Knowledge

Acoustic resonance

Source 📝

3278: 2817: 42: 1868: 1856: 65:. One of the forks is being hit with a rubberized mallet. Although the first tuning fork hasn't been hit, the other fork is visibly excited due to the oscillation caused by the periodic change in the pressure and density of the air by hitting the other fork, creating an acoustic resonance between the forks. However, if a piece of metal is placed on a prong, the effect dampens, and the excitations become less and less pronounced as resonance isn't achieved as effectively. 159: 3565: 2657: 2554: 45: 1041: 1005: 969: 933: 44: 49: 48: 43: 50: 1034: 998: 962: 926: 47: 545:
The resonance properties of a cylinder may be understood by considering the behavior of a sound wave in air. Sound travels as a longitudinal compression wave, causing air molecules to move back and forth along the direction of travel. Within a tube, a standing wave is formed, whose wavelength depends
428:
Higher tension and shorter lengths increase the resonant frequencies. When the string is excited with an impulsive function (a finger pluck or a strike by a hammer), the string vibrates at all the frequencies present in the impulse (an impulsive function theoretically contains 'all' frequencies).
1541:
where "n" here is an odd number (1, 3, 5...). This type of tube produces only odd harmonics and has its fundamental frequency an octave lower than that of an open cylinder (that is, half the frequency). This equation comes from the boundary conditions for the pressure wave, which treats the closed
1479:
of the fundamental note. For example, if the fundamental note of a closed pipe is C1, then overblowing the pipe gives G2, which is one-twelfth above C1. Alternatively we can say that G2 is one-fifth above C2 — the octave above C1. Adjusting the taper of this cylinder for a decreasing cone can tune
1848:
In the two diagrams below are shown the first three resonances of the pressure wave in a cylindrical tube, with antinodes at the closed end of the pipe. In diagram 1, the tube is open at both ends. In diagram 2, it is closed at one end. The horizontal axis is pressure. Note that in this case, the
1054:
In cylinders with both ends open, air molecules near the end move freely in and out of the tube. This movement produces displacement antinodes in the standing wave. Nodes tend to form inside the cylinder, away from the ends. In the first harmonic, the open tube contains exactly half of a standing
101:
of the strongest resonance. It will easily vibrate at those frequencies, and vibrate less strongly at other frequencies. It will "pick out" its resonance frequency from a complex excitation, such as an impulse or a wideband noise excitation. In effect, it is filtering out all frequencies other
2824:
This is a classic demonstration of resonance. A glass has a natural resonance, a frequency at which the glass will vibrate easily. Therefore the glass needs to be moved by the sound wave at that frequency. If the force from the sound wave making the glass vibrate is big enough, the size of the
1488:
by pinching open the dorsal thumb hole. Moving this small hole upwards, closer to the voicing will make it an "Echo Hole" (Dolmetsch Recorder Modification) that will give a precise half note above the fundamental when opened. Note: Slight size or diameter adjustment is needed to zero in on the
537:
Any cylinder resonates at multiple frequencies, producing multiple musical pitches. The lowest frequency is called the fundamental frequency or the first harmonic. Cylinders used as musical instruments are generally open, either at both ends, like a flute, or at one end, like some organ pipes.
1455:
a tube which is closed at one end is called a "stopped pipe". Such cylinders have a fundamental frequency but can be overblown to produce other higher frequencies or notes. These overblown registers can be tuned by using different degrees of conical taper. A closed tube resonates at the same
562:
The table below shows the displacement waves in a cylinder closed at both ends. Note that the air molecules near the closed ends cannot move, whereas the molecules near the center of the pipe move freely. In the first harmonic, the closed tube contains exactly half of a standing wave
2225: 2315:
are nonnegative integers that cannot all be zero. If the small loudspeaker box is airtight, the frequency low enough and the compression is high enough, the sound pressure (decibel level) inside the box will be the same anywhere inside the box, this is hydraulic pressure.
190:
directly related to the mass, length, and tension of the string. The wavelength that will create the first resonance on the string is equal to twice the length of the string. Higher resonances correspond to wavelengths that are integer divisions of the
46: 685: 2884:, a piece for percussion and pre-recorded sounds, the resonances from the acoustic instruments form sonic bridges to the pre-recorded electronic sounds, that, in turn, prolong the resonances, re-shaping them into new sonic gestures." 1218:
is the radius of the resonance tube. This equation compensates for the fact that the exact point at which a sound wave is reflecting at an open end is not perfectly at the end section of the tube, but a small distance outside the tube.
1069:
an open tube, a note can be obtained that is an octave above the fundamental frequency or note of the tube. For example, if the fundamental note of an open pipe is C1, then overblowing the pipe gives C2, which is an octave above C1.
404: 458:
frequencies when other strings are sounded. For example, an A string at 440 Hz will cause an E string at 330 Hz to resonate, because they share an overtone of 1320 Hz (3rd overtone of A and 4th overtone of E).
2069:. In words, a complete conical pipe behaves approximately like an open cylindrical pipe of the same length, and to first order the behavior does not change if the complete cone is replaced by a closed frustum of that cone. 1138:
in air (which is approximately 343 metres per second at 20 °C ). This equation comes from the boundary conditions for the pressure wave, which treats the open ends as pressure nodes where the change in pressure
2739: 2636: 2416: 2091: 1226:; rather, it has a finite value, called radiation impedance, which is dependent on the diameter of the tube, the wavelength, and the type of reflection board possibly present around the opening of the tube. 871: 1062:. Note that the diagrams in this reference show displacement waves, similar to the ones shown above. These stand in sharp contrast to the pressure waves shown near the end of the present article. 806: 2806: 429:
Those frequencies that are not one of the resonances are quickly filtered out—they are attenuated—and all that is left is the harmonic vibrations that we hear as a musical note.
137:
on the membrane to detect sound. (For mammals the membrane has tapering resonances across its length so that high frequencies are concentrated on one end and low frequencies on the other.)
304: 1640: 1209: 1948: 1700: 1287: 1835: 1422: 2056: 1756: 1343: 1536: 1117: 247: 2547: 2500: 1788: 1375: 2825:
vibration will become so large that the glass fractures. To do it reliably for a science demonstration requires practice and careful choice of the glass and loudspeaker.
467:
The resonance of a tube of air is related to the length of the tube, its shape, and whether it has closed or open ends. Many musical instruments resemble tubes that are
1998: 1840:
where v is the speed of sound, L is the length of the resonant tube, d is the diameter of the tube, f is the resonant sound frequency, and λ is the resonant wavelength.
589: 1484:
point, or shared "wave/node" position will cancel the fundamental frequency and force the tube to resonate at a 12th above the fundamental. This technique is used in a
30:
This article is about mechanical resonance of sound including musical instruments. For a general description of mechanical resonance in physics and engineering, see
2449: 2273: 2313: 2293: 315: 121:, and the shape of a drum membrane. Acoustic resonance is also important for hearing. For example, resonance of a stiff structural element, called the 1890:
The resonant frequencies of a stopped conical tube — a complete cone or frustum with one end closed — satisfy a more complicated condition:
523:). Like strings, vibrating air columns in ideal cylindrical or conical pipes also have resonances at harmonics, although there are some differences. 2837:
has used acoustic instruments and sine wave generators to explore the resonance of objects large and small in many of his compositions. The complex
1055:
wave (antinode-node-antinode). Thus the harmonics of the open cylinder are calculated in the same way as the harmonics of a closed/closed cylinder.
94:
is defined in general terms concerning vibrational waves in matter, acoustic resonance can occur at frequencies outside the range of human hearing.
1475:
a cylindrical closed tube, a note can be obtained that is approximately a twelfth above the fundamental note of the tube, or a fifth above the
2220:{\displaystyle f={v \over 2}{\sqrt {\left({\ell \over L_{x}}\right)^{2}+\left({m \over L_{y}}\right)^{2}+\left({n \over L_{z}}\right)^{2}}}} 2673: 2566: 1887:
of a cone with both ends open, will have resonant frequencies approximately equal to those of an open cylindrical pipe of the same length.
1456:
fundamental frequency as an open tube twice its length, with a wavelength equal to four times its length. In a closed tube, a displacement
2349: 264:
in an open end pipe (that is, both ends of the pipe are open)). The speed of a wave through a string or wire is related to its tension
546:
on the length of the tube. At the closed end of the tube, air molecules cannot move much, so this end of the tube is a displacement
140:
Like mechanical resonance, acoustic resonance can result in catastrophic failure of the vibrator. The classic example of this is
3487: 817: 3029: 2947: 3102: 737: 3214: 1460:, or point of no vibration, always appears at the closed end and if the tube is resonating, it will have a displacement 567:-node). Considering the pressure wave in this setup, the two closed ends are the antinodes for the change in pressure Δ 2766: 714:
is that the pressure of the closed ends will follow that of the point next to them. Applying the boundary condition
1480:
the second harmonic or overblown note close to the octave position or 8th. Opening a small "speaker hole" at the
274: 1554: 1485: 583: 1587: 1156: 1059: 550:
in the standing wave. At the open end of the tube, air molecules can move freely, producing a displacement
3594: 3187: 3142: 1896: 1652: 1239: 1794: 1381: 2841: 2017: 17: 3326: 1706: 1293: 3447: 2061:
leading to resonant frequencies approximately equal to those of an open cylinder whose length equals
1498: 1079: 538:
However, a cylinder closed at both ends can also be used to create or visualize sound waves, as in a
532: 209: 2877: 2507: 2460: 3502: 1762: 1349: 680:{\displaystyle \Delta p(x,t)=p_{\text{max}}\cos \left({2\pi x \over \lambda }\right)\cos(\omega t)} 438: 76:
amplifies sound waves whose frequency matches one of its own natural frequencies of vibration (its
3382: 3239: 3207: 3119: 2923: 1222:
The reflection ratio is slightly less than 1; the open end does not behave like an infinitesimal
476: 1963: 3321: 3231: 2942:
Kinsler L.E., Frey A.R., Coppens A.B., Sanders J.V., "Fundamentals of Acoustics", 3rd Edition,
3019: 2872:
spaces such as the 2-million-US-gallon (7,600 m) cistern at Fort Worden, WA, which has a
3462: 3360: 3264: 2078: 451: 192: 97:
An acoustically resonant object usually has more than one resonance frequency, especially at
58: 2816: 2424: 2258: 105:
Acoustic resonance is an important consideration for instrument builders, as most acoustic
87: 31: 8: 3482: 3392: 2340: 414: 3589: 3568: 3404: 3365: 3200: 2918: 2298: 2278: 1223: 447: 399:{\displaystyle f={n{\sqrt {T \over \rho }} \over 2L}={n{\sqrt {T \over m/L}} \over 2L}} 106: 3277: 3538: 3370: 3098: 3025: 2943: 1849:
open end of the pipe is a pressure node while the closed end is a pressure antinode.
520: 1867: 3548: 3467: 3431: 3399: 3350: 3259: 3150: 3073: 2961: 2861: 916: 512: 443: 200: 162:
String resonance of a bass guitar A note with fundamental frequency of 110 Hz.
153: 122: 1855: 3543: 3497: 3338: 3296: 3046: 2990: 2865: 1574:
is that the pressure of the closed end will follow that of the point next to it.
3492: 3477: 3424: 2452: 1578: 1457: 1147: 1135: 547: 3583: 3457: 3419: 3387: 3342: 3304: 3254: 3249: 3006: 2913: 2908: 2873: 2869: 1452: 515:) are acoustically similar to closed conical pipes with some deviations (see 2833:
Several composers have begun to make resonance the subject of compositions.
309:
So the frequency is related to the properties of the string by the equation
3452: 2898: 2853: 2834: 3472: 3284: 3154: 2656: 1472: 1066: 539: 479:). A pipe that is closed at one end and open at the other is said to be 55: 158: 3533: 3523: 3309: 2838: 2082: 2007:
is the distance from the small end of the frustum to the vertex. When
1954: 516: 134: 3078: 3314: 3244: 3223: 2903: 2845: 2734:{\displaystyle f={\frac {vd}{\pi }}{\sqrt {\frac {3}{8(0.85)D^{3}}}}} 2631:{\displaystyle f={\frac {vd}{\pi }}{\sqrt {\frac {3}{8L_{eq}D^{3}}}}} 2553: 500: 187: 130: 110: 91: 78: 73: 62: 35: 2411:{\displaystyle f={\frac {v}{2\pi }}{\sqrt {\frac {A}{V_{0}L_{eq}}}}} 1126:
is a positive integer (1, 2, 3...) representing the resonance node,
195:
wavelength. The corresponding frequencies are related to the speed
3409: 3377: 1461: 1443:
is the resonant sound frequency, and λ is the resonant wavelength.
564: 551: 496: 455: 261: 98: 3068:
Greene, Chad A.; Argo IV, Theodore F.; Wilson, Preston S. (2009).
2081:
and buildings. Rectangular buildings have resonances described as
2011:
is small, that is, when the cone is nearly complete, this becomes
256:
is the length of the string (for a string fixed at both ends) and
3355: 2893: 1884: 511:
as closed conical pipes, while most modern lip-reed instruments (
508: 126: 2852:
or other percussion instrument interact with room resonances in
1073:
Open cylindrical tubes resonate at the approximate frequencies:
2849: 2560:
For a spherical cavity, the resonant frequency formula becomes
2085:. For a rectangular box, the resonant frequencies are given by 1476: 183: 175: 114: 3528: 3072:. Proceedings of Meetings on Acoustics. ASA. p. 025001. 2757: 492: 179: 118: 3192: 1040: 1004: 968: 932: 554:. Displacement nodes are pressure antinodes and vice versa. 141: 3518: 504: 422: 171: 167: 3070:
A Helmholtz resonator experiment for the Listen Up project
2811: 2324:
The resonant frequency of a rigid cavity of static volume
2077:
Sound waves in a rectangular box include such examples as
1033: 997: 961: 925: 86:
The term "acoustic resonance" is sometimes used to narrow
3117: 1481: 1465: 1058:
The physics of a pipe open at both ends are explained in
866:{\displaystyle f={\frac {v}{\lambda }}={\frac {nv}{2L}}.} 2319: 1542:
end as pressure antinodes where the change in pressure Δ
432: 2667:=0 and the surface of the sphere acts as a flange, so 2769: 2676: 2569: 2510: 2463: 2427: 2352: 2301: 2281: 2261: 2094: 2020: 1966: 1899: 1883:
An open conical tube, that is, one in the shape of a
1797: 1765: 1709: 1655: 1590: 1501: 1384: 1352: 1296: 1242: 1159: 1082: 820: 740: 592: 318: 277: 212: 166:
In musical instruments, strings under tension, as in
2880:
composition professor and composer Kent Olofsson's "
801:{\displaystyle \lambda ={\frac {2L}{n}};n=1,2,3,...} 450:. Strings or parts of strings may resonate at their 3067: 1492:A closed tube will have approximate resonances of: 586:), which gives the equation for the pressure wave: 571:; Therefore, at both ends, the change in pressure Δ 90:to the frequency range of human hearing, but since 2800: 2733: 2630: 2541: 2494: 2443: 2410: 2307: 2287: 2267: 2219: 2050: 1992: 1942: 1829: 1782: 1750: 1694: 1634: 1530: 1416: 1369: 1337: 1281: 1203: 1111: 865: 800: 679: 398: 298: 241: 3581: 2858:Koan: Having Never Written A Note For Percussion 2801:{\displaystyle f=72.6{\frac {d}{\sqrt {D^{3}}}}} 144:at the precise resonant frequency of the glass. 27:Resonance phenomena in sound and musical devices 3173:Rossing, Thomas D., and Fletcher, Neville H., 491:pipe is open at both ends. Modern orchestral 34:. For a general description of resonance, see 3208: 3118:Acoustics research centre (14 January 2019). 2993:in 1987, discusses "open" and "closed" tubes. 731:gives the wavelengths of the standing waves: 462: 2989:. J. J. Weber, Leipzig. 1931. Translated by 1557:. The intuition for this boundary condition 1546:must have the maximal amplitude, or satisfy 687:. The intuition for this boundary condition 575:must have the maximal amplitude (or satisfy 533:Standing wave § Standing wave in a pipe 3215: 3201: 3168:Acoustical aspects of woodwind instruments 3086: 2451:is the equivalent length of the neck with 1468:point (length × 0.618) near the open end. 3095:The Science and Applications of Acoustics 3077: 2828: 2820:Breaking glass with sound using resonance 2072: 299:{\displaystyle v={\sqrt {T \over \rho }}} 3140: 3017: 2815: 1577:A more accurate equation considering an 1464:, or point of greatest vibration at the 1146:A more accurate equation considering an 499:behave as closed cylindrical pipes; and 157: 40: 3149:(4). University of Haddersfield Press. 3092: 3011: 2812:Breaking glass with sound via resonance 14: 3582: 2981: 2979: 2962:"Saxophone acoustics: an introduction" 1635:{\displaystyle f={nv \over 4(L+0.3d)}} 1204:{\displaystyle f={nv \over 2(L+0.6r)}} 557: 3196: 3024:. Taylor & Francis. p. 170. 2663:For a sphere with just a sound hole, 2320:Resonance of a sphere of air (vented) 1943:{\displaystyle kL=n\pi -\tan ^{-1}kx} 1695:{\displaystyle f={v \over 4(L+0.3d)}} 1282:{\displaystyle f={v \over 2(L+0.6r)}} 433:String resonance in music instruments 417:, ρ is the mass per unit length, and 1830:{\displaystyle \lambda ={4(L+0.3d)}} 1446: 1435:is the length of the resonant tube, 1417:{\displaystyle \lambda ={2(L+0.6r)}} 1049: 113:, such as the strings and body of a 2976: 2051:{\displaystyle k(L+x)\approx n\pi } 147: 24: 3177:. New York, Springer-Verlag, 1995. 3141:Olofsson, Kent (4 February 2015). 2655: 2552: 593: 495:behave as open cylindrical pipes; 25: 3606: 3181: 3175:Principles of Vibration and Sound 3120:"How to break a glass with sound" 3044: 2959: 2331:with a necked sound hole of area 811:And the resonant frequencies are 3564: 3563: 3276: 2744:In dry air at 20 °C, with 1866: 1854: 1843: 1751:{\displaystyle {f(4(L+0.3d))}=v} 1338:{\displaystyle {f(2(L+0.6r))}=v} 1039: 1032: 1003: 996: 967: 960: 931: 924: 268:and the mass per unit length ρ: 142:breaking a wine glass with sound 3134: 3049:. University of New South Wales 2964:. University of New South Wales 2255:are the dimensions of the box. 1555:the Sturm–Liouville formulation 1531:{\displaystyle f={nv \over 4L}} 1112:{\displaystyle f={nv \over 2L}} 584:the Sturm–Liouville formulation 242:{\displaystyle f={nv \over 2L}} 3170:. Amsterdam, Frits Knuf, 1969. 3166:Nederveen, Cornelis Johannes, 3111: 3097:. Springer. pp. 145–149. 3061: 3038: 2996: 2953: 2936: 2714: 2708: 2542:{\displaystyle L_{eq}=L+0.85d} 2495:{\displaystyle L_{eq}=L+0.75d} 2036: 2024: 1823: 1808: 1738: 1735: 1720: 1714: 1686: 1671: 1626: 1611: 1410: 1395: 1325: 1322: 1307: 1301: 1273: 1258: 1195: 1180: 1130:is the length of the tube and 674: 665: 611: 599: 201:wave traveling down the string 13: 1: 3222: 2929: 1783:{\displaystyle {f\lambda }=v} 1489:precise half note frequency. 1370:{\displaystyle {f\lambda }=v} 2502:  for an unflanged neck 526: 72:is a phenomenon in which an 7: 3093:Raichel, Daniel R. (2006). 3018:Kuttruff, Heinrich (2007). 2887: 2868:regularly perform in large 1439:is the radius of the tube, 10: 3611: 3143:"Resonances and Responses" 3021:Acoustics: An Introduction 3003:Horns, Strings and Harmony 2650:d = diameter of sound hole 1993:{\displaystyle k=2\pi f/v} 943:=   880 Hz 905:=   440 Hz 530: 463:Resonance of a tube of air 436: 151: 117:, the length of tube in a 29: 3559: 3511: 3440: 3337: 3295: 3271: 3230: 2549:  for a flanged neck 897:Molecular representation 2950:, Wiley, New York, 1982. 2876:with a 45-second decay. 1878: 439:String resonance (music) 3240:Architectural acoustics 3122:. University of Salford 2924:Reflection phase change 2234:is the speed of sound, 1431:is the speed of sound, 3327:Fletcher–Munson curves 3322:Equal-loudness contour 3232:Acoustical engineering 2878:Malmö Academy of Music 2829:In musical composition 2821: 2802: 2735: 2660: 2647:D = diameter of sphere 2632: 2557: 2543: 2496: 2445: 2444:{\displaystyle L_{eq}} 2412: 2309: 2289: 2269: 2221: 2079:loudspeaker enclosures 2073:Closed rectangular box 2052: 1994: 1944: 1831: 1784: 1752: 1696: 1636: 1532: 1418: 1371: 1339: 1283: 1205: 1113: 867: 802: 681: 400: 300: 243: 163: 66: 3463:Hermann von Helmholtz 3361:Fundamental frequency 3265:Sympathetic resonance 3188:Standing Waves Applet 3047:"Helmholtz Resonance" 2848:and decrescendo on a 2819: 2803: 2736: 2659: 2633: 2556: 2544: 2497: 2446: 2413: 2310: 2290: 2270: 2268:{\displaystyle \ell } 2222: 2053: 1995: 1945: 1832: 1785: 1753: 1697: 1637: 1533: 1419: 1372: 1340: 1284: 1206: 1114: 868: 803: 682: 401: 301: 244: 161: 152:Further information: 54:Experiment using two 53: 3155:10.5920/divp.2015.48 2767: 2674: 2567: 2508: 2461: 2425: 2350: 2299: 2279: 2259: 2092: 2018: 1964: 1897: 1795: 1763: 1707: 1653: 1646:Again, when n is 1: 1588: 1499: 1382: 1350: 1294: 1240: 1157: 1080: 894:Wave representation 818: 738: 590: 316: 275: 210: 188:resonant frequencies 102:than its resonance. 88:mechanical resonance 32:Mechanical resonance 3595:Musical instruments 3483:Werner Meyer-Eppler 3393:Missing fundamental 2341:Helmholtz resonance 558:Closed at both ends 186:and so forth, have 3366:Frequency spectrum 2919:Sympathetic string 2844:of a swell shaped 2822: 2798: 2731: 2661: 2628: 2558: 2539: 2492: 2441: 2408: 2305: 2285: 2265: 2217: 2048: 1990: 1940: 1827: 1780: 1748: 1692: 1632: 1528: 1414: 1367: 1335: 1279: 1224:acoustic impedance 1201: 1109: 863: 798: 677: 448:string instruments 396: 296: 239: 164: 70:Acoustic resonance 67: 3577: 3576: 3539:Musical acoustics 3371:harmonic spectrum 3079:10.1121/1.3112687 3031:978-0-203-97089-8 2948:978-0-471-02933-5 2796: 2795: 2729: 2728: 2696: 2626: 2625: 2589: 2406: 2405: 2372: 2308:{\displaystyle n} 2288:{\displaystyle m} 2215: 2203: 2168: 2133: 2109: 1690: 1630: 1526: 1447:Closed at one end 1277: 1199: 1107: 1060:Physics Classroom 1050:Open at both ends 1047: 1046: 858: 835: 760: 653: 624: 513:brass instruments 394: 383: 382: 352: 341: 340: 294: 293: 237: 51: 16:(Redirected from 3602: 3567: 3566: 3468:Carleen Hutchins 3400:Combination tone 3287: 3280: 3260:String vibration 3217: 3210: 3203: 3194: 3193: 3159: 3158: 3147:Divergence Press 3138: 3132: 3131: 3129: 3127: 3115: 3109: 3108: 3104:978-0387-26062-4 3090: 3084: 3083: 3081: 3065: 3059: 3058: 3056: 3054: 3042: 3036: 3035: 3015: 3009: 3007:Arthur H. Benade 3000: 2994: 2983: 2974: 2973: 2971: 2969: 2957: 2951: 2940: 2862:Pauline Oliveros 2807: 2805: 2804: 2799: 2797: 2794: 2793: 2784: 2780: 2760:, this becomes 2740: 2738: 2737: 2732: 2730: 2727: 2726: 2725: 2700: 2699: 2697: 2692: 2684: 2637: 2635: 2634: 2629: 2627: 2624: 2623: 2622: 2613: 2612: 2593: 2592: 2590: 2585: 2577: 2548: 2546: 2545: 2540: 2523: 2522: 2501: 2499: 2498: 2493: 2476: 2475: 2450: 2448: 2447: 2442: 2440: 2439: 2417: 2415: 2414: 2409: 2407: 2404: 2403: 2402: 2390: 2389: 2376: 2375: 2373: 2371: 2360: 2339:is given by the 2314: 2312: 2311: 2306: 2294: 2292: 2291: 2286: 2274: 2272: 2271: 2266: 2226: 2224: 2223: 2218: 2216: 2214: 2213: 2208: 2204: 2202: 2201: 2189: 2179: 2178: 2173: 2169: 2167: 2166: 2154: 2144: 2143: 2138: 2134: 2132: 2131: 2119: 2112: 2110: 2102: 2057: 2055: 2054: 2049: 1999: 1997: 1996: 1991: 1986: 1949: 1947: 1946: 1941: 1930: 1929: 1870: 1858: 1836: 1834: 1833: 1828: 1826: 1789: 1787: 1786: 1781: 1773: 1757: 1755: 1754: 1749: 1741: 1701: 1699: 1698: 1693: 1691: 1689: 1663: 1641: 1639: 1638: 1633: 1631: 1629: 1606: 1598: 1581:is given below: 1573: 1563: 1552: 1537: 1535: 1534: 1529: 1527: 1525: 1517: 1509: 1451:When used in an 1423: 1421: 1420: 1415: 1413: 1376: 1374: 1373: 1368: 1360: 1344: 1342: 1341: 1336: 1328: 1288: 1286: 1285: 1280: 1278: 1276: 1250: 1210: 1208: 1207: 1202: 1200: 1198: 1175: 1167: 1150:is given below: 1118: 1116: 1115: 1110: 1108: 1106: 1098: 1090: 1043: 1036: 1007: 1000: 971: 964: 935: 928: 917:fundamental tone 876: 875: 872: 870: 869: 864: 859: 857: 849: 841: 836: 828: 807: 805: 804: 799: 761: 756: 748: 730: 720: 713: 703: 693: 686: 684: 683: 678: 658: 654: 649: 638: 626: 625: 622: 581: 444:String resonance 405: 403: 402: 397: 395: 393: 385: 384: 381: 377: 365: 364: 358: 353: 351: 343: 342: 333: 332: 326: 305: 303: 302: 297: 295: 286: 285: 248: 246: 245: 240: 238: 236: 228: 220: 203:by the equation 154:Vibrating string 148:Vibrating string 123:basilar membrane 52: 21: 3610: 3609: 3605: 3604: 3603: 3601: 3600: 3599: 3580: 3579: 3578: 3573: 3555: 3507: 3498:D. Van Holliday 3436: 3405:Mersenne's laws 3339:Audio frequency 3333: 3297:Psychoacoustics 3291: 3290: 3283: 3269: 3226: 3221: 3184: 3163: 3162: 3139: 3135: 3125: 3123: 3116: 3112: 3105: 3091: 3087: 3066: 3062: 3052: 3050: 3043: 3039: 3032: 3016: 3012: 3001: 2997: 2991:Lawrence Gwozdz 2984: 2977: 2967: 2965: 2958: 2954: 2941: 2937: 2932: 2890: 2866:Stuart Dempster 2831: 2814: 2789: 2785: 2779: 2768: 2765: 2764: 2721: 2717: 2704: 2698: 2685: 2683: 2675: 2672: 2671: 2618: 2614: 2605: 2601: 2597: 2591: 2578: 2576: 2568: 2565: 2564: 2515: 2511: 2509: 2506: 2505: 2468: 2464: 2462: 2459: 2458: 2432: 2428: 2426: 2423: 2422: 2395: 2391: 2385: 2381: 2380: 2374: 2364: 2359: 2351: 2348: 2347: 2329: 2322: 2300: 2297: 2296: 2280: 2277: 2276: 2260: 2257: 2256: 2253: 2246: 2239: 2209: 2197: 2193: 2188: 2184: 2183: 2174: 2162: 2158: 2153: 2149: 2148: 2139: 2127: 2123: 2118: 2114: 2113: 2111: 2101: 2093: 2090: 2089: 2075: 2019: 2016: 2015: 1982: 1965: 1962: 1961: 1922: 1918: 1898: 1895: 1894: 1881: 1874: 1871: 1862: 1859: 1846: 1804: 1796: 1793: 1792: 1766: 1764: 1761: 1760: 1710: 1708: 1705: 1704: 1667: 1662: 1654: 1651: 1650: 1607: 1599: 1597: 1589: 1586: 1585: 1565: 1558: 1553:in the form of 1547: 1518: 1510: 1508: 1500: 1497: 1496: 1449: 1391: 1383: 1380: 1379: 1353: 1351: 1348: 1347: 1297: 1295: 1292: 1291: 1254: 1249: 1241: 1238: 1237: 1176: 1168: 1166: 1158: 1155: 1154: 1099: 1091: 1089: 1081: 1078: 1077: 1052: 1015:= 1760 Hz 979:= 1320 Hz 850: 842: 840: 827: 819: 816: 815: 749: 747: 739: 736: 735: 722: 715: 705: 695: 688: 639: 637: 633: 621: 617: 591: 588: 587: 582:in the form of 576: 560: 535: 529: 465: 441: 435: 386: 373: 369: 363: 359: 357: 344: 331: 327: 325: 317: 314: 313: 284: 276: 273: 272: 229: 221: 219: 211: 208: 207: 156: 150: 74:acoustic system 41: 39: 28: 23: 22: 15: 12: 11: 5: 3608: 3598: 3597: 3592: 3575: 3574: 3572: 3571: 3560: 3557: 3556: 3554: 3553: 3552: 3551: 3546: 3536: 3531: 3526: 3521: 3515: 3513: 3512:Related topics 3509: 3508: 3506: 3505: 3500: 3495: 3493:Joseph Sauveur 3490: 3485: 3480: 3478:Marin Mersenne 3475: 3470: 3465: 3460: 3455: 3450: 3444: 3442: 3438: 3437: 3435: 3434: 3429: 3428: 3427: 3417: 3412: 3407: 3402: 3397: 3396: 3395: 3390: 3385: 3375: 3374: 3373: 3363: 3358: 3353: 3347: 3345: 3335: 3334: 3332: 3331: 3330: 3329: 3319: 3318: 3317: 3312: 3301: 3299: 3293: 3292: 3289: 3288: 3281: 3273: 3272: 3270: 3268: 3267: 3262: 3257: 3252: 3247: 3242: 3236: 3234: 3228: 3227: 3220: 3219: 3212: 3205: 3197: 3191: 3190: 3183: 3182:External links 3180: 3179: 3178: 3171: 3161: 3160: 3133: 3110: 3103: 3085: 3060: 3037: 3030: 3010: 2995: 2975: 2952: 2934: 2933: 2931: 2928: 2927: 2926: 2921: 2916: 2911: 2906: 2901: 2896: 2889: 2886: 2830: 2827: 2813: 2810: 2809: 2808: 2792: 2788: 2783: 2778: 2775: 2772: 2742: 2741: 2724: 2720: 2716: 2713: 2710: 2707: 2703: 2695: 2691: 2688: 2682: 2679: 2654: 2653: 2652: 2651: 2648: 2639: 2638: 2621: 2617: 2611: 2608: 2604: 2600: 2596: 2588: 2584: 2581: 2575: 2572: 2551: 2550: 2538: 2535: 2532: 2529: 2526: 2521: 2518: 2514: 2503: 2491: 2488: 2485: 2482: 2479: 2474: 2471: 2467: 2453:end correction 2438: 2435: 2431: 2419: 2418: 2401: 2398: 2394: 2388: 2384: 2379: 2370: 2367: 2363: 2358: 2355: 2327: 2321: 2318: 2304: 2284: 2264: 2251: 2244: 2237: 2228: 2227: 2212: 2207: 2200: 2196: 2192: 2187: 2182: 2177: 2172: 2165: 2161: 2157: 2152: 2147: 2142: 2137: 2130: 2126: 2122: 2117: 2108: 2105: 2100: 2097: 2074: 2071: 2059: 2058: 2047: 2044: 2041: 2038: 2035: 2032: 2029: 2026: 2023: 2001: 2000: 1989: 1985: 1981: 1978: 1975: 1972: 1969: 1951: 1950: 1939: 1936: 1933: 1928: 1925: 1921: 1917: 1914: 1911: 1908: 1905: 1902: 1880: 1877: 1876: 1875: 1872: 1865: 1863: 1860: 1853: 1845: 1842: 1838: 1837: 1825: 1822: 1819: 1816: 1813: 1810: 1807: 1803: 1800: 1790: 1779: 1776: 1772: 1769: 1758: 1747: 1744: 1740: 1737: 1734: 1731: 1728: 1725: 1722: 1719: 1716: 1713: 1702: 1688: 1685: 1682: 1679: 1676: 1673: 1670: 1666: 1661: 1658: 1644: 1643: 1628: 1625: 1622: 1619: 1616: 1613: 1610: 1605: 1602: 1596: 1593: 1579:end correction 1539: 1538: 1524: 1521: 1516: 1513: 1507: 1504: 1448: 1445: 1425: 1424: 1412: 1409: 1406: 1403: 1400: 1397: 1394: 1390: 1387: 1377: 1366: 1363: 1359: 1356: 1345: 1334: 1331: 1327: 1324: 1321: 1318: 1315: 1312: 1309: 1306: 1303: 1300: 1289: 1275: 1272: 1269: 1266: 1263: 1260: 1257: 1253: 1248: 1245: 1212: 1211: 1197: 1194: 1191: 1188: 1185: 1182: 1179: 1174: 1171: 1165: 1162: 1148:end correction 1143:must be zero. 1136:speed of sound 1120: 1119: 1105: 1102: 1097: 1094: 1088: 1085: 1051: 1048: 1045: 1044: 1037: 1030: 1027: 1024: 1021: 1016: 1009: 1008: 1001: 994: 991: 988: 985: 980: 973: 972: 965: 958: 955: 952: 949: 944: 937: 936: 929: 922: 919: 914: 911: 906: 899: 898: 895: 892: 889: 886: 883: 880: 874: 873: 862: 856: 853: 848: 845: 839: 834: 831: 826: 823: 809: 808: 797: 794: 791: 788: 785: 782: 779: 776: 773: 770: 767: 764: 759: 755: 752: 746: 743: 676: 673: 670: 667: 664: 661: 657: 652: 648: 645: 642: 636: 632: 629: 620: 616: 613: 610: 607: 604: 601: 598: 595: 559: 556: 528: 525: 464: 461: 437:Main article: 434: 431: 407: 406: 392: 389: 380: 376: 372: 368: 362: 356: 350: 347: 339: 336: 330: 324: 321: 307: 306: 292: 289: 283: 280: 250: 249: 235: 232: 227: 224: 218: 215: 149: 146: 26: 9: 6: 4: 3: 2: 3607: 3596: 3593: 3591: 3588: 3587: 3585: 3570: 3562: 3561: 3558: 3550: 3547: 3545: 3542: 3541: 3540: 3537: 3535: 3532: 3530: 3527: 3525: 3522: 3520: 3517: 3516: 3514: 3510: 3504: 3501: 3499: 3496: 3494: 3491: 3489: 3488:Lord Rayleigh 3486: 3484: 3481: 3479: 3476: 3474: 3471: 3469: 3466: 3464: 3461: 3459: 3458:Ernst Chladni 3456: 3454: 3451: 3449: 3446: 3445: 3443: 3439: 3433: 3430: 3426: 3423: 3422: 3421: 3420:Standing wave 3418: 3416: 3413: 3411: 3408: 3406: 3403: 3401: 3398: 3394: 3391: 3389: 3388:Inharmonicity 3386: 3384: 3381: 3380: 3379: 3376: 3372: 3369: 3368: 3367: 3364: 3362: 3359: 3357: 3354: 3352: 3349: 3348: 3346: 3344: 3340: 3336: 3328: 3325: 3324: 3323: 3320: 3316: 3313: 3311: 3308: 3307: 3306: 3303: 3302: 3300: 3298: 3294: 3286: 3282: 3279: 3275: 3274: 3266: 3263: 3261: 3258: 3256: 3255:Soundproofing 3253: 3251: 3250:Reverberation 3248: 3246: 3243: 3241: 3238: 3237: 3235: 3233: 3229: 3225: 3218: 3213: 3211: 3206: 3204: 3199: 3198: 3195: 3189: 3186: 3185: 3176: 3172: 3169: 3165: 3164: 3156: 3152: 3148: 3144: 3137: 3121: 3114: 3106: 3100: 3096: 3089: 3080: 3075: 3071: 3064: 3048: 3041: 3033: 3027: 3023: 3022: 3014: 3008: 3004: 2999: 2992: 2988: 2982: 2980: 2963: 2956: 2949: 2945: 2939: 2935: 2925: 2922: 2920: 2917: 2915: 2914:Standing wave 2912: 2910: 2909:Reverberation 2907: 2905: 2902: 2900: 2897: 2895: 2892: 2891: 2885: 2883: 2879: 2875: 2871: 2867: 2863: 2859: 2855: 2851: 2847: 2843: 2840: 2836: 2826: 2818: 2790: 2786: 2781: 2776: 2773: 2770: 2763: 2762: 2761: 2759: 2755: 2751: 2747: 2722: 2718: 2711: 2705: 2701: 2693: 2689: 2686: 2680: 2677: 2670: 2669: 2668: 2666: 2658: 2649: 2646: 2645: 2644: 2643: 2642: 2619: 2615: 2609: 2606: 2602: 2598: 2594: 2586: 2582: 2579: 2573: 2570: 2563: 2562: 2561: 2555: 2536: 2533: 2530: 2527: 2524: 2519: 2516: 2512: 2504: 2489: 2486: 2483: 2480: 2477: 2472: 2469: 2465: 2457: 2456: 2455: 2454: 2436: 2433: 2429: 2399: 2396: 2392: 2386: 2382: 2377: 2368: 2365: 2361: 2356: 2353: 2346: 2345: 2344: 2342: 2338: 2334: 2330: 2317: 2302: 2282: 2262: 2254: 2247: 2240: 2233: 2210: 2205: 2198: 2194: 2190: 2185: 2180: 2175: 2170: 2163: 2159: 2155: 2150: 2145: 2140: 2135: 2128: 2124: 2120: 2115: 2106: 2103: 2098: 2095: 2088: 2087: 2086: 2084: 2080: 2070: 2068: 2065: +  2064: 2045: 2042: 2039: 2033: 2030: 2027: 2021: 2014: 2013: 2012: 2010: 2006: 1987: 1983: 1979: 1976: 1973: 1970: 1967: 1960: 1959: 1958: 1956: 1937: 1934: 1931: 1926: 1923: 1919: 1915: 1912: 1909: 1906: 1903: 1900: 1893: 1892: 1891: 1888: 1886: 1869: 1864: 1857: 1852: 1851: 1850: 1844:Pressure wave 1841: 1820: 1817: 1814: 1811: 1805: 1801: 1798: 1791: 1777: 1774: 1770: 1767: 1759: 1745: 1742: 1732: 1729: 1726: 1723: 1717: 1711: 1703: 1683: 1680: 1677: 1674: 1668: 1664: 1659: 1656: 1649: 1648: 1647: 1623: 1620: 1617: 1614: 1608: 1603: 1600: 1594: 1591: 1584: 1583: 1582: 1580: 1575: 1572: 1568: 1561: 1556: 1550: 1545: 1522: 1519: 1514: 1511: 1505: 1502: 1495: 1494: 1493: 1490: 1487: 1483: 1478: 1474: 1469: 1467: 1463: 1459: 1454: 1444: 1442: 1438: 1434: 1430: 1407: 1404: 1401: 1398: 1392: 1388: 1385: 1378: 1364: 1361: 1357: 1354: 1346: 1332: 1329: 1319: 1316: 1313: 1310: 1304: 1298: 1290: 1270: 1267: 1264: 1261: 1255: 1251: 1246: 1243: 1236: 1235: 1234: 1232: 1227: 1225: 1220: 1217: 1192: 1189: 1186: 1183: 1177: 1172: 1169: 1163: 1160: 1153: 1152: 1151: 1149: 1144: 1142: 1137: 1133: 1129: 1125: 1103: 1100: 1095: 1092: 1086: 1083: 1076: 1075: 1074: 1071: 1068: 1063: 1061: 1056: 1042: 1038: 1035: 1031: 1029:4th harmonic 1028: 1026:3rd overtone 1025: 1022: 1020: 1017: 1014: 1011: 1010: 1006: 1002: 999: 995: 993:3rd harmonic 992: 990:2nd overtone 989: 986: 984: 981: 978: 975: 974: 970: 966: 963: 959: 957:2nd harmonic 956: 954:1st overtone 953: 950: 948: 945: 942: 939: 938: 934: 930: 927: 923: 921:1st harmonic 920: 918: 915: 912: 910: 907: 904: 901: 900: 896: 893: 890: 887: 884: 881: 878: 877: 860: 854: 851: 846: 843: 837: 832: 829: 824: 821: 814: 813: 812: 795: 792: 789: 786: 783: 780: 777: 774: 771: 768: 765: 762: 757: 753: 750: 744: 741: 734: 733: 732: 729: 725: 718: 712: 708: 702: 698: 691: 671: 668: 662: 659: 655: 650: 646: 643: 640: 634: 630: 627: 618: 614: 608: 605: 602: 596: 585: 579: 574: 570: 566: 555: 553: 549: 543: 541: 534: 524: 522: 518: 514: 510: 506: 502: 498: 494: 490: 486: 482: 478: 474: 470: 460: 457: 453: 449: 445: 440: 430: 426: 424: 421:is the total 420: 416: 412: 390: 387: 378: 374: 370: 366: 360: 354: 348: 345: 337: 334: 328: 322: 319: 312: 311: 310: 290: 287: 281: 278: 271: 270: 269: 267: 263: 260:= 1, 2, 3...( 259: 255: 233: 230: 225: 222: 216: 213: 206: 205: 204: 202: 198: 194: 189: 185: 181: 177: 173: 169: 160: 155: 145: 143: 138: 136: 132: 128: 124: 120: 116: 112: 108: 103: 100: 95: 93: 89: 84: 82: 80: 75: 71: 64: 60: 57: 37: 33: 19: 3503:Thomas Young 3453:Jens Blauert 3441:Acousticians 3414: 3174: 3167: 3146: 3136: 3124:. Retrieved 3113: 3094: 3088: 3069: 3063: 3051:. Retrieved 3045:Wolfe, Joe. 3040: 3020: 3013: 3002: 2998: 2987:Das Saxophon 2986: 2985:Kool, Jaap. 2966:. Retrieved 2960:Wolfe, Joe. 2955: 2938: 2899:Music theory 2881: 2857: 2854:James Tenney 2835:Alvin Lucier 2832: 2823: 2753: 2749: 2745: 2743: 2664: 2662: 2640: 2559: 2420: 2336: 2332: 2325: 2323: 2249: 2242: 2235: 2231: 2229: 2076: 2066: 2062: 2060: 2008: 2004: 2002: 1952: 1889: 1882: 1847: 1839: 1645: 1576: 1570: 1566: 1559: 1548: 1543: 1540: 1491: 1470: 1450: 1440: 1436: 1432: 1428: 1426: 1230: 1228: 1221: 1215: 1213: 1145: 1140: 1131: 1127: 1123: 1121: 1072: 1064: 1057: 1053: 1023:4th partial 1018: 1012: 987:3rd partial 982: 976: 951:2nd partial 946: 940: 913:1st partial 908: 902: 810: 727: 723: 716: 710: 706: 700: 696: 689: 577: 572: 568: 561: 544: 536: 488: 484: 480: 472: 468: 466: 442: 427: 418: 410: 408: 308: 265: 257: 253: 251: 196: 165: 139: 104: 96: 85: 77: 69: 68: 61:at the same 56:tuning forks 3473:Franz Melde 3448:John Backus 3432:Subharmonic 3285:Spectrogram 2882:Terpsichord 2870:reverberant 2752:in metres, 2335:and length 1473:overblowing 1067:overblowing 540:Rubens Tube 521:false tones 517:pedal tones 473:cylindrical 452:fundamental 193:fundamental 125:within the 107:instruments 81:frequencies 59:oscillating 18:Closed tube 3584:Categories 3534:Ultrasound 3524:Infrasound 3310:Bark scale 3126:17 January 2930:References 2839:inharmonic 2083:room modes 1955:wavenumber 1953:where the 879:Frequency 531:See also: 501:saxophones 446:occurs on 135:hair cells 111:resonators 3590:Acoustics 3415:Resonance 3315:Mel scale 3245:Monochord 3224:Acoustics 3053:1 January 2968:1 January 2904:Resonance 2846:crescendo 2694:π 2587:π 2369:π 2263:ℓ 2121:ℓ 2046:π 2040:≈ 1977:π 1932:⁡ 1924:− 1916:− 1913:π 1799:λ 1771:λ 1386:λ 1358:λ 833:λ 742:λ 669:ω 663:⁡ 651:λ 644:π 631:⁡ 594:Δ 527:Cylinders 497:clarinets 487:while an 338:ρ 291:ρ 131:inner ear 99:harmonics 92:acoustics 79:resonance 63:frequency 36:Resonance 3569:Category 3410:Overtone 3378:Harmonic 2888:See also 2842:partials 2343:formula 1560:∂(Δp)/∂x 1549:∂(Δp)/∂x 1486:recorder 1462:antinode 1229:So when 717:∂(Δp)/∂x 690:∂(Δp)/∂x 578:∂(Δp)/∂x 565:antinode 552:antinode 509:bassoons 456:overtone 262:Harmonic 3356:Formant 2894:Harmony 1885:frustum 1134:is the 891:Name 3 888:Name 2 885:Name 1 481:stopped 469:conical 415:tension 413:is the 184:violins 176:guitars 133:allows 129:of the 127:cochlea 3549:Violin 3383:Series 3101:  3028:  2946:  2874:reverb 2850:tamtam 2641:where 2421:where 2295:, and 2230:where 1477:octave 1427:where 1233:is 1: 1214:where 1122:where 1013:4 · f 977:3 · f 941:2 · f 903:1 · f 882:Order 563:(node- 507:, and 493:flutes 485:closed 409:where 252:where 180:pianos 115:violin 3544:Piano 3529:Sound 3343:pitch 3305:Pitch 3005:, by 2758:hertz 1957:k is 1879:Cones 1453:organ 1019:n = 4 983:n = 3 947:n = 2 909:n = 1 505:oboes 475:(see 199:of a 172:harps 168:lutes 119:flute 3519:Echo 3425:Node 3351:Beat 3341:and 3128:2019 3099:ISBN 3055:2015 3026:ISBN 2970:2015 2944:ISBN 2864:and 2777:72.6 2748:and 2712:0.85 2534:0.85 2487:0.75 2248:and 2241:and 2003:and 1458:node 704:and 548:node 519:and 489:open 477:bore 423:mass 109:use 3151:doi 3074:doi 2856:'s 2756:in 1920:tan 1818:0.3 1730:0.3 1681:0.3 1621:0.3 1564:at 1562:= 0 1551:= 0 1482:Phi 1471:By 1466:Phi 1405:0.6 1317:0.6 1268:0.6 1190:0.6 1065:By 721:at 719:= 0 694:at 692:= 0 660:cos 628:cos 623:max 580:= 0 483:or 471:or 454:or 83:). 3586:: 3145:. 2978:^ 2860:. 2275:, 1569:= 726:= 709:= 699:= 542:. 503:, 425:. 182:, 178:, 174:, 170:, 3216:e 3209:t 3202:v 3157:. 3153:: 3130:. 3107:. 3082:. 3076:: 3057:. 3034:. 2972:. 2791:3 2787:D 2782:d 2774:= 2771:f 2754:f 2750:D 2746:d 2723:3 2719:D 2715:) 2709:( 2706:8 2702:3 2690:d 2687:v 2681:= 2678:f 2665:L 2620:3 2616:D 2610:q 2607:e 2603:L 2599:8 2595:3 2583:d 2580:v 2574:= 2571:f 2537:d 2531:+ 2528:L 2525:= 2520:q 2517:e 2513:L 2490:d 2484:+ 2481:L 2478:= 2473:q 2470:e 2466:L 2437:q 2434:e 2430:L 2400:q 2397:e 2393:L 2387:0 2383:V 2378:A 2366:2 2362:v 2357:= 2354:f 2337:L 2333:A 2328:0 2326:V 2303:n 2283:m 2252:z 2250:L 2245:y 2243:L 2238:x 2236:L 2232:v 2211:2 2206:) 2199:z 2195:L 2191:n 2186:( 2181:+ 2176:2 2171:) 2164:y 2160:L 2156:m 2151:( 2146:+ 2141:2 2136:) 2129:x 2125:L 2116:( 2107:2 2104:v 2099:= 2096:f 2067:x 2063:L 2043:n 2037:) 2034:x 2031:+ 2028:L 2025:( 2022:k 2009:x 2005:x 1988:v 1984:/ 1980:f 1974:2 1971:= 1968:k 1938:x 1935:k 1927:1 1910:n 1907:= 1904:L 1901:k 1873:2 1861:1 1824:) 1821:d 1815:+ 1812:L 1809:( 1806:4 1802:= 1778:v 1775:= 1768:f 1746:v 1743:= 1739:) 1736:) 1733:d 1727:+ 1724:L 1721:( 1718:4 1715:( 1712:f 1687:) 1684:d 1678:+ 1675:L 1672:( 1669:4 1665:v 1660:= 1657:f 1642:. 1627:) 1624:d 1618:+ 1615:L 1612:( 1609:4 1604:v 1601:n 1595:= 1592:f 1571:L 1567:x 1544:p 1523:L 1520:4 1515:v 1512:n 1506:= 1503:f 1441:f 1437:r 1433:L 1429:v 1411:) 1408:r 1402:+ 1399:L 1396:( 1393:2 1389:= 1365:v 1362:= 1355:f 1333:v 1330:= 1326:) 1323:) 1320:r 1314:+ 1311:L 1308:( 1305:2 1302:( 1299:f 1274:) 1271:r 1265:+ 1262:L 1259:( 1256:2 1252:v 1247:= 1244:f 1231:n 1216:r 1196:) 1193:r 1187:+ 1184:L 1181:( 1178:2 1173:v 1170:n 1164:= 1161:f 1141:p 1139:Δ 1132:v 1128:L 1124:n 1104:L 1101:2 1096:v 1093:n 1087:= 1084:f 861:. 855:L 852:2 847:v 844:n 838:= 830:v 825:= 822:f 796:. 793:. 790:. 787:, 784:3 781:, 778:2 775:, 772:1 769:= 766:n 763:; 758:n 754:L 751:2 745:= 728:L 724:x 711:L 707:x 701:0 697:x 675:) 672:t 666:( 656:) 647:x 641:2 635:( 619:p 615:= 612:) 609:t 606:, 603:x 600:( 597:p 573:p 569:p 419:m 411:T 391:L 388:2 379:L 375:/ 371:m 367:T 361:n 355:= 349:L 346:2 335:T 329:n 323:= 320:f 288:T 282:= 279:v 266:T 258:n 254:L 234:L 231:2 226:v 223:n 217:= 214:f 197:v 38:. 20:)

Index

Closed tube
Mechanical resonance
Resonance
tuning forks
oscillating
frequency
acoustic system
resonance
mechanical resonance
acoustics
harmonics
instruments
resonators
violin
flute
basilar membrane
cochlea
inner ear
hair cells
breaking a wine glass with sound
Vibrating string

lutes
harps
guitars
pianos
violins
resonant frequencies
fundamental
wave traveling down the string

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.