Knowledge

Nucleosome

Source πŸ“

521:
regarding the mechanism of histone modification. The first of the theories suggested that they may affect electrostatic interactions between the histone tails and DNA to "loosen" chromatin structure. Later it was proposed that combinations of these modifications may create binding epitopes with which to recruit other proteins. Recently, given that more modifications have been found in the structured regions of histones, it has been put forward that these modifications may affect histone-DNA and histone-histone interactions within the nucleosome core. Modifications (such as acetylation or phosphorylation) that lower the charge of the globular histone core are predicted to "loosen" core-DNA association; the strength of the effect depends on location of the modification within the core. Some modifications have been shown to be correlated with gene silencing; others seem to be correlated with gene activation. Common modifications include
666:
nucleosome through the transferring of the base pair, this means DNA twists can cause nucleosome sliding. Nucleosome crystal structures have shown that superhelix location 2 and 5 on the nucleosome are commonly found to be where DNA twist defects occur as these are common remodeler binding sites. There are a variety of chromatin remodelers but all share the existence of an ATPase motor which facilitates chromatin sliding on DNA through the binding and hydrolysis of ATP. ATPase has an open and closed state. When the ATPase motor is changing from open and closed states, the DNA duplex changes geometry and exhibits base pair tilting. The initiation of the twist defects via the ATPase motor causes tension to accumulate around the remodeler site. The tension is released when the sliding of DNA has been completed throughout the nucleosome via the spread of two twist defects (one on each strand) in opposite directions.
366:
Although nucleosomes tend to prefer some DNA sequences over others, they are capable of binding practically to any sequence, which is thought to be due to the flexibility in the formation of these water-mediated interactions. In addition, non-polar interactions are made between protein side-chains and the deoxyribose groups, and an arginine side-chain intercalates into the DNA minor groove at all 14 sites where it faces the octamer surface. The distribution and strength of DNA-binding sites about the octamer surface distorts the DNA within the nucleosome core. The DNA is non-uniformly bent and also contains twist defects. The twist of free B-form DNA in solution is 10.5 bp per turn. However, the overall twist of nucleosomal DNA is only 10.2 bp per turn, varying from a value of 9.4 to 10.9 bp per turn.
756:(CAF-1) complex, which consists of three subunits (p150, p60, and p48). Newly synthesized H3 and H4 are assembled by the replication coupling assembly factor (RCAF). RCAF contains the subunit Asf1, which binds to newly synthesized H3 and H4 proteins. The old H3 and H4 proteins retain their chemical modifications which contributes to the passing down of the epigenetic signature. The newly synthesized H3 and H4 proteins are gradually acetylated at different lysine residues as part of the chromatin maturation process. It is also thought that the old H3 and H4 proteins in the new nucleosomes recruit histone modifying enzymes that mark the new histones, contributing to epigenetic memory. 513: 606:. Remodeling enzymes have been shown to slide nucleosomes along DNA, disrupt histone-DNA contacts to the extent of destabilizing the H2A/H2B dimer and to generate negative superhelical torsion in DNA and chromatin. Recently, the Swr1 remodeling enzyme has been shown to introduce the variant histone H2A.Z into nucleosomes. At present, it is not clear if all of these represent distinct reactions or merely alternative outcomes of a common mechanism. What is shared between all, and indeed the hallmark of ATP-dependent chromatin remodeling, is that they all result in altered DNA accessibility. 20: 803: 297: 794: 785: 352:
an anti-parallel orientation, and, in the case of H3 and H4, two such dimers form a 4-helix bundle stabilised by extensive H3-H3' interaction. The H2A/H2B dimer binds onto the H3/H4 tetramer due to interactions between H4 and H2B, which include the formation of a hydrophobic cluster. The histone octamer is formed by a central H3/H4 tetramer sandwiched between two H2A/H2B dimers. Due to the highly basic charge of all four core histones, the histone octamer is stable only in the presence of DNA or very high salt concentrations.
728: 189: 477:
accessible. Indeed, this can be extended to the observation that introducing a DNA-binding sequence within the nucleosome increases the accessibility of adjacent regions of DNA when bound. This propensity for DNA within the nucleosome to "breathe" has important functional consequences for all DNA-binding proteins that operate in a chromatin environment. In particular, the dynamic breathing of nucleosomes plays an important role in restricting the advancement of
393: 678: 464:
alter chromatin structure, many of which do so via nucleosome sliding. In 2012, Beena Pillai's laboratory has demonstrated that nucleosome sliding is one of the possible mechanism for large scale tissue specific expression of genes. The work shows that the transcription start site for genes expressed in a particular tissue, are nucleosome depleted while, the same set of genes in other tissue where they are not expressed, are nucleosome bound.
695:. A reaction consisting of the histone octamers and a naked DNA template can be incubated together at a salt concentration of 2 M. By steadily decreasing the salt concentration, the DNA will equilibrate to a position where it is wrapped around the histone octamers, forming nucleosomes. In appropriate conditions, this reconstitution process allows for the nucleosome positioning affinity of a given sequence to be mapped experimentally. 289: 494:
Well-positioned nucleosomes form boundaries of NFR. These nucleosomes are called +1-nucleosome and βˆ’1-nucleosome and are located at canonical distances downstream and upstream, respectively, from transcription start site. +1-nucleosome and several downstream nucleosomes also tend to incorporate H2A.Z
454:
Work performed in the Bradbury laboratory showed that nucleosomes reconstituted onto the 5S DNA positioning sequence were able to reposition themselves translationally onto adjacent sequences when incubated thermally. Later work showed that this repositioning did not require disruption of the histone
379:
tail of histone H4, on the other hand, has a region of highly basic amino acids (16–25), which, in the crystal structure, forms an interaction with the highly acidic surface region of a H2A-H2B dimer of another nucleosome, being potentially relevant for the higher-order structure of nucleosomes. This
360:
The nucleosome contains over 120 direct protein-DNA interactions and several hundred water-mediated ones. Direct protein - DNA interactions are not spread evenly about the octamer surface but rather located at discrete sites. These are due to the formation of two types of DNA binding sites within the
314:
Nucleosome core particles are observed when chromatin in interphase is treated to cause the chromatin to unfold partially. The resulting image, via an electron microscope, is "beads on a string". The string is the DNA, while each bead in the nucleosome is a core particle. The nucleosome core particle
772:
histone proteins are released and degraded; therefore, newly assembled H2A and H2B proteins are incorporated into new nucleosomes. H2A and H2B are assembled into dimers which are then loaded onto nucleosomes by the nucleosome assembly protein-1 (NAP-1) which also assists with nucleosome sliding. The
617:
have revealed that chromatin remodeling events and transcription-factor binding are cyclical and periodic in nature. While the consequences of this for the reaction mechanism of chromatin remodeling are not known, the dynamic nature of the system may allow it to respond faster to external stimuli. A
229:
critical to achieving the 1997 nucleosome crystal structure was developed by the Bunick group at Oak Ridge National Laboratory in Tennessee. The structures of over 20 different nucleosome core particles have been solved to date, including those containing histone variants and histones from different
351:
The core histone proteins contains a characteristic structural motif termed the "histone fold", which consists of three alpha-helices (Ξ±1-3) separated by two loops (L1-2). In solution, the histones form H2A-H2B heterodimers and H3-H4 heterotetramers. Histones dimerise about their long Ξ±2 helices in
715:
which is stable against H2A/H2B dimer loss during nucleosome reconstitution. A second crosslink can be introduced between the H3 N-terminal histone tail and the nucleosome DNA ends via an incorporated convertible nucleotide. The DNA-histone octamer crosslink stabilizes the nucleosome core particle
476:
revealed that DNA within the nucleosome remains fully wrapped for only 250 ms before it is unwrapped for 10-50 ms and then rapidly rewrapped. This implies that DNA does not need to be actively dissociated from the nucleosome but that there is a significant fraction of time during which it is fully
374:
The histone tail extensions constitute up to 30% by mass of histones, but are not visible in the crystal structures of nucleosomes due to their high intrinsic flexibility, and have been thought to be largely unstructured. The N-terminal tails of histones H3 and H2B pass through a channel formed by
463:
binding sites act as nucleosome positioning anchors so that, when used to align various genomic signals, multiple flanking nucleosomes can be readily identified. Although nucleosomes are intrinsically mobile, eukaryotes have evolved a large family of ATP-dependent chromatin remodelling enzymes to
365:
between both side-chain basic and hydroxyl groups and main-chain amides with the DNA backbone phosphates form the bulk of interactions with the DNA. This is important, given that the ubiquitous distribution of nucleosomes along genomes requires it to be a non-sequence-specific DNA-binding factor.
656:
binding sites became more or less accessible, respectively. In general, only one or two nucleosomes were repositioned at the promoter to effect these transcriptional changes. However, even in chromosomal regions that were not associated with transcriptional changes, nucleosome repositioning was
326:
reveals its nucleosome structure. Because DNA portions of nucleosome core particles are less accessible for DNAse than linking sections, DNA gets digested into fragments of lengths equal to multiplicity of distance between nucleosomes (180, 360, 540 base pairs etc.). Hence a very characteristic
735:
Nucleosomes are the basic packing unit of genomic DNA built from histone proteins around which DNA is coiled. They serve as a scaffold for formation of higher order chromatin structure as well as for a layer of regulatory control of gene expression. Nucleosomes are quickly assembled onto newly
441:
Although the nucleosome is a very stable protein-DNA complex, it is not static and has been shown to undergo a number of different structural re-arrangements including nucleosome sliding and DNA site exposure. Depending on the context, nucleosomes can inhibit or facilitate transcription factor
665:
DNA twist defects are when the addition of one or a few base pairs from one DNA segment are transferred to the next segment resulting in a change of the DNA twist. This will not only change the twist of the DNA but it will also change the length. This twist defect eventually moves around the
520:
Since they were discovered in the mid-1960s, histone modifications have been predicted to affect transcription. The fact that most of the early post-translational modifications found were concentrated within the tail extensions that protrude from the nucleosome core lead to two main theories
152:, which can be up to about 80 bp long. Technically, a nucleosome is defined as the core particle plus one of these linker regions; however the word is often synonymous with the core particle. Genome-wide nucleosome positioning maps are now available for many model organisms and human cells. 657:
observed, suggesting that the covering and uncovering of transcriptional DNA does not necessarily produce a transcriptional event. After transcription, the rDNA region has to protected from any damage, it suggested HMGB proteins play a major role in protecting the nucleosome free region.
503:
Eukaryotic genomes are ubiquitously associated into chromatin; however, cells must spatially and temporally regulate specific loci independently of bulk chromatin. In order to achieve the high level of control required to co-ordinate nuclear processes such as DNA replication, repair, and
504:
transcription, cells have developed a variety of means to locally and specifically modulate chromatin structure and function. This can involve covalent modification of histones, the incorporation of histone variants, and non-covalent remodelling by ATP-dependent remodeling enzymes.
159:
and its isoforms are involved in chromatin compaction and sit at the base of the nucleosome near the DNA entry and exit binding to the linker region of the DNA. Non-condensed nucleosomes without the linker histone resemble "beads on a string of DNA" under an
419:
A crystal structure of a tetranucleosome has been presented and used to build up a proposed structure of the 30 nm fiber as a two-start helix. There is still a certain amount of contention regarding this model, as it is incompatible with recent
569:
Although histones are remarkably conserved throughout evolution, several variant forms have been identified. This diversification of histone function is restricted to H2A and H3, with H2B and H4 being mostly invariant. H2A can be replaced by
217:
Pioneering structural studies in the 1980s by Aaron Klug's group provided the first evidence that an octamer of histone proteins wraps DNA around itself in about 1.7 turns of a left-handed superhelix. In 1997 the first near atomic resolution
442:
binding. Nucleosome positions are controlled by three major contributions: First, the intrinsic binding affinity of the histone octamer depends on the DNA sequence. Second, the nucleosome can be displaced or recruited by the competitive or
108:
Nucleosomes were first observed as particles in the electron microscope by Don and Ada Olins in 1974, and their existence and structure (as histone octamers surrounded by approximately 200 base pairs of DNA) were proposed by
489:
Promoters of active genes have nucleosome free regions (NFR). This allows for promoter DNA accessibility to various proteins, such as transcription factors. Nucleosome free region typically spans for 200 nucleotides in
424:
data. Beyond this, the structure of chromatin is poorly understood, but it is classically suggested that the 30 nm fiber is arranged into loops along a central protein scaffold to form transcriptionally active
652:). In addition, the removal of nucleosomes usually corresponded to transcriptional activation and the replacement of nucleosomes usually corresponded to transcriptional repression, presumably because 230:
species. The structure of the nucleosome core particle is remarkably conserved, and even a change of over 100 residues between frog and yeast histones results in electron density maps with an overall
618:
recent study indicates that nucleosome positions change significantly during mouse embryonic stem cell development, and these changes are related to binding of developmental transcription factors.
1627:
Harp JM, Palmer EL, York MH, Gewiess A, Davis M, Bunick GJ (October 1995). "Preparative separation of nucleosome core particles containing defined-sequence DNA in multiple translational phases".
926: 3382:
Albert I, Mavrich TN, Tomsho LP, Qi J, Zanton SJ, Schuster SC, Pugh BF (March 2007). "Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome".
278: 642:
in nucleosome repositioning during a global transcriptional reprogramming event to elucidate the effects on nucleosome displacement during genome-wide transcriptional changes in yeast (
773:
nucleosomes are also spaced by ATP-dependent nucleosome-remodeling complexes containing enzymes such as Isw1 Ino80, and Chd1, and subsequently assembled into higher order structure.
2353:
Pennings S, Muyldermans S, Meersseman G, Wyns L (May 1989). "Formation, stability and core histone positioning of nucleosomes reassembled on bent and other nucleosome-derived DNA".
113:. The role of the nucleosome as a regulator of transcription was demonstrated by Lorch et al. in vitro in 1987 and by Han and Grunstein and Clark-Adams et al. in vivo in 1988. 4029:
Dyer PN, Edayathumangalam RS, White CL, Bao Y, Chakravarthy S, Muthurajan UM, Luger K (2004). "Reconstitution of nucleosome core particles from recombinant histones and DNA".
4560: 4154:
Ferentz AE, Verdine GL (1994). "The Convertible Nucleoside Approach: Structural Engineering of Nucleic Acids by Disulfide Cross-Linking". In Eckstein F, Lilley DM (eds.).
4070:
Yenidunya A, Davey C, Clark D, Felsenfeld G, Allan J (April 1994). "Nucleosome positioning on chicken and human globin gene promoters in vitro. Novel mapping techniques".
3339:
Teif VB, Vainshtein Y, Caudron-Herger M, Mallm JP, Marth C, HΓΆfer T, Rippe K (November 2012). "Genome-wide nucleosome positioning during embryonic stem cell development".
274:(which varies from 10 - 80 bp in length depending on species and tissue type).The whole structure generates a cylinder of diameter 11 nm and a height of 5.5 nm. 101:. Nucleosome positions in the genome are not random, and it is important to know where each nucleosome is located because this determines the accessibility of the DNA to 2067:
Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ (June 2002). "Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution".
472:
Work from the Widom laboratory has shown that nucleosomal DNA is in equilibrium between a wrapped and unwrapped state. Measurements of these rates using time-resolved
4271:
Tyler JK, Adams CR, Chen SR, Kobayashi R, Kamakaka RT, Kadonaga JT (December 1999). "The RCAF complex mediates chromatin assembly during DNA replication and repair".
171:
to package their genomic DNA, most likely to achieve an even higher packaging ratio. Histone equivalents and a simplified chromatin structure have also been found in
404:
into the cell nucleus is necessary, but it is not yet well understood. The current understanding is that repeating nucleosomes with intervening "linker" DNA form a
1108:
Lorch Y, LaPointe JW, Kornberg RD (April 1987). "Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones".
557:, since it is not encoded in the DNA but is still inherited to daughter cells. The maintenance of a repressed or activated status of a gene is often necessary for 5110: 400:
The organization of the DNA that is achieved by the nucleosome cannot fully explain the packaging of DNA observed in the cell nucleus. Further compaction of
634:. About 80% of the yeast genome appears to be covered by nucleosomes and the pattern of nucleosome positioning clearly relates to DNA regions that regulate 3002:
Whitehouse I, Flaus A, Cairns BR, White MF, Workman JL, Owen-Hughes T (August 1999). "Nucleosome mobilization catalysed by the yeast SWI/SNF complex".
1250:
Luger K, MΓ€der AW, Richmond RK, Sargent DF, Richmond TJ (September 1997). "Crystal structure of the nucleosome core particle at 2.8 A resolution".
51:. Each nucleosome is composed of a little less than two turns of DNA wrapped around a set of eight proteins called histones, which are known as a 4545: 691:
by either using purified native or recombinant histones. One standard technique of loading the DNA around the histones involves the use of salt
4611: 4584: 2441:"Proximity of H2A.Z containing nucleosome to the transcription start site influences gene expression levels in the mammalian liver and brain" 2194:
Schalch T, Duda S, Sargent DF, Richmond TJ (July 2005). "X-ray structure of a tetranucleosome and its implications for the chromatin fibre".
3533:
Lee W, Tillo D, Bray N, Morse RH, Davis RW, Hughes TR, Nislow C (October 2007). "A high-resolution atlas of nucleosome occupancy in yeast".
752:
from disassembled old nucleosomes are kept in the vicinity and randomly distributed on the newly synthesized DNA. They are assembled by the
361:
octamer; the Ξ±1Ξ±1 site, which uses the Ξ±1 helix from two adjacent histones, and the L1L2 site formed by the L1 and L2 loops. Salt links and
3482:
Whitehouse I, Rando OJ, Delrow J, Tsukiyama T (December 2007). "Chromatin remodelling at promoters suppresses antisense transcription".
4187:
Yamasu K, Senshu T (January 1990). "Conservative segregation of tetrameric units of H3 and H4 histones during nucleosome replication".
586:
in mammals are enriched in macroH2A. H3 can be replaced by H3.3 (which correlates with activate genes and regulatory elements) and in
5008: 4224:"The p150 and p60 subunits of chromatin assembly factor I: a molecular link between newly synthesized histones and DNA replication" 707:
crosslinks. Two different crosslinks can be introduced into the nucleosome core particle. A first one crosslinks the two copies of
5063: 5058: 899: 408:, described as "beads on a string", and have a packing ratio of about five to ten. A chain of nucleosomes can be arranged in a 5100: 4741: 4171: 1310: 909: 882: 3251:"Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter" 648:). The results suggested that nucleosomes that were localized to promoter regions are displaced in response to stress (like 5105: 1970:
Harp JM, Hanson BL, Timm DE, Bunick GJ (December 2000). "Asymmetries in the nucleosome core particle at 2.5 A resolution".
1754:
Harp JM, Hanson BL, Timm DE, Bunick GJ (December 2000). "Asymmetries in the nucleosome core particle at 2.5 A resolution".
1576:
Richmond TJ, Finch JT, Rushton B, Rhodes D, Klug A (1984). "Structure of the nucleosome core particle at 7 A resolution".
473: 4863: 2247:"EM measurements define the dimensions of the "30-nm" chromatin fiber: evidence for a compact, interdigitated structure" 1670:
Palmer EL, Gewiess A, Harp JM, York MH, Bunick GJ (October 1995). "Large-scale production of palindrome DNA fragments".
1434:"Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin" 1951: 603: 1039: 4604: 4046: 3627:"Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation" 1806: 963: 446:
of other protein factors. Third, the nucleosome may be actively translocated by ATP-dependent remodeling complexes.
4880: 4566:
Dynamic Remodeling of Individual Nucleosomes Across a Eukaryotic Genome in Response to Transcriptional Perturbation
1789:
Hanson BL, Alexander C, Harp JM, Bunick GJ (2004). "Preparation and crystallization of nucleosome core particle".
222:
of the nucleosome was solved by the Richmond group, showing the most important details of the particle. The human
4570: 2306:"Predicting nucleosome positions on the DNA: combining intrinsic sequence preferences and remodeler activities" 703:
A recent advance in the production of nucleosome core particles with enhanced stability involves site-specific
2390:"The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome" 638:, regions that are transcribed and regions that initiate DNA replication. Most recently, a new study examined 5143: 4726: 2491:
Li G, Levitus M, Bustamante C, Widom J (January 2005). "Rapid spontaneous accessibility of nucleosomal DNA".
1892:"Structure of the yeast nucleosome core particle reveals fundamental changes in internucleosome interactions" 4565: 412:, a compacted structure with a packing ratio of ~50 and whose formation is dependent on the presence of the 4597: 3676:
Murugesapillai D, McCauley MJ, Huo R, Nelson Holte MH, Stepanyants A, Maher LJ, et al. (August 2014).
2853:
Cosgrove MS, Boeke JD, Wolberger C (November 2004). "Regulated nucleosome mobility and the histone code".
512: 753: 626:
Studies in 2007 have catalogued nucleosome positions in yeast and shown that nucleosomes are depleted in
340: 281: 5133: 4540: 4490:"Replication-Coupled Nucleosome Assembly and Positioning by ATP-Dependent Chromatin-Remodeling Enzymes" 231: 4873: 4324:"Modifications of H3 and H4 during chromatin replication, nucleosome assembly, and histone exchange" 3300:"Rapid periodic binding and displacement of the glucocorticoid receptor during chromatin remodeling" 2745:"Acetylation and Methylation of Histones and Their Possible Role in the Regulation of RNA Synthesis" 1151:
Han M, Grunstein M (December 1988). "Nucleosome loss activates yeast downstream promoters in vivo".
82:
is further compacted by being folded into a series of more complex structures, eventually forming a
4927: 4711: 644: 635: 558: 4575: 3931:"Chromatin remodelers couple inchworm motion with twist-defect formation to slide nucleosomal DNA" 716:
against DNA dissociation at very low particle concentrations and at elevated salt concentrations.
3678:"DNA bridging and looping by HMO1 provides a mechanism for stabilizing nucleosome-free chromatin" 2102:
Segal E, Fondufe-Mittendorf Y, Chen L, ThΓ₯strΓΆm A, Field Y, Moore IK, et al. (August 2006).
2898:"Histone H4 lysine 91 acetylation a core domain modification associated with chromatin assembly" 2159:
Zheng C, Hayes JJ (April 2003). "Structures and interactions of the core histone tail domains".
4833: 4806: 4400:"Nucleosome assembly protein 1 exchanges histone H2A-H2B dimers and assists nucleosome sliding" 1707:"X-ray diffraction analysis of crystals containing twofold symmetric nucleosome core particles" 284:. Digested chromatin is in the first lane; the second contains DNA standard to compare lengths. 3990:"In vitro reconstitution and analysis of mononucleosomes containing defined DNAs and proteins" 1481:
Clarke HJ (1992). "Nuclear and chromatin composition of mammalian gametes and early embryos".
4868: 4766: 631: 94: 3194:"ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex" 5138: 5088: 5013: 4998: 4828: 4776: 4751: 4691: 4280: 3942: 3491: 3391: 3205: 3143:
Havas K, Flaus A, Phelan M, Kingston R, Wade PA, Lilley DM, Owen-Hughes T (December 2000).
3011: 2958: 2811: 2756: 2647: 2590: 2258: 2203: 2115: 1846: 1718: 1585: 1540: 1388: 1259: 1074: 996: 653: 226: 4200: 3894: 2696:"Understanding nucleosome dynamics and their links to gene expression and DNA replication" 1328:"NucPosDB: a database of nucleosome positioning in vivo and nucleosomics of cell-free DNA" 47:
and resembles thread wrapped around a spool. The nucleosome is the fundamental subunit of
8: 4756: 820:​) - different views showing details of histone folding and organization. Histones 443: 421: 332: 161: 4284: 3946: 3495: 3395: 3209: 3015: 2962: 2815: 2760: 2651: 2594: 2262: 2207: 2119: 1850: 1833:
Chakravarthy S, Park YJ, Chodaparambil J, Edayathumangalam RS, Luger K (February 2005).
1722: 1589: 1544: 1392: 1377:"Position and orientation of the globular domain of linker histone H5 on the nucleosome" 1263: 1078: 1000: 4514: 4489: 4465: 4440: 4304: 4253: 4131: 4106: 3965: 3930: 3903: 3878: 3851: 3826: 3802: 3775: 3751: 3726: 3702: 3677: 3653: 3626: 3602: 3577: 3558: 3515: 3464: 3415: 3364: 3280: 3231: 3174: 3120: 3095: 3035: 2979: 2946: 2922: 2897: 2878: 2835: 2720: 2695: 2673: 2611: 2578: 2559: 2516: 2465: 2440: 2416: 2389: 2330: 2305: 2281: 2246: 2227: 2136: 2103: 1872: 1652: 1609: 1458: 1433: 1414: 1352: 1327: 1283: 1176: 1133: 1020: 969: 955: 627: 380:
interaction is thought to occur under physiological conditions also, and suggests that
102: 4322:
Benson LJ, Gu Y, Yakovleva T, Tong K, Barrows C, Strack CL, et al. (April 2006).
4240: 4223: 4038: 3316: 3299: 3267: 3250: 3161: 3144: 3111: 3094:
Bruno M, Flaus A, Stockdale C, Rencurel C, Ferreira H, Owen-Hughes T (December 2003).
3071: 3054: 2802:
Strahl BD, Allis CD (January 2000). "The language of covalent histone modifications".
2779: 2744: 2439:
Bargaje R, Alam MP, Patowary A, Sarkar M, Ali T, Gupta S, et al. (October 2012).
2080: 1916: 1891: 1798: 4818: 4730: 4580: 4519: 4470: 4421: 4380: 4345: 4308: 4296: 4245: 4204: 4167: 4136: 4087: 4052: 4042: 4011: 3970: 3908: 3856: 3807: 3756: 3727:"Single-molecule studies of high-mobility group B architectural DNA bending proteins" 3707: 3658: 3607: 3550: 3507: 3456: 3407: 3356: 3321: 3272: 3223: 3166: 3145:"Generation of superhelical torsion by ATP-dependent chromatin remodeling activities" 3125: 3076: 3027: 2984: 2927: 2870: 2827: 2784: 2725: 2665: 2616: 2551: 2508: 2470: 2421: 2370: 2366: 2335: 2286: 2219: 2176: 2141: 2084: 2049: 2041: 1987: 1947: 1921: 1864: 1812: 1802: 1771: 1736: 1687: 1644: 1601: 1558: 1498: 1463: 1418: 1406: 1357: 1306: 1275: 1217: 1168: 1164: 1125: 1121: 1090: 1065:
Kornberg RD (May 1974). "Chromatin structure: a repeating unit of histones and DNA".
1012: 959: 905: 878: 812: 478: 302: 219: 19: 4363:
Louters L, Chalkley R (June 1985). "Exchange of histones H1, H2A, and H2B in vivo".
4257: 3562: 3368: 2896:
Ye J, Ai X, Eugeni EE, Zhang L, Carpenter LR, Jelinek MA, et al. (April 2005).
2882: 2677: 2563: 2520: 1876: 1656: 1180: 1137: 1024: 973: 802: 793: 784: 296: 4907: 4786: 4554: 4509: 4501: 4460: 4452: 4411: 4372: 4335: 4288: 4235: 4196: 4159: 4126: 4118: 4079: 4034: 4001: 3960: 3950: 3898: 3890: 3846: 3838: 3797: 3787: 3746: 3738: 3697: 3689: 3648: 3638: 3597: 3589: 3542: 3519: 3499: 3468: 3446: 3419: 3399: 3348: 3311: 3262: 3235: 3213: 3178: 3156: 3115: 3107: 3066: 3039: 3019: 2974: 2966: 2917: 2909: 2862: 2839: 2819: 2774: 2764: 2715: 2707: 2655: 2606: 2598: 2543: 2500: 2460: 2452: 2411: 2401: 2362: 2325: 2317: 2276: 2266: 2231: 2211: 2168: 2131: 2123: 2076: 2033: 1979: 1911: 1903: 1854: 1794: 1763: 1726: 1705:
Harp JM, Uberbacher EC, Roberson AE, Palmer EL, Gewiess A, Bunick GJ (March 1996).
1679: 1636: 1613: 1593: 1548: 1490: 1453: 1445: 1396: 1347: 1339: 1287: 1267: 1207: 1160: 1117: 1082: 1047: 1004: 951: 375:
the minor grooves of the two DNA strands, protruding from the DNA every 20 bp. The
362: 3284: 3249:
MΓ©tivier R, Penot G, HΓΌbner MR, Reid G, Brand H, Kos M, Gannon F (December 2003).
1859: 1834: 1040:"Milestone 9, (1973-1974) The nucleosome hypothesis: An alternative string theory" 4900: 4721: 4669: 4571:
Nucleosome positioning data and tools online (annotated list, constantly updated)
4505: 3955: 3643: 3096:"Histone H2A/H2B dimer exchange by ATP-dependent chromatin remodeling activities" 2913: 2579:"Nucleosomal fluctuations govern the transcription dynamics of RNA polymerase II" 2406: 1375:
Zhou YB, Gerchman SE, Ramakrishnan V, Travers A, Muyldermans S (September 1998).
1086: 1008: 712: 692: 546: 430: 251: 52: 4163: 2947:"Charge state of the globular histone core controls stability of the nucleosome" 2634:
Yuan GC, Liu YJ, Dion MF, Slack MD, Wu LF, Altschuler SJ, Rando OJ (July 2005).
455:
octamer but was consistent with nucleosomes being able to "slide" along the DNA
223: 43:. The structure of a nucleosome consists of a segment of DNA wound around eight 4791: 4715: 3842: 3451: 3434: 2749:
Proceedings of the National Academy of Sciences of the United States of America
2251:
Proceedings of the National Academy of Sciences of the United States of America
1907: 1343: 727: 583: 530: 208:
core histones, and DNA. The view is from the top through the superhelical axis.
188: 110: 4122: 3742: 2970: 1983: 1767: 1731: 1706: 898:
Alberts B (2002). "Chromosomal DNA and Its Packaging in the Chromatin Fiber".
175:, suggesting that eukaryotes are not the only organisms that use nucleosomes. 55:. Each histone octamer is composed of two copies each of the histone proteins 5127: 4771: 3776:"A twist defect mechanism for ATP-dependent translocation of nucleosomal DNA" 2045: 1832: 1640: 871: 328: 4589: 3218: 2660: 2635: 2602: 2271: 4746: 4620: 4523: 4474: 4425: 4416: 4399: 4349: 4340: 4323: 4300: 4140: 4083: 4056: 4006: 3989: 3974: 3912: 3860: 3811: 3760: 3711: 3662: 3611: 3554: 3511: 3460: 3411: 3360: 3325: 3276: 3227: 3170: 3129: 3080: 3031: 2988: 2931: 2874: 2831: 2788: 2729: 2669: 2620: 2555: 2512: 2474: 2425: 2339: 2290: 2223: 2180: 2145: 2088: 1991: 1925: 1868: 1816: 1775: 1740: 1683: 1562: 1361: 1194:
Clark-Adams CD, Norris D, Osley MA, Fassler JS, Winston F (February 1988).
335:
of that DNA. Such digestion can occur also under natural conditions during
75: 4384: 4249: 4208: 4091: 4015: 2769: 2534:
Li G, Widom J (August 2004). "Nucleosomes facilitate their own invasion".
2374: 2053: 1691: 1648: 1605: 1502: 1410: 1279: 1221: 1172: 1129: 1094: 1016: 987:
Olins AL, Olins DE (January 1974). "Spheroid chromatin units (v bodies)".
288: 277: 4965: 4960: 4823: 4801: 4796: 4664: 4551: 4441:"ATP-dependent chromatin remodeling shapes the DNA replication landscape" 4107:"Site-Specific Disulfide Crosslinked Nucleosomes with Enhanced Stability" 3693: 2456: 2321: 1467: 1449: 769: 765: 708: 621: 538: 526: 522: 426: 381: 259: 255: 242:
The nucleosome core particle (shown in the figure) consists of about 146
137: 133: 90: 60: 56: 4376: 3792: 3625:
Shivaswamy S, Bhinge A, Zhao Y, Jones S, Hirst M, Iyer VR (March 2008).
3593: 3503: 3403: 2711: 2215: 2127: 1553: 1528: 1212: 1195: 4985: 4975: 4970: 4955: 4895: 4885: 4761: 4735: 4676: 4624: 4398:
Park YJ, Chodaparambil JV, Bao Y, McBryant SJ, Luger K (January 2005).
2037: 849: 749: 745: 677: 649: 587: 554: 413: 392: 376: 271: 267: 263: 168: 156: 149: 145: 141: 83: 68: 64: 40: 4456: 3725:
Murugesapillai D, McCauley MJ, Maher LJ, Williams MC (February 2017).
3352: 2636:"Genome-scale identification of nucleosome positions in S. cerevisiae" 2388:
Fu Y, Sinha M, Peterson CL, Weng Z (July 2008). Van Steensel B (ed.).
2172: 1946:(fourth ed.). New York - Basingstoke: W. H. Freeman and Company. 816: 306: 4937: 4681: 4659: 4640: 3675: 2577:
Hodges C, Bintu L, Lubkowska L, Kashlev M, Bustamante C (July 2009).
2021: 1597: 704: 401: 336: 323: 247: 243: 167:
In contrast to most eukaryotic cells, mature sperm cells largely use
125: 117: 79: 48: 24: 3193: 2866: 2689: 2687: 2547: 2504: 1494: 1237:
In different crystals, values of 146 and 147 basepairs were observed
1051: 192:
The crystal structure of the nucleosome core particle consisting of
4923: 4707: 4292: 3724: 3546: 2101: 687: 542: 98: 3192:
Mizuguchi G, Shen X, Landry J, Wu WH, Sen S, Wu C (January 2004).
3053:
Kassabov SR, Zhang B, Persinger J, Bartholomew B (February 2003).
3023: 2823: 1401: 1376: 1326:
Shtumpf M, Piroeva KV, Agrawal SP, Jacob DR, Teif VB (June 2022).
1271: 925:
lberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002).
698: 270:. Adjacent nucleosomes are joined by a stretch of free DNA termed 5093: 4947: 4858: 4853: 3338: 3052: 2684: 2352: 384:
of the H4 tail distorts the higher-order structure of chromatin.
172: 129: 44: 3576:
Eaton ML, Galani K, Kang S, Bell SP, MacAlpine DM (April 2010).
5003: 4890: 4654: 4650: 4645: 4221: 1835:"Structure and dynamic properties of nucleosome core particles" 1374: 579: 550: 534: 3773: 3578:"Conserved nucleosome positioning defines replication origins" 3481: 5068: 5053: 5048: 5043: 5038: 5033: 5028: 5023: 5018: 4993: 4931: 4069: 2022:"Electrophoretic DNA analysis for the detection of apoptosis" 1972:
Acta Crystallographica. Section D, Biological Crystallography
1756:
Acta Crystallographica. Section D, Biological Crystallography
1711:
Acta Crystallographica. Section D, Biological Crystallography
1196:"Changes in histone gene dosage alter transcription in yeast" 1193: 591: 346: 319: 4397: 4222:
Kaufman PD, Kobayashi R, Kessler N, Stillman B (June 1995).
4028: 3774:
Winger J, Nodelman IM, Levendosky RF, Bowman GD (May 2018).
1704: 602:
A number of distinct reactions are associated with the term
3093: 2576: 575: 571: 507: 460: 116:
The nucleosome core particle consists of approximately 146
3001: 2244: 2193: 1575: 1325: 132:
octamer, consisting of 2 copies each of the core histones
3929:
Brandani GB, Takada S (November 2018). Onufriev A (ed.).
3624: 3298:
Nagaich AK, Walker DA, Wolford R, Hager GL (April 2004).
3297: 2438: 2245:
Robinson PJ, Fairall L, Huynh VA, Rhodes D (April 2006).
1788: 1249: 429:. Further compaction leads to transcriptionally inactive 121: 86:. Each human cell contains about 30 million nucleosomes. 74:
DNA must be compacted into nucleosomes to fit within the
36: 4033:. Methods in Enzymology. Vol. 375. pp. 23–44. 3142: 2490: 1793:. Methods in Enzymology. Vol. 375. pp. 44–62. 1305:(5th ed.). New York: Garland Science. p. 211. 944:
Encyclopedia of Bioinformatics and Computational Biology
928:
Chromosomal DNA and Its Packaging in the Chromatin Fiber
904:(4th ed.). New York: Garland Science. p. 207. 5111:
International System for Human Cytogenetic Nomenclature
4270: 3248: 2066: 942:
Teif VB, Clarkson CT (2019). "Nucleosome Positioning".
810:
The crystal structure of the nucleosome core particle (
516:
Histone tails and their function in chromatin formation
300:
The crystal structure of the nucleosome core particle (
2852: 924: 622:
Dynamic nucleosome remodelling across the Yeast genome
597: 4438: 4321: 3381: 3191: 3055:"SWI/SNF unwraps, slides, and rewraps the nucleosome" 2742: 1669: 1626: 1107: 237: 1969: 1753: 16:
Basic structural unit of DNA packaging in eukaryotes
4104: 3575: 2945:Fenley AT, Adams DA, Onufriev AV (September 2010). 2944: 2387: 553:. The information stored in this way is considered 339:("cell suicide" or programmed cell death), because 254:, consisting of 2 copies each of the core histones 4031:Chromatin and Chromatin Remodeling Enzymes, Part A 2020:Allen, Paul D.; Newland, Adrian C. (1 June 1998). 1791:Chromatin and Chromatin Remodeling Enzymes, Part A 1526: 870: 498: 4581:HistoneDB 2.0 - Database of histones and variants 4105:Frouws TD, Barth PD, Richmond TJ (January 2018). 3532: 1245: 1243: 574:(which leads to reduced nucleosome stability) or 183: 78:. In addition to nucleosome wrapping, eukaryotic 5125: 2633: 4487: 4362: 2895: 2486: 2484: 1828: 1826: 1522: 1520: 1518: 1516: 1514: 1512: 1431: 711:via an introduced cysteine (N38C) resulting in 699:Disulfide crosslinked nucleosome core particles 669: 148:. Core particles are connected by stretches of 4439:Vincent JA, Kwong TJ, Tsukiyama T (May 2008). 4153: 3928: 3876: 3827:"Uncovering a New Step in Sliding Nucleosomes" 3432: 2743:Allfrey VG, Faulkner R, Mirsky AE (May 1964). 1889: 1294: 1240: 719: 4619: 4605: 1890:White CL, Suto RK, Luger K (September 2001). 891: 868: 736:synthesized DNA behind the replication fork. 355: 4186: 3618: 3569: 3526: 3475: 3435:"The role of chromatin during transcription" 3426: 3375: 3291: 3242: 3185: 3136: 3087: 3046: 2995: 2938: 2889: 2846: 2795: 2736: 2527: 2481: 2432: 2381: 2238: 2152: 2060: 2019: 1883: 1823: 1782: 1747: 1698: 1509: 1150: 941: 3433:Li B, Carey M, Workman JL (February 2007). 2801: 2346: 2104:"A genomic code for nucleosome positioning" 1937: 1935: 1663: 1569: 1474: 1432:Thoma F, Koller T, Klug A (November 1979). 4612: 4598: 2158: 2009:(2nd ed.). New York: Garland Science. 986: 347:Protein interactions within the nucleosome 4513: 4464: 4445:Nature Structural & Molecular Biology 4415: 4339: 4239: 4130: 4005: 3964: 3954: 3902: 3850: 3801: 3791: 3750: 3701: 3652: 3642: 3601: 3450: 3341:Nature Structural & Molecular Biology 3315: 3266: 3217: 3160: 3119: 3070: 2978: 2921: 2855:Nature Structural & Molecular Biology 2778: 2768: 2719: 2659: 2610: 2536:Nature Structural & Molecular Biology 2493:Nature Structural & Molecular Biology 2464: 2415: 2405: 2329: 2303: 2280: 2270: 2135: 1965: 1963: 1915: 1858: 1730: 1552: 1527:Felsenfeld G, Groudine M (January 2003). 1457: 1400: 1351: 1233: 1231: 1211: 578:(which is associated with DNA repair and 484: 387: 315:is composed of DNA and histone proteins. 3987: 1932: 1064: 1037: 726: 676: 511: 508:Histone post-translational modifications 459:. In 2008, it was further revealed that 391: 295: 287: 276: 187: 18: 4546:Nucleosomes on the Richmond Lab website 2693: 2533: 2004: 1300: 897: 862: 369: 5126: 3824: 2700:Nature Reviews. Molecular Cell Biology 1960: 1941: 1480: 1228: 918: 764:In contrast to old H3 and H4, the old 396:The current chromatin compaction model 5101:List of organisms by chromosome count 4593: 4201:10.1093/oxfordjournals.jbchem.a122999 3924: 3922: 3895:10.1146/annurev-biophys-082520-080201 3872: 3870: 449: 93:inherited information in the form of 4488:Yadav T, Whitehouse I (April 2016). 3879:"Biophysics of Chromatin Remodeling" 877:. San Francisco: Benjamin Cummings. 660: 613:and, more astonishingly, remodeling 467: 4404:The Journal of Biological Chemistry 4328:The Journal of Biological Chemistry 4156:Nucleic Acids and Molecular Biology 3877:Nodelman IM, Bowman GD (May 2021). 2304:Teif VB, Rippe K (September 2009). 609:Studies looking at gene activation 598:ATP-dependent nucleosome remodeling 564: 246:of DNA wrapped in 1.67 left-handed 13: 3919: 3867: 2694:Lai WK, Pugh BF (September 2017). 1044:Nature Milestones: Gene Expression 956:10.1016/B978-0-12-809633-8.20242-2 604:ATP-dependent chromatin remodeling 238:The nucleosome core particle (NCP) 14: 5155: 4534: 481:during transcription elongation. 292:Scheme of nucleosome organization 89:Nucleosomes are thought to carry 801: 792: 783: 35:is the basic structural unit of 4722:Macrochromosome/Microchromosome 4481: 4432: 4391: 4356: 4315: 4264: 4215: 4180: 4158:. Vol. 8. pp. 14–40. 4147: 4098: 4063: 4022: 3981: 3818: 3767: 3718: 3669: 3332: 2627: 2570: 2297: 2187: 2095: 2013: 1998: 1620: 1425: 1368: 1319: 1187: 499:Modulating nucleosome structure 3831:Trends in Biochemical Sciences 1529:"Controlling the double helix" 1144: 1101: 1058: 1031: 980: 935: 759: 681:Diagram of nucleosome assembly 582:differentiation), whereas the 184:Structure of the core particle 1: 4541:MBInfo - What are nucleosomes 4241:10.1016/S0092-8674(05)80015-7 4039:10.1016/s0076-6879(03)75002-2 3988:Hayes JJ, Lee KM (May 1997). 3317:10.1016/S1097-2765(04)00178-9 3268:10.1016/S0092-8674(03)00934-6 3162:10.1016/S0092-8674(00)00215-4 3112:10.1016/S1097-2765(03)00499-4 3072:10.1016/S1097-2765(03)00039-X 2081:10.1016/S0022-2836(02)00386-8 1860:10.1016/j.febslet.2004.11.030 1799:10.1016/s0076-6879(03)75003-4 1483:Biochemistry and Cell Biology 1303:Molecular Biology of the Cell 901:Molecular biology of the cell 855: 685:Nucleosomes can be assembled 4506:10.1016/J.CELREP.2016.03.059 4111:Journal of Molecular Biology 4072:Journal of Molecular Biology 3956:10.1371/journal.pcbi.1006512 3644:10.1371/journal.pbio.0060065 2914:10.1016/j.molcel.2005.02.031 2407:10.1371/journal.pgen.1000138 2367:10.1016/0022-2836(89)90449-X 2355:Journal of Molecular Biology 2069:Journal of Molecular Biology 1165:10.1016/0092-8674(88)90258-9 1122:10.1016/0092-8674(87)90561-7 1087:10.1126/science.184.4139.868 1038:McDonald D (December 2005). 1009:10.1126/science.183.4122.330 869:Reece J, Campbell N (2006). 739: 731:Steps in nucleosome assembly 178: 124:wrapped in 1.67 left-handed 7: 4164:10.1007/978-3-642-78666-2_2 3883:Annual Review of Biophysics 1438:The Journal of Cell Biology 843: 754:chromatin assembly factor 1 436: 329:pattern similar to a ladder 212: 10: 5160: 4762:Dinoflagellate chromosomes 3935:PLOS Computational Biology 3843:10.1016/j.tibs.2019.05.001 3452:10.1016/j.cell.2007.01.015 1344:10.1007/s00412-021-00766-9 776: 356:Histone - DNA interactions 232:root mean square deviation 5106:List of sequenced genomes 5081: 4984: 4946: 4916: 4874:Chromosomal translocation 4844: 4747:A chromosome/B chromosome 4738:(or accessory chromosome) 4700: 4631: 4576:Histone protein structure 4123:10.1016/j.jmb.2017.10.029 3825:Bowman GD (August 2019). 3743:10.1007/s12551-016-0236-4 2971:10.1016/j.bpj.2010.06.046 1984:10.1107/S0907444900011847 1768:10.1107/s0907444900011847 1732:10.1107/S0907444995009139 4928:Telomere-binding protein 4742:Supernumerary chromosome 1908:10.1093/emboj/20.18.5207 1641:10.1002/elps.11501601305 645:Saccharomyces cerevisiae 559:cellular differentiation 155:Linker histones such as 4189:Journal of Biochemistry 3582:Genes & Development 3219:10.1126/science.1090701 2661:10.1126/science.1112178 2603:10.1126/science.1172926 2272:10.1073/pnas.0601212103 2026:Molecular Biotechnology 1672:Analytical Biochemistry 1200:Genes & Development 343:typically is its role. 282:Apoptotic DNA laddering 4864:Structural alterations 4417:10.1074/jbc.M411347200 4341:10.1074/jbc.M512956200 4084:10.1006/jmbi.1994.1243 4007:10.1006/meth.1997.0441 3682:Nucleic Acids Research 2445:Nucleic Acids Research 2310:Nucleic Acids Research 2007:Essential Cell Biology 1684:10.1006/abio.1995.1509 732: 682: 632:origins of replication 584:inactive X chromosomes 517: 485:Nucleosome free region 397: 388:Higher order structure 341:autodestruction of DNA 311: 293: 285: 209: 95:covalent modifications 28: 4881:Numerical alterations 4869:Chromosomal inversion 4767:Homologous chromosome 4561:Nucleosome at the PDB 2770:10.1073/pnas.51.5.786 730: 680: 515: 395: 299: 291: 280: 191: 22: 5144:Nuclear organization 5089:Extrachromosomal DNA 4777:Satellite chromosome 4752:Lampbrush chromosome 4692:Nuclear organization 1978:(Pt 12): 1513–1534. 1762:(Pt 12): 1513–1534. 1450:10.1083/jcb.83.2.403 720:Nucleosome assembly 670:Nucleosome assembly 654:transcription factor 370:Histone tail domains 4782:Centromere position 4757:Polytene chromosome 4727:Circular chromosome 4377:10.1021/bi00334a002 4285:1999Natur.402..555T 3947:2018PLSCB..14E6512B 3793:10.7554/eLife.34100 3731:Biophysical Reviews 3594:10.1101/gad.1913210 3504:10.1038/nature06391 3496:2007Natur.450.1031W 3490:(7172): 1031–1035. 3404:10.1038/nature05632 3396:2007Natur.446..572A 3210:2004Sci...303..343M 3016:1999Natur.400..784W 2963:2010BpJ....99.1577F 2951:Biophysical Journal 2816:2000Natur.403...41S 2761:1964PNAS...51..786A 2712:10.1038/nrm.2017.47 2652:2005Sci...309..626Y 2595:2009Sci...325..626H 2263:2006PNAS..103.6506R 2216:10.1038/nature03686 2208:2005Natur.436..138S 2128:10.1038/nature04979 2120:2006Natur.442..772S 1851:2005FEBSL.579..895C 1723:1996AcCrD..52..283H 1590:1984Natur.311..532R 1554:10.1038/nature01411 1545:2003Natur.421..448F 1444:(2 Pt 1): 403–427. 1393:1998Natur.395..402Z 1264:1997Natur.389..251L 1213:10.1101/gad.2.2.150 1079:1974Sci...184..868K 1001:1974Sci...183..330O 444:cooperative binding 422:electron microscopy 333:gel electrophoresis 162:electron microscope 103:regulatory proteins 3694:10.1093/nar/gku635 2457:10.1093/nar/gks665 2322:10.1093/nar/gkp610 2038:10.1007/BF02915798 2005:Alberts B (2009). 1489:(10–11): 856–866. 1301:Alberts B (2007). 931:. Garland Science. 733: 683: 590:H3 is replaced by 518: 450:Nucleosome sliding 398: 331:is visible during 312: 294: 286: 248:superhelical turns 210: 126:superhelical turns 29: 5134:Molecular biology 5119: 5118: 5077: 5076: 4814:Centromere number 4731:Linear chromosome 4457:10.1038/nsmb.1419 4371:(13): 3080–3085. 4334:(14): 9287–9296. 4279:(6761): 555–560. 4173:978-3-642-78668-6 3688:(14): 8996–9004. 3541:(10): 1235–1244. 3390:(7135): 572–576. 3353:10.1038/nsmb.2419 3347:(11): 1185–1192. 3204:(5656): 343–348. 3010:(6746): 784–787. 2861:(11): 1037–1043. 2646:(5734): 626–630. 2589:(5940): 626–628. 2451:(18): 8965–8978. 2316:(17): 5641–5655. 2257:(17): 6506–6511. 2202:(7047): 138–141. 2173:10.1002/bip.10303 2114:(7104): 772–778. 1942:Stryer L (1995). 1902:(18): 5207–5218. 1717:(Pt 2): 283–288. 1635:(10): 1861–1864. 1539:(6921): 448–453. 1387:(6700): 402–405. 1312:978-0-8153-4106-2 1258:(6648): 251–260. 1073:(4139): 868–871. 995:(4122): 330–332. 911:978-0-8153-4072-0 884:978-0-8053-6624-2 661:DNA Twist Defects 495:histone variant. 479:RNA polymerase II 468:DNA site exposure 220:crystal structure 5151: 4944: 4943: 4908:Polyploidization 4736:Extra chromosome 4651:Genetic material 4614: 4607: 4600: 4591: 4590: 4528: 4527: 4517: 4485: 4479: 4478: 4468: 4436: 4430: 4429: 4419: 4410:(3): 1817–1825. 4395: 4389: 4388: 4360: 4354: 4353: 4343: 4319: 4313: 4312: 4268: 4262: 4261: 4243: 4234:(7): 1105–1114. 4219: 4213: 4212: 4184: 4178: 4177: 4151: 4145: 4144: 4134: 4102: 4096: 4095: 4067: 4061: 4060: 4026: 4020: 4019: 4009: 3985: 3979: 3978: 3968: 3958: 3941:(11): e1006512. 3926: 3917: 3916: 3906: 3874: 3865: 3864: 3854: 3822: 3816: 3815: 3805: 3795: 3771: 3765: 3764: 3754: 3722: 3716: 3715: 3705: 3673: 3667: 3666: 3656: 3646: 3622: 3616: 3615: 3605: 3573: 3567: 3566: 3530: 3524: 3523: 3479: 3473: 3472: 3454: 3430: 3424: 3423: 3379: 3373: 3372: 3336: 3330: 3329: 3319: 3295: 3289: 3288: 3270: 3246: 3240: 3239: 3221: 3189: 3183: 3182: 3164: 3155:(7): 1133–1142. 3140: 3134: 3133: 3123: 3106:(6): 1599–1606. 3091: 3085: 3084: 3074: 3050: 3044: 3043: 2999: 2993: 2992: 2982: 2957:(5): 1577–1585. 2942: 2936: 2935: 2925: 2893: 2887: 2886: 2850: 2844: 2843: 2799: 2793: 2792: 2782: 2772: 2740: 2734: 2733: 2723: 2691: 2682: 2681: 2663: 2631: 2625: 2624: 2614: 2574: 2568: 2567: 2531: 2525: 2524: 2488: 2479: 2478: 2468: 2436: 2430: 2429: 2419: 2409: 2385: 2379: 2378: 2350: 2344: 2343: 2333: 2301: 2295: 2294: 2284: 2274: 2242: 2236: 2235: 2191: 2185: 2184: 2156: 2150: 2149: 2139: 2099: 2093: 2092: 2075:(5): 1097–1113. 2064: 2058: 2057: 2017: 2011: 2010: 2002: 1996: 1995: 1967: 1958: 1957: 1939: 1930: 1929: 1919: 1896:The EMBO Journal 1887: 1881: 1880: 1862: 1830: 1821: 1820: 1786: 1780: 1779: 1751: 1745: 1744: 1734: 1702: 1696: 1695: 1667: 1661: 1660: 1624: 1618: 1617: 1598:10.1038/311532a0 1573: 1567: 1566: 1556: 1524: 1507: 1506: 1478: 1472: 1471: 1461: 1429: 1423: 1422: 1404: 1372: 1366: 1365: 1355: 1323: 1317: 1316: 1298: 1292: 1291: 1247: 1238: 1235: 1226: 1225: 1215: 1191: 1185: 1184: 1159:(6): 1137–1145. 1148: 1142: 1141: 1105: 1099: 1098: 1062: 1056: 1055: 1035: 1029: 1028: 984: 978: 977: 939: 933: 932: 922: 916: 915: 895: 889: 888: 876: 866: 839: 835: 831: 827: 823: 819: 805: 796: 787: 565:Histone variants 410:30 nm fiber 363:hydrogen bonding 309: 207: 203: 199: 195: 45:histone proteins 5159: 5158: 5154: 5153: 5152: 5150: 5149: 5148: 5124: 5123: 5120: 5115: 5073: 4980: 4942: 4912: 4901:Paleopolyploidy 4846: 4840: 4696: 4670:Heterochromatin 4633: 4627: 4618: 4537: 4532: 4531: 4486: 4482: 4437: 4433: 4396: 4392: 4361: 4357: 4320: 4316: 4269: 4265: 4220: 4216: 4185: 4181: 4174: 4152: 4148: 4103: 4099: 4068: 4064: 4049: 4027: 4023: 3986: 3982: 3927: 3920: 3875: 3868: 3823: 3819: 3772: 3768: 3723: 3719: 3674: 3670: 3623: 3619: 3574: 3570: 3535:Nature Genetics 3531: 3527: 3480: 3476: 3431: 3427: 3380: 3376: 3337: 3333: 3296: 3292: 3247: 3243: 3190: 3186: 3141: 3137: 3092: 3088: 3051: 3047: 3000: 2996: 2943: 2939: 2894: 2890: 2867:10.1038/nsmb851 2851: 2847: 2810:(6765): 41–45. 2800: 2796: 2741: 2737: 2692: 2685: 2632: 2628: 2575: 2571: 2548:10.1038/nsmb801 2532: 2528: 2505:10.1038/nsmb869 2489: 2482: 2437: 2433: 2400:(7): e1000138. 2386: 2382: 2351: 2347: 2302: 2298: 2243: 2239: 2192: 2188: 2157: 2153: 2100: 2096: 2065: 2061: 2018: 2014: 2003: 1999: 1994:. PDB ID: 1EQZ. 1968: 1961: 1954: 1940: 1933: 1888: 1884: 1831: 1824: 1809: 1787: 1783: 1752: 1748: 1703: 1699: 1668: 1664: 1629:Electrophoresis 1625: 1621: 1584:(5986): 532–7. 1574: 1570: 1525: 1510: 1495:10.1139/o92-134 1479: 1475: 1430: 1426: 1373: 1369: 1324: 1320: 1313: 1299: 1295: 1248: 1241: 1236: 1229: 1192: 1188: 1149: 1145: 1106: 1102: 1063: 1059: 1052:10.1038/nrm1798 1036: 1032: 985: 981: 966: 940: 936: 923: 919: 912: 896: 892: 885: 867: 863: 858: 846: 837: 833: 829: 825: 821: 811: 806: 797: 788: 779: 762: 742: 725: 713:histone octamer 701: 675: 663: 640:dynamic changes 624: 600: 567: 547:phosphorylation 510: 501: 487: 470: 452: 439: 431:heterochromatin 390: 372: 358: 349: 301: 252:histone octamer 240: 227:palindromic DNA 224:alpha satellite 215: 205: 201: 197: 193: 186: 181: 53:histone octamer 23:Basic units of 17: 12: 11: 5: 5157: 5147: 5146: 5141: 5136: 5117: 5116: 5114: 5113: 5108: 5103: 5098: 5097: 5096: 5085: 5083: 5079: 5078: 5075: 5074: 5072: 5071: 5066: 5061: 5056: 5051: 5046: 5041: 5036: 5031: 5026: 5021: 5016: 5011: 5006: 5001: 4996: 4990: 4988: 4982: 4981: 4979: 4978: 4973: 4968: 4963: 4958: 4952: 4950: 4941: 4940: 4935: 4920: 4918: 4914: 4913: 4911: 4910: 4905: 4904: 4903: 4898: 4893: 4888: 4878: 4877: 4876: 4871: 4861: 4856: 4850: 4848: 4842: 4841: 4839: 4838: 4837: 4836: 4831: 4826: 4821: 4811: 4810: 4809: 4804: 4799: 4794: 4792:Submetacentric 4789: 4779: 4774: 4769: 4764: 4759: 4754: 4749: 4744: 4739: 4733: 4724: 4719: 4718:or heterosome) 4712:Sex chromosome 4704: 4702: 4698: 4697: 4695: 4694: 4689: 4684: 4679: 4674: 4673: 4672: 4667: 4657: 4648: 4643: 4637: 4635: 4629: 4628: 4617: 4616: 4609: 4602: 4594: 4588: 4587: 4578: 4573: 4568: 4563: 4558: 4548: 4543: 4536: 4535:External links 4533: 4530: 4529: 4500:(4): 715–723. 4480: 4451:(5): 477–484. 4431: 4390: 4355: 4314: 4293:10.1038/990147 4263: 4214: 4179: 4172: 4146: 4097: 4078:(4): 401–414. 4062: 4047: 4021: 3980: 3918: 3866: 3837:(8): 643–645. 3817: 3766: 3717: 3668: 3617: 3588:(8): 748–753. 3568: 3547:10.1038/ng2117 3525: 3474: 3445:(4): 707–719. 3425: 3374: 3331: 3310:(2): 163–174. 3304:Molecular Cell 3290: 3261:(6): 751–763. 3241: 3184: 3135: 3100:Molecular Cell 3086: 3065:(2): 391–403. 3059:Molecular Cell 3045: 2994: 2937: 2908:(1): 123–130. 2902:Molecular Cell 2888: 2845: 2794: 2755:(5): 786–794. 2735: 2706:(9): 548–562. 2683: 2626: 2569: 2542:(8): 763–769. 2526: 2480: 2431: 2380: 2361:(1): 183–192. 2345: 2296: 2237: 2186: 2167:(4): 539–546. 2151: 2094: 2059: 2032:(3): 247–251. 2012: 1997: 1959: 1953:978-0716720096 1952: 1931: 1882: 1845:(4): 895–898. 1822: 1807: 1781: 1746: 1697: 1678:(1): 109–114. 1662: 1619: 1568: 1508: 1473: 1424: 1367: 1338:(1–2): 19–28. 1318: 1311: 1293: 1239: 1227: 1206:(2): 150–159. 1186: 1143: 1116:(2): 203–210. 1100: 1057: 1030: 979: 964: 934: 917: 910: 890: 883: 860: 859: 857: 854: 853: 852: 845: 842: 840:are coloured. 808: 807: 800: 798: 791: 789: 782: 778: 775: 761: 758: 741: 738: 724: 718: 700: 697: 674: 668: 662: 659: 623: 620: 599: 596: 566: 563: 531:ubiquitination 509: 506: 500: 497: 486: 483: 469: 466: 451: 448: 438: 435: 389: 386: 371: 368: 357: 354: 348: 345: 239: 236: 234:of only 1.6Γ…. 214: 211: 185: 182: 180: 177: 111:Roger Kornberg 97:of their core 91:epigenetically 15: 9: 6: 4: 3: 2: 5156: 5145: 5142: 5140: 5137: 5135: 5132: 5131: 5129: 5122: 5112: 5109: 5107: 5104: 5102: 5099: 5095: 5092: 5091: 5090: 5087: 5086: 5084: 5080: 5070: 5067: 5065: 5062: 5060: 5057: 5055: 5052: 5050: 5047: 5045: 5042: 5040: 5037: 5035: 5032: 5030: 5027: 5025: 5022: 5020: 5017: 5015: 5012: 5010: 5007: 5005: 5002: 5000: 4997: 4995: 4992: 4991: 4989: 4987: 4983: 4977: 4974: 4972: 4969: 4967: 4964: 4962: 4959: 4957: 4954: 4953: 4951: 4949: 4945: 4939: 4936: 4933: 4929: 4925: 4922: 4921: 4919: 4915: 4909: 4906: 4902: 4899: 4897: 4894: 4892: 4889: 4887: 4884: 4883: 4882: 4879: 4875: 4872: 4870: 4867: 4866: 4865: 4862: 4860: 4857: 4855: 4852: 4851: 4849: 4847:and evolution 4843: 4835: 4832: 4830: 4827: 4825: 4822: 4820: 4817: 4816: 4815: 4812: 4808: 4805: 4803: 4800: 4798: 4795: 4793: 4790: 4788: 4785: 4784: 4783: 4780: 4778: 4775: 4773: 4772:Isochromosome 4770: 4768: 4765: 4763: 4760: 4758: 4755: 4753: 4750: 4748: 4745: 4743: 4740: 4737: 4734: 4732: 4728: 4725: 4723: 4720: 4717: 4713: 4709: 4706: 4705: 4703: 4699: 4693: 4690: 4688: 4685: 4683: 4680: 4678: 4675: 4671: 4668: 4666: 4663: 4662: 4661: 4658: 4656: 4652: 4649: 4647: 4644: 4642: 4639: 4638: 4636: 4630: 4626: 4622: 4615: 4610: 4608: 4603: 4601: 4596: 4595: 4592: 4586: 4582: 4579: 4577: 4574: 4572: 4569: 4567: 4564: 4562: 4559: 4557: 4556: 4553: 4549: 4547: 4544: 4542: 4539: 4538: 4525: 4521: 4516: 4511: 4507: 4503: 4499: 4495: 4491: 4484: 4476: 4472: 4467: 4462: 4458: 4454: 4450: 4446: 4442: 4435: 4427: 4423: 4418: 4413: 4409: 4405: 4401: 4394: 4386: 4382: 4378: 4374: 4370: 4366: 4359: 4351: 4347: 4342: 4337: 4333: 4329: 4325: 4318: 4310: 4306: 4302: 4298: 4294: 4290: 4286: 4282: 4278: 4274: 4267: 4259: 4255: 4251: 4247: 4242: 4237: 4233: 4229: 4225: 4218: 4210: 4206: 4202: 4198: 4194: 4190: 4183: 4175: 4169: 4165: 4161: 4157: 4150: 4142: 4138: 4133: 4128: 4124: 4120: 4116: 4112: 4108: 4101: 4093: 4089: 4085: 4081: 4077: 4073: 4066: 4058: 4054: 4050: 4048:9780121827793 4044: 4040: 4036: 4032: 4025: 4017: 4013: 4008: 4003: 3999: 3995: 3991: 3984: 3976: 3972: 3967: 3962: 3957: 3952: 3948: 3944: 3940: 3936: 3932: 3925: 3923: 3914: 3910: 3905: 3900: 3896: 3892: 3888: 3884: 3880: 3873: 3871: 3862: 3858: 3853: 3848: 3844: 3840: 3836: 3832: 3828: 3821: 3813: 3809: 3804: 3799: 3794: 3789: 3785: 3781: 3777: 3770: 3762: 3758: 3753: 3748: 3744: 3740: 3736: 3732: 3728: 3721: 3713: 3709: 3704: 3699: 3695: 3691: 3687: 3683: 3679: 3672: 3664: 3660: 3655: 3650: 3645: 3640: 3636: 3632: 3628: 3621: 3613: 3609: 3604: 3599: 3595: 3591: 3587: 3583: 3579: 3572: 3564: 3560: 3556: 3552: 3548: 3544: 3540: 3536: 3529: 3521: 3517: 3513: 3509: 3505: 3501: 3497: 3493: 3489: 3485: 3478: 3470: 3466: 3462: 3458: 3453: 3448: 3444: 3440: 3436: 3429: 3421: 3417: 3413: 3409: 3405: 3401: 3397: 3393: 3389: 3385: 3378: 3370: 3366: 3362: 3358: 3354: 3350: 3346: 3342: 3335: 3327: 3323: 3318: 3313: 3309: 3305: 3301: 3294: 3286: 3282: 3278: 3274: 3269: 3264: 3260: 3256: 3252: 3245: 3237: 3233: 3229: 3225: 3220: 3215: 3211: 3207: 3203: 3199: 3195: 3188: 3180: 3176: 3172: 3168: 3163: 3158: 3154: 3150: 3146: 3139: 3131: 3127: 3122: 3117: 3113: 3109: 3105: 3101: 3097: 3090: 3082: 3078: 3073: 3068: 3064: 3060: 3056: 3049: 3041: 3037: 3033: 3029: 3025: 3024:10.1038/23506 3021: 3017: 3013: 3009: 3005: 2998: 2990: 2986: 2981: 2976: 2972: 2968: 2964: 2960: 2956: 2952: 2948: 2941: 2933: 2929: 2924: 2919: 2915: 2911: 2907: 2903: 2899: 2892: 2884: 2880: 2876: 2872: 2868: 2864: 2860: 2856: 2849: 2841: 2837: 2833: 2829: 2825: 2824:10.1038/47412 2821: 2817: 2813: 2809: 2805: 2798: 2790: 2786: 2781: 2776: 2771: 2766: 2762: 2758: 2754: 2750: 2746: 2739: 2731: 2727: 2722: 2717: 2713: 2709: 2705: 2701: 2697: 2690: 2688: 2679: 2675: 2671: 2667: 2662: 2657: 2653: 2649: 2645: 2641: 2637: 2630: 2622: 2618: 2613: 2608: 2604: 2600: 2596: 2592: 2588: 2584: 2580: 2573: 2565: 2561: 2557: 2553: 2549: 2545: 2541: 2537: 2530: 2522: 2518: 2514: 2510: 2506: 2502: 2498: 2494: 2487: 2485: 2476: 2472: 2467: 2462: 2458: 2454: 2450: 2446: 2442: 2435: 2427: 2423: 2418: 2413: 2408: 2403: 2399: 2395: 2394:PLOS Genetics 2391: 2384: 2376: 2372: 2368: 2364: 2360: 2356: 2349: 2341: 2337: 2332: 2327: 2323: 2319: 2315: 2311: 2307: 2300: 2292: 2288: 2283: 2278: 2273: 2268: 2264: 2260: 2256: 2252: 2248: 2241: 2233: 2229: 2225: 2221: 2217: 2213: 2209: 2205: 2201: 2197: 2190: 2182: 2178: 2174: 2170: 2166: 2162: 2155: 2147: 2143: 2138: 2133: 2129: 2125: 2121: 2117: 2113: 2109: 2105: 2098: 2090: 2086: 2082: 2078: 2074: 2070: 2063: 2055: 2051: 2047: 2043: 2039: 2035: 2031: 2027: 2023: 2016: 2008: 2001: 1993: 1989: 1985: 1981: 1977: 1973: 1966: 1964: 1955: 1949: 1945: 1938: 1936: 1927: 1923: 1918: 1913: 1909: 1905: 1901: 1897: 1893: 1886: 1878: 1874: 1870: 1866: 1861: 1856: 1852: 1848: 1844: 1840: 1836: 1829: 1827: 1818: 1814: 1810: 1808:9780121827793 1804: 1800: 1796: 1792: 1785: 1777: 1773: 1769: 1765: 1761: 1757: 1750: 1742: 1738: 1733: 1728: 1724: 1720: 1716: 1712: 1708: 1701: 1693: 1689: 1685: 1681: 1677: 1673: 1666: 1658: 1654: 1650: 1646: 1642: 1638: 1634: 1630: 1623: 1615: 1611: 1607: 1603: 1599: 1595: 1591: 1587: 1583: 1579: 1572: 1564: 1560: 1555: 1550: 1546: 1542: 1538: 1534: 1530: 1523: 1521: 1519: 1517: 1515: 1513: 1504: 1500: 1496: 1492: 1488: 1484: 1477: 1469: 1465: 1460: 1455: 1451: 1447: 1443: 1439: 1435: 1428: 1420: 1416: 1412: 1408: 1403: 1402:10.1038/26521 1398: 1394: 1390: 1386: 1382: 1378: 1371: 1363: 1359: 1354: 1349: 1345: 1341: 1337: 1333: 1329: 1322: 1314: 1308: 1304: 1297: 1289: 1285: 1281: 1277: 1273: 1272:10.1038/38444 1269: 1265: 1261: 1257: 1253: 1246: 1244: 1234: 1232: 1223: 1219: 1214: 1209: 1205: 1201: 1197: 1190: 1182: 1178: 1174: 1170: 1166: 1162: 1158: 1154: 1147: 1139: 1135: 1131: 1127: 1123: 1119: 1115: 1111: 1104: 1096: 1092: 1088: 1084: 1080: 1076: 1072: 1068: 1061: 1053: 1049: 1045: 1041: 1034: 1026: 1022: 1018: 1014: 1010: 1006: 1002: 998: 994: 990: 983: 975: 971: 967: 965:9780128114322 961: 957: 953: 949: 945: 938: 930: 929: 921: 913: 907: 903: 902: 894: 886: 880: 875: 874: 865: 861: 851: 848: 847: 841: 818: 814: 804: 799: 795: 790: 786: 781: 780: 774: 771: 767: 757: 755: 751: 747: 737: 729: 723: 717: 714: 710: 706: 696: 694: 690: 689: 679: 673: 667: 658: 655: 651: 647: 646: 641: 637: 636:transcription 633: 629: 619: 616: 612: 607: 605: 595: 593: 589: 585: 581: 577: 573: 562: 560: 556: 552: 548: 544: 540: 536: 532: 528: 524: 514: 505: 496: 493: 492:S. cerevisiae 482: 480: 475: 465: 462: 458: 447: 445: 434: 432: 428: 423: 417: 415: 411: 407: 403: 394: 385: 383: 378: 367: 364: 353: 344: 342: 338: 334: 330: 325: 322:digestion of 321: 316: 308: 304: 298: 290: 283: 279: 275: 273: 269: 265: 261: 257: 253: 249: 245: 235: 233: 228: 225: 221: 190: 176: 174: 170: 165: 163: 158: 153: 151: 147: 143: 139: 135: 131: 127: 123: 119: 114: 112: 106: 104: 100: 96: 92: 87: 85: 81: 77: 72: 70: 66: 62: 58: 54: 50: 46: 42: 39:packaging in 38: 34: 26: 21: 5121: 4813: 4781: 4686: 4621:Cytogenetics 4550: 4497: 4494:Cell Reports 4493: 4483: 4448: 4444: 4434: 4407: 4403: 4393: 4368: 4365:Biochemistry 4364: 4358: 4331: 4327: 4317: 4276: 4272: 4266: 4231: 4227: 4217: 4195:(1): 15–20. 4192: 4188: 4182: 4155: 4149: 4117:(1): 45–57. 4114: 4110: 4100: 4075: 4071: 4065: 4030: 4024: 3997: 3993: 3983: 3938: 3934: 3889:(1): 73–93. 3886: 3882: 3834: 3830: 3820: 3783: 3779: 3769: 3737:(1): 17–40. 3734: 3730: 3720: 3685: 3681: 3671: 3634: 3631:PLOS Biology 3630: 3620: 3585: 3581: 3571: 3538: 3534: 3528: 3487: 3483: 3477: 3442: 3438: 3428: 3387: 3383: 3377: 3344: 3340: 3334: 3307: 3303: 3293: 3258: 3254: 3244: 3201: 3197: 3187: 3152: 3148: 3138: 3103: 3099: 3089: 3062: 3058: 3048: 3007: 3003: 2997: 2954: 2950: 2940: 2905: 2901: 2891: 2858: 2854: 2848: 2807: 2803: 2797: 2752: 2748: 2738: 2703: 2699: 2643: 2639: 2629: 2586: 2582: 2572: 2539: 2535: 2529: 2499:(1): 46–53. 2496: 2492: 2448: 2444: 2434: 2397: 2393: 2383: 2358: 2354: 2348: 2313: 2309: 2299: 2254: 2250: 2240: 2199: 2195: 2189: 2164: 2160: 2154: 2111: 2107: 2097: 2072: 2068: 2062: 2029: 2025: 2015: 2006: 2000: 1975: 1971: 1944:Biochemistry 1943: 1899: 1895: 1885: 1842: 1839:FEBS Letters 1838: 1790: 1784: 1759: 1755: 1749: 1714: 1710: 1700: 1675: 1671: 1665: 1632: 1628: 1622: 1581: 1577: 1571: 1536: 1532: 1486: 1482: 1476: 1441: 1437: 1427: 1384: 1380: 1370: 1335: 1331: 1321: 1302: 1296: 1255: 1251: 1203: 1199: 1189: 1156: 1152: 1146: 1113: 1109: 1103: 1070: 1066: 1060: 1043: 1033: 992: 988: 982: 947: 943: 937: 927: 920: 900: 893: 872: 864: 809: 763: 743: 734: 721: 702: 686: 684: 671: 664: 643: 639: 630:regions and 625: 614: 610: 608: 601: 568: 519: 502: 491: 488: 471: 456: 453: 440: 418: 409: 405: 399: 373: 359: 350: 317: 313: 241: 216: 166: 154: 115: 107: 88: 76:cell nucleus 73: 32: 30: 5139:Epigenetics 4834:Polycentric 4824:Monocentric 4807:Holocentric 4802:Acrocentric 4797:Telocentric 4787:Metacentric 4665:Euchromatin 4625:chromosomes 4555:Nucleosomes 4552:Proteopedia 2161:Biopolymers 950:: 308–317. 760:H2A and H2B 588:centromeres 539:methylation 527:methylation 523:acetylation 427:euchromatin 406:10-nm-fiber 382:acetylation 250:around the 5128:Categories 4986:Centromere 4917:Structures 4896:Polyploidy 4886:Aneuploidy 4687:Nucleosome 4677:Chromosome 4000:(1): 2–9. 3786:: e34100. 3637:(3): e65. 1332:Chromosoma 856:References 850:Chromomere 650:heat shock 555:epigenetic 414:H1 histone 377:N-terminal 272:linker DNA 169:protamines 150:linker DNA 118:base pairs 84:chromosome 41:eukaryotes 33:nucleosome 4938:Protamine 4845:Processes 4829:Dicentric 4682:Chromatid 4660:Chromatin 4641:Karyotype 4309:205097512 2046:1559-0305 1419:204997317 744:Histones 740:H3 and H4 705:disulfide 402:chromatin 337:apoptosis 324:chromatin 244:base pair 179:Structure 128:around a 80:chromatin 49:chromatin 27:structure 25:chromatin 5082:See also 4924:Telomere 4891:Euploidy 4819:Acentric 4716:allosome 4708:Autosome 4634:concepts 4524:27149855 4475:18408730 4426:15516689 4350:16464854 4301:10591219 4258:13502921 4141:29113904 4057:14870657 3975:30395604 3913:33395550 3861:31171402 3812:29809147 3761:28303166 3712:25063301 3663:18351804 3612:20351051 3563:12816925 3555:17873876 3512:18075583 3461:17320508 3412:17392789 3369:34509771 3361:23085715 3326:15099516 3277:14675539 3228:14645854 3171:11163188 3130:14690611 3081:12620227 3032:10466730 2989:20816070 2932:15808514 2883:34704745 2875:15523479 2832:10638745 2789:14172992 2730:28537572 2678:43625066 2670:15961632 2621:19644123 2564:11299024 2556:15258568 2521:14540078 2513:15580276 2475:22821566 2426:18654629 2340:19625488 2291:16617109 2224:16001076 2181:12666178 2146:16862119 2089:12079350 1992:11092917 1926:11566884 1877:41706403 1869:15680970 1817:14870658 1776:11092917 1741:15299701 1657:20178479 1563:12540921 1362:35061087 1181:41520634 1138:21270171 1025:83480762 974:43929234 844:See also 722:in vivo 693:dialysis 688:in vitro 672:in vitro 628:promoter 615:in vitro 543:arginine 437:Dynamics 318:Partial 310:​) 213:Overview 120:(bp) of 99:histones 5094:Plasmid 4948:Histone 4859:Meiosis 4854:Mitosis 4515:5063657 4466:2678716 4385:4027229 4281:Bibcode 4250:7600578 4209:2332416 4132:5757783 4092:8151701 4016:9169189 3994:Methods 3966:6237416 3943:Bibcode 3904:8428145 3852:7092708 3803:6031429 3752:5331113 3703:4132745 3654:2267817 3603:2854390 3520:4305576 3492:Bibcode 3469:1773333 3420:4416890 3392:Bibcode 3236:9881829 3206:Bibcode 3198:Science 3179:7911590 3121:3428624 3040:2841873 3012:Bibcode 2980:2931741 2959:Bibcode 2923:2855496 2840:4418993 2812:Bibcode 2757:Bibcode 2721:5831138 2648:Bibcode 2640:Science 2612:2775800 2591:Bibcode 2583:Science 2466:3467062 2417:2453330 2375:2738923 2331:2761276 2282:1436021 2259:Bibcode 2232:4387396 2204:Bibcode 2137:2623244 2116:Bibcode 2054:9718585 1847:Bibcode 1719:Bibcode 1692:8678288 1649:8586054 1614:4355982 1606:6482966 1586:Bibcode 1541:Bibcode 1503:1297351 1459:2111545 1411:9759733 1389:Bibcode 1353:8776978 1288:4328827 1280:9305837 1260:Bibcode 1222:2834270 1173:2849508 1130:3568125 1095:4825889 1075:Bibcode 1067:Science 1017:4128918 997:Bibcode 989:Science 873:Biology 777:Gallery 611:in vivo 173:Archaea 130:histone 4655:Genome 4646:Ploidy 4522:  4512:  4473:  4463:  4424:  4383:  4348:  4307:  4299:  4273:Nature 4256:  4248:  4207:  4170:  4139:  4129:  4090:  4055:  4045:  4014:  3973:  3963:  3911:  3901:  3859:  3849:  3810:  3800:  3759:  3749:  3710:  3700:  3661:  3651:  3610:  3600:  3561:  3553:  3518:  3510:  3484:Nature 3467:  3459:  3418:  3410:  3384:Nature 3367:  3359:  3324:  3285:145525 3283:  3275:  3234:  3226:  3177:  3169:  3128:  3118:  3079:  3038:  3030:  3004:Nature 2987:  2977:  2930:  2920:  2881:  2873:  2838:  2830:  2804:Nature 2787:  2780:300163 2777:  2728:  2718:  2676:  2668:  2619:  2609:  2562:  2554:  2519:  2511:  2473:  2463:  2424:  2414:  2373:  2338:  2328:  2289:  2279:  2230:  2222:  2196:Nature 2179:  2144:  2134:  2108:Nature 2087:  2052:  2044:  1990:  1950:  1924:  1917:125637 1914:  1875:  1867:  1815:  1805:  1774:  1739:  1690:  1655:  1647:  1612:  1604:  1578:Nature 1561:  1533:Nature 1501:  1468:387806 1466:  1456:  1417:  1409:  1381:Nature 1360:  1350:  1309:  1286:  1278:  1252:Nature 1220:  1179:  1171:  1136:  1128:  1093:  1023:  1015:  972:  962:  908:  881:  580:T cell 551:serine 545:; and 535:lysine 457:in cis 266:, and 144:, and 67:, and 4932:TINF2 4701:Types 4632:Basic 4305:S2CID 4254:S2CID 3780:eLife 3559:S2CID 3516:S2CID 3465:S2CID 3416:S2CID 3365:S2CID 3281:S2CID 3232:S2CID 3175:S2CID 3036:S2CID 2879:S2CID 2836:S2CID 2674:S2CID 2560:S2CID 2517:S2CID 2228:S2CID 1873:S2CID 1653:S2CID 1610:S2CID 1415:S2CID 1284:S2CID 1177:S2CID 1134:S2CID 1021:S2CID 970:S2CID 592:CENPA 529:, or 320:DNAse 4714:(or 4585:NCBI 4520:PMID 4471:PMID 4422:PMID 4381:PMID 4346:PMID 4297:PMID 4246:PMID 4228:Cell 4205:PMID 4168:ISBN 4137:PMID 4088:PMID 4053:PMID 4043:ISBN 4012:PMID 3971:PMID 3909:PMID 3857:PMID 3808:PMID 3757:PMID 3708:PMID 3659:PMID 3608:PMID 3551:PMID 3508:PMID 3457:PMID 3439:Cell 3408:PMID 3357:PMID 3322:PMID 3273:PMID 3255:Cell 3224:PMID 3167:PMID 3149:Cell 3126:PMID 3077:PMID 3028:PMID 2985:PMID 2928:PMID 2871:PMID 2828:PMID 2785:PMID 2726:PMID 2666:PMID 2617:PMID 2552:PMID 2509:PMID 2471:PMID 2422:PMID 2371:PMID 2336:PMID 2287:PMID 2220:PMID 2177:PMID 2142:PMID 2085:PMID 2050:PMID 2042:ISSN 1988:PMID 1948:ISBN 1922:PMID 1865:PMID 1813:PMID 1803:ISBN 1772:PMID 1737:PMID 1688:PMID 1645:PMID 1602:PMID 1559:PMID 1499:PMID 1464:PMID 1407:PMID 1358:PMID 1307:ISBN 1276:PMID 1218:PMID 1169:PMID 1153:Cell 1126:PMID 1110:Cell 1091:PMID 1013:PMID 960:ISBN 906:ISBN 879:ISBN 836:and 817:1EQZ 768:and 748:and 576:H2AX 572:H2AZ 474:FRET 461:CTCF 307:1EQZ 204:and 198:H2B 194:H2A 4966:H2B 4961:H2A 4583:at 4510:PMC 4502:doi 4461:PMC 4453:doi 4412:doi 4408:280 4373:doi 4336:doi 4332:281 4289:doi 4277:402 4236:doi 4197:doi 4193:107 4160:doi 4127:PMC 4119:doi 4115:430 4080:doi 4076:237 4035:doi 4002:doi 3961:PMC 3951:doi 3899:PMC 3891:doi 3847:PMC 3839:doi 3798:PMC 3788:doi 3747:PMC 3739:doi 3698:PMC 3690:doi 3649:PMC 3639:doi 3598:PMC 3590:doi 3543:doi 3500:doi 3488:450 3447:doi 3443:128 3400:doi 3388:446 3349:doi 3312:doi 3263:doi 3259:115 3214:doi 3202:303 3157:doi 3153:103 3116:PMC 3108:doi 3067:doi 3020:doi 3008:400 2975:PMC 2967:doi 2918:PMC 2910:doi 2863:doi 2820:doi 2808:403 2775:PMC 2765:doi 2716:PMC 2708:doi 2656:doi 2644:309 2607:PMC 2599:doi 2587:325 2544:doi 2501:doi 2461:PMC 2453:doi 2412:PMC 2402:doi 2363:doi 2359:207 2326:PMC 2318:doi 2277:PMC 2267:doi 2255:103 2212:doi 2200:436 2169:doi 2132:PMC 2124:doi 2112:442 2077:doi 2073:319 2034:doi 1980:doi 1912:PMC 1904:doi 1855:doi 1843:579 1795:doi 1764:doi 1727:doi 1680:doi 1676:231 1637:doi 1594:doi 1582:311 1549:doi 1537:421 1491:doi 1454:PMC 1446:doi 1397:doi 1385:395 1348:PMC 1340:doi 1336:131 1268:doi 1256:389 1208:doi 1161:doi 1118:doi 1083:doi 1071:184 1048:doi 1005:doi 993:183 952:doi 838:DNA 826:H2B 822:H2A 813:PDB 770:H2B 766:H2A 709:H2A 549:of 541:of 533:of 303:PDB 260:H2B 256:H2A 206:H4 202:H3 138:H2B 134:H2A 122:DNA 61:H2B 57:H2A 37:DNA 5130:: 5009:C2 5004:C1 4976:H4 4971:H3 4956:H1 4926:: 4623:: 4518:. 4508:. 4498:15 4496:. 4492:. 4469:. 4459:. 4449:15 4447:. 4443:. 4420:. 4406:. 4402:. 4379:. 4369:24 4367:. 4344:. 4330:. 4326:. 4303:. 4295:. 4287:. 4275:. 4252:. 4244:. 4232:81 4230:. 4226:. 4203:. 4191:. 4166:. 4135:. 4125:. 4113:. 4109:. 4086:. 4074:. 4051:. 4041:. 4010:. 3998:12 3996:. 3992:. 3969:. 3959:. 3949:. 3939:14 3937:. 3933:. 3921:^ 3907:. 3897:. 3887:50 3885:. 3881:. 3869:^ 3855:. 3845:. 3835:44 3833:. 3829:. 3806:. 3796:. 3782:. 3778:. 3755:. 3745:. 3733:. 3729:. 3706:. 3696:. 3686:42 3684:. 3680:. 3657:. 3647:. 3633:. 3629:. 3606:. 3596:. 3586:24 3584:. 3580:. 3557:. 3549:. 3539:39 3537:. 3514:. 3506:. 3498:. 3486:. 3463:. 3455:. 3441:. 3437:. 3414:. 3406:. 3398:. 3386:. 3363:. 3355:. 3345:19 3343:. 3320:. 3308:14 3306:. 3302:. 3279:. 3271:. 3257:. 3253:. 3230:. 3222:. 3212:. 3200:. 3196:. 3173:. 3165:. 3151:. 3147:. 3124:. 3114:. 3104:12 3102:. 3098:. 3075:. 3063:11 3061:. 3057:. 3034:. 3026:. 3018:. 3006:. 2983:. 2973:. 2965:. 2955:99 2953:. 2949:. 2926:. 2916:. 2906:18 2904:. 2900:. 2877:. 2869:. 2859:11 2857:. 2834:. 2826:. 2818:. 2806:. 2783:. 2773:. 2763:. 2753:51 2751:. 2747:. 2724:. 2714:. 2704:18 2702:. 2698:. 2686:^ 2672:. 2664:. 2654:. 2642:. 2638:. 2615:. 2605:. 2597:. 2585:. 2581:. 2558:. 2550:. 2540:11 2538:. 2515:. 2507:. 2497:12 2495:. 2483:^ 2469:. 2459:. 2449:40 2447:. 2443:. 2420:. 2410:. 2396:. 2392:. 2369:. 2357:. 2334:. 2324:. 2314:37 2312:. 2308:. 2285:. 2275:. 2265:. 2253:. 2249:. 2226:. 2218:. 2210:. 2198:. 2175:. 2165:68 2163:. 2140:. 2130:. 2122:. 2110:. 2106:. 2083:. 2071:. 2048:. 2040:. 2028:. 2024:. 1986:. 1976:56 1974:. 1962:^ 1934:^ 1920:. 1910:. 1900:20 1898:. 1894:. 1871:. 1863:. 1853:. 1841:. 1837:. 1825:^ 1811:. 1801:. 1770:. 1760:56 1758:. 1735:. 1725:. 1715:52 1713:. 1709:. 1686:. 1674:. 1651:. 1643:. 1633:16 1631:. 1608:. 1600:. 1592:. 1580:. 1557:. 1547:. 1535:. 1531:. 1511:^ 1497:. 1487:70 1485:. 1462:. 1452:. 1442:83 1440:. 1436:. 1413:. 1405:. 1395:. 1383:. 1379:. 1356:. 1346:. 1334:. 1330:. 1282:. 1274:. 1266:. 1254:. 1242:^ 1230:^ 1216:. 1202:. 1198:. 1175:. 1167:. 1157:55 1155:. 1132:. 1124:. 1114:49 1112:. 1089:. 1081:. 1069:. 1046:. 1042:. 1019:. 1011:. 1003:. 991:. 968:. 958:. 946:. 834:H4 832:, 830:H3 828:, 824:, 815:: 750:H4 746:H3 594:. 561:. 537:; 525:, 433:. 416:. 305:: 268:H4 264:H3 262:, 258:, 200:, 196:, 164:. 157:H1 146:H4 142:H3 140:, 136:, 105:. 71:. 69:H4 65:H3 63:, 59:, 31:A 5069:T 5064:Q 5059:P 5054:O 5049:N 5044:M 5039:K 5034:J 5029:I 5024:H 5019:F 5014:E 4999:B 4994:A 4934:) 4930:( 4729:/ 4710:/ 4653:/ 4613:e 4606:t 4599:v 4526:. 4504:: 4477:. 4455:: 4428:. 4414:: 4387:. 4375:: 4352:. 4338:: 4311:. 4291:: 4283:: 4260:. 4238:: 4211:. 4199:: 4176:. 4162:: 4143:. 4121:: 4094:. 4082:: 4059:. 4037:: 4018:. 4004:: 3977:. 3953:: 3945:: 3915:. 3893:: 3863:. 3841:: 3814:. 3790:: 3784:7 3763:. 3741:: 3735:9 3714:. 3692:: 3665:. 3641:: 3635:6 3614:. 3592:: 3565:. 3545:: 3522:. 3502:: 3494:: 3471:. 3449:: 3422:. 3402:: 3394:: 3371:. 3351:: 3328:. 3314:: 3287:. 3265:: 3238:. 3216:: 3208:: 3181:. 3159:: 3132:. 3110:: 3083:. 3069:: 3042:. 3022:: 3014:: 2991:. 2969:: 2961:: 2934:. 2912:: 2885:. 2865:: 2842:. 2822:: 2814:: 2791:. 2767:: 2759:: 2732:. 2710:: 2680:. 2658:: 2650:: 2623:. 2601:: 2593:: 2566:. 2546:: 2523:. 2503:: 2477:. 2455:: 2428:. 2404:: 2398:4 2377:. 2365:: 2342:. 2320:: 2293:. 2269:: 2261:: 2234:. 2214:: 2206:: 2183:. 2171:: 2148:. 2126:: 2118:: 2091:. 2079:: 2056:. 2036:: 2030:9 1982:: 1956:. 1928:. 1906:: 1879:. 1857:: 1849:: 1819:. 1797:: 1778:. 1766:: 1743:. 1729:: 1721:: 1694:. 1682:: 1659:. 1639:: 1616:. 1596:: 1588:: 1565:. 1551:: 1543:: 1505:. 1493:: 1470:. 1448:: 1421:. 1399:: 1391:: 1364:. 1342:: 1315:. 1290:. 1270:: 1262:: 1224:. 1210:: 1204:2 1183:. 1163:: 1140:. 1120:: 1097:. 1085:: 1077:: 1054:. 1050:: 1027:. 1007:: 999:: 976:. 954:: 948:2 914:. 887:.

Index


chromatin
DNA
eukaryotes
histone proteins
chromatin
histone octamer
H2A
H2B
H3
H4
cell nucleus
chromatin
chromosome
epigenetically
covalent modifications
histones
regulatory proteins
Roger Kornberg
base pairs
DNA
superhelical turns
histone
H2A
H2B
H3
H4
linker DNA
H1
electron microscope

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑