CUE domain of Cue1 aligns growing ubiquitin chains with Ubc7 for rapid elongation" 3660: 3627: 3607: 3553: 3520: 3496: 3461: 3442: 3385: 3352: 3328: 3295: 3189: 3156: 3096: 3071:
Dikic I, Elazar Z (2018). "Mechanism and medical implications of mammalian autophagy".
3048: 3024:"The molecular basis of subtype selectivity of human kinin G-protein-coupled receptors" 3023: 2958: 2923: 2899: 2874: 2745: 2710: 2620: 2515: 2480: 2456: 2429: 2410: 2352: 2289: 2262: 2197: 2162: 2138: 2103: 2084: 2022: 1987: 1963: 1928: 1904: 1877: 1858: 1796: 1761: 1737: 1712: 1693: 1638: 1400: 1354: 1098:, exogenous molecules, or by temperature changes, as well as aptamers or self-cleaving 1087: 899: 871: 618: 610:
B2 in endothelial cells. Ephrin B2 was also found to be essential to control levels of
8024:
Klein A, Hank S, Raulf A, Joest EF, Tissen F, Heilemann M, Wieneke R, Tampé R (2018).
5777: 5742: 5710: 5693: 3353:"Inhibition of bacterial ubiquitin ligases by SidJ-calmodulin-catalysed glutamylation" 2312:
Schulze S, Koster S, Geldmacher U, Terwisscha van Scheltinga AC, KĂĽhlbrandt W (2010).
1164: 720:
Work by a collaboration between several CEF groups unravelled the molecular nature of
410:
was extensively studied with 31P- and DNP-enhanced solid-state NMR. Also, a number of
10899: 10858: 10835:
Giese H, Ackermann J, Heide H, Bleier L, Drose S, Wittig I, Brandt U, Koch I (2015).
10817: 10766: 10715: 10664: 10643:"MonaLisa - visualization and analysis of functional modules in biochemical networks" 10619: 10568: 10534: 10517: 10496:"iCLIP data analysis: A complete pipeline from sequencing reads to RBP binding sites" 10468: 10430: 10395: 10354: 10295: 10248: 10236: 10187: 10138: 10103: 10054: 10019: 9984: 9948: 9891: 9840: 9799: 9742: 9658: 9622: 9587: 9545: 9510: 9461: 9426: 9367: 9332: 9273: 9229: 9194: 9137: 9086: 9027: 8984: 8949: 8901: 8866: 8809: 8765: 8722: 8691: 8679: 8630: 8583: 8571: 8520: 8488: 8476: 8412: 8372: 8337: 8278: 8233: 8184: 8149: 8114: 8055: 8006: 7947: 7882: 7839: 7804: 7769: 7726: 7661: 7617: 7582: 7531: 7496: 7461: 7426: 7359: 7324: 7289: 7254: 7203: 7168: 7119: 7060: 7019: 6970: 6913: 6864: 6822: 6787: 6728: 6692: 6656: 6615: 6548: 6524:
Kleinlogel S, Feldbauer K, Dempski RE, Fotis H, Wood PG, Bamann C, Bamberg E (2011).
6506: 6465: 6430: 6373: 6324: 6265: 6198: 6163: 6114: 6065: 6014: 5979: 5943: 5884: 5817: 5782: 5715: 5673: 5632: 5583: 5539: 5482: 5425: 5389: 5330: 5285: 5236: 5187: 5138: 5093: 5081: 5038: 4987: 4952: 4901: 4866: 4817: 4774: 4731: 4682: 4647: 4603: 4567: 4532: 4493:"Time-resolved NMR methods resolving ligand-induced RNA folding at atomic resolution" 4473: 4422: 4387: 4322: 4279: 4236: 4178: 4122: 4073: 4038: 3997: 3930: 3894: 3843: 3791: 3742: 3706: 3665: 3599: 3558: 3501: 3434: 3390: 3333: 3276: 3235: 3194: 3137: 3088: 3053: 3004: 2963: 2904: 2855: 2820: 2785: 2750: 2691: 2655: 2612: 2569: 2520: 2461: 2414: 2402: 2344: 2294: 2243: 2202: 2143: 2076: 2027: 1968: 1909: 1862: 1850: 1801: 1742: 1685: 1630: 1587: 1396: 1363: 1213: 1043: 929: 776: 669: 650: 420: 354:
CEF Research Area A - Structure, mechanisms and dynamics of complexes in the membrane
338: 10853: 10836: 10659: 10642: 9760:
Peetz O, Hellwig N, Henrich E, Mezhyrova J, Dötsch V, Bernhard F, Morgner N (2019).
9039: 8996: 8913: 8835:
Keller PJ, Schmidt AD, Santella A, Khairy K, Bao Z, Wittbrodt J, Stelzer EH (2010).
8777: 7673: 7371: 6210: 6132:
Stirman JN, Crane MM, Husson SJ, Wabnig S, Schultheis C, Gottschalk A, Lu H (2011).
6026: 5727: 5595: 4829: 4085: 3296:"nsights into catalysis and function of phosphoribosyl-linked serine ubiquitination" 1697: 1642: 1161:
with substituents carefully selected for their structural and electronic influence.
1059:
residue as part of the backbone structure. Important was also the development of an
11111: 10889: 10848: 10807: 10797: 10756: 10746: 10705: 10695: 10654: 10609: 10599: 10558: 10548: 10507: 10480: 10460: 10422: 10385: 10344: 10334: 10285: 10275: 10226: 10218: 10177: 10169: 10130: 10093: 10085: 10046: 10011: 9976: 9938: 9930: 9881: 9871: 9830: 9789: 9781: 9732: 9724: 9693: 9650: 9614: 9579: 9537: 9500: 9492: 9453: 9416: 9406: 9359: 9322: 9312: 9285: 9265: 9241: 9221: 9184: 9176: 9127: 9117: 9076: 9066: 9019: 8976: 8939: 8893: 8884:
Stelzer EH (2015). "Light-sheet fluorescence microscopy for quantitative biology".
8856: 8848: 8821: 8801: 8757: 8714: 8669: 8661: 8620: 8610: 8563: 8532: 8512: 8468: 8402: 8364: 8327: 8317: 8268: 8260: 8223: 8215: 8176: 8141: 8104: 8094: 8045: 8037: 7996: 7986: 7937: 7929: 7894: 7874: 7831: 7796: 7761: 7716: 7708: 7653: 7609: 7572: 7562: 7523: 7488: 7453: 7416: 7406: 7351: 7316: 7281: 7244: 7234: 7195: 7158: 7150: 7109: 7099: 7050: 7009: 7001: 6960: 6952: 6903: 6856: 6814: 6777: 6767: 6720: 6684: 6646: 6605: 6595: 6560: 6540: 6496: 6457: 6420: 6412: 6363: 6314: 6304: 6255: 6245: 6190: 6153: 6145: 6104: 6077: 6057: 6006: 5971: 5933: 5923: 5874: 5864: 5829: 5809: 5772: 5762: 5705: 5663: 5622: 5575: 5529: 5521: 5472: 5464: 5453:"SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export" 5437: 5417: 5379: 5369: 5320: 5275: 5267: 5226: 5218: 5177: 5169: 5128: 5120: 5073: 5028: 5018: 4979: 4942: 4932: 4893: 4856: 4809: 4786: 4766: 4721: 4713: 4674: 4639: 4615: 4595: 4559: 4522: 4512: 4463: 4453: 4414: 4377: 4369: 4314: 4291: 4271: 4226: 4218: 4168: 4158: 4112: 4065: 4028: 3987: 3977: 3942: 3922: 3884: 3874: 3833: 3823: 3781: 3754: 3734: 3696: 3655: 3647: 3611: 3589: 3548: 3540: 3491: 3481: 3446: 3426: 3380: 3372: 3323: 3315: 3266: 3225: 3184: 3176: 3127: 3100: 3080: 3043: 3035: 2994: 2953: 2943: 2894: 2886: 2847: 2812: 2777: 2740: 2730: 2683: 2647: 2624: 2604: 2559: 2510: 2500: 2451: 2441: 2394: 2356: 2336: 2284: 2274: 2233: 2192: 2182: 2133: 2123: 2088: 2066: 2017: 2007: 1958: 1948: 1899: 1889: 1840: 1791: 1781: 1732: 1724: 1677: 1656:
Zickermann V, Wirth C, Nasiri H, Siegmund K, Schwalbe H, Hunte C, Brandt U (2015).
1622: 1577: 1545: 1513: 1501: 1039: 925: 921: 866:
that enable modulating cellular and molecular function with light. In the field of
838:
CEF scientists also investigated the influence of novel |noncoding RNAs]], such as
370: 285: 224: 10313:
Okazaki KI, Wöhlert D, Warnau J, Jung H, Yildiz O, Kühlbrandt W, Hummer G (2019).
5668: 5651: 4442:"Novel (13) C-detected NMR experiments for the precise detection of RNA structure" 4334: 3157:"Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth" 10390: 10373: 10280: 9835: 9818: 7055: 7038: 6931:
Gao SQ, Nagpal J, Schneider MW, Kozjak-Pavlovic V, Nagel G, Gottschalk A (2015).
6651: 6634: 6391:
Gao SQ, Nagpal J, Schneider MW, Kozjak-Pavlovic V, Nagel G, Gottschalk A (2015).
6109: 6092: 5652:"Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth" 5222: 4117: 4100: 3701: 3684: 3230: 3213: 3132: 3115: 2220:
Bausewein T, Mills DJ, Langer JD, Nitschke B, Nussberger S, KĂĽhlbrandt W (2017).
1929:"Macromolecular organization of ATP synthase and complex I in whole mitochondria" 1728: 1454: 1343: 1330: 1301: 1060: 1026: 1002: 976: 787: 772: 450: 403: 137:
It may require cleanup to comply with Knowledge's content policies, particularly
11003: 10512: 10495: 9860:"Helical jackknives control the gates of the double-pore K+ uptake system KtrAB" 5843:
Feldbauer K, Zimmermann D, Pintschovius V, Spitz J, Bamann C, Bamberg E (2009).
5205:
Bohnsack MT, Martin R, Granneman S, Ruprecht M, Schleiff E, Tollervey D (2009).
4861: 4844: 2999: 2982: 2311: 2263:"Helical jackknives control the gates of the double-pore K+ uptake system KtrAB" 2047:"The structure of cbb3 cytochrome oxidase provides insights into proton pumping" 10894: 10877: 10339: 9697: 9269: 8705:
Faruqi AR, Henderson R (2007). "Electronic detectors for electron microscopy".
7933: 7551:"A red-shifted two-photon-only caging group for three-dimensional photorelease" 7411: 7104: 5627: 5610: 5525: 5254:
Palm D, Streit D, Shanmugam T, Weis BL, Ruprecht M, Simm S, Schleiff E (2019).
4222: 3828: 3738: 3594: 3577: 3486: 3271: 3254: 2372:"Molecular basis of transport and regulation in the Na+/betaine symporter BetP" 2238: 2221: 1334: 1259: 1250: 1153:
protein photocycle in a directed manner, CEF groups collaborated to modify the
702: 623:
Many discoveries including the identification of multiple classes of noncoding
446: 366: 343: 233: 11008: 10802: 10700: 10604: 10464: 10222: 10207:"Conformation space of a heterodimeric ABC exporter under turnover conditions" 9911:"ATP synthases: cellular nanomotors characterized by LILBID mass spectrometry" 9819:"Acyl modification and binding of mitochondrial ACP to multiprotein complexes" 9785: 9122: 9071: 9054: 8718: 8665: 8650:"Conformation space of a heterodimeric ABC exporter under turnover conditions" 7137:
Buff MC, Schäfer F, Wulffen B, Müller J, Pötzsch B, Heckel A, Mayer G (2010).
7005: 5743:"Channelrhodopsin-2, a directly light-gated cation-selective membrane channel" 5374: 5348:
Endesfelder U, Finan K, Holden SJ, Cook PR, Kapanidis AN, Heilemann M (2013).
3926: 3786: 3769: 3376: 3319: 3084: 530:-based ubiquitination mechanism. They further showed that another effector of 11134: 10751: 8202:
Braner M, Koller N, Knauer J, Herbring V, Hank S, Wieneke R, Tampé R (2019).
4969: 1471: 1018: 907: 823: 807: 736: 611: 490: 10134: 8761: 8615: 7991: 7657: 6772: 6600: 6501: 6484: 6309: 6250: 5928: 5869: 5767: 5579: 4517: 4440:
Schnieders R, Wolter AC, Richter C, Wöhnert J, Schwalbe H, Fürtig B (2019).
4373: 3982: 3180: 2948: 2564: 2539: 2505: 2446: 2370:
Ressl S, Terwisscha van Scheltinga AC, Vonrhein C, Ott V, Ziegler C (2009).
2187: 2128: 2071: 2046: 2012: 1953: 1894: 1845: 1820: 1786: 1681: 1626: 631: 324:
quality control and characterized the process of genetic quality control in
84:
any relevant information, and removing excessive detail that may be against
10903: 10862: 10821: 10770: 10719: 10668: 10623: 10572: 10521: 10472: 10434: 10399: 10358: 10299: 10240: 10191: 10142: 10107: 10058: 10023: 9988: 9952: 9895: 9844: 9803: 9746: 9662: 9626: 9618: 9591: 9549: 9514: 9465: 9430: 9371: 9363: 9336: 9277: 9233: 9198: 9141: 9090: 9031: 9023: 8988: 8980: 8953: 8905: 8870: 8813: 8769: 8726: 8683: 8634: 8575: 8524: 8480: 8416: 8376: 8368: 8341: 8282: 8237: 8188: 8180: 8153: 8145: 8118: 8059: 8010: 7951: 7886: 7843: 7835: 7808: 7800: 7773: 7730: 7665: 7621: 7613: 7586: 7535: 7527: 7500: 7465: 7457: 7430: 7363: 7355: 7328: 7320: 7293: 7285: 7258: 7207: 7172: 7123: 7064: 7023: 6974: 6917: 6868: 6826: 6791: 6732: 6696: 6660: 6619: 6552: 6510: 6469: 6461: 6434: 6377: 6328: 6269: 6202: 6167: 6118: 6069: 6018: 5983: 5947: 5888: 5821: 5786: 5719: 5677: 5636: 5587: 5543: 5486: 5468: 5429: 5393: 5334: 5289: 5240: 5191: 5142: 5085: 5042: 4991: 4983: 4956: 4905: 4870: 4821: 4813: 4778: 4735: 4686: 4651: 4643: 4607: 4571: 4536: 4477: 4458: 4426: 4418: 4391: 4326: 4283: 4240: 4199:"A chemical toolbox for the study of bromodomains and epigenetic signaling" 4182: 4126: 4077: 4042: 4001: 3934: 3898: 3847: 3795: 3746: 3710: 3669: 3603: 3562: 3505: 3438: 3394: 3337: 3280: 3239: 3198: 3141: 3092: 3057: 3008: 2967: 2908: 2890: 2859: 2824: 2789: 2754: 2695: 2659: 2616: 2573: 2524: 2465: 2406: 2348: 2298: 2247: 2206: 2147: 2080: 2031: 1972: 1913: 1854: 1805: 1760:
MĂĽhleip AW, Joos F, Wigge C, Frangakis AS, KĂĽhlbrandt W, Davies KM (2016).
1746: 1689: 1658:"Mechanistic insight from the crystal structure of mitochondrial complex I" 1634: 1591: 1442: 1370:
protein complexes. This method is also applicable to membrane proteins and
1367: 1293: 1182: 1154: 1123: 1052: 867: 862:
A major focus of work in CEF was to develop and use methods and to explore
857: 851: 783: 768: 692: 682: 560: 329: 265: 10553: 10173: 9496: 9211: 8264: 7765: 7239: 7154: 5406: 5271: 5173: 4937: 4717: 4599: 4069: 3039: 754: 10684:"The autophagy interaction network of the aging model Podospora anserina" 10426: 10089: 10050: 9980: 9654: 9583: 9541: 6860: 6724: 5124: 4843:
Morgner N, Barth HD, Brutschy B, Scheffer U, Breitung S, Gobel M (2008).
4033: 4016: 3253:
Bhogaraju S, Kalayil S, Liu Y, Bonn F, Colby T, Matic I, Dikic I (2016).
2687: 2651: 2369: 1450: 1434: 1249:(LSFM)). In LSFM, optical sectioning in the excitation process minimizes 1131: 1022: 968: 883: 764: 576: 454: 317: 9876: 9411: 9387:"Live-cell protein labelling with nanometre precision by cell squeezing" 9317: 8567: 8472: 8322: 8099: 8075:"Live-cell protein labelling with nanometre precision by cell squeezing" 7878: 7712: 6061: 5077: 5023: 4770: 4275: 4163: 3879: 3651: 3544: 3430: 2735: 2608: 2398: 2340: 2279: 1819:
Murphy BJ, Klusch N, Langer J, Mills DJ, Yildiz O, KĂĽhlbrandt W (2019).
1550: 1533: 894:
The origin of optogenetics lies in the work of the Bamberg group at the
300:
and recycling. For instance, CEF scientists identified the receptors of
10973: 9934: 9728: 9225: 8944: 8927: 8897: 8852: 8407: 8390: 8219: 8041: 7567: 7199: 6956: 6908: 6883: 6416: 6368: 6343: 6194: 6149: 6010: 5350:"Multiscale spatial organization of RNA polymerase in Escherichia coli" 4919:
Kortmann J, Sczodrok S, Rinnenthal J, Schwalbe H, Narberhaus F (2011).
4142: 2709:
Kaur H, Lakatos-Karoly A, Vogel R, Nöll A, Tampé R, Glaubitz C (2016).
2045:
Buschmann S, Warkentin E, Xie H, Langer JD, Ermler U, Michel H (2010).
1582: 1565: 1371: 1234: 1221: 1158: 1095: 1091: 1056: 1047: 989: 937: 916: 791: 645: 568: 544: 522: 504: 462: 305: 281: 10015: 9457: 9180: 8599:"Structure, mechanism, and regulation of the chloroplast ATP synthase" 7492: 7077: 6818: 6688: 5975: 5325: 5304: 4897: 4678: 4563: 2851: 2816: 2781: 1878:"Structure, mechanism, and regulation of the chloroplast ATP synthase" 10988: 10786:"Manatee invariants reveal functional pathways in signaling networks" 10784:
Amstein L, Ackermann J, Scheidel J, Fulda S, Dikic I, Koch I (2017).
10374:"Activation of the unfolded protein response by lipid bilayer stress" 6881: 6223: 4139: 1317: 1265: 1142: 1099: 997:. They also established the tightly light-regulated guanylyl-cyclase 911: 903: 572: 564: 513: 499: 482: 313: 309: 301: 261: 10072:
Förster U, Weigand JE, Trojanowski P, Suess B, Wachtveitl J (2012).
9349: 9155:
Schmitz A, Fischer SC, Mattheyer C, Pampaloni F, Stelzer EH (2017).
8805: 8516: 8131: 6544: 6482: 6341: 5842: 5421: 4318: 619:
CEF Research Area C - Dynamics of ribonucleic acid-protein-complexes
597: 11084: 10638: 10448: 9443: 9384: 8072: 7687:
Lucas T, Schäfer F, Müller P, Emig S, Heckel A, Dimmeler S (2017).
5813: 5450: 1413: 1313: 1165:
CEF Research Area E - Methods for studying macromolecular complexes
1136: 1076: 1064: 863: 847: 843: 706: 678: 606:-2 needs to be internalized and is regulated by its association to 399: 321: 289: 10636: 10588:"Insights into the design and interpretation of iCLIP experiments" 10001: 9052: 7821: 6226:"In vivo synaptic recovery following optogenetic hyperstimulation" 5960: 4918: 3459: 2981:
Morgner N, Kleinschroth T, Barth HD, Ludwig B, Brutschy B (2007).
2222:"Cryo-EM structure of the TOM core complex from Neurospora crassa" 1110:
translocation using synthetic photo-conditional viral inhibitors.
10993: 10493: 9103: 7967:"In situ assembly of macromolecular complexes triggered by light" 7036: 6930: 6745: 6573: 6390: 6090: 2921: 1429: 1417: 1403:. Advantages of mass spectrometry compared to other methods like 1383: 1350: 1107: 1030: 1014: 710: 664: 486: 378: 10120: 9154: 8296:
Gajewski J, Pavlovic R, Fischer M, Boles E, Grininger M (2017).
7910:"Synthetic protein-conductive membrane nanopores built with DNA" 6804: 6282: 5649: 4664: 4253: 3860: 2837: 2767: 1146:
approach . They reprogrammed chain-length control of the FAS of
1071:, CEF scientists also investigated if locally restricted target 10204: 9857: 8647: 8250: 6987: 6632: 6523: 6485:"Structural insights into ion conduction by channelrhodopsin 2" 5996: 5608: 5499: 5204: 4014: 2260: 1507: 972: 960: 879: 767:(CTSS) mRNA, which encodes a cysteine protease associated with 674: 607: 527: 517: 509: 470: 458: 325: 10071: 7856: 7599: 6180: 5901: 5690: 5303:
Weis BL, Missbach S, Marzi J, Bohnsack MT, Schleiff E (2014).
4883: 4748: 4628: 4439: 4098: 3911: 2980: 2711:"Coupled ATPase-adenylate kinase activity in ABC transporters" 1257:. The impact of LSFM was recognized in 2015, when the journal 743:-associated ribosome biogenesis factor LSG1-2 is required for 729:
also identified plant-specific ribosome biogenesis factors in
10783: 10074:"Conformational dynamics of the tetracycline-binding aptamer" 9823:
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
8166: 7743: 7306: 7271: 7223:"A light-responsive RNA aptamer for an azobenzene derivative" 6447: 4799: 3808: 1655: 1072: 1021:
by light CEF scientists have designed and applied a range of
998: 811: 495: 9759: 9604: 8295: 7786: 7384: 4842: 4584: 3955: 3682: 3624: 3407: 2219: 1710: 1477: 794:
family (SRSF1–7) for their potential to act as adaptors for
10371: 9908: 8834: 7964: 7634: 7443: 7220: 5556: 4304: 3350: 2708: 2586: 2478: 2101: 2044: 1276: 795: 725: 556: 293: 10922:
GEPRIS Database of the Deutsche Forschungsgemeinschaft DFG
10875: 10585: 10155: 10036: 9965: 9254: 8450: 8201: 7341: 6709: 5347: 4921:"Translation on demand by a simple RNA-based thermosensor" 4699: 4491:
Buck J, Fürtig B, Noeske J, Wöhnert J, Schwalbe H (2007).
4404: 3723: 3575: 2802: 489:
proteins, which play a central role by connecting nascent
193:
Cluster of Excellence Frankfurt "Macromolecular Complexes"
10999:
Center for Biomolecular Magnetic Resonance (BMRZ) website
10943:"Cluster of Excellence Macromolecular Complexs in Action" 10834: 10681: 10412: 9816: 9675: 9527: 9478: 8597:
Hahn A, Vonck J, Mills DJ, Meier T, KĂĽhlbrandt W (2018).
8354: 5302: 4549: 3211: 3113: 3021: 2872: 2637: 1876:
Hahn A, Vonck J, Mills DJ, Meier T, KĂĽhlbrandt W (2018).
1759: 1378: 1374: 1169:
The development of cutting-edge methodologies, including
1118:
CEF scientists used detailed structural knowledge of the
941: 660: 656: 632:
Structural description of RNA elements and their dynamics
624: 466: 277: 228: 10494:
Busch A, BrĂĽggemann M, Ebersberger S, Zarnack K (2019).
10312: 10261: 9710: 9639: 9298: 7136: 6746:
Maciejko J, Kaur J, Becker-Baldus J, Glaubitz C (2019).
6131: 5740: 5106: 5004: 3767: 3521:"Proteasome subunit Rpn13 is a novel ubiquitin receptor" 3518: 3293: 2922:
Maciejko J, Kaur J, Becker-Baldus J, Glaubitz C (2019).
2672: 1457:
and DNA/RNA complexes, have been analysed using LILBID.
858:
CEF Research Area D - Design of macromolecular complexes
693:
Components involved in ribosome biogenesis in eukaryotes
223:
grew out of the long-standing collaborative research on
10978: 10837:"NOVA: a software to analyze complexome profiling data" 7907: 7513: 7185: 6039: 5799: 5253: 4490: 4195: 3252: 2427: 1818: 1033:
and "beacons". They also developed an approach for the
755:
Distribution of RNA-modifying enzymes and RNA molecules
640:
methods (PELDOR) after base-specific spin-labeling and
428:
for their peptide agonists by integrating DNP-enhanced
10998: 10979:
Buchmann Institute for Molecular Life Sciences website
9562: 8790: 8545: 8501: 7686: 7548: 7478: 6839: 6633:
Bamann C, Bamberg E, Wachtveitl J, Glaubitz C (2014).
5055: 4055: 3154: 2160: 130:
A major contributor to this article appears to have a
11059:
Graduate School of Economics, Finance, and Management
1926: 1604: 1279:(RTN3) as a specific receptor for the degradation of 238:
Buchmann Institute for Molecular Life Sciences (BMLS)
9009: 8966: 1985: 1094:
have been designed that can be triggered with small
520:
ubiquitination by the effector SdeA of the pathogen
11069:
Otto Stern School for Integrated Doctoral Education
8596: 8023: 6639:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
4347: 1875: 10732: 8740:KĂĽhlbrandt W (2014). "The resolution revolution". 705:I (Pol I) in the process of actively transcribing 659:TAR RNA-Ligand complex was analyzed by LILBID and 10682:Philipp O, Hamann A, Osiewacz HD, Koch I (2017). 6673: 5155: 1298:Center for Biomolecular Magnetic Resonance (BMRZ) 598:Interactions with soluble domains at the membrane 11132: 3212:Fiskin E, Bionda T, Dikic I, Behrends C (2016). 252:and quality control, and RNA-protein complexes. 11038: 10994:Max Planck Institute for Brain Research website 10447: 8704: 1197:into the methods portfolio of Riedberg Campus. 1102:, which can be used to control gene expression 786:to the cytoplasm is a highly regulated step in 713:. Their structures explained the regulation of 350:Methods for studying macromolecular complexes. 2161:Marcia M, Ermler U, Peng GH, Michel H (2009). 699:Max Planck Institute for Biophysical Chemistry 337:for the observation of development and LILBID 274:transporter associated with antigen processing 11024: 1460: 526:, which is very different from the canonical 432:with advanced molecular modeling and docking 1508:Honours and prizes awarded to CEF scientists 5845:"Channelrhodopsin-2 is a leaky proton pump" 3070: 2875:"Solution NMR structure of proteorhodopsin" 2537: 1426:matrix-assisted laser desorption/ionization 1200: 1090:have been established in CEF Also, new RNA 604:vascular endothelial growth factor receptor 296:maturation and downstream processes during 50:Learn how and when to remove these messages 11031: 11017: 10989:Max Planck Institute of Biophysics website 8739: 4147:"Donated chemical probes for open science" 1308:(DNP). Together with researchers from the 1122:(FAS) megacomplex to engineer FAS for the 1008: 790:. CEF scientists evaluated members of the 476: 316:and ER-phagy. They delineated the role of 10893: 10852: 10811: 10801: 10760: 10750: 10709: 10699: 10658: 10613: 10603: 10562: 10552: 10511: 10389: 10348: 10338: 10289: 10279: 10230: 10181: 10097: 9942: 9885: 9875: 9834: 9793: 9736: 9504: 9420: 9410: 9326: 9316: 9188: 9131: 9121: 9080: 9070: 8943: 8860: 8673: 8624: 8614: 8406: 8331: 8321: 8272: 8227: 8108: 8098: 8049: 8000: 7990: 7941: 7720: 7576: 7566: 7420: 7410: 7248: 7238: 7162: 7113: 7103: 7054: 7013: 6964: 6907: 6781: 6771: 6650: 6609: 6599: 6500: 6424: 6367: 6318: 6308: 6259: 6249: 6157: 6108: 5937: 5927: 5878: 5868: 5776: 5766: 5709: 5667: 5626: 5533: 5476: 5383: 5373: 5324: 5279: 5230: 5181: 5132: 5032: 5022: 4946: 4936: 4860: 4725: 4526: 4516: 4467: 4457: 4381: 4230: 4172: 4162: 4116: 4032: 3991: 3981: 3888: 3878: 3837: 3827: 3785: 3700: 3659: 3593: 3552: 3495: 3485: 3384: 3327: 3270: 3229: 3188: 3131: 3047: 2998: 2957: 2947: 2898: 2744: 2734: 2563: 2514: 2504: 2455: 2445: 2288: 2278: 2237: 2196: 2186: 2137: 2127: 2070: 2021: 2011: 1986:Davies KM, Blum TB, KĂĽhlbrandt W (2018). 1962: 1952: 1903: 1893: 1844: 1795: 1785: 1736: 1581: 1549: 1478:Theoretical biophysics and bioinformatics 1360:pulsed electron–electron double resonance 775:, was shown to be highly edited in human 697:CEF scientists in collaboration with the 586:Goethe University became a member of the 284:, the structure-function relationship of 213:German Universities Excellence Initiative 179:Learn how and when to remove this message 161:Learn how and when to remove this message 104:Learn how and when to remove this message 1312:, CEF scientists developed a high-power 1300:improved the sensitivity of liquid- and 1218:Buchmann Institute for Molecular Biology 914:into the nervous system of the nematode 11156:Research institutes established in 2006 11004:Deutsche Forschungsgemeinschaft website 9607:Angewandte Chemie International Edition 9352:Angewandte Chemie International Edition 8883: 8357:Angewandte Chemie International Edition 8169:Angewandte Chemie International Edition 8134:Angewandte Chemie International Edition 7602:Angewandte Chemie International Edition 7516:Angewandte Chemie International Edition 7446:Angewandte Chemie International Edition 7344:Angewandte Chemie International Edition 7309:Angewandte Chemie International Edition 7274:Angewandte Chemie International Edition 4972:Angewandte Chemie International Edition 4446:Angewandte Chemie International Edition 4407:Angewandte Chemie International Edition 2879:Angewandte Chemie International Edition 1287: 1175:nuclear magnetic resonance spectroscopy 209:Max Planck Institute for Brain Research 11133: 1113: 1075:activity has a therapeutic benefit in 430:solid-state nuclear magnetic resonance 11012: 10733:Koch I, Nöthen J, Schleiff E (2017). 10453:Current Opinion in Structural Biology 681:an RNA-based thermometer, and the N1– 469:protein and the regulation of and by 1399:has emerged as an important tool in 1390: 512:that are secreted into the cellular 115: 56: 15: 10984:Goethe University Frankfurt website 10918:"EXC 115: Macromolecular Complexes" 8431:"The Nobel Prize in Chemistry 2017" 1268:coat around the cytosolic pathogen 1247:light sheet fluorescence microscopy 1240: 335:Light sheet fluorescence microscopy 13: 10637:Einloft J; Ackermann J; Nothen J; 924:, using ChR2 and a photoactivated 648:of the human pathogenic bacterium 205:Max Planck Institute of Biophysics 14: 11172: 10967: 5711:10.1161/circulationaha.117.029015 1055:structure with a photoswitchable 833: 538: 31:This article has multiple issues. 10935: 10910: 10869: 10828: 10777: 10726: 10675: 10630: 10579: 10528: 10487: 10441: 10406: 10365: 10306: 10255: 10198: 10149: 10114: 10065: 10030: 9995: 9959: 9902: 9851: 9810: 9753: 9704: 9669: 9633: 9598: 9556: 9521: 9472: 9437: 9378: 9343: 9292: 9248: 9205: 9148: 9097: 9046: 9003: 8960: 8920: 8877: 8828: 8784: 8733: 8698: 8641: 8590: 8539: 8495: 8444: 8423: 8383: 8348: 8289: 8244: 8195: 8160: 8125: 8066: 8017: 7958: 7901: 7850: 7815: 7780: 7737: 7680: 7628: 7593: 7542: 7507: 7472: 7437: 7378: 7335: 7300: 7265: 7214: 7179: 7130: 7071: 7030: 6981: 6924: 6875: 6833: 6798: 6739: 6703: 6667: 6626: 6567: 6517: 6476: 6441: 6384: 6335: 581: 443:post-translational modifications 346:in 2010 and 2014, respectively. 141:. Please discuss further on the 120: 61: 20: 6276: 6217: 6174: 6125: 6084: 6033: 5990: 5954: 5895: 5836: 5793: 5734: 5684: 5643: 5602: 5550: 5493: 5444: 5400: 5341: 5296: 5247: 5198: 5149: 5100: 5049: 4998: 4963: 4912: 4877: 4836: 4793: 4742: 4693: 4658: 4622: 4578: 4543: 4484: 4433: 4398: 4341: 4298: 4247: 4189: 4133: 4092: 4049: 4008: 3949: 3905: 3854: 3802: 3761: 3717: 3676: 3618: 3569: 3512: 3453: 3401: 3344: 3287: 3246: 3205: 3148: 3107: 3064: 3015: 2974: 2915: 2866: 2831: 2796: 2761: 2702: 2666: 2631: 2580: 2531: 2472: 2421: 2363: 2305: 2254: 2213: 2154: 2095: 2038: 1979: 1495: 1486: 1329:(MAS) conditions at 100 K with 1171:electron paramagnetic resonance 889: 739:processing and showed that the 638:electron paramagnetic resonance 270:mitochondrial respiratory chain 217:Deutsche Forschungsgemeinschaft 39:or discuss these issues on the 11161:Research institutes in Germany 11141:2006 establishments in Germany 9082:11858/00-001M-0000-002B-1640-B 8274:11858/00-001M-0000-002C-8359-6 1920: 1869: 1812: 1753: 1704: 1649: 1598: 1558: 1526: 1157:dodecin at its key amino acid 1005:and how they drive behaviour. 898:in Frankfurt, who showed that 796:nuclear export factor 1 (NXF1) 588:Structural Genomics Consortium 1: 11117:Institute for Social Research 11064:Institute for Law and Finance 10854:10.1093/bioinformatics/btu623 10660:10.1093/bioinformatics/btt165 7789:Chemistry: A European Journal 5669:10.1161/circresaha.114.303265 4632:Chemistry: A European Journal 1519: 1323:Ukrainian Academy of Sciences 936:, or for the manipulation of 822:(RBPs) and massively altered 219:(DFG) endet in October 2019. 199:) was established in 2006 by 11107:Center for Financial Studies 11091:Frankfurt University Library 10391:10.1016/j.molcel.2017.06.012 10281:10.1016/j.molcel.2019.10.019 9836:10.1016/j.bbamcr.2017.08.006 7056:10.1016/j.neuron.2018.10.024 6652:10.1016/j.bbabio.2013.09.010 6110:10.1016/j.neuron.2018.10.024 5223:10.1016/j.molcel.2009.09.039 4118:10.1182/blood-2013-05-500918 3702:10.1016/j.molcel.2016.04.031 3231:10.1016/j.molcel.2016.04.015 3133:10.1016/j.molcel.2014.12.040 1729:10.1016/j.molcel.2016.05.037 1306:dynamic nuclear polarization 1304:by a spectrometer featuring 1086:New building principles for 954:solid-state NMR spectroscopy 806:. To address the mechanism, 642:ultrafast laser spectroscopy 86:Knowledge's inclusion policy 7: 11151:Nanotechnology institutions 11146:Goethe University Frankfurt 11040:Goethe University Frankfurt 10513:10.1016/j.ymeth.2019.11.008 4862:10.1016/j.jasms.2008.07.001 3000:10.1016/j.jasms.2007.04.013 1339:G-protein-coupled receptors 1327:magic angle sample spinning 1310:Russian Academy of Sciences 1195:super-resolution microscopy 1061:inducible fluorescent probe 928:(PAC), in combination with 735:with essential function in 255: 201:Goethe University Frankfurt 10: 11177: 10895:10.1016/j.cmet.2012.08.009 10340:10.1038/s41467-019-09739-0 9698:10.1016/j.ijms.2008.08.001 9270:10.1038/nmicrobiol.2017.66 7934:10.1038/s41467-019-12639-y 7412:10.1038/s41467-018-03375-w 7105:10.1038/s41467-019-12098-5 5628:10.1016/j.jacc.2016.09.949 5526:10.1038/s41467-018-05748-7 4223:10.1038/s41467-019-09672-2 3829:10.1016/j.cell.2011.01.013 3739:10.1038/nmicrobiol.2017.66 3595:10.1016/j.cell.2009.03.007 3487:10.1038/s41467-019-10345-3 3272:10.1016/j.cell.2016.11.019 2538:Thomas C, TampĂ© R (2017). 2239:10.1016/j.cell.2017.07.012 1467:time-resolved spectroscopy 1461:Time-resolved spectroscopy 1409:nuclear magnetic resonance 11099: 11077: 11046: 10803:10.1186/s12918-017-0448-7 10701:10.1186/s12859-017-1603-2 10605:10.1186/s13059-016-1130-x 10465:10.1016/j.sbi.2018.02.005 10223:10.1038/s41586-019-1391-0 9786:10.1007/s13361-018-2061-4 9123:10.1186/s12859-015-0617-x 9072:10.1016/j.cub.2015.12.047 8928:"Method of the Year 2014" 8719:10.1016/j.sbi.2007.08.014 8666:10.1038/s41586-019-1391-0 8391:"Method of the Year 2015" 7006:10.1016/j.cub.2012.02.066 5375:10.1016/j.bpj.2013.05.048 3927:10.1038/s41594-018-0035-7 3787:10.1016/j.str.2017.12.011 3377:10.1038/s41586-019-1440-8 3320:10.1038/s41586-018-0145-8 3085:10.1038/s41580-018-0003-4 1534:"Method of the Year 2010" 1512:A full list can be found 948:(a hybrid method linking 10752:10.3389/fgene.2017.00085 8707:Curr. Opin. Struct. Biol 1358:the DNP developments, a 1231:cryo-electron tomography 1206:Cryo-electron microscopy 1201:Cryo-electron microscopy 1149:Saccharomyces cerevisiae 1067:. Using light-inducible 1035:chemoenzymatic synthesis 876:intracellular signalling 10135:10.1021/acs.joc.7b01268 8762:10.1126/science.1251652 8616:10.1126/science.aat4318 7992:10.1073/pnas.0912617107 7658:10.1126/science.aaf8995 6773:10.1073/pnas.1817665116 6601:10.1073/pnas.1507713112 6502:10.1126/science.aan8862 6310:10.1073/pnas.1902443116 6251:10.1073/pnas.1305679110 5929:10.1073/pnas.1219502110 5870:10.1073/pnas.0905852106 5768:10.1073/pnas.1936192100 5580:10.1126/science.aaf8995 4518:10.1073/pnas.0703182104 4374:10.1126/science.1207125 3983:10.1073/pnas.1713773115 3181:10.1126/science.1205405 2949:10.1073/pnas.1817665116 2565:10.1126/science.aao6001 2506:10.1073/pnas.1114944109 2447:10.7554/eLife.03145.001 2188:10.1073/pnas.0904165106 2129:10.1126/science.aaf2477 2072:10.1126/science.1187303 2013:10.1073/pnas.1720702115 1954:10.1073/pnas.1103621108 1895:10.1126/science.aat4318 1846:10.1126/science.aaw9128 1787:10.1073/pnas.1525430113 1682:10.1126/science.1259859 1627:10.1126/science.1191046 1449:with binding proteins, 1179:fluorescence microscopy 1134:, guided by a combined 1128:short-chain fatty acids 1009:Optochemical approaches 477:Research into autophagy 243: 11054:Goethe Business School 9766:J Am Soc Mass Spectrom 9619:10.1002/anie.201100886 9364:10.1002/anie.201503215 9024:10.1038/nprot.2017.028 8981:10.1038/nprot.2015.093 8401:(1): 1. January 2016. 8369:10.1002/anie.201302334 8181:10.1002/anie.201309930 8146:10.1002/anie.201503215 7971:Proc Natl Acad Sci USA 7836:10.1002/smll.201100182 7801:10.1002/chem.201706003 7614:10.1002/anie.201510269 7528:10.1002/anie.201603281 7458:10.1002/anie.201307852 7356:10.1002/anie.201807125 7321:10.1002/anie.201610025 7286:10.1002/anie.201306686 6752:Proc Natl Acad Sci USA 6580:Proc Natl Acad Sci USA 6462:10.1002/cphc.201000181 6289:Proc Natl Acad Sci USA 6230:Proc Natl Acad Sci USA 5908:Proc Natl Acad Sci USA 5849:Proc Natl Acad Sci USA 5747:Proc Natl Acad Sci USA 5469:10.1101/gad.276477.115 4984:10.1002/anie.201001339 4849:J Am Soc Mass Spectrom 4814:10.1002/cbic.200900220 4644:10.1002/chem.201800167 4497:Proc Natl Acad Sci USA 4459:10.1002/anie.201904057 4419:10.1002/anie.200906885 3962:Proc Natl Acad Sci USA 2987:J Am Soc Mass Spectrom 2928:Proc Natl Acad Sci USA 2891:10.1002/anie.201105648 2485:Proc Natl Acad Sci USA 2167:Proc Natl Acad Sci USA 1992:Proc Natl Acad Sci USA 1933:Proc Natl Acad Sci USA 1766:Proc Natl Acad Sci USA 722:Bowen-Conradi syndrome 592:bromodomain inhibitors 550: 292:and the mechanisms of 211:in the context of the 9497:10.1038/nchembio.2551 8265:10.1038/nchembio.2314 7766:10.1038/nnano.2010.65 4600:10.1038/nprot.2007.97 4070:10.1515/hsz-2018-0324 3073:Nat Rev Mol Cell Biol 3040:10.1038/nchembio.2551 1405:X-ray crystallography 1255:developmental biology 1251:fluorophore bleaching 1227:x-ray crystallography 1173:(EPR), time-resolved 1088:DNA-nanoarchitectures 995:optogenetic actuators 971:bound to a conserved 965:transmembrane helices 934:synaptic transmission 782:mRNA export from the 677:, the Diels-Alderase 395:X-ray crystallography 375:respiratory complex I 139:neutral point of view 10427:10.1021/jacs.6b07426 10051:10.1021/jacs.6b07720 9981:10.1021/jacs.5b03606 9655:10.1021/jacs.7b12409 9584:10.1021/jacs.7b05061 9542:10.1021/jacs.6b07426 7049:(6): 1414–1428.e10. 6861:10.1021/jacs.7b05061 6725:10.1021/jacs.5b03606 5307:Arabidopsis thaliana 4034:10.1038/leu.2010.249 3265:(6): 1636–1649.e13. 2688:10.1021/jacs.7b12409 2652:10.1021/jacs.6b07426 1333:re-constituted into 1288:Spectroscopy methods 820:RNA-binding proteins 426:bradykinin receptors 416:microbial rhodopsins 363:cellular respiration 359:Biological membranes 10554:10.1093/jmcb/mjz094 10421:(42): 13967–13974. 10331:2019NatCo..10.1742O 10174:10.1093/nar/gky1110 10045:(39): 12997–13005. 10010:(34): 14070–14077. 9927:2010PCCP...1213375H 9921:(41): 13375–13382. 9915:Phys Chem Chem Phys 9877:10.7554/eLife.24303 9778:2019JASMS..30..181P 9723:(97): 13702–13705. 9690:2008IJMSp.277..309M 9678:Int J Mass Spectrom 9578:(45): 16143–16153. 9536:(42): 13967–13974. 9412:10.1038/ncomms10372 9403:2016NatCo...710372K 9318:10.7554/eLife.25555 9173:2017NatSR...743693S 8754:2014Sci...343.1443K 8748:(6178): 1443–1444. 8568:10.1038/nature20561 8560:2016Natur.540..607N 8473:10.1038/nature14185 8465:2015Natur.521..237A 8323:10.1038/ncomms14650 8314:2017NatCo...814650G 8100:10.1038/ncomms10372 8091:2016NatCo...710372K 7983:2010PNAS..107.6146G 7926:2019NatCo..10.5018D 7879:10.1038/Nature12378 7871:2013Natur.499..355R 7758:2010NatNa...5..436A 7713:10.1038/ncomms15162 7705:2017NatCo...815162L 7650:2017Sci...355..634S 7403:2018NatCo...9..944H 7350:(37): 12017–12021. 7280:(45): 11912–11915. 7240:10.1093/nar/gky1225 7155:10.1093/nar/gkp1148 7096:2019NatCo..10.4095S 6949:2015NatCo...6.8046G 6900:2014NatCo...5.5810A 6855:(45): 16143–16153. 6764:2019PNAS..116.8342M 6683:(50): 17578–17590. 6592:2015PNAS..112.9896B 6409:2015NatCo...6.8046G 6360:2014NatCo...5.5810A 6301:2019PNAS..11617051A 6295:(34): 17051–17060. 6242:2013PNAS..110E3007K 6062:10.1038/nature05744 6054:2007Natur.446..633Z 5920:2013PNAS..110E1273L 5861:2009PNAS..10612317F 5855:(30): 12317–12322. 5759:2003PNAS..10013940N 5572:2017Sci...355..634S 5518:2018NatCo...9.3315B 5366:2013BpJ...105..172E 5272:10.1093/nar/gky1261 5174:10.1093/nar/gkp1189 5078:10.1038/nature20561 5070:2016Natur.540..607N 5024:10.7554/eLife.21297 4938:10.1093/nar/gkq1252 4771:10.1038/Nature12378 4763:2013Natur.499..355R 4718:10.1093/nar/gky1110 4509:2007PNAS..10415699B 4366:2011Sci...333..758S 4276:10.1038/nature08995 4268:2010Natur.465..487S 4215:2019NatCo..10.1915W 4164:10.7554/eLife.34311 3974:2018PNAS..115E.906R 3915:Nat Struct Mol Biol 3880:10.7554/eLife.13909 3652:10.1038/nature09814 3644:2011Natur.471..637I 3545:10.1038/nature06926 3537:2008Natur.453..481H 3478:2019NatCo..10.2370B 3431:10.1038/nature14498 3423:2015Natur.522..354K 3369:2019Natur.572..382B 3312:2018Natur.557..734K 3173:2011Sci...333..228W 2940:2019PNAS..116.8342M 2885:(50): 11942–11946. 2736:10.1038/ncomms13864 2727:2016NatCo...713864K 2646:(42): 13967–13974. 2609:10.1038/nature24627 2601:2017Natur.551..525B 2556:2017Sci...358.1060T 2550:(6366): 1060–1064. 2497:2012PNAS..109.5687E 2399:10.1038/nature07819 2391:2009Natur.458...47R 2341:10.1038/nature09310 2333:2010Natur.467..233S 2280:10.7554/eLife.24303 2179:2009PNAS..106.9625M 2120:2016Sci...352..583S 2063:2010Sci...329..327B 2004:2018PNAS..115.3024D 1945:2011PNAS..10814121D 1939:(34): 14121–14126. 1837:2019Sci...364.9128M 1778:2016PNAS..113.8442M 1674:2015Sci...347...44Z 1619:2010Sci...329..448H 1551:10.1038/nmeth.f.321 1187:electron microscopy 1120:fatty acid synthase 1114:Protein engineering 1029:and nucleic acids, 840:long noncoding RNAs 800:pre-mRNA processing 798:and thereby couple 761:adenosine deaminase 298:ribosome biogenesis 288:, the functions of 276:(TAP). Research on 250:signal transduction 10688:BMC Bioinformatics 10090:10.1093/nar/gkr835 9935:10.1039/c0cp00733a 9729:10.1039/c8cc06284f 9226:10.1038/Nmeth.3775 9110:BMC Bioinformatics 8945:10.1038/nmeth.3251 8898:10.1038/nmeth.3219 8853:10.1038/nmeth.1476 8408:10.1038/nmeth.3730 8220:10.1039/c8sc04863k 8042:10.1039/C8SC02910E 7568:10.1039/c7sc05182d 7200:10.1039/c2cc16654b 6957:10.1038/ncomms9046 6909:10.1038/Ncomms6810 6495:(6366): eaan8862. 6417:10.1038/ncomms9046 6369:10.1038/Ncomms6810 6195:10.1038/nmeth.1252 6150:10.1038/nmeth.1555 6011:10.1038/nmeth.1766 5125:10.1093/nar/gkq931 4209:(10: 1915): 1915. 1831:(6446): eaaw9128. 1583:10.1038/nmeth.3251 1401:structural biology 900:channelrhodopsin-2 872:membrane potential 236:. CEF founded the 203:together with the 11125: 11124: 10384:(4): 673–684.e8. 10274:(1): 164–179.e6. 10217:(7766): 580–583. 10162:Nucleic Acids Res 10129:(15): 8040–8047. 10078:Nucleic Acids Res 10016:10.1021/ja304395k 9975:(28): 9032–9043. 9829:(10): 1913–1920. 9649:(13): 4527–4533. 9613:(22): 5070–5074. 9458:10.1021/ja901496g 9181:10.1038/srep43693 8975:(10): 1486–1507. 8660:(7766): 580–583. 8554:(7634): 607–610. 8175:(22): 5680–5684. 8036:(40): 7835–7842. 7977:(14): 6146–6151. 7795:(14): 3425–3428. 7644:(6325): 634–637. 7561:(10): 2797–2802. 7522:(31): 8948–8952. 7493:10.1021/ol200141v 7227:Nucleic Acids Res 7143:Nucleic Acids Res 6819:10.1021/ja111116a 6813:(12): 4645–4654. 6758:(17): 8342–8349. 6719:(28): 9032–9043. 6689:10.1021/ja5097946 6635:"Proteorhodopsin" 6005:(12): 1083–1088. 5976:10.1021/Ja400554y 5970:(18): 6968–6976. 5704:(10): 1320–1334. 5621:(23): 2589–2591. 5615:J Am Coll Cardiol 5566:(6325): 634–637. 5416:(10): 1140–1150. 5326:10.1111/tpj.12703 5260:Nucleic Acids Res 5162:Nucleic Acids Res 5113:Nucleic Acids Res 5064:(7634): 607–610. 4978:(35): 6216–6219. 4925:Nucleic Acids Res 4898:10.1021/ja900244x 4892:(17): 6261–6270. 4855:(11): 1600–1611. 4706:Nucleic Acids Res 4679:10.1021/jp103176q 4638:(23): 6202–6207. 4564:10.1021/ja9077914 4503:(40): 15699–704. 4452:(27): 9140–9144. 3780:(2): 249–258.e4. 3638:(7340): 637–641. 3531:(7194): 481–488. 3363:(7769): 382–386. 3306:(7707): 734–738. 2934:(17): 8342–8349. 2852:10.1021/ja111116a 2846:(12): 4645–4654. 2817:10.1021/Ja402605s 2782:10.1021/ja211007t 2682:(13): 4527–4533. 2595:(7681): 525–528. 2232:(4): 693–700.e7. 2173:(24): 9625–9630. 2114:(6285): 583–586. 2057:(5989): 327–329. 1998:(12): 3024–3029. 1772:(30): 8442–8447. 1447:drug transporters 1397:mass spectrometry 1391:Mass spectrometry 1214:Goethe University 1210:MPI of Biophysics 1044:DNA hybridization 930:electrophysiology 896:MPI of Biophysics 777:endothelial cells 670:Bacillus subtilis 651:Vibrio vulnificus 481:During selective 421:mass spectrometry 371:membrane proteins 339:mass spectrometry 225:membrane proteins 215:. Funding by the 189: 188: 181: 171: 170: 163: 134:with its subject. 114: 113: 106: 54: 11168: 11112:Frankfurt School 11033: 11026: 11019: 11010: 11009: 10961: 10960: 10958: 10956: 10947: 10939: 10933: 10932: 10930: 10928: 10914: 10908: 10907: 10897: 10873: 10867: 10866: 10856: 10832: 10826: 10825: 10815: 10805: 10781: 10775: 10774: 10764: 10754: 10730: 10724: 10723: 10713: 10703: 10679: 10673: 10672: 10662: 10634: 10628: 10627: 10617: 10607: 10583: 10577: 10576: 10566: 10556: 10532: 10526: 10525: 10515: 10491: 10485: 10484: 10445: 10439: 10438: 10410: 10404: 10403: 10393: 10369: 10363: 10362: 10352: 10342: 10310: 10304: 10303: 10293: 10283: 10259: 10253: 10252: 10234: 10202: 10196: 10195: 10185: 10153: 10147: 10146: 10118: 10112: 10111: 10101: 10069: 10063: 10062: 10034: 10028: 10027: 9999: 9993: 9992: 9963: 9957: 9956: 9946: 9906: 9900: 9899: 9889: 9879: 9855: 9849: 9848: 9838: 9814: 9808: 9807: 9797: 9757: 9751: 9750: 9740: 9708: 9702: 9701: 9684:(1–3): 309–313. 9673: 9667: 9666: 9637: 9631: 9630: 9602: 9596: 9595: 9569: 9560: 9554: 9553: 9525: 9519: 9518: 9508: 9476: 9470: 9469: 9441: 9435: 9434: 9424: 9414: 9382: 9376: 9375: 9347: 9341: 9340: 9330: 9320: 9296: 9290: 9289: 9252: 9246: 9245: 9209: 9203: 9202: 9192: 9152: 9146: 9145: 9135: 9125: 9101: 9095: 9094: 9084: 9074: 9050: 9044: 9043: 9018:(6): 1103–1109. 9007: 9001: 9000: 8964: 8958: 8957: 8947: 8924: 8918: 8917: 8881: 8875: 8874: 8864: 8832: 8826: 8825: 8788: 8782: 8781: 8737: 8731: 8730: 8702: 8696: 8695: 8677: 8645: 8639: 8638: 8628: 8618: 8594: 8588: 8587: 8543: 8537: 8536: 8499: 8493: 8492: 8459:(7551): 237–40. 8448: 8442: 8441: 8439: 8437: 8427: 8421: 8420: 8410: 8387: 8381: 8380: 8352: 8346: 8345: 8335: 8325: 8293: 8287: 8286: 8276: 8248: 8242: 8241: 8231: 8214:(7): 2001–2005. 8199: 8193: 8192: 8164: 8158: 8157: 8129: 8123: 8122: 8112: 8102: 8070: 8064: 8063: 8053: 8021: 8015: 8014: 8004: 7994: 7962: 7956: 7955: 7945: 7905: 7899: 7898: 7854: 7848: 7847: 7819: 7813: 7812: 7784: 7778: 7777: 7741: 7735: 7734: 7724: 7684: 7678: 7677: 7632: 7626: 7625: 7608:(8): 2738–2742. 7597: 7591: 7590: 7580: 7570: 7546: 7540: 7539: 7511: 7505: 7504: 7476: 7470: 7469: 7452:(4): 1072–1075. 7441: 7435: 7434: 7424: 7414: 7382: 7376: 7375: 7339: 7333: 7332: 7304: 7298: 7297: 7269: 7263: 7262: 7252: 7242: 7233:(4): 2029–2040. 7218: 7212: 7211: 7183: 7177: 7176: 7166: 7134: 7128: 7127: 7117: 7107: 7075: 7069: 7068: 7058: 7034: 7028: 7027: 7017: 6985: 6979: 6978: 6968: 6928: 6922: 6921: 6911: 6879: 6873: 6872: 6846: 6837: 6831: 6830: 6802: 6796: 6795: 6785: 6775: 6743: 6737: 6736: 6707: 6701: 6700: 6671: 6665: 6664: 6654: 6630: 6624: 6623: 6613: 6603: 6586:(32): 9896–901. 6571: 6565: 6564: 6530: 6521: 6515: 6514: 6504: 6480: 6474: 6473: 6445: 6439: 6438: 6428: 6388: 6382: 6381: 6371: 6339: 6333: 6332: 6322: 6312: 6280: 6274: 6273: 6263: 6253: 6236:(32): E3007-16. 6221: 6215: 6214: 6178: 6172: 6171: 6161: 6129: 6123: 6122: 6112: 6103:(6): 1414–1428. 6088: 6082: 6081: 6037: 6031: 6030: 5994: 5988: 5987: 5958: 5952: 5951: 5941: 5931: 5914:(14): E1273-81. 5899: 5893: 5892: 5882: 5872: 5840: 5834: 5833: 5808:(9): 1263–1268. 5797: 5791: 5790: 5780: 5770: 5738: 5732: 5731: 5713: 5688: 5682: 5681: 5671: 5662:(9): 1389–1397. 5647: 5641: 5640: 5630: 5606: 5600: 5599: 5554: 5548: 5547: 5537: 5497: 5491: 5490: 5480: 5448: 5442: 5441: 5404: 5398: 5397: 5387: 5377: 5345: 5339: 5338: 5328: 5300: 5294: 5293: 5283: 5266:(4): 1880–1895. 5251: 5245: 5244: 5234: 5202: 5196: 5195: 5185: 5153: 5147: 5146: 5136: 5104: 5098: 5097: 5053: 5047: 5046: 5036: 5026: 5002: 4996: 4995: 4967: 4961: 4960: 4950: 4940: 4931:(7): 2855–2868. 4916: 4910: 4909: 4881: 4875: 4874: 4864: 4840: 4834: 4833: 4808:(9): 1490–1494. 4797: 4791: 4790: 4746: 4740: 4739: 4729: 4697: 4691: 4690: 4673:(35): 11638–45. 4662: 4656: 4655: 4626: 4620: 4619: 4582: 4576: 4575: 4547: 4541: 4540: 4530: 4520: 4488: 4482: 4481: 4471: 4461: 4437: 4431: 4430: 4402: 4396: 4395: 4385: 4360:(6043): 758–62. 4345: 4339: 4338: 4313:(9): 1035–1043. 4302: 4296: 4295: 4262:(7297): 487–91. 4251: 4245: 4244: 4234: 4193: 4187: 4186: 4176: 4166: 4137: 4131: 4130: 4120: 4096: 4090: 4089: 4053: 4047: 4046: 4036: 4012: 4006: 4005: 3995: 3985: 3968:(5): E906–E915. 3953: 3947: 3946: 3909: 3903: 3902: 3892: 3882: 3858: 3852: 3851: 3841: 3831: 3806: 3800: 3799: 3789: 3765: 3759: 3758: 3721: 3715: 3714: 3704: 3680: 3674: 3673: 3663: 3622: 3616: 3615: 3597: 3588:(6): 1098–1109. 3573: 3567: 3566: 3556: 3516: 3510: 3509: 3499: 3489: 3457: 3451: 3450: 3405: 3399: 3398: 3388: 3348: 3342: 3341: 3331: 3291: 3285: 3284: 3274: 3250: 3244: 3243: 3233: 3209: 3203: 3202: 3192: 3167:(6039): 228–33. 3152: 3146: 3145: 3135: 3111: 3105: 3104: 3068: 3062: 3061: 3051: 3019: 3013: 3012: 3002: 2993:(8): 1429–1438. 2978: 2972: 2971: 2961: 2951: 2919: 2913: 2912: 2902: 2870: 2864: 2863: 2835: 2829: 2828: 2811:(42): 15754–62. 2800: 2794: 2793: 2765: 2759: 2758: 2748: 2738: 2706: 2700: 2699: 2670: 2664: 2663: 2635: 2629: 2628: 2584: 2578: 2577: 2567: 2535: 2529: 2528: 2518: 2508: 2476: 2470: 2469: 2459: 2449: 2425: 2419: 2418: 2376: 2367: 2361: 2360: 2318: 2309: 2303: 2302: 2292: 2282: 2258: 2252: 2251: 2241: 2217: 2211: 2210: 2200: 2190: 2158: 2152: 2151: 2141: 2131: 2099: 2093: 2092: 2074: 2042: 2036: 2035: 2025: 2015: 1983: 1977: 1976: 1966: 1956: 1924: 1918: 1917: 1907: 1897: 1873: 1867: 1866: 1848: 1816: 1810: 1809: 1799: 1789: 1757: 1751: 1750: 1740: 1708: 1702: 1701: 1653: 1647: 1646: 1613:(5990): 448–51. 1602: 1596: 1595: 1585: 1562: 1556: 1555: 1553: 1530: 1455:proteorhodopsins 1292:A wide range of 1241:Light microscopy 1177:(NMR), advanced 1040:RNA interference 926:adenylyl cyclase 922:photostimulation 602:CEF showed that 381:, supercomplex I 286:RNA polymerase I 184: 177: 166: 159: 155: 152: 146: 132:close connection 124: 123: 116: 109: 102: 98: 95: 89: 65: 64: 57: 46: 24: 23: 16: 11176: 11175: 11171: 11170: 11169: 11167: 11166: 11165: 11131: 11130: 11128: 11126: 11121: 11095: 11073: 11042: 11037: 10970: 10965: 10964: 10954: 10952: 10945: 10941: 10940: 10936: 10926: 10924: 10916: 10915: 10911: 10874: 10870: 10833: 10829: 10782: 10778: 10731: 10727: 10680: 10676: 10653:(11): 1469–70. 10635: 10631: 10584: 10580: 10547:(10): 829–844. 10541:J Mol Cell Biol 10533: 10529: 10492: 10488: 10446: 10442: 10411: 10407: 10370: 10366: 10311: 10307: 10260: 10256: 10203: 10199: 10154: 10150: 10119: 10115: 10070: 10066: 10035: 10031: 10000: 9996: 9964: 9960: 9907: 9903: 9856: 9852: 9815: 9811: 9758: 9754: 9709: 9705: 9674: 9670: 9638: 9634: 9603: 9599: 9567: 9561: 9557: 9526: 9522: 9477: 9473: 9442: 9438: 9383: 9379: 9358:(35): 10216–9. 9348: 9344: 9297: 9293: 9253: 9249: 9210: 9206: 9153: 9149: 9102: 9098: 9051: 9047: 9008: 9004: 8965: 8961: 8926: 8925: 8921: 8882: 8878: 8833: 8829: 8806:10.1038/ncb3159 8789: 8785: 8738: 8734: 8703: 8699: 8646: 8642: 8595: 8591: 8544: 8540: 8517:10.1038/ncb3159 8500: 8496: 8449: 8445: 8435: 8433: 8429: 8428: 8424: 8389: 8388: 8384: 8353: 8349: 8294: 8290: 8249: 8245: 8200: 8196: 8165: 8161: 8140:(35): 10216–9. 8130: 8126: 8071: 8067: 8022: 8018: 7963: 7959: 7906: 7902: 7865:(7458): 355–9. 7855: 7851: 7820: 7816: 7785: 7781: 7746:Nat Nanotechnol 7742: 7738: 7685: 7681: 7633: 7629: 7598: 7594: 7547: 7543: 7512: 7508: 7477: 7473: 7442: 7438: 7383: 7379: 7340: 7336: 7305: 7301: 7270: 7266: 7219: 7215: 7184: 7180: 7135: 7131: 7076: 7072: 7035: 7031: 6986: 6982: 6929: 6925: 6880: 6876: 6844: 6838: 6834: 6803: 6799: 6744: 6740: 6708: 6704: 6672: 6668: 6631: 6627: 6572: 6568: 6545:10.1038/nn.2776 6528: 6522: 6518: 6481: 6477: 6456:(14): 3113–22. 6446: 6442: 6389: 6385: 6340: 6336: 6281: 6277: 6222: 6218: 6189:(10): 895–902. 6179: 6175: 6130: 6126: 6089: 6085: 6048:(7136): 633–9. 6038: 6034: 5995: 5991: 5959: 5955: 5900: 5896: 5841: 5837: 5798: 5794: 5753:(24): 13940–5. 5739: 5735: 5689: 5685: 5648: 5644: 5607: 5603: 5555: 5551: 5498: 5494: 5449: 5445: 5422:10.1038/nm.4172 5405: 5401: 5346: 5342: 5301: 5297: 5252: 5248: 5203: 5199: 5154: 5150: 5105: 5101: 5054: 5050: 5003: 4999: 4968: 4964: 4917: 4913: 4882: 4878: 4841: 4837: 4798: 4794: 4757:(7458): 355–9. 4747: 4743: 4698: 4694: 4663: 4659: 4627: 4623: 4583: 4579: 4548: 4544: 4489: 4485: 4438: 4434: 4413:(28): 4747–50. 4403: 4399: 4346: 4342: 4319:10.1038/nn.2171 4303: 4299: 4252: 4248: 4194: 4190: 4138: 4134: 4097: 4093: 4054: 4050: 4013: 4009: 3954: 3950: 3910: 3906: 3859: 3855: 3807: 3803: 3766: 3762: 3722: 3718: 3681: 3677: 3623: 3619: 3574: 3570: 3517: 3513: 3458: 3454: 3417:(7556): 354–8. 3406: 3402: 3349: 3345: 3292: 3288: 3251: 3247: 3210: 3206: 3153: 3149: 3126:(6): 995–1010. 3112: 3108: 3069: 3065: 3020: 3016: 2979: 2975: 2920: 2916: 2871: 2867: 2836: 2832: 2801: 2797: 2776:(13): 5857–62. 2766: 2762: 2707: 2703: 2671: 2667: 2636: 2632: 2585: 2581: 2536: 2532: 2491:(15): 5687–92. 2477: 2473: 2426: 2422: 2385:(7234): 47–52. 2374: 2368: 2364: 2327:(7312): 233–6. 2316: 2310: 2306: 2259: 2255: 2218: 2214: 2159: 2155: 2100: 2096: 2043: 2039: 1984: 1980: 1925: 1921: 1874: 1870: 1817: 1813: 1758: 1754: 1709: 1705: 1668:(6217): 44–49. 1654: 1650: 1603: 1599: 1564: 1563: 1559: 1532: 1531: 1527: 1522: 1510: 1498: 1489: 1480: 1463: 1393: 1344:ABC transporter 1331:proteorhodopsin 1302:solid-state NMR 1290: 1243: 1203: 1167: 1116: 1027:ribonucleosides 1023:photoswitchable 1011: 1003:neural circuits 977:proteorhodopsin 967:with a retinal 892: 860: 836: 788:gene expression 773:atherosclerosis 757: 701:visualized the 695: 634: 621: 600: 584: 553: 541: 479: 461:and epithelial 451:phosphorylation 438: 404:ABC transporter 392: 388: 384: 356: 258: 246: 185: 174: 173: 172: 167: 156: 150: 147: 136: 125: 121: 110: 99: 93: 90: 76:Please help by 75: 66: 62: 25: 21: 12: 11: 5: 11174: 11164: 11163: 11158: 11153: 11148: 11143: 11123: 11122: 11120: 11119: 11114: 11109: 11103: 11101: 11097: 11096: 11094: 11093: 11088: 11081: 11079: 11075: 11074: 11072: 11071: 11066: 11061: 11056: 11050: 11048: 11044: 11043: 11036: 11035: 11028: 11021: 11013: 11007: 11006: 11001: 10996: 10991: 10986: 10981: 10976: 10969: 10968:External links 10966: 10963: 10962: 10934: 10909: 10888:(4): 538–549. 10868: 10841:Bioinformatics 10827: 10776: 10725: 10674: 10647:Bioinformatics 10629: 10578: 10527: 10486: 10440: 10405: 10364: 10305: 10254: 10197: 10148: 10113: 10084:(4): 1807–17. 10064: 10029: 9994: 9958: 9901: 9850: 9809: 9772:(1): 181–191. 9752: 9703: 9668: 9632: 9597: 9555: 9520: 9491:(3): 284–290. 9471: 9452:(17): 6090–2. 9436: 9377: 9342: 9291: 9247: 9220:(4): 319–321. 9204: 9147: 9096: 9065:(4): 439–449. 9045: 9002: 8959: 8938:(1): 1. 2015. 8932:Nature Methods 8919: 8876: 8847:(8): 637–642. 8827: 8783: 8732: 8697: 8640: 8589: 8538: 8494: 8443: 8422: 8395:Nature Methods 8382: 8363:(32): 8463–6. 8347: 8288: 8259:(4): 363–365. 8243: 8194: 8159: 8124: 8065: 8016: 7957: 7900: 7849: 7830:(15): 2163–7. 7814: 7779: 7736: 7679: 7627: 7592: 7541: 7506: 7471: 7436: 7377: 7334: 7315:(1): 359–363. 7299: 7264: 7213: 7194:(22): 2746–8. 7178: 7129: 7070: 7029: 6980: 6923: 6874: 6832: 6797: 6738: 6702: 6666: 6625: 6566: 6516: 6475: 6440: 6383: 6334: 6275: 6216: 6173: 6124: 6083: 6032: 5989: 5953: 5894: 5835: 5814:10.1038/nn1525 5792: 5733: 5683: 5642: 5601: 5549: 5492: 5443: 5399: 5360:(1): 172–181. 5340: 5319:(6): 1043–56. 5295: 5246: 5197: 5168:(7): 2387–98. 5148: 5119:(4): 1526–37. 5099: 5048: 4997: 4962: 4911: 4876: 4835: 4792: 4741: 4692: 4657: 4621: 4577: 4542: 4483: 4432: 4397: 4340: 4297: 4246: 4188: 4132: 4091: 4064:(2): 171–180. 4048: 4007: 3948: 3921:(3): 261–269. 3904: 3853: 3822:(4): 566–576. 3801: 3760: 3716: 3695:(6): 918–928. 3675: 3617: 3568: 3511: 3452: 3400: 3343: 3286: 3245: 3224:(6): 967–981. 3204: 3147: 3106: 3079:(6): 349–364. 3063: 3034:(3): 284–290. 3014: 2973: 2914: 2865: 2830: 2795: 2760: 2701: 2665: 2630: 2579: 2530: 2471: 2420: 2362: 2304: 2253: 2212: 2153: 2094: 2037: 1978: 1919: 1868: 1811: 1752: 1703: 1648: 1597: 1576:(1): 1. 2014. 1570:Nature Methods 1557: 1544:(1): 1. 2010. 1538:Nature Methods 1524: 1523: 1521: 1518: 1509: 1506: 1497: 1494: 1488: 1485: 1479: 1476: 1462: 1459: 1392: 1389: 1335:lipid bilayers 1289: 1286: 1260:Nature Methods 1242: 1239: 1212:as well as at 1202: 1199: 1193:as well as in 1166: 1163: 1115: 1112: 1010: 1007: 891: 888: 859: 856: 842:(lncRNAs) and 835: 834:Noncoding RNAs 832: 756: 753: 747:maturation in 703:RNA Polymerase 694: 691: 667:domain of the 633: 630: 620: 617: 612:AMPA receptors 599: 596: 583: 580: 552: 549: 540: 539:Ubiquitination 537: 478: 475: 447:ubiquitylation 437: 434: 412:photoreceptors 390: 386: 382: 367:photosynthesis 355: 352: 344:Nature Methods 304:chains on the 257: 254: 245: 242: 234:Frankfurt/Main 187: 186: 169: 168: 128: 126: 119: 112: 111: 69: 67: 60: 55: 29: 28: 26: 19: 9: 6: 4: 3: 2: 11173: 11162: 11159: 11157: 11154: 11152: 11149: 11147: 11144: 11142: 11139: 11138: 11136: 11129: 11118: 11115: 11113: 11110: 11108: 11105: 11104: 11102: 11098: 11092: 11089: 11086: 11083: 11082: 11080: 11076: 11070: 11067: 11065: 11062: 11060: 11057: 11055: 11052: 11051: 11049: 11045: 11041: 11034: 11029: 11027: 11022: 11020: 11015: 11014: 11011: 11005: 11002: 11000: 10997: 10995: 10992: 10990: 10987: 10985: 10982: 10980: 10977: 10975: 10972: 10971: 10951: 10944: 10938: 10923: 10919: 10913: 10905: 10901: 10896: 10891: 10887: 10883: 10879: 10872: 10864: 10860: 10855: 10850: 10846: 10842: 10838: 10831: 10823: 10819: 10814: 10809: 10804: 10799: 10795: 10791: 10790:BMC Syst Biol 10787: 10780: 10772: 10768: 10763: 10758: 10753: 10748: 10744: 10740: 10736: 10729: 10721: 10717: 10712: 10707: 10702: 10697: 10693: 10689: 10685: 10678: 10670: 10666: 10661: 10656: 10652: 10648: 10644: 10640: 10633: 10625: 10621: 10616: 10611: 10606: 10601: 10597: 10593: 10589: 10582: 10574: 10570: 10565: 10560: 10555: 10550: 10546: 10542: 10538: 10531: 10523: 10519: 10514: 10509: 10505: 10501: 10497: 10490: 10482: 10478: 10474: 10470: 10466: 10462: 10458: 10454: 10450: 10444: 10436: 10432: 10428: 10424: 10420: 10416: 10415:J Am Chem Soc 10409: 10401: 10397: 10392: 10387: 10383: 10379: 10375: 10368: 10360: 10356: 10351: 10346: 10341: 10336: 10332: 10328: 10324: 10320: 10316: 10309: 10301: 10297: 10292: 10287: 10282: 10277: 10273: 10269: 10265: 10258: 10250: 10246: 10242: 10238: 10233: 10228: 10224: 10220: 10216: 10212: 10208: 10201: 10193: 10189: 10184: 10179: 10175: 10171: 10167: 10163: 10159: 10152: 10144: 10140: 10136: 10132: 10128: 10124: 10117: 10109: 10105: 10100: 10095: 10091: 10087: 10083: 10079: 10075: 10068: 10060: 10056: 10052: 10048: 10044: 10040: 10039:J Am Chem Soc 10033: 10025: 10021: 10017: 10013: 10009: 10005: 10004:J Am Chem Soc 9998: 9990: 9986: 9982: 9978: 9974: 9970: 9969:J Am Chem Soc 9962: 9954: 9950: 9945: 9940: 9936: 9932: 9928: 9924: 9920: 9916: 9912: 9905: 9897: 9893: 9888: 9883: 9878: 9873: 9869: 9865: 9861: 9854: 9846: 9842: 9837: 9832: 9828: 9824: 9820: 9813: 9805: 9801: 9796: 9791: 9787: 9783: 9779: 9775: 9771: 9767: 9763: 9756: 9748: 9744: 9739: 9734: 9730: 9726: 9722: 9718: 9714: 9707: 9699: 9695: 9691: 9687: 9683: 9679: 9672: 9664: 9660: 9656: 9652: 9648: 9644: 9643:J Am Chem Soc 9636: 9628: 9624: 9620: 9616: 9612: 9608: 9601: 9593: 9589: 9585: 9581: 9577: 9573: 9572:J Am Chem Soc 9566: 9559: 9551: 9547: 9543: 9539: 9535: 9531: 9530:J Am Chem Soc 9524: 9516: 9512: 9507: 9502: 9498: 9494: 9490: 9486: 9485:Nat Chem Biol 9482: 9475: 9467: 9463: 9459: 9455: 9451: 9447: 9446:J Am Chem Soc 9440: 9432: 9428: 9423: 9418: 9413: 9408: 9404: 9400: 9396: 9392: 9388: 9381: 9373: 9369: 9365: 9361: 9357: 9353: 9346: 9338: 9334: 9329: 9324: 9319: 9314: 9310: 9306: 9302: 9295: 9287: 9283: 9279: 9275: 9271: 9267: 9263: 9259: 9258:Nat Microbiol 9251: 9243: 9239: 9235: 9231: 9227: 9223: 9219: 9215: 9208: 9200: 9196: 9191: 9186: 9182: 9178: 9174: 9170: 9166: 9162: 9158: 9151: 9143: 9139: 9134: 9129: 9124: 9119: 9115: 9111: 9107: 9100: 9092: 9088: 9083: 9078: 9073: 9068: 9064: 9060: 9056: 9049: 9041: 9037: 9033: 9029: 9025: 9021: 9017: 9013: 9006: 8998: 8994: 8990: 8986: 8982: 8978: 8974: 8970: 8963: 8955: 8951: 8946: 8941: 8937: 8933: 8929: 8923: 8915: 8911: 8907: 8903: 8899: 8895: 8891: 8887: 8880: 8872: 8868: 8863: 8858: 8854: 8850: 8846: 8842: 8838: 8831: 8823: 8819: 8815: 8811: 8807: 8803: 8800:(5): 605–14. 8799: 8795: 8794:Nat Cell Biol 8787: 8779: 8775: 8771: 8767: 8763: 8759: 8755: 8751: 8747: 8743: 8736: 8728: 8724: 8720: 8716: 8713:(5): 549–55. 8712: 8708: 8701: 8693: 8689: 8685: 8681: 8676: 8671: 8667: 8663: 8659: 8655: 8651: 8644: 8636: 8632: 8627: 8622: 8617: 8612: 8609:(6389): 620. 8608: 8604: 8600: 8593: 8585: 8581: 8577: 8573: 8569: 8565: 8561: 8557: 8553: 8549: 8542: 8534: 8530: 8526: 8522: 8518: 8514: 8511:(5): 605–14. 8510: 8506: 8505:Nat Cell Biol 8498: 8490: 8486: 8482: 8478: 8474: 8470: 8466: 8462: 8458: 8454: 8447: 8432: 8426: 8418: 8414: 8409: 8404: 8400: 8396: 8392: 8386: 8378: 8374: 8370: 8366: 8362: 8358: 8351: 8343: 8339: 8334: 8329: 8324: 8319: 8315: 8311: 8307: 8303: 8299: 8292: 8284: 8280: 8275: 8270: 8266: 8262: 8258: 8254: 8253:Nat Chem Biol 8247: 8239: 8235: 8230: 8225: 8221: 8217: 8213: 8209: 8205: 8198: 8190: 8186: 8182: 8178: 8174: 8170: 8163: 8155: 8151: 8147: 8143: 8139: 8135: 8128: 8120: 8116: 8111: 8106: 8101: 8096: 8092: 8088: 8084: 8080: 8076: 8069: 8061: 8057: 8052: 8047: 8043: 8039: 8035: 8031: 8027: 8020: 8012: 8008: 8003: 7998: 7993: 7988: 7984: 7980: 7976: 7972: 7968: 7961: 7953: 7949: 7944: 7939: 7935: 7931: 7927: 7923: 7919: 7915: 7911: 7904: 7896: 7892: 7888: 7884: 7880: 7876: 7872: 7868: 7864: 7860: 7853: 7845: 7841: 7837: 7833: 7829: 7825: 7818: 7810: 7806: 7802: 7798: 7794: 7790: 7783: 7775: 7771: 7767: 7763: 7759: 7755: 7752:(6): 436–42. 7751: 7747: 7740: 7732: 7728: 7723: 7718: 7714: 7710: 7706: 7702: 7698: 7694: 7690: 7683: 7675: 7671: 7667: 7663: 7659: 7655: 7651: 7647: 7643: 7639: 7631: 7623: 7619: 7615: 7611: 7607: 7603: 7596: 7588: 7584: 7579: 7574: 7569: 7564: 7560: 7556: 7552: 7545: 7537: 7533: 7529: 7525: 7521: 7517: 7510: 7502: 7498: 7494: 7490: 7487:(6): 1450–3. 7486: 7482: 7475: 7467: 7463: 7459: 7455: 7451: 7447: 7440: 7432: 7428: 7423: 7418: 7413: 7408: 7404: 7400: 7396: 7392: 7388: 7381: 7373: 7369: 7365: 7361: 7357: 7353: 7349: 7345: 7338: 7330: 7326: 7322: 7318: 7314: 7310: 7303: 7295: 7291: 7287: 7283: 7279: 7275: 7268: 7260: 7256: 7251: 7246: 7241: 7236: 7232: 7228: 7224: 7217: 7209: 7205: 7201: 7197: 7193: 7189: 7182: 7174: 7170: 7165: 7160: 7156: 7152: 7149:(6): 2111–8. 7148: 7144: 7140: 7133: 7125: 7121: 7116: 7111: 7106: 7101: 7097: 7093: 7089: 7085: 7081: 7074: 7066: 7062: 7057: 7052: 7048: 7044: 7040: 7033: 7025: 7021: 7016: 7011: 7007: 7003: 7000:(9): 743–52. 6999: 6995: 6991: 6984: 6976: 6972: 6967: 6962: 6958: 6954: 6950: 6946: 6942: 6938: 6934: 6927: 6919: 6915: 6910: 6905: 6901: 6897: 6893: 6889: 6885: 6878: 6870: 6866: 6862: 6858: 6854: 6850: 6849:J Am Chem Soc 6843: 6836: 6828: 6824: 6820: 6816: 6812: 6808: 6807:J Am Chem Soc 6801: 6793: 6789: 6784: 6779: 6774: 6769: 6765: 6761: 6757: 6753: 6749: 6742: 6734: 6730: 6726: 6722: 6718: 6714: 6713:J Am Chem Soc 6706: 6698: 6694: 6690: 6686: 6682: 6678: 6677:J Am Chem Soc 6670: 6662: 6658: 6653: 6648: 6645:(5): 614–25. 6644: 6640: 6636: 6629: 6621: 6617: 6612: 6607: 6602: 6597: 6593: 6589: 6585: 6581: 6577: 6570: 6562: 6558: 6554: 6550: 6546: 6542: 6538: 6534: 6527: 6520: 6512: 6508: 6503: 6498: 6494: 6490: 6486: 6479: 6471: 6467: 6463: 6459: 6455: 6451: 6444: 6436: 6432: 6427: 6422: 6418: 6414: 6410: 6406: 6402: 6398: 6394: 6387: 6379: 6375: 6370: 6365: 6361: 6357: 6353: 6349: 6345: 6338: 6330: 6326: 6321: 6316: 6311: 6306: 6302: 6298: 6294: 6290: 6286: 6279: 6271: 6267: 6262: 6257: 6252: 6247: 6243: 6239: 6235: 6231: 6227: 6220: 6212: 6208: 6204: 6200: 6196: 6192: 6188: 6184: 6177: 6169: 6165: 6160: 6155: 6151: 6147: 6143: 6139: 6135: 6128: 6120: 6116: 6111: 6106: 6102: 6098: 6094: 6087: 6079: 6075: 6071: 6067: 6063: 6059: 6055: 6051: 6047: 6043: 6036: 6028: 6024: 6020: 6016: 6012: 6008: 6004: 6000: 5993: 5985: 5981: 5977: 5973: 5969: 5965: 5964:J Am Chem Soc 5957: 5949: 5945: 5940: 5935: 5930: 5925: 5921: 5917: 5913: 5909: 5905: 5898: 5890: 5886: 5881: 5876: 5871: 5866: 5862: 5858: 5854: 5850: 5846: 5839: 5831: 5827: 5823: 5819: 5815: 5811: 5807: 5803: 5796: 5788: 5784: 5779: 5774: 5769: 5764: 5760: 5756: 5752: 5748: 5744: 5737: 5729: 5725: 5721: 5717: 5712: 5707: 5703: 5699: 5695: 5687: 5679: 5675: 5670: 5665: 5661: 5657: 5653: 5646: 5638: 5634: 5629: 5624: 5620: 5616: 5612: 5605: 5597: 5593: 5589: 5585: 5581: 5577: 5573: 5569: 5565: 5561: 5553: 5545: 5541: 5536: 5531: 5527: 5523: 5519: 5515: 5511: 5507: 5503: 5496: 5488: 5484: 5479: 5474: 5470: 5466: 5463:(5): 553–66. 5462: 5458: 5454: 5447: 5439: 5435: 5431: 5427: 5423: 5419: 5415: 5411: 5403: 5395: 5391: 5386: 5381: 5376: 5371: 5367: 5363: 5359: 5355: 5351: 5344: 5336: 5332: 5327: 5322: 5318: 5314: 5310: 5308: 5299: 5291: 5287: 5282: 5277: 5273: 5269: 5265: 5261: 5257: 5250: 5242: 5238: 5233: 5228: 5224: 5220: 5217:(4): 583–92. 5216: 5212: 5208: 5201: 5193: 5189: 5184: 5179: 5175: 5171: 5167: 5163: 5159: 5152: 5144: 5140: 5135: 5130: 5126: 5122: 5118: 5114: 5110: 5103: 5095: 5091: 5087: 5083: 5079: 5075: 5071: 5067: 5063: 5059: 5052: 5044: 5040: 5035: 5030: 5025: 5020: 5016: 5012: 5008: 5001: 4993: 4989: 4985: 4981: 4977: 4973: 4966: 4958: 4954: 4949: 4944: 4939: 4934: 4930: 4926: 4922: 4915: 4907: 4903: 4899: 4895: 4891: 4887: 4886:J Am Chem Soc 4880: 4872: 4868: 4863: 4858: 4854: 4850: 4846: 4839: 4831: 4827: 4823: 4819: 4815: 4811: 4807: 4803: 4796: 4788: 4784: 4780: 4776: 4772: 4768: 4764: 4760: 4756: 4752: 4745: 4737: 4733: 4728: 4723: 4719: 4715: 4711: 4707: 4703: 4696: 4688: 4684: 4680: 4676: 4672: 4668: 4667:J Phys Chem B 4661: 4653: 4649: 4645: 4641: 4637: 4633: 4625: 4617: 4613: 4609: 4605: 4601: 4597: 4594:(4): 904–23. 4593: 4589: 4581: 4573: 4569: 4565: 4561: 4558:(5): 1454–5. 4557: 4553: 4552:J Am Chem Soc 4546: 4538: 4534: 4529: 4524: 4519: 4514: 4510: 4506: 4502: 4498: 4494: 4487: 4479: 4475: 4470: 4465: 4460: 4455: 4451: 4447: 4443: 4436: 4428: 4424: 4420: 4416: 4412: 4408: 4401: 4393: 4389: 4384: 4379: 4375: 4371: 4367: 4363: 4359: 4355: 4351: 4344: 4336: 4332: 4328: 4324: 4320: 4316: 4312: 4308: 4301: 4293: 4289: 4285: 4281: 4277: 4273: 4269: 4265: 4261: 4257: 4250: 4242: 4238: 4233: 4228: 4224: 4220: 4216: 4212: 4208: 4204: 4200: 4192: 4184: 4180: 4175: 4170: 4165: 4160: 4156: 4152: 4148: 4144: 4136: 4128: 4124: 4119: 4114: 4111:(2): 240–50. 4110: 4106: 4102: 4095: 4087: 4083: 4079: 4075: 4071: 4067: 4063: 4059: 4052: 4044: 4040: 4035: 4030: 4027:(1): 135–44. 4026: 4022: 4018: 4011: 4003: 3999: 3994: 3989: 3984: 3979: 3975: 3971: 3967: 3963: 3959: 3952: 3944: 3940: 3936: 3932: 3928: 3924: 3920: 3916: 3908: 3900: 3896: 3891: 3886: 3881: 3876: 3872: 3868: 3864: 3857: 3849: 3845: 3840: 3835: 3830: 3825: 3821: 3817: 3813: 3805: 3797: 3793: 3788: 3783: 3779: 3775: 3771: 3764: 3756: 3752: 3748: 3744: 3740: 3736: 3732: 3728: 3727:Nat Microbiol 3720: 3712: 3708: 3703: 3698: 3694: 3690: 3686: 3679: 3671: 3667: 3662: 3657: 3653: 3649: 3645: 3641: 3637: 3633: 3629: 3621: 3613: 3609: 3605: 3601: 3596: 3591: 3587: 3583: 3579: 3572: 3564: 3560: 3555: 3550: 3546: 3542: 3538: 3534: 3530: 3526: 3522: 3515: 3507: 3503: 3498: 3493: 3488: 3483: 3479: 3475: 3471: 3467: 3463: 3456: 3448: 3444: 3440: 3436: 3432: 3428: 3424: 3420: 3416: 3412: 3404: 3396: 3392: 3387: 3382: 3378: 3374: 3370: 3366: 3362: 3358: 3354: 3347: 3339: 3335: 3330: 3325: 3321: 3317: 3313: 3309: 3305: 3301: 3297: 3290: 3282: 3278: 3273: 3268: 3264: 3260: 3256: 3249: 3241: 3237: 3232: 3227: 3223: 3219: 3215: 3208: 3200: 3196: 3191: 3186: 3182: 3178: 3174: 3170: 3166: 3162: 3158: 3151: 3143: 3139: 3134: 3129: 3125: 3121: 3117: 3110: 3102: 3098: 3094: 3090: 3086: 3082: 3078: 3074: 3067: 3059: 3055: 3050: 3045: 3041: 3037: 3033: 3029: 3028:Nat Chem Biol 3025: 3018: 3010: 3006: 3001: 2996: 2992: 2988: 2984: 2977: 2969: 2965: 2960: 2955: 2950: 2945: 2941: 2937: 2933: 2929: 2925: 2918: 2910: 2906: 2901: 2896: 2892: 2888: 2884: 2880: 2876: 2869: 2861: 2857: 2853: 2849: 2845: 2841: 2840:J Am Chem Soc 2834: 2826: 2822: 2818: 2814: 2810: 2806: 2805:J Am Chem Soc 2799: 2791: 2787: 2783: 2779: 2775: 2771: 2770:J Am Chem Soc 2764: 2756: 2752: 2747: 2742: 2737: 2732: 2728: 2724: 2720: 2716: 2712: 2705: 2697: 2693: 2689: 2685: 2681: 2677: 2676:J Am Chem Soc 2669: 2661: 2657: 2653: 2649: 2645: 2641: 2640:J Am Chem Soc 2634: 2626: 2622: 2618: 2614: 2610: 2606: 2602: 2598: 2594: 2590: 2583: 2575: 2571: 2566: 2561: 2557: 2553: 2549: 2545: 2541: 2534: 2526: 2522: 2517: 2512: 2507: 2502: 2498: 2494: 2490: 2486: 2482: 2475: 2467: 2463: 2458: 2453: 2448: 2443: 2439: 2435: 2431: 2424: 2416: 2412: 2408: 2404: 2400: 2396: 2392: 2388: 2384: 2380: 2373: 2366: 2358: 2354: 2350: 2346: 2342: 2338: 2334: 2330: 2326: 2322: 2315: 2308: 2300: 2296: 2291: 2286: 2281: 2276: 2272: 2268: 2264: 2257: 2249: 2245: 2240: 2235: 2231: 2227: 2223: 2216: 2208: 2204: 2199: 2194: 2189: 2184: 2180: 2176: 2172: 2168: 2164: 2157: 2149: 2145: 2140: 2135: 2130: 2125: 2121: 2117: 2113: 2109: 2105: 2098: 2090: 2086: 2082: 2078: 2073: 2068: 2064: 2060: 2056: 2052: 2048: 2041: 2033: 2029: 2024: 2019: 2014: 2009: 2005: 2001: 1997: 1993: 1989: 1982: 1974: 1970: 1965: 1960: 1955: 1950: 1946: 1942: 1938: 1934: 1930: 1923: 1915: 1911: 1906: 1901: 1896: 1891: 1888:(6389): 620. 1887: 1883: 1879: 1872: 1864: 1860: 1856: 1852: 1847: 1842: 1838: 1834: 1830: 1826: 1822: 1815: 1807: 1803: 1798: 1793: 1788: 1783: 1779: 1775: 1771: 1767: 1763: 1756: 1748: 1744: 1739: 1734: 1730: 1726: 1723:(3): 445–56. 1722: 1718: 1714: 1707: 1699: 1695: 1691: 1687: 1683: 1679: 1675: 1671: 1667: 1663: 1659: 1652: 1644: 1640: 1636: 1632: 1628: 1624: 1620: 1616: 1612: 1608: 1601: 1593: 1589: 1584: 1579: 1575: 1571: 1567: 1561: 1552: 1547: 1543: 1539: 1535: 1529: 1525: 1517: 1515: 1505: 1503: 1493: 1484: 1475: 1473: 1468: 1458: 1456: 1452: 1448: 1444: 1440: 1436: 1431: 1427: 1423: 1419: 1416:state, bound 1415: 1410: 1406: 1402: 1398: 1388: 1386: 1385: 1380: 1376: 1373: 1372:spin-labelled 1369: 1366:structure of 1365: 1361: 1356: 1352: 1348: 1345: 1340: 1336: 1332: 1328: 1324: 1319: 1315: 1311: 1307: 1303: 1299: 1295: 1285: 1282: 1278: 1274: 1272: 1267: 1262: 1261: 1256: 1252: 1248: 1238: 1236: 1232: 1228: 1223: 1219: 1215: 1211: 1207: 1198: 1196: 1192: 1188: 1184: 1181:, as well as 1180: 1176: 1172: 1162: 1160: 1156: 1151: 1150: 1145: 1144: 1139: 1138: 1133: 1129: 1125: 1121: 1111: 1109: 1105: 1101: 1097: 1093: 1089: 1084: 1082: 1078: 1074: 1070: 1066: 1062: 1058: 1054: 1049: 1045: 1041: 1036: 1032: 1028: 1024: 1020: 1019:nucleic acids 1016: 1006: 1004: 1000: 996: 992: 991: 986: 980: 978: 974: 970: 966: 962: 961:phyla of life 957: 955: 951: 947: 943: 939: 935: 931: 927: 923: 919: 918: 913: 909: 908:halorhodopsin 905: 901: 897: 887: 885: 881: 877: 873: 870:, control of 869: 865: 855: 853: 849: 845: 841: 831: 829: 825: 824:transcriptome 821: 817: 813: 809: 808:transcriptome 805: 801: 797: 793: 789: 785: 780: 778: 774: 770: 766: 762: 752: 750: 746: 742: 738: 734: 733: 727: 723: 718: 716: 715:transcription 712: 708: 704: 700: 690: 688: 684: 680: 676: 672: 671: 666: 662: 658: 653: 652: 647: 643: 639: 629: 626: 616: 613: 609: 605: 595: 593: 589: 582:SGC Frankfurt 579: 578: 574: 570: 566: 562: 558: 548: 546: 536: 533: 529: 525: 524: 519: 515: 511: 507: 506: 501: 497: 492: 491:autophagosome 488: 484: 474: 472: 468: 464: 460: 456: 452: 448: 444: 433: 431: 427: 422: 417: 413: 409: 405: 401: 396: 380: 376: 372: 368: 364: 360: 351: 347: 345: 340: 336: 331: 327: 323: 319: 315: 311: 307: 303: 299: 295: 291: 287: 283: 279: 275: 271: 267: 263: 253: 251: 241: 239: 235: 230: 226: 222: 218: 214: 210: 206: 202: 198: 194: 183: 180: 165: 162: 154: 144: 140: 135: 133: 127: 118: 117: 108: 105: 97: 87: 83: 79: 73: 70:This article 68: 59: 58: 53: 51: 44: 43: 38: 37: 32: 27: 18: 17: 11127: 10953:. Retrieved 10949: 10937: 10925:. Retrieved 10921: 10912: 10885: 10881: 10871: 10847:(3): 440–1. 10844: 10840: 10830: 10793: 10789: 10779: 10742: 10738: 10728: 10691: 10687: 10677: 10650: 10646: 10632: 10595: 10591: 10581: 10544: 10540: 10530: 10503: 10499: 10489: 10456: 10452: 10443: 10418: 10414: 10408: 10381: 10377: 10367: 10322: 10318: 10308: 10271: 10267: 10257: 10214: 10210: 10200: 10168:(1): 15–28. 10165: 10161: 10151: 10126: 10122: 10116: 10081: 10077: 10067: 10042: 10038: 10032: 10007: 10003: 9997: 9972: 9968: 9961: 9918: 9914: 9904: 9867: 9863: 9853: 9826: 9822: 9812: 9769: 9765: 9755: 9720: 9716: 9706: 9681: 9677: 9671: 9646: 9642: 9635: 9610: 9606: 9600: 9575: 9571: 9558: 9533: 9529: 9523: 9488: 9484: 9474: 9449: 9445: 9439: 9394: 9390: 9380: 9355: 9351: 9345: 9308: 9304: 9294: 9264:(7): 17066. 9261: 9257: 9250: 9217: 9213: 9207: 9164: 9160: 9150: 9113: 9109: 9099: 9062: 9058: 9048: 9015: 9011: 9005: 8972: 8968: 8962: 8935: 8931: 8922: 8892:(1): 23–26. 8889: 8885: 8879: 8844: 8840: 8830: 8797: 8793: 8786: 8745: 8741: 8735: 8710: 8706: 8700: 8657: 8653: 8643: 8606: 8602: 8592: 8551: 8547: 8541: 8508: 8504: 8497: 8456: 8452: 8446: 8434:. Retrieved 8425: 8398: 8394: 8385: 8360: 8356: 8350: 8305: 8301: 8291: 8256: 8252: 8246: 8211: 8207: 8197: 8172: 8168: 8162: 8137: 8133: 8127: 8082: 8078: 8068: 8033: 8029: 8019: 7974: 7970: 7960: 7917: 7913: 7903: 7862: 7858: 7852: 7827: 7823: 7817: 7792: 7788: 7782: 7749: 7745: 7739: 7696: 7692: 7682: 7641: 7637: 7630: 7605: 7601: 7595: 7558: 7554: 7544: 7519: 7515: 7509: 7484: 7480: 7474: 7449: 7445: 7439: 7394: 7390: 7380: 7347: 7343: 7337: 7312: 7308: 7302: 7277: 7273: 7267: 7230: 7226: 7216: 7191: 7187: 7181: 7146: 7142: 7132: 7087: 7083: 7073: 7046: 7042: 7032: 6997: 6993: 6983: 6940: 6936: 6926: 6891: 6887: 6877: 6852: 6848: 6835: 6810: 6806: 6800: 6755: 6751: 6741: 6716: 6712: 6705: 6680: 6676: 6669: 6642: 6638: 6628: 6583: 6579: 6569: 6539:(4): 513–8. 6536: 6533:Nat Neurosci 6532: 6519: 6492: 6488: 6478: 6453: 6450:ChemPhysChem 6449: 6443: 6400: 6396: 6386: 6351: 6347: 6337: 6292: 6288: 6278: 6233: 6229: 6219: 6186: 6182: 6176: 6144:(2): 153–8. 6141: 6137: 6127: 6100: 6096: 6086: 6045: 6041: 6035: 6002: 5998: 5992: 5967: 5963: 5956: 5911: 5907: 5897: 5852: 5848: 5838: 5805: 5802:Nat Neurosci 5801: 5795: 5750: 5746: 5736: 5701: 5697: 5686: 5659: 5655: 5645: 5618: 5614: 5604: 5563: 5559: 5552: 5509: 5505: 5495: 5460: 5456: 5446: 5413: 5409: 5402: 5357: 5353: 5343: 5316: 5312: 5306: 5298: 5263: 5259: 5249: 5214: 5210: 5200: 5165: 5161: 5151: 5116: 5112: 5102: 5061: 5057: 5051: 5014: 5010: 5000: 4975: 4971: 4965: 4928: 4924: 4914: 4889: 4885: 4879: 4852: 4848: 4838: 4805: 4801: 4795: 4754: 4750: 4744: 4712:(1): 15–28. 4709: 4705: 4695: 4670: 4666: 4660: 4635: 4631: 4624: 4591: 4587: 4580: 4555: 4551: 4545: 4500: 4496: 4486: 4449: 4445: 4435: 4410: 4406: 4400: 4357: 4353: 4343: 4310: 4307:Nat Neurosci 4306: 4300: 4259: 4255: 4249: 4206: 4202: 4191: 4154: 4150: 4135: 4108: 4104: 4094: 4061: 4057: 4051: 4024: 4020: 4010: 3965: 3961: 3951: 3918: 3914: 3907: 3870: 3866: 3856: 3819: 3815: 3804: 3777: 3773: 3763: 3733:(7): 17066. 3730: 3726: 3719: 3692: 3688: 3678: 3635: 3631: 3620: 3585: 3581: 3571: 3528: 3524: 3514: 3469: 3465: 3455: 3414: 3410: 3403: 3360: 3356: 3346: 3303: 3299: 3289: 3262: 3258: 3248: 3221: 3217: 3207: 3164: 3160: 3150: 3123: 3119: 3109: 3076: 3072: 3066: 3031: 3027: 3017: 2990: 2986: 2976: 2931: 2927: 2917: 2882: 2878: 2868: 2843: 2839: 2833: 2808: 2804: 2798: 2773: 2769: 2763: 2718: 2714: 2704: 2679: 2675: 2668: 2643: 2639: 2633: 2592: 2588: 2582: 2547: 2543: 2533: 2488: 2484: 2474: 2437: 2433: 2423: 2382: 2378: 2365: 2324: 2320: 2307: 2270: 2266: 2256: 2229: 2225: 2215: 2170: 2166: 2156: 2111: 2107: 2097: 2054: 2050: 2040: 1995: 1991: 1981: 1936: 1932: 1922: 1885: 1881: 1871: 1828: 1824: 1814: 1769: 1765: 1755: 1720: 1716: 1706: 1665: 1661: 1651: 1610: 1606: 1600: 1573: 1569: 1560: 1541: 1537: 1528: 1511: 1499: 1496:Publications 1490: 1487:Organisation 1481: 1472:Photochromic 1465:Femtosecond 1464: 1451:ion channels 1443:ATP synthase 1394: 1382: 1368:non-covalent 1294:spectroscopy 1291: 1270: 1258: 1244: 1204: 1183:optogenetics 1168: 1155:flavoprotein 1147: 1141: 1135: 1124:biosynthesis 1117: 1103: 1092:riboswitches 1085: 1080: 1053:G-quadruplex 1031:RNA aptamers 1012: 988: 984: 981: 958: 915: 893: 890:Optogenetics 884:ion channels 868:optogenetics 861: 852:inflammation 837: 803: 781: 769:angiogenesis 758: 748: 730: 719: 696: 686: 683:ribostamycin 668: 649: 635: 622: 601: 585: 561:chemotherapy 555:Research on 554: 542: 531: 521: 503: 480: 439: 407: 357: 348: 330:optogenetics 282:riboswitches 266:ATP synthase 259: 247: 220: 196: 192: 190: 175: 157: 148: 129: 100: 91: 78:spinning off 71: 47: 40: 34: 33:Please help 30: 10974:CEF website 10739:Front Genet 10592:Genome Biol 10459:: 134–143. 10325:(1): 1742. 9717:Chem Commun 9214:Nat Methods 8886:Nat Methods 8841:Nat Methods 7920:(1): 5018. 7188:Chem Commun 7090:(1): 4095. 6183:Nat Methods 6138:Nat Methods 5999:Nat Methods 5698:Circulation 5512:(1): 3315. 4802:ChemBioChem 3472:(1): 2370. 1435:thermolysis 1277:reticulon 3 1273:Typhimurium 1222:CCD cameras 1132:polyketides 1096:metabolites 1013:To control 969:chromophore 765:Cathepsin S 749:A. thaliana 732:A. thaliana 687:B. subtilis 577:necroptosis 455:acetylation 318:sumoylation 272:and of the 11135:Categories 11078:Facilities 10882:Cell Metab 10694:(1): 196. 10319:Nat Commun 10123:J Org Chem 9870:: e24303. 9391:Nat Commun 9311:: e25555. 9012:Nat Protoc 8969:Nat Protoc 8302:Nat Commun 8079:Nat Commun 7914:Nat Commun 7693:Nat Commun 7397:(1): 944. 7391:Nat Commun 7084:Nat Commun 6937:Nat Commun 6888:Nat Commun 6397:Nat Commun 6348:Nat Commun 5506:Nat Commun 5017:: e21297. 4588:Nat Protoc 4203:Nat Commun 4157:: e34311. 3873:: e13909. 3466:Nat Commun 2715:Nat Commun 2440:: e03145. 2273:: e24303. 1520:References 1414:oligomeric 1381:molecules 1271:Salmonella 1235:algorithms 1191:tomography 1159:tryptophan 1057:azobenzene 1048:orthogonal 990:Drosophila 985:C. elegans 938:cyclic GMP 917:C. elegans 912:rhodopsins 910:and other 792:SR protein 646:riboswitch 569:cell death 545:proteasome 532:Legionella 523:Legionella 505:Salmonella 463:stem cells 306:proteasome 151:March 2020 94:March 2020 82:relocating 36:improve it 10796:(1): 72. 10506:: 49–62. 10249:197543295 9397:: 10372. 9167:: 43693. 9059:Curr Biol 8692:197543295 8584:205252425 8489:205242498 8308:: 14650. 8085:: 10372. 7699:: 15162. 6994:Curr Biol 5457:Genes Dev 5354:Biophys J 5094:205252425 4058:Biol Chem 3774:Structure 2721:: 13864. 2415:205216142 1863:195188479 1439:complex I 1318:waveguide 1266:ubiquitin 1143:in silico 1100:ribozymes 1065:dendrites 1025:tethers, 904:mammalian 848:dendrites 844:microRNAs 828:IMB Mainz 679:ribozymes 673:xpt-pbuX 573:apoptosis 565:menopause 514:cytoplasm 500:xenophagy 483:autophagy 377:, rotary 314:xenophagy 310:mitophagy 302:ubiquitin 290:microRNAs 262:complex I 143:talk page 42:talk page 11087:(former) 11085:AfE-Turm 11047:Colleges 10955:13 March 10927:13 March 10904:22982022 10863:25301849 10822:28754124 10771:28713420 10720:28347269 10669:23564846 10641:(2013). 10624:28093074 10598:(1): 7. 10573:31560396 10522:31751605 10473:29558676 10435:27659210 10400:28689662 10378:Mol Cell 10359:30988359 10300:31732457 10268:Mol Cell 10241:31316210 10192:30462266 10143:28686024 10108:22053085 10059:27598007 10024:22803805 9989:26102160 9953:20820587 9896:28504641 9845:28802701 9804:30225732 9747:30452022 9663:29308886 9627:21506223 9592:29027800 9550:27659210 9515:29334381 9466:19361195 9431:26822409 9372:26201868 9337:28617241 9278:28481361 9234:26928761 9199:28255161 9142:26049713 9091:26832441 9040:38354456 9032:28471459 8997:24774566 8989:26334868 8954:25699311 8914:34063754 8906:25549266 8871:20601950 8814:25893916 8778:35524447 8770:24675944 8727:17913494 8684:31316210 8635:29748256 8576:27842382 8525:25893916 8481:25707805 8417:27110621 8377:23818044 8342:28281527 8283:28218912 8238:30881629 8208:Chem Sci 8189:24729568 8154:26201868 8119:26822409 8060:30429993 8030:Chem Sci 8011:20200313 7952:31685824 7887:23842498 7844:21638782 7809:29418024 7774:20400967 7731:28462946 7674:17159252 7666:28183980 7622:26805928 7587:29732066 7555:Chem Sci 7536:27294300 7501:21341754 7481:Org Lett 7466:24339185 7431:29507289 7372:51629476 7364:30007102 7329:27897376 7294:24127310 7259:30517682 7208:22159276 7173:20007153 7124:31506439 7065:30392795 7024:22483941 6975:26345128 6943:: 8046. 6918:25503804 6894:: 5810. 6869:29027800 6827:21366243 6792:30948633 6733:26102160 6697:25415762 6661:24060527 6620:26216996 6553:21399632 6511:29170206 6470:20730849 6435:26345128 6403:: 8046. 6378:25503804 6354:: 5810. 6329:31371514 6270:23878262 6211:17102550 6203:18794862 6168:21240278 6119:30392795 6070:17410168 6027:11567708 6019:22056675 5984:23537405 5948:23509282 5889:19590013 5822:16116447 5787:14615590 5728:58561771 5720:30586743 5678:24602777 5656:Circ Res 5637:27931619 5596:17159252 5588:28183980 5544:30120239 5487:26944680 5430:27595325 5394:23823236 5335:25319368 5290:30576513 5241:19941819 5211:Mol Cell 5192:20047967 5143:20972225 5086:27842382 5043:28541183 4992:20632338 4957:21131278 4906:19354210 4871:18693035 4830:44300779 4822:19444830 4779:23842498 4736:30462266 4687:20707369 4652:29485736 4608:17446891 4572:20078041 4537:17895388 4478:31131949 4427:20533472 4392:21719644 4327:19160501 4284:20445540 4241:31015424 4183:29676732 4127:24855207 4086:53241442 4078:30391931 4043:21030982 4021:Leukemia 4002:29339502 3935:29483652 3899:27021569 3848:21335238 3796:29358025 3747:28481361 3711:27264873 3689:Mol Cell 3670:21455181 3604:19303852 3563:18497817 3506:31147549 3439:26040720 3395:31330532 3338:29795347 3281:27912065 3240:27211868 3218:Mol Cell 3199:21617041 3142:25684205 3120:Mol Cell 3093:29618831 3058:29334381 3009:17544294 2968:30948633 2909:22034093 2860:21366243 2825:24047229 2790:22397466 2755:28004795 2696:29308886 2660:27659210 2617:29107940 2574:29025996 2525:22451937 2466:25248080 2407:19262666 2349:20829798 2299:28504641 2248:28802041 2207:19487671 2148:27126043 2081:20576851 2032:29519876 1973:21836051 1914:29748256 1855:31221832 1806:27402755 1747:27373333 1717:Mol Cell 1698:23582849 1690:25554780 1643:11159551 1635:20595580 1592:25699311 1355:immunity 1314:gyrotron 1137:in vitro 1077:diabetic 1069:antimiRs 1015:proteins 864:proteins 707:ribosome 414:such as 400:flippase 322:ribosome 264:and the 256:Research 207:and the 11100:Related 10813:5534052 10762:5491931 10711:5369006 10615:5240381 10564:6884703 10500:Methods 10481:3991944 10350:6465308 10327:Bibcode 10291:6941232 10232:7612745 10183:6326822 10099:3287181 9944:2955850 9923:Bibcode 9887:5449183 9795:6318263 9774:Bibcode 9738:6289172 9686:Bibcode 9506:7992120 9422:4740111 9399:Bibcode 9328:5517149 9286:1329736 9242:3776898 9190:5334646 9169:Bibcode 9161:Sci Rep 9133:4458345 9116:: 187. 8862:4418465 8822:6543151 8750:Bibcode 8742:Science 8675:7612745 8626:7116070 8603:Science 8556:Bibcode 8533:6543151 8461:Bibcode 8436:9 March 8333:5353594 8310:Bibcode 8229:6385481 8110:4740111 8087:Bibcode 8051:6194584 8002:2852015 7979:Bibcode 7943:6828756 7922:Bibcode 7895:4414719 7867:Bibcode 7754:Bibcode 7722:5418571 7701:Bibcode 7646:Bibcode 7638:Science 7578:5914290 7422:5838219 7399:Bibcode 7250:6393235 7164:2847219 7115:6736843 7092:Bibcode 7015:3350619 6966:4569695 6945:Bibcode 6896:Bibcode 6783:6486740 6760:Bibcode 6611:4538646 6588:Bibcode 6561:5907240 6489:Science 6426:4569695 6405:Bibcode 6356:Bibcode 6320:6708366 6297:Bibcode 6261:3740886 6238:Bibcode 6159:3189501 6078:4415339 6050:Bibcode 5939:3619329 5916:Bibcode 5880:2718366 5857:Bibcode 5830:6809511 5755:Bibcode 5568:Bibcode 5560:Science 5535:6098099 5514:Bibcode 5478:4782049 5438:3397638 5410:Nat Med 5385:3699759 5362:Bibcode 5313:Plant J 5281:6393314 5232:2806949 5183:2853112 5134:3045603 5066:Bibcode 5034:5459577 4948:3074152 4787:4414719 4759:Bibcode 4727:6326822 4616:6442268 4528:2000436 4505:Bibcode 4469:6617721 4383:3601824 4362:Bibcode 4354:Science 4292:4423684 4264:Bibcode 4232:6478789 4211:Bibcode 4174:5910019 4143:Roth BL 3993:5798343 3970:Bibcode 3943:3685994 3890:4876613 3839:3087504 3755:1329736 3661:3085511 3640:Bibcode 3612:3683855 3554:2839886 3533:Bibcode 3497:6542808 3474:Bibcode 3447:4449106 3419:Bibcode 3386:6715450 3365:Bibcode 3329:5980784 3308:Bibcode 3190:3714538 3169:Bibcode 3161:Science 3101:4594197 3049:7992120 2959:6486740 2936:Bibcode 2900:4234116 2746:5192220 2723:Bibcode 2625:4447406 2597:Bibcode 2552:Bibcode 2544:Science 2516:3326505 2493:Bibcode 2457:4359379 2387:Bibcode 2357:4341977 2329:Bibcode 2290:5449183 2198:2689314 2175:Bibcode 2139:5515584 2116:Bibcode 2108:Science 2089:5083670 2059:Bibcode 2051:Science 2023:5866595 2000:Bibcode 1964:3161574 1941:Bibcode 1905:7116070 1882:Science 1833:Bibcode 1825:Science 1797:4968746 1774:Bibcode 1738:4980432 1670:Bibcode 1662:Science 1615:Bibcode 1607:Science 1430:analyte 1418:ligands 1395:Native 1384:in vivo 1364:dimeric 1351:antigen 1108:antigen 1104:in vivo 1081:in vivo 880:neurons 804:in vivo 784:nucleus 711:cryo-EM 665:aptamer 571:, i.e. 510:ligases 487:GABARAP 471:kinases 465:by the 459:oocytes 408:E. coli 379:ATPases 326:oocytes 268:of the 10902:  10861:  10820:  10810:  10769:  10759:  10745:: 85. 10718:  10708:  10667:  10639:Koch I 10622:  10612:  10571:  10561:  10520:  10479:  10471:  10449:Koch I 10433:  10398:  10357:  10347:  10298:  10288:  10247:  10239:  10229:  10211:Nature 10190:  10180:  10141:  10106:  10096:  10057:  10022:  9987:  9951:  9941:  9894:  9884:  9843:  9802:  9792:  9745:  9735:  9661:  9625:  9590:  9548:  9513:  9503:  9464:  9429:  9419:  9370:  9335:  9325:  9284:  9276:  9240:  9232:  9197:  9187:  9140:  9130:  9089:  9038:  9030:  8995:  8987:  8952:  8912:  8904:  8869:  8859:  8820:  8812:  8776:  8768:  8725:  8690:  8682:  8672:  8654:Nature 8633:  8623:  8582:  8574:  8548:Nature 8531:  8523:  8487:  8479:  8453:Nature 8415:  8375:  8340:  8330:  8281:  8236:  8226:  8187:  8152:  8117:  8107:  8058:  8048:  8009:  7999:  7950:  7940:  7893:  7885:  7859:Nature 7842:  7807:  7772:  7729:  7719:  7672:  7664:  7620:  7585:  7575:  7534:  7499:  7464:  7429:  7419:  7370:  7362:  7327:  7292:  7257:  7247:  7206:  7171:  7161:  7122:  7112:  7063:  7043:Neuron 7022:  7012:  6973:  6963:  6916:  6867:  6825:  6790:  6780:  6731:  6695:  6659:  6618:  6608:  6559:  6551:  6509:  6468:  6433:  6423:  6376:  6327:  6317:  6268:  6258:  6209:  6201:  6166:  6156:  6117:  6097:Neuron 6076:  6068:  6042:Nature 6025:  6017:  5982:  5946:  5936:  5887:  5877:  5828:  5820:  5785:  5778:283525 5775:  5726:  5718:  5676:  5635:  5594:  5586:  5542:  5532:  5485:  5475:  5436:  5428:  5392:  5382:  5333:  5288:  5278:  5239:  5229:  5190:  5180:  5141:  5131:  5092:  5084:  5058:Nature 5041:  5031:  4990:  4955:  4945:  4904:  4869:  4828:  4820:  4785:  4777:  4751:Nature 4734:  4724:  4685:  4650:  4614:  4606:  4570:  4535:  4525:  4476:  4466:  4425:  4390:  4380:  4335:698572 4333:  4325:  4290:  4282:  4256:Nature 4239:  4229:  4181:  4171:  4125:  4084:  4076:  4041:  4000:  3990:  3941:  3933:  3897:  3887:  3846:  3836:  3794:  3753:  3745:  3709:  3668:  3658:  3632:Nature 3610:  3602:  3561:  3551:  3525:Nature 3504:  3494:  3445:  3437:  3411:Nature 3393:  3383:  3357:Nature 3336:  3326:  3300:Nature 3279:  3238:  3197:  3187:  3140:  3099:  3091:  3056:  3046:  3007:  2966:  2956:  2907:  2897:  2858:  2823:  2788:  2753:  2743:  2694:  2658:  2623:  2615:  2589:Nature 2572:  2523:  2513:  2464:  2454:  2413:  2405:  2379:Nature 2355:  2347:  2321:Nature 2297:  2287:  2246:  2205:  2195:  2146:  2136:  2087:  2079:  2030:  2020:  1971:  1961:  1912:  1902:  1861:  1853:  1804:  1794:  1745:  1735:  1696:  1688:  1641:  1633:  1590:  973:lysine 675:operon 608:ephrin 528:lysine 518:serine 424:human 10946:(PDF) 10477:S2CID 10245:S2CID 9864:eLife 9568:(PDF) 9305:eLife 9282:S2CID 9238:S2CID 9036:S2CID 8993:S2CID 8910:S2CID 8818:S2CID 8774:S2CID 8688:S2CID 8580:S2CID 8529:S2CID 8485:S2CID 7891:S2CID 7824:Small 7670:S2CID 7368:S2CID 6845:(PDF) 6557:S2CID 6529:(PDF) 6207:S2CID 6074:S2CID 6023:S2CID 5826:S2CID 5724:S2CID 5592:S2CID 5434:S2CID 5090:S2CID 5011:eLife 4826:S2CID 4783:S2CID 4612:S2CID 4331:S2CID 4288:S2CID 4151:eLife 4105:Blood 4082:S2CID 3939:S2CID 3867:eLife 3751:S2CID 3608:S2CID 3443:S2CID 3097:S2CID 2621:S2CID 2434:eLife 2411:S2CID 2375:(PDF) 2353:S2CID 2317:(PDF) 2267:eLife 2085:S2CID 1859:S2CID 1694:S2CID 1639:S2CID 1073:miRNA 999:opsin 952:with 816:SRSF3 812:iCLIP 496:TIAM1 10957:2020 10929:2020 10900:PMID 10859:PMID 10818:PMID 10767:PMID 10716:PMID 10665:PMID 10620:PMID 10569:PMID 10518:PMID 10469:PMID 10431:PMID 10396:PMID 10355:PMID 10296:PMID 10237:PMID 10188:PMID 10139:PMID 10104:PMID 10055:PMID 10020:PMID 9985:PMID 9949:PMID 9892:PMID 9841:PMID 9827:1864 9800:PMID 9743:PMID 9659:PMID 9623:PMID 9588:PMID 9546:PMID 9511:PMID 9462:PMID 9427:PMID 9368:PMID 9333:PMID 9274:PMID 9230:PMID 9195:PMID 9138:PMID 9087:PMID 9028:PMID 8985:PMID 8950:PMID 8902:PMID 8867:PMID 8810:PMID 8766:PMID 8723:PMID 8680:PMID 8631:PMID 8572:PMID 8521:PMID 8477:PMID 8438:2020 8413:PMID 8373:PMID 8338:PMID 8279:PMID 8234:PMID 8185:PMID 8150:PMID 8115:PMID 8056:PMID 8007:PMID 7948:PMID 7883:PMID 7840:PMID 7805:PMID 7770:PMID 7727:PMID 7662:PMID 7618:PMID 7583:PMID 7532:PMID 7497:PMID 7462:PMID 7427:PMID 7360:PMID 7325:PMID 7290:PMID 7255:PMID 7204:PMID 7169:PMID 7120:PMID 7061:PMID 7020:PMID 6971:PMID 6914:PMID 6865:PMID 6823:PMID 6788:PMID 6729:PMID 6693:PMID 6657:PMID 6643:1837 6616:PMID 6549:PMID 6507:PMID 6466:PMID 6431:PMID 6374:PMID 6325:PMID 6266:PMID 6199:PMID 6164:PMID 6115:PMID 6066:PMID 6015:PMID 5980:PMID 5944:PMID 5885:PMID 5818:PMID 5783:PMID 5716:PMID 5674:PMID 5633:PMID 5584:PMID 5540:PMID 5483:PMID 5426:PMID 5390:PMID 5331:PMID 5286:PMID 5237:PMID 5188:PMID 5139:PMID 5082:PMID 5039:PMID 4988:PMID 4953:PMID 4902:PMID 4867:PMID 4818:PMID 4775:PMID 4732:PMID 4683:PMID 4648:PMID 4604:PMID 4568:PMID 4533:PMID 4474:PMID 4423:PMID 4388:PMID 4323:PMID 4280:PMID 4237:PMID 4179:PMID 4123:PMID 4074:PMID 4039:PMID 3998:PMID 3931:PMID 3895:PMID 3844:PMID 3816:Cell 3792:PMID 3743:PMID 3707:PMID 3666:PMID 3600:PMID 3582:Cell 3559:PMID 3502:PMID 3435:PMID 3391:PMID 3334:PMID 3277:PMID 3259:Cell 3236:PMID 3195:PMID 3138:PMID 3089:PMID 3054:PMID 3005:PMID 2964:PMID 2905:PMID 2856:PMID 2821:PMID 2786:PMID 2751:PMID 2692:PMID 2656:PMID 2613:PMID 2570:PMID 2521:PMID 2462:PMID 2403:PMID 2345:PMID 2295:PMID 2244:PMID 2226:Cell 2203:PMID 2144:PMID 2077:PMID 2028:PMID 1969:PMID 1910:PMID 1851:PMID 1802:PMID 1743:PMID 1686:PMID 1631:PMID 1588:PMID 1514:here 1502:here 1424:and 1422:nESI 1377:and 1189:and 1140:and 1130:and 1017:and 874:and 771:and 737:rRNA 726:Nep1 625:RNAs 575:and 557:TP63 453:and 365:and 294:rRNA 244:Aims 227:and 191:The 10950:CEF 10890:doi 10849:doi 10808:PMC 10798:doi 10757:PMC 10747:doi 10706:PMC 10696:doi 10655:doi 10610:PMC 10600:doi 10559:PMC 10549:doi 10508:doi 10504:178 10461:doi 10423:doi 10419:138 10386:doi 10345:PMC 10335:doi 10286:PMC 10276:doi 10227:PMC 10219:doi 10215:571 10178:PMC 10170:doi 10131:doi 10094:PMC 10086:doi 10047:doi 10043:138 10012:doi 10008:134 9977:doi 9973:137 9939:PMC 9931:doi 9882:PMC 9872:doi 9831:doi 9790:PMC 9782:doi 9733:PMC 9725:doi 9694:doi 9682:277 9651:doi 9647:140 9615:doi 9580:doi 9576:139 9538:doi 9534:138 9501:PMC 9493:doi 9454:doi 9450:131 9417:PMC 9407:doi 9360:doi 9323:PMC 9313:doi 9266:doi 9222:doi 9185:PMC 9177:doi 9128:PMC 9118:doi 9077:hdl 9067:doi 9020:doi 8977:doi 8940:doi 8894:doi 8857:PMC 8849:doi 8802:doi 8758:doi 8746:343 8715:doi 8670:PMC 8662:doi 8658:571 8621:PMC 8611:doi 8607:360 8564:doi 8552:540 8513:doi 8469:doi 8457:521 8403:doi 8365:doi 8328:PMC 8318:doi 8269:hdl 8261:doi 8224:PMC 8216:doi 8177:doi 8142:doi 8105:PMC 8095:doi 8046:PMC 8038:doi 7997:PMC 7987:doi 7975:107 7938:PMC 7930:doi 7875:doi 7863:499 7832:doi 7797:doi 7762:doi 7717:PMC 7709:doi 7654:doi 7642:355 7610:doi 7573:PMC 7563:doi 7524:doi 7489:doi 7454:doi 7417:PMC 7407:doi 7352:doi 7317:doi 7282:doi 7245:PMC 7235:doi 7196:doi 7159:PMC 7151:doi 7110:PMC 7100:doi 7051:doi 7047:100 7010:PMC 7002:doi 6961:PMC 6953:doi 6904:doi 6857:doi 6853:139 6815:doi 6811:133 6778:PMC 6768:doi 6756:116 6721:doi 6717:137 6685:doi 6681:136 6647:doi 6606:PMC 6596:doi 6584:112 6541:doi 6497:doi 6493:358 6458:doi 6421:PMC 6413:doi 6364:doi 6315:PMC 6305:doi 6293:116 6256:PMC 6246:doi 6234:110 6191:doi 6154:PMC 6146:doi 6105:doi 6101:100 6058:doi 6046:446 6007:doi 5972:doi 5968:135 5934:PMC 5924:doi 5912:110 5875:PMC 5865:doi 5853:106 5810:doi 5773:PMC 5763:doi 5751:100 5706:doi 5702:139 5664:doi 5660:114 5623:doi 5576:doi 5564:355 5530:PMC 5522:doi 5473:PMC 5465:doi 5418:doi 5380:PMC 5370:doi 5358:105 5321:doi 5276:PMC 5268:doi 5227:PMC 5219:doi 5178:PMC 5170:doi 5129:PMC 5121:doi 5074:doi 5062:540 5029:PMC 5019:doi 4980:doi 4943:PMC 4933:doi 4894:doi 4890:131 4857:doi 4810:doi 4767:doi 4755:499 4722:PMC 4714:doi 4675:doi 4671:114 4640:doi 4596:doi 4560:doi 4556:132 4523:PMC 4513:doi 4501:104 4464:PMC 4454:doi 4415:doi 4378:PMC 4370:doi 4358:333 4315:doi 4272:doi 4260:465 4227:PMC 4219:doi 4169:PMC 4159:doi 4113:doi 4109:124 4066:doi 4062:400 4029:doi 3988:PMC 3978:doi 3966:115 3923:doi 3885:PMC 3875:doi 3834:PMC 3824:doi 3820:144 3782:doi 3735:doi 3697:doi 3656:PMC 3648:doi 3636:471 3590:doi 3586:136 3549:PMC 3541:doi 3529:453 3492:PMC 3482:doi 3427:doi 3415:522 3381:PMC 3373:doi 3361:572 3324:PMC 3316:doi 3304:557 3267:doi 3263:167 3226:doi 3185:PMC 3177:doi 3165:333 3128:doi 3081:doi 3044:PMC 3036:doi 2995:doi 2954:PMC 2944:doi 2932:116 2895:PMC 2887:doi 2848:doi 2844:133 2813:doi 2809:135 2778:doi 2774:134 2741:PMC 2731:doi 2684:doi 2680:140 2648:doi 2644:138 2605:doi 2593:551 2560:doi 2548:358 2511:PMC 2501:doi 2489:109 2452:PMC 2442:doi 2395:doi 2383:458 2337:doi 2325:467 2285:PMC 2275:doi 2234:doi 2230:170 2193:PMC 2183:doi 2171:106 2134:PMC 2124:doi 2112:352 2067:doi 2055:329 2018:PMC 2008:doi 1996:115 1959:PMC 1949:doi 1937:108 1900:PMC 1890:doi 1886:360 1841:doi 1829:364 1792:PMC 1782:doi 1770:113 1733:PMC 1725:doi 1678:doi 1666:347 1623:doi 1611:329 1578:doi 1546:doi 1407:or 1379:DNA 1375:RNA 1347:TAP 1216:'s 1126:of 1046:by 950:EPR 946:DNP 942:NMR 878:in 814:). 745:40S 741:60S 661:NMR 657:HIV 551:p63 467:p53 385:III 320:in 278:RNA 229:RNA 221:CEF 197:CEF 80:or 11137:: 10948:. 10920:. 10898:. 10886:16 10884:. 10880:. 10857:. 10845:31 10843:. 10839:. 10816:. 10806:. 10794:11 10792:. 10788:. 10765:. 10755:. 10741:. 10737:. 10714:. 10704:. 10692:18 10690:. 10686:. 10663:. 10651:29 10649:. 10645:. 10618:. 10608:. 10596:18 10594:. 10590:. 10567:. 10557:. 10545:11 10543:. 10539:. 10516:. 10502:. 10498:. 10475:. 10467:. 10457:50 10455:. 10429:. 10417:. 10394:. 10382:67 10380:. 10376:. 10353:. 10343:. 10333:. 10323:10 10321:. 10317:. 10294:. 10284:. 10272:77 10270:. 10266:. 10243:. 10235:. 10225:. 10213:. 10209:. 10186:. 10176:. 10166:47 10164:. 10160:. 10137:. 10127:82 10125:. 10102:. 10092:. 10082:40 10080:. 10076:. 10053:. 10041:. 10018:. 10006:. 9983:. 9971:. 9947:. 9937:. 9929:. 9919:12 9917:. 9913:. 9890:. 9880:. 9866:. 9862:. 9839:. 9825:. 9821:. 9798:. 9788:. 9780:. 9770:30 9768:. 9764:. 9741:. 9731:. 9721:54 9719:. 9715:. 9692:. 9680:. 9657:. 9645:. 9621:. 9611:50 9609:. 9586:. 9574:. 9570:. 9544:. 9532:. 9509:. 9499:. 9489:14 9487:. 9483:. 9460:. 9448:. 9425:. 9415:. 9405:. 9393:. 9389:. 9366:. 9356:54 9354:. 9331:. 9321:. 9307:. 9303:. 9280:. 9272:. 9260:. 9236:. 9228:. 9218:13 9216:. 9193:. 9183:. 9175:. 9163:. 9159:. 9136:. 9126:. 9114:16 9112:. 9108:. 9085:. 9075:. 9063:26 9061:. 9057:. 9034:. 9026:. 9016:12 9014:. 8991:. 8983:. 8973:10 8971:. 8948:. 8936:12 8934:. 8930:. 8908:. 8900:. 8890:12 8888:. 8865:. 8855:. 8843:. 8839:. 8816:. 8808:. 8798:17 8796:. 8772:. 8764:. 8756:. 8744:. 8721:. 8711:17 8709:. 8686:. 8678:. 8668:. 8656:. 8652:. 8629:. 8619:. 8605:. 8601:. 8578:. 8570:. 8562:. 8550:. 8527:. 8519:. 8509:17 8507:. 8483:. 8475:. 8467:. 8455:. 8411:. 8399:13 8397:. 8393:. 8371:. 8361:52 8359:. 8336:. 8326:. 8316:. 8304:. 8300:. 8277:. 8267:. 8257:13 8255:. 8232:. 8222:. 8212:10 8210:. 8206:. 8183:. 8173:53 8171:. 8148:. 8138:54 8136:. 8113:. 8103:. 8093:. 8081:. 8077:. 8054:. 8044:. 8032:. 8028:. 8005:. 7995:. 7985:. 7973:. 7969:. 7946:. 7936:. 7928:. 7918:10 7916:. 7912:. 7889:. 7881:. 7873:. 7861:. 7838:. 7826:. 7803:. 7793:24 7791:. 7768:. 7760:. 7748:. 7725:. 7715:. 7707:. 7695:. 7691:. 7668:. 7660:. 7652:. 7640:. 7616:. 7606:55 7604:. 7581:. 7571:. 7557:. 7553:. 7530:. 7520:55 7518:. 7495:. 7485:13 7483:. 7460:. 7450:53 7448:. 7425:. 7415:. 7405:. 7393:. 7389:. 7366:. 7358:. 7348:57 7346:. 7323:. 7313:56 7311:. 7288:. 7278:52 7276:. 7253:. 7243:. 7231:47 7229:. 7225:. 7202:. 7192:48 7190:. 7167:. 7157:. 7147:38 7145:. 7141:. 7118:. 7108:. 7098:. 7088:10 7086:. 7082:. 7059:. 7045:. 7041:. 7018:. 7008:. 6998:22 6996:. 6992:. 6969:. 6959:. 6951:. 6939:. 6935:. 6912:. 6902:. 6890:. 6886:. 6863:. 6851:. 6847:. 6821:. 6809:. 6786:. 6776:. 6766:. 6754:. 6750:. 6727:. 6715:. 6691:. 6679:. 6655:. 6641:. 6637:. 6614:. 6604:. 6594:. 6582:. 6578:. 6555:. 6547:. 6537:14 6535:. 6531:. 6505:. 6491:. 6487:. 6464:. 6454:11 6452:. 6429:. 6419:. 6411:. 6399:. 6395:. 6372:. 6362:. 6350:. 6346:. 6323:. 6313:. 6303:. 6291:. 6287:. 6264:. 6254:. 6244:. 6232:. 6228:. 6205:. 6197:. 6185:. 6162:. 6152:. 6140:. 6136:. 6113:. 6099:. 6095:. 6072:. 6064:. 6056:. 6044:. 6021:. 6013:. 6001:. 5978:. 5966:. 5942:. 5932:. 5922:. 5910:. 5906:. 5883:. 5873:. 5863:. 5851:. 5847:. 5824:. 5816:. 5804:. 5781:. 5771:. 5761:. 5749:. 5745:. 5722:. 5714:. 5700:. 5696:. 5672:. 5658:. 5654:. 5631:. 5619:68 5617:. 5613:. 5590:. 5582:. 5574:. 5562:. 5538:. 5528:. 5520:. 5508:. 5504:. 5481:. 5471:. 5461:30 5459:. 5455:. 5432:. 5424:. 5414:22 5412:. 5388:. 5378:. 5368:. 5356:. 5352:. 5329:. 5317:80 5315:. 5311:. 5284:. 5274:. 5264:47 5262:. 5258:. 5235:. 5225:. 5215:36 5213:. 5209:. 5186:. 5176:. 5166:38 5164:. 5160:. 5137:. 5127:. 5117:39 5115:. 5111:. 5088:. 5080:. 5072:. 5060:. 5037:. 5027:. 5013:. 5009:. 4986:. 4976:49 4974:. 4951:. 4941:. 4929:39 4927:. 4923:. 4900:. 4888:. 4865:. 4853:19 4851:. 4847:. 4824:. 4816:. 4806:10 4804:. 4781:. 4773:. 4765:. 4753:. 4730:. 4720:. 4710:47 4708:. 4704:. 4681:. 4669:. 4646:. 4636:24 4634:. 4610:. 4602:. 4590:. 4566:. 4554:. 4531:. 4521:. 4511:. 4499:. 4495:. 4472:. 4462:. 4450:58 4448:. 4444:. 4421:. 4411:49 4409:. 4386:. 4376:. 4368:. 4356:. 4352:. 4329:. 4321:. 4311:11 4309:. 4286:. 4278:. 4270:. 4258:. 4235:. 4225:. 4217:. 4207:10 4205:. 4201:. 4177:. 4167:. 4153:. 4149:. 4121:. 4107:. 4103:. 4080:. 4072:. 4060:. 4037:. 4025:25 4023:. 4019:. 3996:. 3986:. 3976:. 3964:. 3960:. 3937:. 3929:. 3919:25 3917:. 3893:. 3883:. 3869:. 3865:. 3842:. 3832:. 3818:. 3814:. 3790:. 3778:26 3776:. 3772:. 3749:. 3741:. 3729:. 3705:. 3693:62 3691:. 3687:. 3664:. 3654:. 3646:. 3634:. 3630:. 3606:. 3598:. 3584:. 3580:. 3557:. 3547:. 3539:. 3527:. 3523:. 3500:. 3490:. 3480:. 3470:10 3468:. 3464:. 3441:. 3433:. 3425:. 3413:. 3389:. 3379:. 3371:. 3359:. 3355:. 3332:. 3322:. 3314:. 3302:. 3298:. 3275:. 3261:. 3257:. 3234:. 3222:62 3220:. 3216:. 3193:. 3183:. 3175:. 3163:. 3159:. 3136:. 3124:57 3122:. 3118:. 3095:. 3087:. 3077:19 3075:. 3052:. 3042:. 3032:14 3030:. 3026:. 3003:. 2991:18 2989:. 2985:. 2962:. 2952:. 2942:. 2930:. 2926:. 2903:. 2893:. 2883:50 2881:. 2877:. 2854:. 2842:. 2819:. 2807:. 2784:. 2772:. 2749:. 2739:. 2729:. 2717:. 2713:. 2690:. 2678:. 2654:. 2642:. 2619:. 2611:. 2603:. 2591:. 2568:. 2558:. 2546:. 2542:. 2519:. 2509:. 2499:. 2487:. 2483:. 2460:. 2450:. 2436:. 2432:. 2409:. 2401:. 2393:. 2381:. 2377:. 2351:. 2343:. 2335:. 2323:. 2319:. 2293:. 2283:. 2269:. 2265:. 2242:. 2228:. 2224:. 2201:. 2191:. 2181:. 2169:. 2165:. 2142:. 2132:. 2122:. 2110:. 2106:. 2083:. 2075:. 2065:. 2053:. 2049:. 2026:. 2016:. 2006:. 1994:. 1990:. 1967:. 1957:. 1947:. 1935:. 1931:. 1908:. 1898:. 1884:. 1880:. 1857:. 1849:. 1839:. 1827:. 1823:. 1800:. 1790:. 1780:. 1768:. 1764:. 1741:. 1731:. 1721:63 1719:. 1715:. 1692:. 1684:. 1676:. 1664:. 1660:. 1637:. 1629:. 1621:. 1609:. 1586:. 1574:12 1572:. 1568:. 1540:. 1536:. 1516:. 1504:. 1453:, 1445:, 1441:, 1281:ER 1083:. 987:, 854:. 830:. 751:. 473:. 449:, 389:IV 312:, 240:. 45:. 11032:e 11025:t 11018:v 10959:. 10931:. 10906:. 10892:: 10865:. 10851:: 10824:. 10800:: 10773:. 10749:: 10743:8 10722:. 10698:: 10671:. 10657:: 10626:. 10602:: 10575:. 10551:: 10524:. 10510:: 10483:. 10463:: 10437:. 10425:: 10402:. 10388:: 10361:. 10337:: 10329:: 10302:. 10278:: 10251:. 10221:: 10194:. 10172:: 10145:. 10133:: 10110:. 10088:: 10061:. 10049:: 10026:. 10014:: 9991:. 9979:: 9955:. 9933:: 9925:: 9898:. 9874:: 9868:6 9847:. 9833:: 9806:. 9784:: 9776:: 9749:. 9727:: 9700:. 9696:: 9688:: 9665:. 9653:: 9629:. 9617:: 9594:. 9582:: 9552:. 9540:: 9517:. 9495:: 9468:. 9456:: 9433:. 9409:: 9401:: 9395:7 9374:. 9362:: 9339:. 9315:: 9309:6 9288:. 9268:: 9262:2 9244:. 9224:: 9201:. 9179:: 9171:: 9165:7 9144:. 9120:: 9093:. 9079:: 9069:: 9042:. 9022:: 8999:. 8979:: 8956:. 8942:: 8916:. 8896:: 8873:. 8851:: 8845:7 8824:. 8804:: 8780:. 8760:: 8752:: 8729:. 8717:: 8694:. 8664:: 8637:. 8613:: 8586:. 8566:: 8558:: 8535:. 8515:: 8491:. 8471:: 8463:: 8440:. 8419:. 8405:: 8379:. 8367:: 8344:. 8320:: 8312:: 8306:8 8285:. 8271:: 8263:: 8240:. 8218:: 8191:. 8179:: 8156:. 8144:: 8121:. 8097:: 8089:: 8083:7 8062:. 8040:: 8034:9 8013:. 7989:: 7981:: 7954:. 7932:: 7924:: 7897:. 7877:: 7869:: 7846:. 7834:: 7828:7 7811:. 7799:: 7776:. 7764:: 7756:: 7750:5 7733:. 7711:: 7703:: 7697:8 7676:. 7656:: 7648:: 7624:. 7612:: 7589:. 7565:: 7559:9 7538:. 7526:: 7503:. 7491:: 7468:. 7456:: 7433:. 7409:: 7401:: 7395:9 7374:. 7354:: 7331:. 7319:: 7296:. 7284:: 7261:. 7237:: 7210:. 7198:: 7175:. 7153:: 7126:. 7102:: 7094:: 7067:. 7053:: 7026:. 7004:: 6977:. 6955:: 6947:: 6941:6 6920:. 6906:: 6898:: 6892:5 6871:. 6859:: 6829:. 6817:: 6794:. 6770:: 6762:: 6735:. 6723:: 6699:. 6687:: 6663:. 6649:: 6622:. 6598:: 6590:: 6563:. 6543:: 6513:. 6499:: 6472:. 6460:: 6437:. 6415:: 6407:: 6401:6 6380:. 6366:: 6358:: 6352:5 6331:. 6307:: 6299:: 6272:. 6248:: 6240:: 6213:. 6193:: 6187:5 6170:. 6148:: 6142:8 6121:. 6107:: 6080:. 6060:: 6052:: 6029:. 6009:: 6003:8 5986:. 5974:: 5950:. 5926:: 5918:: 5891:. 5867:: 5859:: 5832:. 5812:: 5806:8 5789:. 5765:: 5757:: 5730:. 5708:: 5680:. 5666:: 5639:. 5625:: 5598:. 5578:: 5570:: 5546:. 5524:: 5516:: 5510:9 5489:. 5467:: 5440:. 5420:: 5396:. 5372:: 5364:: 5337:. 5323:: 5309:" 5292:. 5270:: 5243:. 5221:: 5194:. 5172:: 5145:. 5123:: 5096:. 5076:: 5068:: 5045:. 5021:: 5015:6 4994:. 4982:: 4959:. 4935:: 4908:. 4896:: 4873:. 4859:: 4832:. 4812:: 4789:. 4769:: 4761:: 4738:. 4716:: 4689:. 4677:: 4654:. 4642:: 4618:. 4598:: 4592:2 4574:. 4562:: 4539:. 4515:: 4507:: 4480:. 4456:: 4429:. 4417:: 4394:. 4372:: 4364:: 4337:. 4317:: 4294:. 4274:: 4266:: 4243:. 4221:: 4213:: 4185:. 4161:: 4155:7 4129:. 4115:: 4088:. 4068:: 4045:. 4031:: 4004:. 3980:: 3972:: 3945:. 3925:: 3901:. 3877:: 3871:5 3850:. 3826:: 3798:. 3784:: 3757:. 3737:: 3731:2 3713:. 3699:: 3672:. 3650:: 3642:: 3614:. 3592:: 3565:. 3543:: 3535:: 3508:. 3484:: 3476:: 3449:. 3429:: 3421:: 3397:. 3375:: 3367:: 3340:. 3318:: 3310:: 3283:. 3269:: 3242:. 3228:: 3201:. 3179:: 3171:: 3144:. 3130:: 3103:. 3083:: 3060:. 3038:: 3011:. 2997:: 2970:. 2946:: 2938:: 2911:. 2889:: 2862:. 2850:: 2827:. 2815:: 2792:. 2780:: 2757:. 2733:: 2725:: 2719:7 2698:. 2686:: 2662:. 2650:: 2627:. 2607:: 2599:: 2576:. 2562:: 2554:: 2527:. 2503:: 2495:: 2468:. 2444:: 2438:3 2417:. 2397:: 2389:: 2359:. 2339:: 2331:: 2301:. 2277:: 2271:6 2250:. 2236:: 2209:. 2185:: 2177:: 2150:. 2126:: 2118:: 2091:. 2069:: 2061:: 2034:. 2010:: 2002:: 1975:. 1951:: 1943:: 1916:. 1892:: 1865:. 1843:: 1835:: 1808:. 1784:: 1776:: 1749:. 1727:: 1700:. 1680:: 1672:: 1645:. 1625:: 1617:: 1594:. 1580:: 1554:. 1548:: 1542:8 391:1 387:2 383:1 195:( 182:) 176:( 164:) 158:( 153:) 149:( 145:. 107:) 101:( 96:) 92:( 88:. 74:. 52:) 48:(

Index

improve it
talk page
Learn how and when to remove these messages
spinning off
relocating
Knowledge's inclusion policy
Learn how and when to remove this message
close connection
neutral point of view
talk page
Learn how and when to remove this message
Learn how and when to remove this message
Goethe University Frankfurt
Max Planck Institute of Biophysics
Max Planck Institute for Brain Research
German Universities Excellence Initiative
Deutsche Forschungsgemeinschaft
membrane proteins
RNA
Frankfurt/Main
Buchmann Institute for Molecular Life Sciences (BMLS)
signal transduction
complex I
ATP synthase
mitochondrial respiratory chain
transporter associated with antigen processing
RNA
riboswitches
RNA polymerase I
microRNAs

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑