Knowledge

Circulating tumor DNA

Source 📝

318:(BEAMing) is a technique that builds upon Droplet Digital PCR in order to identify mutations in ctDNA using flow cytometry. After ctDNA is extracted from blood, PCR is performed with primers designed to target the regions of interest. These primers also contain specific DNA sequences, or tags. The amplified DNA is mixed with streptavidin-coated magnetic beads and emulsified into droplets. Biotinylated primers designed to bind to the tags are used to amplify the DNA. Biotinylation allows the amplified DNA to bind to the magnetic beads, which are coated with streptavidin. After the PCR is complete, the DNA-bound beads are separated using a magnet. The DNA on the beads are then denatured and allowed to hybridize with fluorescent oligonucleotides specific to each DNA template. The resulting bead-DNA complexes are then analyzed using flow cytometry. This technique is able to capture allele and mutation frequencies due to coupling with ddPCR. However, unlike with ddPCR, a larger number of DNA sequences can be interrogated due to the flexibility of using fluorescently bound probes. Another advantage of this system is that the DNA isolated can also be used for downstream sequencing. Sensitivity is 1.6 in 10 to 4.3 in 10. 530:
separation of cells within the tumor. For example, since a biopsy only samples a small part of the tumor, clones that resides in a different location may go unnoticed. This can mislead research that focuses on studying the role of tumor heterogeneity in cancer progression and relapse. The use of ctDNA in research can alleviate these concerns because it could provide a more representative 'screenshot' of the genetic diversity of cancer at both primary and metastatic sites. For example, ctDNA has been shown to be useful in studying the clonal evolution of a patient's cancer before and after treatment regimens. Early detection of cancer is still challenging but recent progress in the analysis of the epigenetic features of cfDNA, or the fragmentation pattern unlock improve the sensitivity of liquid biopsy. Furthermore, ctDNA analysis is an emerging tool for understanding the clonal composition of metastatic tumors, detecting different mutations on a genomic scale, studying subclonal diversity that affects the prognosis of the disease as different resistant phenotypes can be found and the appearance of new mechanisms of genomic and transcriptomic resistance to treatment.
307:. Droplet Digital PCR utilizes a droplet generator to partition single pieces of DNA into droplets using an oil/water emulsion. Then individual polymerase chain reactions occur in each droplet using selected primers against regions of ctDNA and proceeds to endpoint. The presence of the sequences of interest is measured by fluorescent probes, which bind to the amplified region. ddPCR allows for highly quantitative assessment of allele and mutant frequencies in ctDNA but is limited by the number of fluorescent probes that can be used in one assay (up to 5). The sensitivity of the assay can vary depending on the amount of DNA analyzed and is around 1 in 10,000. Specificity should be augmented through the use of either minor groove binding (MGB) modified probes or of an alternative such as locked nucleic acids (LNAs). 362:. Safe-Seq decreases the error rate of massively parallel sequencing in order to increase the sensitivity to rare mutants. It achieves this by addition of a unique identifier (UID) sequence to each DNA template. The DNA is then amplified using the added UIDs and sequenced. All DNA molecules with the same UID (a UID family) should have the same reported DNA sequence since they were amplified from one molecule. However, mutations can be introduced through amplification, or incorrect base assignments may be called in the sequencing and analysis steps. The presence of the UID allows these methodology errors to be separated from true mutations of the ctDNA. A mutation is considered a ‘supermutant’ if 95% of the sequenced reads are in agreement. The sensitivity of this approach is 9 in 1 million. 504:(MRD), and thus the possibility of tumor recurrence, in cases where bulk tumors are absent by conventional imaging methods. A comparison of MRD detection by CT imaging compared to ctDNA has been previously done in individuals with stage II colon cancer; in this study, researchers were able to detect ctDNA in individuals who showed no sign of clinical malignancy by a CT scan, suggesting that ctDNA detection has greater sensitivity to assess MRD. However, the authors acknowledge that ctDNA analysis is not without limitations; plasma samples collected post-operatively were only able to predict recurrence at 36 months in 48% of cases. Subsequently, ctDNA assays have been developed for both 337:. This technique uses biotinylated oligonucleotide selector probes to target sequences of DNA relevant to ctDNA detection. Publicly available cancer databases were used to construct a library of probes against recurrent mutations in cancer by calculating their recurrence index. The protocol was optimized for the low DNA levels observed in ctDNA collection. Then the isolated DNA undergoes deep sequencing for increased sensitivity. This technique allows for the interrogation of hundreds of DNA regions. The ctDNA detection sensitivity of CAPP-Seq is reported to be 2.5 molecules in 1,000,000. 374:
strand with an α tag on the 5’ end and a β tag on the 3’ end and the other strand with a β tag on the 5’ end and an α tag on the 3’ end. These DNA fragments are then amplified with primers against the invariant sequences of the tags. The amplified DNA is sequenced and analyzed. DNA with the duplex adaptors are compared and mutations are only accepted if there is a consensus between both strands. This method takes into account both errors from sequencing and errors from early stage PCR amplification. The sensitivity of the approach to discovering mutants is 1 in 10^7.
539:
validation must be established before ctDNA analysis can become a routine clinical assay. Furthermore, creation of a panel of ‘standard’ tumor-associated biomarkers may be necessary given the resolution of current ctDNA sequencing and detection methods. Sequencing tumor-specific aberrations from plasma samples may also help exclude contaminating cfDNA from analysis; elevated levels of cfDNA from normal cells may be attributed to non-cancer related causes. These sequencing techniques can also determine the clonal evolution of cancer,
287:. This is especially important when analyzing ctDNA not only because there are relatively low levels of DNA circulating in the bloodstream, but also because ctDNA makes up a small proportion of the total cell-free DNA extracted. Therefore, amplification of regions of interest can drastically improve sensitivity of ctDNA detection. However, amplification through PCR can introduce errors given the inherent error rate of DNA polymerases. Errors introduced during sequencing can also decrease the sensitivity of detecting ctDNA mutations. 272:
analysis of ctDNA to each patient is also possible by combining liquid biopsies with standard primary tissue biopsies. Whole genome or whole exome sequencing of the primary tumor biopsy allows for discovery of genetic mutations specific to a patient's tumor, and can be used for subsequent targeted sequencing of the patient's ctDNA. The highest sensitivity of ctDNA detection is accomplished through targeted sequencing of specific
193:. Limiting the sequencing to only the whole exome instead can decrease expense and increase speed, but at the cost of losing information about mutations in the non-coding regulatory regions of DNA. While simply looking at DNA polymorphisms through sequencing does not differentiate DNA from tumor or normal cells, this problem can be resolved by comparing against a control sample of normal DNA (for example, DNA obtained through a 263:. Bisulfite treatment chemically converts unmethylated cytosines into a uracil while leaving methylated cytosines unmodified. DNA is subsequently sequenced, and any alterations to the DNA methylation pattern can be identified. DNA hydroxymethylation is a similarly associated mark that has been shown to be a predictive marker of healthy versus diseased conditions in cfDNA, including cancer.) 186:
untargeted methods may be necessary in certain applications, it is more expensive and has lower resolution. This makes it difficult to detect rare mutations, or in situations where low ctDNA levels are present (such as minimal residual disease). Furthermore, there can be problems distinguishing between DNA from tumor cells and DNA from normal cells using a whole genome approach.
107:
infiltration to tumor sites, which reduces effective clearance of ctDNA from the bloodstream. Comparison of mutations in ctDNA and DNA extracted from primary tumors of the same patients revealed the presence of identical cancer-relevant genetic changes. This led to the possibility of using ctDNA for earlier cancer detection and treatment follow up.
276:(SNPs). Commonly mutated genes, such as oncogenes, which typically have hotspot mutations, are good candidates for targeted sequencing approaches. Conversely, most tumor suppressor genes have a wide array of possible loss of function mutations throughout the gene, and as such are not suitable for targeted sequencing. 429:
elementary to identify clinically relevant differences in the cancer phenotype and to see how therapy is affecting patients. Furthermore, the relative homogeneity in driver gene alterations among metastases justifies that genomic and functional alterations in prostate cancer are shared between ctDNA and tissue.
168:
this can decrease the sensitivity of ctDNA detection. Therefore, the majority of studies use plasma for ctDNA isolation. Plasma is then processed again by centrifugation to remove residual intact blood cells. The supernatant is used for DNA extraction, which can be performed using commercially available kits.
20: 237:
After the whole genome is sequenced using a high throughput sequencing method, such as Illumina HiSeq, personalized analysis of rearranged ends (PARE) is applied to the data to analyze chromosomal rearrangements and translocations. This technique was originally designed to analyze solid tumor DNA but
345:
Tagged amplicon deep sequencing (TAM-Seq) allows targeted sequencing of entire genes to detect mutations in ctDNA. First a general amplification step is performed using primers that span the entire gene of interest in 150-200bp sections. Then, a microfluidics system is used to attached adaptors with
200:
Whole genome sequencing enables to recover the structural properties of cfDNA, the size of fragments and their fragmentation patterns. These unique patterns can be an important source of information to improve the detection of ctDNA or localize the tissue of origin of these fragments. Size-selection
176:
The analysis of ctDNA after extraction requires the use of various amplification and sequencing methods. These methods can be separated into two main groups based on whether the goal is to interrogate all genes in an untargeted approach, or if the goal is to monitor specific genes and mutations in a
373:
is an improvement on the single UIDs added in the Safe-Seq technique. In duplex sequencing, randomized double-stranded DNA act as unique tags and are attached to an invariant spacer. Tags are attached to both ends of a DNA fragment (α and β tags), which results in two unique templates for PCR - one
167:
fractions of blood can be separated through a centrifugation step. ctDNA or cfDNA can be subsequently extracted from these fractions. Although serum tends to have greater levels of cfDNA, this is primarily attributed to DNA from lymphocytes. High levels of contaminating cfDNA is sub-optimal because
432:
This makes ctDNA a powerful emerging tool for the detection of genetic mutations at the genomic scale in patients suffering from metastatic cancer to observe the clinical relevance of the clonal composition of these tumors to understand better cancer control. This subclonal reconstruction based on
428:
patterns (taking into account nucleosomes present in transcription start sites (TSSs) and AR-binding sites (ARBs). In this way, the genomic and transcriptomic evolution of ctDNA can be observed, performed in living patients who are developing resistance to treatment, therefore, ctDNA sequencing is
185:
A whole genome or whole exome sequencing approaches may be necessary to discover new mutations in tumor DNA while monitoring disease burden or tracking drug resistance. Untargeted approaches are also useful in research to observe tumor heterogeneity or to discover new drug targets. However, while
520:
The question of whether measurement of the amount or qualities of ctDNA could be used to determine outcomes in people with cancer has been a subject of study. As of 2015 this was very uncertain. Although some studies have shown a trend of higher ctDNA levels in people with high stage metastatic
271:
In a targeted approach, sequencing of ctDNA can be directed towards a genetic panel constructed based on mutational hotspots for the cancer of interest. This is especially important for informing treatment in situations where mutations are identified in druggable targets. Personalizing targeted
529:
The emergence of drug-resistant tumors due to intra- and inter-tumoral heterogeneity an issue in treatment efficacy. A minor genetic clone within the tumor can expand after treatment if it carries a drug-resistant mutation. Initial biopsies can miss these clones due to low frequency or spatial
120:
When blood is collected in EDTA tubes and stored, the white blood cells begin to lyse and release genomic wild type DNA in to the sample in quantities typically many fold higher than the ctDNA is present in. This makes detection of mutations or other ctDNA biomarkers more difficult. The use of
538:
Implementation of ctDNA in clinical practice is largely hindered by the lack of standardized methods for ctDNA processing and analysis. Standardization of methods for sample collection (including time of collection), downstream processing (DNA extraction and amplification), quantification and
106:
are responsible for clearance of apoptotic or necrotic cellular debris, which includes cfDNA. ctDNA in healthy patients is only present at low levels but higher levels of ctDNA in cancer patients can be detected with increasing tumor sizes. This possibly occurs due to inefficient immune cell
73:
Recent studies have laid the foundation for inferring gene expression from cfDNA (and ctDNA), with EPIC-seq emerging as a notable advancement. This method has substantially raised the bar for the noninvasive inference of expression levels of individual genes, thereby augmenting the assay's
382:
Integrated digital error suppression (iDES) improves CAPP-Seq analysis of ctDNA in order to decrease error and therefore increase sensitivity of detection. Reported in 2016, iDES combines CAPP-Seq with duplex barcoding sequencing technology and with a computational algorithm that removes
2345:
Forshew T, Murtaza M, Parkinson C, Gale D, Tsui DW, Kaper F, Dawson SJ, Piskorz AM, Jimenez-Linan M, Bentley D, Hadfield J, May AP, Caldas C, Brenton JD, Rosenfeld N (May 2012). "Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA".
346:
a unique identifier to each amplicon to further amplify the DNA in parallel singleplex reactions. This technique was shown to successfully identify mutations scattered in the TP53 tumor suppressor gene in advanced ovarian cancer patients. The sensitivity of this technique is 1 in 50.
383:
stereotypical errors associated with the CAPP-Seq hybridization step. The method also integrates duplex sequencing where possible, and includes methods for more efficient duplex recovery from cell free DNA. The sensitivity of this improved version of CAPP-Seq is 4 in 100,000 copies.
433:
ctDNA thanks to Whole-genome sequencing poses a unique set of challenges and opportunities for scientific research in oncology. Furthermore, serial ctDNA reveals treatment-driven selection for androgen receptor augmentation because it increases the dimensionality of the data.
2613:
Fitzgerald, Sandra; Blenkiron, Cherie; Stephens, Rosalie; Mathy, Jon A.; Somers-Edgar, Tiffany; Rolfe, Gill; Martin, Richard; Jackson, Christopher; Eccles, Michael; Robb, Tamsin; Rodger, Euan; Lawrence, Ben; Guilford, Parry; Lasham, Annette; Print, Cristin G. (2023).
2502:
Herberts, Cameron; Annala, Matti; Sipola, Joonatan; Ng, Sarah W. S.; Chen, Xinyi E.; Nurminen, Anssi; Korhonen, Olga V.; Munzur, Aslı D.; Beja, Kevin; Schönlau, Elena; Bernales, Cecily Q.; Ritch, Elie; Bacon, Jack V. W.; Lack, Nathan A.; Nykter, Matti (August 2022).
2771:
Murtaza M, Dawson SJ, Pogrebniak K, Rueda OM, Provenzano E, Grant J, Chin SF, Tsui DW, Marass F, Gale D, Ali HR, Shah P, Contente-Cuomo T, Farahani H, Shumansky K, Kingsbury Z, Humphray S, Bentley D, Shah SP, Wallis M, Rosenfeld N, Caldas C (November 2015).
93:
from dying cells, or active release from viable tumor cells. Studies in both human (healthy and cancer patients) and xenografted mice show that the size of fragmented cfDNA is predominantly 166bp long, which corresponds to the length of DNA wrapped around a
1071:
Heitzer E, Auer M, Hoffmann EM, Pichler M, Gasch C, Ulz P, Lax S, Waldispuehl-Geigl J, Mauermann O, Mohan S, Pristauz G, Lackner C, Höfler G, Eisner F, Petru E, Sill H, Samonigg H, Pantel K, Riethdorf S, Bauernhofer T, Geigl JB, Speicher MR (July 2013).
1662:
Vallée A, Marcq M, Bizieux A, Kouri CE, Lacroix H, Bennouna J, Douillard JY, Denis MG (November 2013). "Plasma is a better source of tumor-derived circulating cell-free DNA than serum for the detection of EGFR alterations in lung tumor patients".
453:
One of the challenges in using ctDNA as a cancer biomarker is whether ctDNA can be distinguished with cfDNA from normal cells. cfDNA is released by non-malignant cells during normal cellular turnover, but also during procedures such as
197:.) Importantly, whole genome and whole exome sequencing are useful for initial mutation discovery. This provides information for the use of more sensitive targeted techniques, which can then be used for disease monitoring purposes. 229:. Copy number variations are common in cancers and describe situations where loss of heterozygosity of a gene may lead to decreased function due to lower expression, or duplication of a gene, which leads to overexpression. 479:
The clinical utility of ctDNA for the detection of primary disease is in part limited by the sensitivity of current technology to detect small tumors with low levels of ctDNA present and a priori unknown somatic mutations.
250:
marking is essential for normal gene expression and cell function and aberrant alterations in epigenetic patterns is a hallmark of cancer. A normal epigenetic status is maintained in a cell at least in part through
1399:
Vasioukhin V, Anker P, Maurice P, Lyautey J, Lederrey C, Stroun M (April 1994). "Point mutations of the N-ras gene in the blood plasma DNA of patients with myelodysplastic syndrome or acute myelogenous leukaemia".
142:
Perform a double centrifugation step (centrifuge the blood to extract plasma, then repeat on the plasma to remove from debris in the bottom of the tube) to remove more cellular debris prior to DNA extraction.
154:
The main appeal of ctDNA analysis is that it is extracted in a non-invasive manner through blood collection. Acquisition of cfDNA or ctDNA typically requires collection of approximately 3mL of blood into
125:
mutations in matched samples collected in both EDTA K3 and Streck BCT tubes. The advantages of cell stabilisation tubes can be realised in situation where blood cannot be processed to plasma immediately.
2566:
Zou, Donghui; Day, Robert; Cocadiz, Judy A; Parackal, Sarah; Mitchell, Wilson; Black, Michael A; Lawrence, Ben; Fitzgerald, Sandra; Print, Cristin; Jackson, Christopher; Guilford, Parry (2020-11-13).
819:
Akca H, Demiray A, Yaren A, Bir F, Koseler A, Iwakawa R, Bagci G, Yokota J (March 2013). "Utility of serum DNA and pyrosequencing for the detection of EGFR mutations in non-small cell lung cancer".
121:
commercially available cell stabilisation tubes can prevent or delay the lysis of white cells thereby reducing the dilution effect of the ctDNA. Sherwood et al. demonstrated superior detection of
521:
cancer, ctDNA burden does not always correlate with traditional cancer staging. As of 2013 it appeared unlikely that ctDNA would be of clinical utility as a sole predictor of prognosis.
2047:
Song CX, Yin S, Ma L, Wheeler A, Chen Y, Zhang Y, Liu B, Xiong J, Zhang W, Hu J, Zhou Z, Dong B, Tian Z, Jeffrey SS, Chua MS, So S, Li W, Wei Y, Diao J, Xie D, Quake SR (October 2017).
1698:
Lee TH, Montalvo L, Chrebtow V, Busch MP (February 2001). "Quantitation of genomic DNA in plasma and serum samples: higher concentrations of genomic DNA found in serum than in plasma".
225:
where a dye is used to stain chromosomal bands in order to visualize the chromosomes, digital karyotyping uses DNA sequences of loci throughout the genome in order to calculate
102:, suggesting that apoptosis may be the primary method of ctDNA release. The fragmentation of cfDNA is altered in the plasma of cancer patients. In healthy tissue, infiltrating 62:), a broader term which describes DNA that is freely circulating in the bloodstream, but is not necessarily of tumor origin. Because ctDNA may reflect the entire tumor 946:
Stroun M, Lyautey J, Lederrey C, Olson-Sand A, Anker P (November 2001). "About the possible origin and mechanism of circulating DNA apoptosis and active DNA release".
1895:
Leary RJ, Sausen M, Kinde I, Papadopoulos N, Carpten JD, Craig D, O'Shaughnessy J, Kinzler KW, Parmigiani G, Vogelstein B, Diaz LA, Velculescu VE (November 2012).
1559:"A stabilizing reagent prevents cell-free DNA contamination by cellular DNA in plasma during blood sample storage and shipping as determined by digital PCR" 2244:
Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, Modlin LA, Liu CL, Neal JW, Wakelee HA, Merritt RE, Shrager JB, Loo BW, Alizadeh AA, Diehn M (May 2014).
1605:"Optimised Pre-Analytical Methods Improve KRAS Mutation Detection in Circulating Tumour DNA (ctDNA) from Patients with Non-Small Cell Lung Cancer (NSCLC)" 2201:
Diehl F, Li M, He Y, Kinzler KW, Vogelstein B, Dressman D (July 2006). "BEAMing: single-molecule PCR on microparticles in water-in-oil emulsions".
330: 440:
burden, influence circulating tumor DNA and the choice of new techniques to select other lesions that reflect clinically dominant disease.
201:
of short fragments (<150bp) with in vitro or in silico methods could improve the recovery of mutations and copy number aberrations.
85:
system. The precise mechanism of ctDNA release is unclear. The biological processes postulated to be involved in ctDNA release include
43:, and active secretion from tumor cells have been hypothesized. Once ctDNA is isolated, it can be sequenced for mutational analysis. 70:" in the form of blood draws may be taken at various time points to monitor tumor progression throughout the treatment regimen. 2448:
Kennedy SR, Schmitt MW, Fox EJ, Kohrn BF, Salk JJ, Ahn EH, Prindle MJ, Kuong KJ, Shen JC, Risques RA, Loeb LA (November 2014).
406:
and control patients who did not present this DNA, including somatic mutations and structural rearrangements in their genomes.
255:. Measuring aberrant methylation patterns in ctDNA is possible due to stable methylation of regions of DNA referred to as “ 3801: 2144:"Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations" 2975: 2568:"Circulating tumor DNA is a sensitive marker for routine monitoring of treatment response in advanced colorectal cancer" 129:
Other procedures can also reduce the amount of "contaminating" wild type DNA and make detection of ctDNA more feasible:
3286: 1284:
Pisetsky DS, Fairhurst AM (June 2007). "The origin of extracellular DNA during the clearance of dead and dying cells".
296: 284: 3399: 3254: 2107:
Butler TM, Spellman PT, Gray J (February 2017). "Circulating-tumor DNA as an early detection and diagnostic tool".
1332:
Avanzini S, Kurtz DM, Chabon JJ, Moding EJ, Hori SS, Gambhir SS, Alizadeh AA, Diehn M, Reiter JG (December 2020).
1851:"Toward the Early Detection of Cancer by Decoding the Epigenetic and Environmental Fingerprints of Cell-Free DNA" 1445:
K-ras point mutations in the blood plasma DNA of patients with colorectal tumors in Challenges of Modern Medicine
577:
Wan J, Massie C, Garcia-Corbacho J, Mouliere F, Brenton J, Caldas C, Pacey S, Baird R, Rosenfeld N (April 2017).
2895: 273: 2774:"Multifocal clonal evolution characterized using circulating tumour DNA in a case of metastatic breast cancer" 982: 81:(CTCs), which describes viable, intact tumor cells that shed from primary tumors and enter the bloodstream or 3786: 3714: 2838: 552: 2000:"5-Hydroxymethylcytosine signatures in circulating cell-free DNA as diagnostic biomarkers for human cancers" 854:
Schwarzenbach H, Hoon DS, Pantel K (June 2011). "Cell-free nucleic acids as biomarkers in cancer patients".
493: 74:
applicability in disease characterization, histological classification, and monitoring treatment efficacy.
1897:"Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing" 99: 3745: 735:
Mutter, Jurik A; Shahrokh Esfahani, Mohammad; Schroers-Martin, Joseph; et al. (28 November 2023).
497: 190: 58:
in the bloodstream that is not associated with cells. ctDNA should not be confused with cell-free DNA (
2049:"5-Hydroxymethylcytosine signatures in cell-free DNA provide information about tumor types and stages" 3539: 1232:
Mouliere F, Chandrananda D, Piskorz AM, Moore EK, Morris J, Ahlborn LB, et al. (November 2018).
280: 1971:
Beaumont G, Dobbins S, Latta D, McMillin WP (May 1990). "Mequitazine in the treatment of hayfever".
1170:
Mouliere F, Robert B, Arnau Peyrotte E, Del Rio M, Ychou M, Molina F, Gongora C, Thierry AR (2011).
1121:
Thierry AR, Mouliere F, Gongora C, Ollier J, Robert B, Ychou M, Del Rio M, Molina F (October 2010).
3574: 3532: 501: 394:
investigations have been performed on ctDNA present in different patients with treatment-resistant
359: 304: 218: 500:
may be absent after tumor resection. Therefore, ctDNA analysis poses a potential avenue to detect
3667: 3631: 3569: 3361: 2968: 1074:"Establishment of tumor-specific copy number alterations from plasma DNA of patients with cancer" 1014:"Excretion of deoxyribonucleic acid by lymphocytes stimulated with phytohemagglutinin or antigen" 421: 391: 737:"Inferred Gene Expression By Cell-Free DNA Profiling Allows Noninvasive Lymphoma Classification" 684:
Esfahani, Mohammad Shahrokh; Hamilton, Emily G.; Mehrmohamadi, Mahya; et al. (April 2022).
3791: 3672: 3626: 768:
Alig, Stefan K.; Shahrokh Esfahani, Mohammad; Garofalo, Andrea; et al. (25 January 2024).
78: 2916:"Liquid biopsy in ovarian cancer using circulating tumor DNA and cells: Ready for prime time?" 1123:"Origin and quantification of circulating DNA in mice with human colorectal cancer xenografts" 3724: 3705: 3149: 3117: 2567: 2246:"An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage" 226: 1516: 409:
This novel and promising technique has provided information on resistance to treatment with
3677: 3522: 3512: 3392: 3319: 3314: 3271: 3221: 3112: 3091: 2785: 2516: 2402: 2155: 1616: 1471: 1345: 1183: 1025: 637: 260: 139:
Never use heparinised tubes, heparin inhibits PCR by mimicking the helical structure of DNA
3377: 8: 3564: 3496: 3276: 3244: 3086: 3054: 2296:
Newman AM, Lovejoy AF, Klass DM, Kurtz DM, Chabon JJ, Scherer F, et al. (May 2016).
649: 540: 334: 2949:
NucPosDB: a database of nucleosome positioning in vivo and nucleosomics of cell-free DNA
2868: 2789: 2648: 2615: 2520: 2406: 2159: 1711: 1620: 1475: 1349: 1187: 1029: 796: 769: 641: 3806: 3657: 3304: 3296: 3281: 3249: 3229: 3137: 2961: 2877: 2852: 2806: 2773: 2753: 2697: 2672: 2616:"Dynamic ctDNA Mutational Complexity in Patients with Melanoma Receiving Immunotherapy" 2548: 2474: 2449: 2425: 2390: 2371: 2322: 2297: 2270: 2245: 2226: 2073: 2048: 2024: 1999: 1921: 1896: 1769: 1742: 1723: 1639: 1604: 1497: 1425: 1413: 1381: 1368: 1333: 1309: 1258: 1233: 1206: 1171: 1147: 1122: 1098: 1073: 923: 898: 879: 712: 685: 658: 625: 606: 2298:"Integrated digital error suppression for improved detection of circulating tumor DNA" 2178: 2143: 1575: 1558: 1048: 1013: 983:"Spontaneous release of DNA by human blood lymphocytes as shown in an in vitro system" 959: 578: 436:
Further work is needed to understand how metastatic location and size, in relation to
3796: 3760: 3750: 3662: 3476: 3341: 2937: 2882: 2811: 2745: 2702: 2653: 2635: 2595: 2587: 2552: 2540: 2532: 2504: 2479: 2430: 2363: 2327: 2275: 2218: 2183: 2124: 2078: 2029: 1980: 1953: 1926: 1872: 1828: 1774: 1715: 1680: 1644: 1580: 1539: 1517:"Optimizing the yield and utility of circulating cell-free DNA from plasma and serum" 1489: 1417: 1385: 1373: 1301: 1263: 1211: 1152: 1103: 1053: 994: 963: 928: 871: 836: 801: 717: 663: 598: 505: 459: 411: 370: 214: 2757: 2375: 1727: 1429: 1313: 832: 3649: 3527: 3261: 3127: 3013: 2927: 2872: 2864: 2801: 2793: 2737: 2721: 2692: 2684: 2643: 2627: 2579: 2524: 2469: 2461: 2420: 2410: 2391:"Detection and quantification of rare mutations with massively parallel sequencing" 2355: 2317: 2309: 2265: 2257: 2230: 2210: 2173: 2163: 2116: 2068: 2060: 2019: 2011: 1916: 1908: 1862: 1818: 1764: 1754: 1707: 1672: 1634: 1624: 1570: 1531: 1501: 1479: 1409: 1363: 1353: 1293: 1253: 1245: 1201: 1191: 1142: 1134: 1093: 1085: 1043: 1033: 955: 918: 910: 883: 863: 828: 791: 781: 748: 707: 697: 653: 645: 610: 590: 1676: 3765: 3740: 3385: 3329: 3309: 2932: 2915: 2359: 1912: 1823: 1806: 1629: 1249: 1196: 395: 355: 300: 252: 210: 1867: 1850: 466:. It is thought that leukocytes are the primary contributors to cfDNA in serum. 159:-coated tubes. The use of EDTA is important to reduce coagulation of blood. The 3687: 3645: 3351: 3346: 3266: 2741: 2688: 2631: 2528: 2395:
Proceedings of the National Academy of Sciences of the United States of America
2148:
Proceedings of the National Academy of Sciences of the United States of America
1018:
Proceedings of the National Academy of Sciences of the United States of America
786: 702: 579:"Liquid biopsies come of age: towards implementation of circulating tumour DNA" 425: 403: 2120: 1759: 1535: 1443:
Vasioukhin V, Stroun M, Maurice P, Lyautey J, Lederrey C, Anker P (May 1994).
1297: 753: 736: 3780: 3491: 3234: 3047: 2850: 2844: 2639: 2591: 2583: 2536: 770:"Distinct Hodgkin lymphoma subtypes defined by noninvasive genomic profiling" 557: 164: 67: 24: 2415: 2168: 1603:
Sherwood JL, Corcoran C, Brown H, Sharpe AD, Musilova M, Kohlmann A (2016).
3811: 3432: 3336: 3166: 3142: 3132: 3037: 3025: 3018: 2941: 2886: 2851:
Karachaliou N, Mayo-de-Las-Casas C, Molina-Vila MA, Rosell R (March 2015).
2815: 2749: 2706: 2657: 2599: 2544: 2505:"Deep whole-genome ctDNA chronology of treatment-resistant prostate cancer" 2483: 2465: 2434: 2367: 2331: 2279: 2222: 2187: 2128: 2082: 2033: 1930: 1876: 1832: 1778: 1719: 1684: 1648: 1584: 1543: 1493: 1377: 1358: 1305: 1267: 1215: 1156: 1107: 1038: 967: 875: 840: 805: 721: 667: 602: 463: 417: 160: 133:
Never freeze a blood sample before extracting the plasma for ctDNA analysis
28: 2833:
Applying circulating tumor DNA methylation in the diagnosis of lung cancer
1984: 1957: 1421: 1057: 998: 932: 734: 3755: 3695: 3554: 3517: 3440: 3324: 3190: 3071: 3066: 3042: 1138: 377: 256: 247: 194: 136:
Process the sample to plasma within 2–4 hours (if collected in EDTA tube)
2832: 2064: 2015: 914: 3700: 3549: 3486: 3450: 3356: 3199: 3195: 3171: 3100: 3081: 2948: 2797: 1998:
Li W, Zhang X, Lu X, You L, Song Y, Luo Z, et al. (October 2017).
1234:"Enhanced detection of circulating tumor DNA by fragment size analysis" 594: 399: 95: 19: 2719: 1334:"A mathematical model of ctDNA shedding predicts tumor detection size" 1089: 310: 3719: 3605: 3590: 3471: 3455: 3211: 3154: 3076: 3003: 2984: 2389:
Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B (June 2011).
2313: 2214: 2142:
Dressman D, Yan H, Traverso G, Kinzler KW, Vogelstein B (July 2003).
686:"Inferring gene expression from cell-free DNA fragmentation profiles" 222: 103: 86: 82: 36: 2725: 2673:"Circulating biomarkers to monitor cancer progression and treatment" 2261: 1484: 1459: 867: 3709: 3600: 3559: 3544: 3417: 3409: 3366: 3161: 3122: 3107: 3030: 3008: 1169: 509: 326: 321: 279:
Targeted approaches have the advantage of amplifying ctDNA through
98:
plus a linker. Fragmentation of this length might be indicative of
90: 40: 1012:
Rogers JC, Boldt D, Kornfeld S, Skinner A, Valeri CR (July 1972).
3610: 3595: 3239: 3204: 3184: 3061: 2998: 1524:
Clinica Chimica Acta; International Journal of Clinical Chemistry
1172:"High fragmentation characterizes tumour-derived circulating DNA" 948:
Clinica Chimica Acta; International Journal of Clinical Chemistry
683: 489: 455: 315: 2853:"Real-time liquid biopsies become a reality in cancer treatment" 2612: 1231: 576: 3481: 3413: 1557:
Norton SE, Lechner JM, Williams T, Fernando MR (October 2013).
945: 767: 63: 1442: 899:"Nucleic acids spontaneously released by living frog auricles" 66:, it has gained traction for its potential clinical utility; " 2450:"Detecting ultralow-frequency mutations by Duplex Sequencing" 1556: 1398: 437: 59: 51: 32: 2953: 2839:
Circulating tumor DNA: A new generation of cancer biomarkers
2770: 1970: 1894: 1120: 488:
Evidence of disease by traditional imaging methods, such as
290: 3445: 3407: 2344: 1602: 232: 156: 2388: 2141: 1741:
Qin Z, Ljubimov VA, Zhou C, Tong Y, Liang J (April 2016).
1070: 1011: 209:
This method was originally developed by the laboratory of
2670: 1331: 241: 55: 2726:"Liquid biopsy: monitoring cancer-genetics in the blood" 1697: 2295: 1661: 1515:
Xue X, Teare MD, Holen I, Zhu YM, Woll PJ (June 2009).
853: 354:
Safe-sequencing (Safe-Seq) was originally described by
2501: 2447: 378:
Integrated digital error suppression-enhanced CAPP-Seq
2845:
ctDNA 'Liquid Biopsy' Could Revolutionize Cancer Care
2565: 1807:"Circulating tumor DNA as a liquid biopsy for cancer" 424:, contribution of ctDNA to metastasis through global 2243: 35:. The mechanism of ctDNA release is unknown, though 1848: 1740: 818: 543:and drug resistance mechanisms involved in cancer. 316:
Beads, emulsification, amplification, and magnetics
311:
Beads, emulsification, amplification, and magnetics
2677:Computational and Structural Biotechnology Journal 2106: 980: 515: 448: 340: 1283: 77:ctDNA originates directly from the tumor or from 3778: 2200: 2046: 1514: 981:Anker P, Stroun M, Maurice PA (September 1975). 728: 533: 327:Cancer personalized profiling by deep sequencing 322:Cancer Personalized Profiling by deep Sequencing 295:Droplet digital PCR (ddPCR) is derived from the 259:”. Methylation of ctDNA can be detected through 115: 2497: 2495: 2493: 1943: 1844: 1842: 1804: 1598: 1596: 1594: 1327: 1325: 1323: 1227: 1225: 679: 677: 189:Whole genome or exome sequencing typically use 16:Tumor-derived fragmented DNA in the bloodstream 2291: 2289: 145:Plasma is better than serum for ctDNA recovery 3393: 2969: 2671:Rapisuwon S, Vietsch EE, Wellstein A (2016). 2109:Current Opinion in Genetics & Development 1451: 483: 2490: 1997: 1839: 1591: 1392: 1320: 1222: 1163: 761: 674: 474: 2286: 1805:Heitzer E, Ulz P, Geigl JB (January 2015). 1743:"Cell-free circulating tumor DNA in cancer" 896: 570: 191:high throughput DNA sequencing technologies 3400: 3386: 2976: 2962: 2720:Crowley E, Di Nicolantonio F, Loupakis F, 1849:van der Pol Y, Mouliere F (October 2019). 623: 386: 23:Circulating tumor DNA (ctDNA) is found in 2931: 2876: 2805: 2696: 2647: 2473: 2424: 2414: 2321: 2269: 2177: 2167: 2072: 2023: 1920: 1866: 1822: 1768: 1758: 1638: 1628: 1574: 1483: 1367: 1357: 1257: 1205: 1195: 1146: 1097: 1047: 1037: 922: 795: 785: 752: 711: 701: 657: 291:Droplet digital polymerase chain reaction 2893: 1973:The British Journal of Clinical Practice 416:, intratumoral heterogeneity (thanks to 233:Personalized analysis of rearranged ends 180: 18: 2913: 398:(the vast majority, and in some cases, 329:(CAPP-Seq) was originally described by 3779: 266: 242:DNA methylation and hydroxymethylation 204: 149: 3381: 2957: 2102: 2100: 2098: 2096: 2094: 2092: 1890: 1888: 1886: 1800: 1798: 1796: 1794: 1792: 1790: 1788: 1460:"Cancer biomarkers: Written in blood" 1279: 1277: 630:Annual Review of Analytical Chemistry 624:Nonaka, T; Wong, DTW (13 June 2022). 617: 420:evolution and molecular chronology), 238:was modified for ctDNA applications. 1457: 650:10.1146/annurev-anchem-061020-123959 365: 171: 2896:"Teasing Out Circulating Tumor DNA" 2869:10.3978/j.issn.2305-5839.2015.01.16 1712:10.1046/j.1537-2995.2001.41020276.x 13: 3287:Fluorescence in situ hybridization 2894:Marusina, Kate (8 February 2018). 2826: 2713: 2089: 1883: 1785: 1414:10.1111/j.1365-2141.1994.tb04828.x 1274: 1064: 524: 349: 14: 3823: 2730:Nature Reviews. Clinical Oncology 2620:Molecular Diagnosis & Therapy 1576:10.1016/j.clinbiochem.2013.06.002 443: 333:and Maximilian Diehn's groups at 297:digital polymerase chain reaction 3255:Oral and maxillofacial pathology 2857:Annals of Translational Medicine 1447:. Vol. 5. pp. 141–150. 2764: 2664: 2606: 2559: 2441: 2382: 2338: 2237: 2194: 2135: 2040: 1991: 1964: 1944:Preobrazhenskiĭ BS (1966). "". 1937: 1734: 1691: 1655: 1550: 1508: 1436: 1114: 1078:International Journal of Cancer 1005: 974: 897:Stroun M, Anker P (July 1972). 833:10.1016/j.cancergen.2013.01.005 516:ctDNA as a prognostic biomarker 449:“Normal” vs tumor DNA detection 341:Tagged amplicon deep sequencing 274:single nucleotide polymorphisms 2348:Science Translational Medicine 1901:Science Translational Medicine 1402:British Journal of Haematology 939: 890: 847: 812: 1: 3715:Clonally transmissible cancer 2983: 1677:10.1016/j.lungcan.2013.08.014 960:10.1016/S0009-8981(01)00665-9 563: 553:Circulating mitochondrial DNA 534:Challenges for implementation 116:Pre-analytical considerations 2933:10.1016/j.canlet.2019.10.014 2360:10.1126/scitranslmed.3003726 1913:10.1126/scitranslmed.3004742 1824:10.1373/clinchem.2014.222679 1630:10.1371/journal.pone.0150197 1250:10.1126/scitranslmed.aat4921 1197:10.1371/journal.pone.0023418 7: 3802:Surgical removal procedures 1946:Vestnik Otorinolaringologii 1868:10.1016/j.ccell.2019.09.003 546: 469: 100:apoptotic DNA fragmentation 10: 3828: 3746:Index of oncology articles 2742:10.1038/nrclinonc.2013.110 2689:10.1016/j.csbj.2016.05.004 2632:10.1007/s40291-023-00651-4 2529:10.1038/s41586-022-04975-9 787:10.1038/s41586-023-06903-x 703:10.1038/s41587-022-01222-4 484:ctDNA in cancer monitoring 281:polymerase chain reactions 110: 3733: 3686: 3644: 3619: 3583: 3505: 3464: 3431: 3424: 3295: 3220: 2991: 2121:10.1016/j.gde.2016.12.003 1760:10.1186/s40880-016-0092-4 1747:Chinese Journal of Cancer 1536:10.1016/j.cca.2009.02.018 1298:10.1080/08916930701358826 754:10.1182/blood-2023-186853 747:(Supplement 1): 245–245. 475:ctDNA in cancer screening 2914:Du-Bois, Asante (2019). 502:minimal residual disease 360:Johns Hopkins University 305:Johns Hopkins University 219:Johns Hopkins University 3668:Prostate cancer staging 3632:Paraneoplastic syndrome 3362:Microbiological culture 2992:Principles of pathology 2416:10.1073/pnas.1105422108 2169:10.1073/pnas.1133470100 903:The Biochemical Journal 422:chromosomal instability 392:Whole-genome sequencing 387:Whole-genome sequencing 79:circulating tumor cells 3706:Tumor suppressor genes 3673:Gleason grading system 3627:Precancerous condition 2584:10.1093/carcin/bgaa102 2466:10.1038/nprot.2014.170 1359:10.1126/sciadv.abc4308 1127:Nucleic Acids Research 1039:10.1073/pnas.69.7.1685 856:Nature Reviews. Cancer 299:, originally named by 44: 3725:Carcinogenic bacteria 3465:Malignant progression 3325:Diagnostic immunology 3150:Programmed cell death 3118:Liquefactive necrosis 2778:Nature Communications 1563:Clinical Biochemistry 583:Nature Reviews Cancer 227:copy number variation 181:Untargeted approaches 48:Circulating tumor DNA 22: 3787:Anatomical pathology 3678:Dukes classification 3320:Medical microbiology 3315:Transfusion medicine 3272:Immunohistochemistry 3222:Anatomical pathology 3113:Coagulative necrosis 2302:Nature Biotechnology 1458:Yong E (July 2014). 690:Nature Biotechnology 626:"Saliva Diagnostics" 414:signaling inhibitors 54:-derived fragmented 3497:Sentinel lymph node 3277:Electron microscopy 3245:Molecular pathology 3123:Gangrenous necrosis 3055:Cellular adaptation 2790:2015NatCo...6.8760M 2521:2022Natur.608..199H 2407:2011PNAS..108.9530K 2160:2003PNAS..100.8817D 2065:10.1038/cr.2017.106 2016:10.1038/cr.2017.121 1621:2016PLoSO..1150197S 1476:2014Natur.511..524Y 1350:2020SciA....6.4308A 1188:2011PLoSO...623418M 1030:1972PNAS...69.1685R 915:10.1042/bj1280100pb 642:2022ARAC...15..107N 541:tumor heterogeneity 335:Stanford University 267:Targeted approaches 261:bisulfite treatment 205:Digital karyotyping 177:targeted approach. 150:Extraction of ctDNA 3545:Respiratory system 3305:Clinical chemistry 3297:Clinical pathology 3282:Immunofluorescence 3250:Forensic pathology 3230:Surgical pathology 3138:Fibrinoid necrosis 2798:10.1038/ncomms9760 1811:Clinical Chemistry 1139:10.1093/nar/gkq421 595:10.1038/nrc.2017.7 45: 3774: 3773: 3761:Cancer and nausea 3640: 3639: 3477:Carcinoma in situ 3375: 3374: 3342:Mass spectrometry 2578:(11): 1507–1517. 2515:(7921): 199–208. 2059:(10): 1231–1242. 2010:(10): 1243–1257. 1907:(162): 162ra154. 1470:(7511): 524–526. 1090:10.1002/ijc.28030 780:(7996): 778–787. 506:colorectal cancer 412:androgen receptor 371:Duplex sequencing 366:Duplex sequencing 358:and his group at 215:Victor Velculescu 213:, Luis Diaz, and 172:Analysis of ctDNA 3819: 3575:Endocrine system 3540:Digestive system 3429: 3428: 3402: 3395: 3388: 3379: 3378: 3262:Gross processing 3128:Caseous necrosis 2978: 2971: 2964: 2955: 2954: 2945: 2935: 2910: 2908: 2906: 2890: 2880: 2820: 2819: 2809: 2768: 2762: 2761: 2717: 2711: 2710: 2700: 2668: 2662: 2661: 2651: 2610: 2604: 2603: 2563: 2557: 2556: 2499: 2488: 2487: 2477: 2460:(11): 2586–606. 2454:Nature Protocols 2445: 2439: 2438: 2428: 2418: 2386: 2380: 2379: 2354:(136): 136ra68. 2342: 2336: 2335: 2325: 2314:10.1038/nbt.3520 2293: 2284: 2283: 2273: 2241: 2235: 2234: 2215:10.1038/nmeth898 2198: 2192: 2191: 2181: 2171: 2139: 2133: 2132: 2104: 2087: 2086: 2076: 2044: 2038: 2037: 2027: 1995: 1989: 1988: 1968: 1962: 1961: 1941: 1935: 1934: 1924: 1892: 1881: 1880: 1870: 1846: 1837: 1836: 1826: 1802: 1783: 1782: 1772: 1762: 1738: 1732: 1731: 1695: 1689: 1688: 1659: 1653: 1652: 1642: 1632: 1600: 1589: 1588: 1578: 1554: 1548: 1547: 1521: 1512: 1506: 1505: 1487: 1455: 1449: 1448: 1440: 1434: 1433: 1396: 1390: 1389: 1371: 1361: 1344:(50): eabc4308. 1338:Science Advances 1329: 1318: 1317: 1281: 1272: 1271: 1261: 1229: 1220: 1219: 1209: 1199: 1167: 1161: 1160: 1150: 1118: 1112: 1111: 1101: 1068: 1062: 1061: 1051: 1041: 1009: 1003: 1002: 978: 972: 971: 943: 937: 936: 926: 909:(3): 100P–101P. 894: 888: 887: 851: 845: 844: 816: 810: 809: 799: 789: 765: 759: 758: 756: 732: 726: 725: 715: 705: 681: 672: 671: 661: 621: 615: 614: 574: 221:. Unlike normal 3827: 3826: 3822: 3821: 3820: 3818: 3817: 3816: 3777: 3776: 3775: 3770: 3729: 3682: 3636: 3615: 3579: 3501: 3460: 3420: 3406: 3376: 3371: 3330:Immunopathology 3310:Hematopathology 3291: 3216: 2987: 2982: 2904: 2902: 2829: 2827:Further reading 2824: 2823: 2769: 2765: 2724:(August 2013). 2718: 2714: 2669: 2665: 2611: 2607: 2564: 2560: 2500: 2491: 2446: 2442: 2387: 2383: 2343: 2339: 2294: 2287: 2262:10.1038/nm.3519 2250:Nature Medicine 2242: 2238: 2199: 2195: 2154:(15): 8817–22. 2140: 2136: 2105: 2090: 2045: 2041: 1996: 1992: 1969: 1965: 1942: 1938: 1893: 1884: 1847: 1840: 1803: 1786: 1739: 1735: 1696: 1692: 1660: 1656: 1615:(2): e0150197. 1601: 1592: 1555: 1551: 1519: 1513: 1509: 1485:10.1038/511524a 1456: 1452: 1441: 1437: 1397: 1393: 1330: 1321: 1282: 1275: 1230: 1223: 1168: 1164: 1133:(18): 6159–75. 1119: 1115: 1069: 1065: 1010: 1006: 987:Cancer Research 979: 975: 954:(1–2): 139–42. 944: 940: 895: 891: 868:10.1038/nrc3066 852: 848: 821:Cancer Genetics 817: 813: 766: 762: 733: 729: 682: 675: 622: 618: 575: 571: 566: 549: 536: 527: 525:Cancer research 518: 486: 477: 472: 451: 446: 396:prostate cancer 389: 380: 368: 356:Bert Vogelstein 352: 350:Safe-sequencing 343: 324: 313: 301:Bert Vogelstein 293: 269: 253:DNA methylation 244: 235: 211:Bert Vogelstein 207: 183: 174: 152: 118: 113: 68:liquid biopsies 31:fractions from 17: 12: 11: 5: 3825: 3815: 3814: 3809: 3804: 3799: 3794: 3789: 3772: 3771: 3769: 3768: 3763: 3758: 3753: 3748: 3743: 3737: 3735: 3731: 3730: 3728: 3727: 3722: 3717: 3712: 3703: 3698: 3692: 3690: 3688:Carcinogenesis 3684: 3683: 3681: 3680: 3675: 3670: 3665: 3660: 3654: 3652: 3642: 3641: 3638: 3637: 3635: 3634: 3629: 3623: 3621: 3617: 3616: 3614: 3613: 3608: 3603: 3598: 3593: 3587: 3585: 3581: 3580: 3578: 3577: 3572: 3570:Nervous system 3567: 3562: 3557: 3552: 3547: 3542: 3537: 3536: 3535: 3533:nasopharyngeal 3530: 3525: 3520: 3509: 3507: 3503: 3502: 3500: 3499: 3494: 3489: 3484: 3479: 3474: 3468: 3466: 3462: 3461: 3459: 3458: 3453: 3448: 3443: 3437: 3435: 3426: 3422: 3421: 3405: 3404: 3397: 3390: 3382: 3373: 3372: 3370: 3369: 3364: 3359: 3354: 3352:Flow cytometry 3349: 3347:Chromatography 3344: 3339: 3333: 3332: 3327: 3322: 3317: 3312: 3307: 3301: 3299: 3293: 3292: 3290: 3289: 3284: 3279: 3274: 3269: 3267:Histopathology 3264: 3258: 3257: 3252: 3247: 3242: 3237: 3232: 3226: 3224: 3218: 3217: 3215: 3214: 3209: 3208: 3207: 3202: 3193: 3181: 3175: 3174: 3169: 3164: 3159: 3158: 3157: 3147: 3146: 3145: 3140: 3135: 3130: 3125: 3120: 3115: 3105: 3103: 3097: 3096: 3095: 3094: 3089: 3079: 3074: 3069: 3064: 3059: 3057: 3051: 3050: 3045: 3040: 3035: 3034: 3033: 3023: 3022: 3021: 3016: 3011: 3006: 2995: 2993: 2989: 2988: 2981: 2980: 2973: 2966: 2958: 2952: 2951: 2946: 2920:Cancer Letters 2911: 2891: 2848: 2842: 2836: 2828: 2825: 2822: 2821: 2763: 2712: 2663: 2626:(4): 537–550. 2605: 2572:Carcinogenesis 2558: 2489: 2440: 2401:(23): 9530–5. 2381: 2337: 2308:(5): 547–555. 2285: 2236: 2203:Nature Methods 2193: 2134: 2088: 2039: 1990: 1963: 1948:(in Russian). 1936: 1882: 1861:(4): 350–368. 1838: 1784: 1733: 1690: 1654: 1590: 1569:(15): 1561–5. 1549: 1507: 1450: 1435: 1408:(4): 774–779. 1391: 1319: 1273: 1238:Sci Transl Med 1221: 1162: 1113: 1063: 1004: 993:(9): 2375–82. 973: 938: 889: 846: 811: 760: 727: 696:(4): 585–597. 673: 636:(1): 107–121. 616: 589:(4): 223–238. 568: 567: 565: 562: 561: 560: 555: 548: 545: 535: 532: 526: 523: 517: 514: 485: 482: 476: 473: 471: 468: 450: 447: 445: 444:Considerations 442: 426:transcriptomic 404:bladder cancer 388: 385: 379: 376: 367: 364: 351: 348: 342: 339: 323: 320: 312: 309: 292: 289: 268: 265: 243: 240: 234: 231: 206: 203: 182: 179: 173: 170: 151: 148: 147: 146: 143: 140: 137: 134: 117: 114: 112: 109: 15: 9: 6: 4: 3: 2: 3824: 3813: 3810: 3808: 3805: 3803: 3800: 3798: 3795: 3793: 3792:Medical signs 3790: 3788: 3785: 3784: 3782: 3767: 3764: 3762: 3759: 3757: 3754: 3752: 3749: 3747: 3744: 3742: 3739: 3738: 3736: 3732: 3726: 3723: 3721: 3718: 3716: 3713: 3711: 3707: 3704: 3702: 3699: 3697: 3694: 3693: 3691: 3689: 3685: 3679: 3676: 3674: 3671: 3669: 3666: 3664: 3661: 3659: 3656: 3655: 3653: 3651: 3647: 3643: 3633: 3630: 3628: 3625: 3624: 3622: 3618: 3612: 3609: 3607: 3604: 3602: 3599: 3597: 3594: 3592: 3589: 3588: 3586: 3582: 3576: 3573: 3571: 3568: 3566: 3563: 3561: 3558: 3556: 3553: 3551: 3548: 3546: 3543: 3541: 3538: 3534: 3531: 3529: 3526: 3524: 3523:oropharyngeal 3521: 3519: 3516: 3515: 3514: 3513:Head and neck 3511: 3510: 3508: 3504: 3498: 3495: 3493: 3492:Primary tumor 3490: 3488: 3485: 3483: 3480: 3478: 3475: 3473: 3470: 3469: 3467: 3463: 3457: 3454: 3452: 3449: 3447: 3444: 3442: 3439: 3438: 3436: 3434: 3433:Benign tumors 3430: 3427: 3423: 3419: 3415: 3411: 3403: 3398: 3396: 3391: 3389: 3384: 3383: 3380: 3368: 3365: 3363: 3360: 3358: 3355: 3353: 3350: 3348: 3345: 3343: 3340: 3338: 3335: 3334: 3331: 3328: 3326: 3323: 3321: 3318: 3316: 3313: 3311: 3308: 3306: 3303: 3302: 3300: 3298: 3294: 3288: 3285: 3283: 3280: 3278: 3275: 3273: 3270: 3268: 3265: 3263: 3260: 3259: 3256: 3253: 3251: 3248: 3246: 3243: 3241: 3238: 3236: 3235:Cytopathology 3233: 3231: 3228: 3227: 3225: 3223: 3219: 3213: 3210: 3206: 3203: 3201: 3197: 3194: 3192: 3189: 3188: 3187: 3186: 3182: 3180: 3179:Accumulations 3177: 3176: 3173: 3170: 3168: 3165: 3163: 3160: 3156: 3153: 3152: 3151: 3148: 3144: 3141: 3139: 3136: 3134: 3131: 3129: 3126: 3124: 3121: 3119: 3116: 3114: 3111: 3110: 3109: 3106: 3104: 3102: 3099: 3098: 3093: 3090: 3088: 3085: 3084: 3083: 3080: 3078: 3075: 3073: 3070: 3068: 3065: 3063: 3060: 3058: 3056: 3053: 3052: 3049: 3048:Wound healing 3046: 3044: 3041: 3039: 3036: 3032: 3029: 3028: 3027: 3024: 3020: 3017: 3015: 3012: 3010: 3007: 3005: 3002: 3001: 3000: 2997: 2996: 2994: 2990: 2986: 2979: 2974: 2972: 2967: 2965: 2960: 2959: 2956: 2950: 2947: 2943: 2939: 2934: 2929: 2925: 2921: 2917: 2912: 2901: 2900:ClinicalOMICs 2897: 2892: 2888: 2884: 2879: 2874: 2870: 2866: 2862: 2858: 2854: 2849: 2846: 2843: 2840: 2837: 2834: 2831: 2830: 2817: 2813: 2808: 2803: 2799: 2795: 2791: 2787: 2783: 2779: 2775: 2767: 2759: 2755: 2751: 2747: 2743: 2739: 2736:(8): 472–84. 2735: 2731: 2727: 2723: 2716: 2708: 2704: 2699: 2694: 2690: 2686: 2682: 2678: 2674: 2667: 2659: 2655: 2650: 2645: 2641: 2637: 2633: 2629: 2625: 2621: 2617: 2609: 2601: 2597: 2593: 2589: 2585: 2581: 2577: 2573: 2569: 2562: 2554: 2550: 2546: 2542: 2538: 2534: 2530: 2526: 2522: 2518: 2514: 2510: 2506: 2498: 2496: 2494: 2485: 2481: 2476: 2471: 2467: 2463: 2459: 2455: 2451: 2444: 2436: 2432: 2427: 2422: 2417: 2412: 2408: 2404: 2400: 2396: 2392: 2385: 2377: 2373: 2369: 2365: 2361: 2357: 2353: 2349: 2341: 2333: 2329: 2324: 2319: 2315: 2311: 2307: 2303: 2299: 2292: 2290: 2281: 2277: 2272: 2267: 2263: 2259: 2256:(5): 548–54. 2255: 2251: 2247: 2240: 2232: 2228: 2224: 2220: 2216: 2212: 2208: 2204: 2197: 2189: 2185: 2180: 2175: 2170: 2165: 2161: 2157: 2153: 2149: 2145: 2138: 2130: 2126: 2122: 2118: 2114: 2110: 2103: 2101: 2099: 2097: 2095: 2093: 2084: 2080: 2075: 2070: 2066: 2062: 2058: 2054: 2053:Cell Research 2050: 2043: 2035: 2031: 2026: 2021: 2017: 2013: 2009: 2005: 2004:Cell Research 2001: 1994: 1986: 1982: 1978: 1974: 1967: 1959: 1955: 1951: 1947: 1940: 1932: 1928: 1923: 1918: 1914: 1910: 1906: 1902: 1898: 1891: 1889: 1887: 1878: 1874: 1869: 1864: 1860: 1856: 1852: 1845: 1843: 1834: 1830: 1825: 1820: 1817:(1): 112–23. 1816: 1812: 1808: 1801: 1799: 1797: 1795: 1793: 1791: 1789: 1780: 1776: 1771: 1766: 1761: 1756: 1752: 1748: 1744: 1737: 1729: 1725: 1721: 1717: 1713: 1709: 1706:(2): 276–82. 1705: 1701: 1694: 1686: 1682: 1678: 1674: 1670: 1666: 1658: 1650: 1646: 1641: 1636: 1631: 1626: 1622: 1618: 1614: 1610: 1606: 1599: 1597: 1595: 1586: 1582: 1577: 1572: 1568: 1564: 1560: 1553: 1545: 1541: 1537: 1533: 1529: 1525: 1518: 1511: 1503: 1499: 1495: 1491: 1486: 1481: 1477: 1473: 1469: 1465: 1461: 1454: 1446: 1439: 1431: 1427: 1423: 1419: 1415: 1411: 1407: 1403: 1395: 1387: 1383: 1379: 1375: 1370: 1365: 1360: 1355: 1351: 1347: 1343: 1339: 1335: 1328: 1326: 1324: 1315: 1311: 1307: 1303: 1299: 1295: 1291: 1287: 1280: 1278: 1269: 1265: 1260: 1255: 1251: 1247: 1243: 1239: 1235: 1228: 1226: 1217: 1213: 1208: 1203: 1198: 1193: 1189: 1185: 1182:(9): e23418. 1181: 1177: 1173: 1166: 1158: 1154: 1149: 1144: 1140: 1136: 1132: 1128: 1124: 1117: 1109: 1105: 1100: 1095: 1091: 1087: 1084:(2): 346–56. 1083: 1079: 1075: 1067: 1059: 1055: 1050: 1045: 1040: 1035: 1031: 1027: 1024:(7): 1685–9. 1023: 1019: 1015: 1008: 1000: 996: 992: 988: 984: 977: 969: 965: 961: 957: 953: 949: 942: 934: 930: 925: 920: 916: 912: 908: 904: 900: 893: 885: 881: 877: 873: 869: 865: 862:(6): 426–37. 861: 857: 850: 842: 838: 834: 830: 826: 822: 815: 807: 803: 798: 793: 788: 783: 779: 775: 771: 764: 755: 750: 746: 742: 738: 731: 723: 719: 714: 709: 704: 699: 695: 691: 687: 680: 678: 669: 665: 660: 655: 651: 647: 643: 639: 635: 631: 627: 620: 612: 608: 604: 600: 596: 592: 588: 584: 580: 573: 569: 559: 558:Liquid biopsy 556: 554: 551: 550: 544: 542: 531: 522: 513: 511: 507: 503: 499: 495: 491: 481: 467: 465: 461: 457: 441: 439: 434: 430: 427: 423: 419: 415: 413: 407: 405: 401: 397: 393: 384: 375: 372: 363: 361: 357: 347: 338: 336: 332: 328: 319: 317: 308: 306: 302: 298: 288: 286: 282: 277: 275: 264: 262: 258: 254: 249: 239: 230: 228: 224: 220: 216: 212: 202: 198: 196: 192: 187: 178: 169: 166: 162: 158: 144: 141: 138: 135: 132: 131: 130: 127: 124: 108: 105: 101: 97: 92: 88: 84: 80: 75: 71: 69: 65: 61: 57: 53: 49: 42: 38: 34: 30: 26: 21: 3408:Overview of 3337:Enzyme assay 3183: 3178: 3167:Karyorrhexis 3143:Myocytolysis 3133:Fat necrosis 3038:Inflammation 3026:Hemodynamics 3019:Pathogenesis 2923: 2919: 2903:. Retrieved 2899: 2860: 2856: 2781: 2777: 2766: 2733: 2729: 2715: 2680: 2676: 2666: 2623: 2619: 2608: 2575: 2571: 2561: 2512: 2508: 2457: 2453: 2443: 2398: 2394: 2384: 2351: 2347: 2340: 2305: 2301: 2253: 2249: 2239: 2209:(7): 551–9. 2206: 2202: 2196: 2151: 2147: 2137: 2112: 2108: 2056: 2052: 2042: 2007: 2003: 1993: 1979:(5): 183–8. 1976: 1972: 1966: 1949: 1945: 1939: 1904: 1900: 1858: 1854: 1814: 1810: 1750: 1746: 1736: 1703: 1699: 1693: 1671:(2): 373–4. 1668: 1664: 1657: 1612: 1608: 1566: 1562: 1552: 1530:(2): 100–4. 1527: 1523: 1510: 1467: 1463: 1453: 1444: 1438: 1405: 1401: 1394: 1341: 1337: 1292:(4): 281–4. 1289: 1286:Autoimmunity 1285: 1241: 1237: 1179: 1175: 1165: 1130: 1126: 1116: 1081: 1077: 1066: 1021: 1017: 1007: 990: 986: 976: 951: 947: 941: 906: 902: 892: 859: 855: 849: 827:(3): 73–80. 824: 820: 814: 777: 773: 763: 744: 740: 730: 693: 689: 633: 629: 619: 586: 582: 572: 537: 528: 519: 487: 478: 464:chemotherapy 460:radiotherapy 452: 435: 431: 418:phylogenetic 410: 408: 390: 381: 369: 353: 344: 331:Ash Alizadeh 325: 314: 303:’s group at 294: 278: 270: 245: 236: 208: 199: 188: 184: 175: 153: 128: 122: 119: 76: 72: 47: 46: 3756:Cancer pain 3696:Cancer cell 3441:Hyperplasia 3191:Hemosiderin 3072:Hyperplasia 3067:Hypertrophy 3043:Cell damage 2784:(1): 8760. 1952:(1): 3–11. 1855:Cancer Cell 1700:Transfusion 1665:Lung Cancer 285:digital PCR 257:CpG islands 223:karyotyping 195:buccal swab 50:(ctDNA) is 3781:Categories 3701:Carcinogen 3565:Urogenital 3506:Topography 3487:Metastasis 3451:Pseudocyst 3425:Conditions 3357:Blood bank 3200:Lipofuscin 3196:Lipochrome 3172:Karyolysis 3101:Cell death 3082:Metaplasia 2722:Bardelli A 2683:: 211–22. 564:References 400:metastatic 248:epigenetic 104:phagocytes 96:nucleosome 3807:Neoplasms 3720:Oncovirus 3710:oncogenes 3663:Ann Arbor 3606:Papilloma 3591:Carcinoma 3584:Histology 3528:laryngeal 3472:Dysplasia 3456:Hamartoma 3212:Steatosis 3155:Apoptosis 3092:Glandular 3077:Dysplasia 3009:Neoplasia 3004:Infection 2985:Pathology 2926:: 59–71. 2863:(3): 36. 2640:1177-1062 2592:0143-3334 2553:250730778 2537:1476-4687 2115:: 14–21. 1386:228096858 283:(PCR) or 87:apoptosis 83:lymphatic 37:apoptosis 3797:Oncology 3741:Research 3601:Blastoma 3418:oncology 3367:Serology 3162:Pyknosis 3108:Necrosis 3087:Squamous 3031:Ischemia 2942:31610267 2887:25815297 2847:Nov 2014 2841:Feb 2014 2835:May 2019 2816:26530965 2758:25537784 2750:23836314 2707:27358717 2658:37099071 2649:10131510 2600:32955091 2545:35859180 2484:25299156 2435:21586637 2376:34723244 2368:22649089 2332:27018799 2280:24705333 2223:16791214 2188:12857956 2129:28126649 2083:28820176 2034:28925386 1931:23197571 1877:31614115 1833:25388429 1779:27056366 1728:45714834 1720:11239235 1685:24007628 1649:26918901 1609:PLOS ONE 1585:23769817 1544:19281804 1494:25079538 1430:26365875 1378:33310847 1314:11499768 1306:17516210 1268:30404863 1216:21909401 1176:PLOS ONE 1157:20494973 1108:23319339 968:11694251 876:21562580 841:23491080 806:38081297 797:11293530 722:35361996 668:35696523 603:28233803 547:See also 510:melanoma 470:Research 91:necrosis 41:necrosis 3751:History 3650:grading 3646:Staging 3611:Adenoma 3596:Sarcoma 3240:Autopsy 3205:Melanin 3185:pigment 3062:Atrophy 2999:Disease 2905:5 March 2878:4356857 2807:4659935 2786:Bibcode 2698:4913179 2517:Bibcode 2475:4271547 2426:3111315 2403:Bibcode 2323:4907374 2271:4016134 2231:7059151 2156:Bibcode 2074:5630676 2025:5630683 1985:1975200 1958:5988180 1922:3641759 1770:4823888 1640:4769175 1617:Bibcode 1502:4445938 1472:Bibcode 1422:7918071 1369:7732186 1346:Bibcode 1259:6483061 1244:(466). 1207:3167805 1184:Bibcode 1148:2952865 1099:3708119 1058:4505646 1026:Bibcode 999:1149042 933:4634816 924:1173871 884:6061607 713:9337986 659:9348814 638:Bibcode 611:4561229 456:surgery 246:Proper 111:Methods 3482:Cancer 3414:cancer 3410:tumors 2940:  2885:  2875:  2814:  2804:  2756:  2748:  2705:  2695:  2656:  2646:  2638:  2598:  2590:  2551:  2543:  2535:  2509:Nature 2482:  2472:  2433:  2423:  2374:  2366:  2330:  2320:  2278:  2268:  2229:  2221:  2186:  2179:166396 2176:  2127:  2081:  2071:  2032:  2022:  1983:  1956:  1929:  1919:  1875:  1831:  1777:  1767:  1753:: 36. 1726:  1718:  1683:  1647:  1637:  1583:  1542:  1500:  1492:  1464:Nature 1428:  1420:  1384:  1376:  1366:  1312:  1304:  1266:  1256:  1214:  1204:  1155:  1145:  1106:  1096:  1056:  1049:426778 1046:  997:  966:  931:  921:  882:  874:  839:  804:  794:  774:Nature 720:  710:  666:  656:  609:  601:  161:plasma 64:genome 29:plasma 3734:Misc. 3620:Other 3560:Blood 3014:Cause 2754:S2CID 2549:S2CID 2372:S2CID 2227:S2CID 1724:S2CID 1520:(PDF) 1498:S2CID 1426:S2CID 1382:S2CID 1310:S2CID 880:S2CID 741:Blood 607:S2CID 462:, or 438:tumor 165:serum 60:cfDNA 52:tumor 33:blood 25:serum 3766:Diet 3555:Skin 3550:Bone 3518:oral 3446:Cyst 3416:and 2938:PMID 2907:2018 2883:PMID 2812:PMID 2746:PMID 2703:PMID 2654:PMID 2636:ISSN 2596:PMID 2588:ISSN 2541:PMID 2533:ISSN 2480:PMID 2431:PMID 2364:PMID 2328:PMID 2276:PMID 2219:PMID 2184:PMID 2125:PMID 2079:PMID 2030:PMID 1981:PMID 1954:PMID 1927:PMID 1873:PMID 1829:PMID 1775:PMID 1716:PMID 1681:PMID 1645:PMID 1581:PMID 1540:PMID 1490:PMID 1418:PMID 1374:PMID 1302:PMID 1264:PMID 1212:PMID 1153:PMID 1104:PMID 1054:PMID 995:PMID 964:PMID 929:PMID 872:PMID 837:PMID 802:PMID 718:PMID 664:PMID 599:PMID 508:and 163:and 157:EDTA 123:KRAS 89:and 27:and 3812:DNA 3658:TNM 2928:doi 2924:468 2873:PMC 2865:doi 2802:PMC 2794:doi 2738:doi 2693:PMC 2685:doi 2644:PMC 2628:doi 2580:doi 2525:doi 2513:608 2470:PMC 2462:doi 2421:PMC 2411:doi 2399:108 2356:doi 2318:PMC 2310:doi 2266:PMC 2258:doi 2211:doi 2174:PMC 2164:doi 2152:100 2117:doi 2069:PMC 2061:doi 2020:PMC 2012:doi 1917:PMC 1909:doi 1863:doi 1819:doi 1765:PMC 1755:doi 1708:doi 1673:doi 1635:PMC 1625:doi 1571:doi 1532:doi 1528:404 1480:doi 1468:511 1410:doi 1364:PMC 1354:doi 1294:doi 1254:PMC 1246:doi 1202:PMC 1192:doi 1143:PMC 1135:doi 1094:PMC 1086:doi 1082:133 1044:PMC 1034:doi 956:doi 952:313 919:PMC 911:doi 907:128 864:doi 829:doi 825:206 792:PMC 782:doi 778:625 749:doi 745:142 708:PMC 698:doi 654:PMC 646:doi 591:doi 498:MRI 496:or 494:PET 402:), 217:at 56:DNA 3783:: 3412:, 2936:. 2922:. 2918:. 2898:. 2881:. 2871:. 2859:. 2855:. 2810:. 2800:. 2792:. 2780:. 2776:. 2752:. 2744:. 2734:10 2732:. 2728:. 2701:. 2691:. 2681:14 2679:. 2675:. 2652:. 2642:. 2634:. 2624:27 2622:. 2618:. 2594:. 2586:. 2576:41 2574:. 2570:. 2547:. 2539:. 2531:. 2523:. 2511:. 2507:. 2492:^ 2478:. 2468:. 2456:. 2452:. 2429:. 2419:. 2409:. 2397:. 2393:. 2370:. 2362:. 2350:. 2326:. 2316:. 2306:34 2304:. 2300:. 2288:^ 2274:. 2264:. 2254:20 2252:. 2248:. 2225:. 2217:. 2205:. 2182:. 2172:. 2162:. 2150:. 2146:. 2123:. 2113:42 2111:. 2091:^ 2077:. 2067:. 2057:27 2055:. 2051:. 2028:. 2018:. 2008:27 2006:. 2002:. 1977:44 1975:. 1950:28 1925:. 1915:. 1903:. 1899:. 1885:^ 1871:. 1859:36 1857:. 1853:. 1841:^ 1827:. 1815:61 1813:. 1809:. 1787:^ 1773:. 1763:. 1751:35 1749:. 1745:. 1722:. 1714:. 1704:41 1702:. 1679:. 1669:82 1667:. 1643:. 1633:. 1623:. 1613:11 1611:. 1607:. 1593:^ 1579:. 1567:46 1565:. 1561:. 1538:. 1526:. 1522:. 1496:. 1488:. 1478:. 1466:. 1462:. 1424:. 1416:. 1406:86 1404:. 1380:. 1372:. 1362:. 1352:. 1340:. 1336:. 1322:^ 1308:. 1300:. 1290:40 1288:. 1276:^ 1262:. 1252:. 1242:10 1240:. 1236:. 1224:^ 1210:. 1200:. 1190:. 1178:. 1174:. 1151:. 1141:. 1131:38 1129:. 1125:. 1102:. 1092:. 1080:. 1076:. 1052:. 1042:. 1032:. 1022:69 1020:. 1016:. 991:35 989:. 985:. 962:. 950:. 927:. 917:. 905:. 901:. 878:. 870:. 860:11 858:. 835:. 823:. 800:. 790:. 776:. 772:. 743:. 739:. 716:. 706:. 694:40 692:. 688:. 676:^ 662:. 652:. 644:. 634:15 632:. 628:. 605:. 597:. 587:17 585:. 581:. 512:. 492:, 490:CT 458:, 39:, 3708:/ 3648:/ 3401:e 3394:t 3387:v 3198:/ 2977:e 2970:t 2963:v 2944:. 2930:: 2909:. 2889:. 2867:: 2861:3 2818:. 2796:: 2788:: 2782:6 2760:. 2740:: 2709:. 2687:: 2660:. 2630:: 2602:. 2582:: 2555:. 2527:: 2519:: 2486:. 2464:: 2458:9 2437:. 2413:: 2405:: 2378:. 2358:: 2352:4 2334:. 2312:: 2282:. 2260:: 2233:. 2213:: 2207:3 2190:. 2166:: 2158:: 2131:. 2119:: 2085:. 2063:: 2036:. 2014:: 1987:. 1960:. 1933:. 1911:: 1905:4 1879:. 1865:: 1835:. 1821:: 1781:. 1757:: 1730:. 1710:: 1687:. 1675:: 1651:. 1627:: 1619:: 1587:. 1573:: 1546:. 1534:: 1504:. 1482:: 1474:: 1432:. 1412:: 1388:. 1356:: 1348:: 1342:6 1316:. 1296:: 1270:. 1248:: 1218:. 1194:: 1186:: 1180:6 1159:. 1137:: 1110:. 1088:: 1060:. 1036:: 1028:: 1001:. 970:. 958:: 935:. 913:: 886:. 866:: 843:. 831:: 808:. 784:: 757:. 751:: 724:. 700:: 670:. 648:: 640:: 613:. 593::

Index


serum
plasma
blood
apoptosis
necrosis
tumor
DNA
cfDNA
genome
liquid biopsies
circulating tumor cells
lymphatic
apoptosis
necrosis
nucleosome
apoptotic DNA fragmentation
phagocytes
EDTA
plasma
serum
high throughput DNA sequencing technologies
buccal swab
Bert Vogelstein
Victor Velculescu
Johns Hopkins University
karyotyping
copy number variation
epigenetic
DNA methylation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.