Knowledge

Chemical vapor deposition

Source 📝

1138: 1146: 1054:
is to provide a carbon source, the role of hydrogen is to provide H atoms to corrode amorphous C, and improve the quality of graphene. But excessive H atoms can also corrode graphene. As a result, the integrity of the crystal lattice is destroyed, and the quality of graphene is deteriorated. Therefore, by optimizing the flow rate of methane and hydrogen gases in the growth process, the quality of graphene can be improved.
216: 224: 38: 410:(LCVD) - This CVD process uses lasers to heat spots or lines on a substrate in semiconductor applications. In MEMS and in fiber production the lasers are used rapidly to break down the precursor gas—process temperature can exceed 2000 °C—to build up a solid structure in much the same way as laser sintering based 3-D printers build up solids from powders. 1129:
things down, graphene nanoribbons of less than 10 nm in width do exhibit electronic bandgaps and are therefore potential candidates for digital devices. Precise control over their dimensions, and hence electronic properties, however, represents a challenging goal, and the ribbons typically possess rough edges that are detrimental to their performance.
1176:) and involves feeding varying amounts of gases into a chamber, energizing them and providing conditions for diamond growth on the substrate. The gases always include a carbon source, and typically include hydrogen as well, though the amounts used vary greatly depending on the type of diamond being grown. Energy sources include 1120:
vertical cold wall system utilizing resistive heating by passing direct current through the substrate. It provided conclusive insight into a typical surface-mediated nucleation and growth mechanism involved in two-dimensional materials grown using catalytic CVD under conditions sought out in the semiconductor industry.
1199:
of any bulk material, layering diamond onto high heat-producing electronics (such as optics and transistors) allows the diamond to be used as a heat sink. Diamond films are being grown on valve rings, cutting tools, and other objects that benefit from diamond's hardness and exceedingly low wear rate.
1163:
by creating the circumstances necessary for carbon atoms in a gas to settle on a substrate in crystalline form. CVD of diamonds has received much attention in the materials sciences because it allows many new applications that had previously been considered too expensive. CVD diamond growth typically
1128:
In spite of graphene's exciting electronic and thermal properties, it is unsuitable as a transistor for future digital devices, due to the absence of a bandgap between the conduction and valence bands. This makes it impossible to switch between on and off states with respect to electron flow. Scaling
288:
Direct liquid injection CVD (DLICVD) – CVD in which the precursors are in liquid form (liquid or solid dissolved in a convenient solvent). Liquid solutions are injected in a vaporization chamber towards injectors (typically car injectors). The precursor vapors are then transported to the substrate as
1227:
carbon, and there are many different types of diamond included in this. By regulating the processing parameters—especially the gases introduced, but also including the pressure the system is operated under, the temperature of the diamond, and the method of generating plasma—many different materials
1066:
The direct growth of high-quality, large single-crystalline domains of graphene on a dielectric substrate is of vital importance for applications in electronics and optoelectronics. Combining the advantages of both catalytic CVD and the ultra-flat dielectric substrate, gaseous catalyst-assisted CVD
1053:
Although methane is the most popular carbon source, hydrogen is required during the preparation process to promote carbon deposition on the substrate. If the flow ratio of methane and hydrogen are not appropriate, it will cause undesirable results. During the growth of graphene, the role of methane
1119:
Cold wall CVD technique can be used to study the underlying surface science involved in graphene nucleation and growth as it allows unprecedented control of process parameters like gas flow rates, temperature and pressure as demonstrated in a recent study. The study was carried out in a home-built
744:
Lower temperature deposition of silicon dioxide and doped glasses from TEOS using ozone rather than oxygen has also been explored (350 to 500 °C). Ozone glasses have excellent conformality but tend to be hygroscopic – that is, they absorb water from the air due to the incorporation of silanol
368:
Hot filament CVD (HFCVD) – also known as catalytic CVD (Cat-CVD) or more commonly, initiated CVD, this process uses a hot filament to chemically decompose the source gases. The filament temperature and substrate temperature thus are independently controlled, allowing colder temperatures for better
1191:
Using CVD, films of diamond can be grown over large areas of substrate with control over the properties of the diamond produced. In the past, when high pressure high temperature (HPHT) techniques were used to produce a diamond, the result was typically very small free-standing diamonds of varying
323:
to enhance chemical reaction rates of the precursors. PECVD processing allows deposition at lower temperatures, which is often critical in the manufacture of semiconductors. The lower temperatures also allow for the deposition of organic coatings, such as plasma polymers, that have been used for
2837:
from Electronic Materials and Processing: Proceedings of the First Electronic Materials and Processing Congress held in conjunction with the 1988 World Materials Congress Chicago, Illinois, USA, 24–30 September 1988, Edited by Prabjit Singh (Sponsored by the Electronic Materials and Processing
1062:
The use of catalyst is viable in changing the physical process of graphene production. Notable examples include iron nanoparticles, nickel foam, and gallium vapor. These catalysts can either be used in situ during graphene buildup, or situated at some distance away at the deposition area. Some
727:
containing both boron and phosphorus (borophosphosilicate glass, BPSG) undergo viscous flow at lower temperatures; around 850 °C is achievable with glasses containing around 5 weight % of both constituents, but stability in air can be difficult to achieve. Phosphorus oxide in high
697:("P-glass") can be used to smooth out uneven surfaces. P-glass softens and reflows at temperatures above 1000 °C. This process requires a phosphorus concentration of at least 6%, but concentrations above 8% can corrode aluminium. Phosphorus is deposited from phosphine gas and oxygen: 1188:, among others. The energy source is intended to generate a plasma in which the gases are broken down and more complex chemistries occur. The actual chemical process for diamond growth is still under study and is complicated by the very wide variety of diamond growth processes used. 1801: 1192:
sizes. With CVD diamond, growth areas of greater than fifteen centimeters (six inches) in diameter have been achieved, and much larger areas are likely to be successfully coated with diamond in the future. Improving this process is key to enabling several important applications.
1112:
Raman spectroscopy is used to characterize and identify the graphene particles; X-ray spectroscopy is used to characterize chemical states; TEM is used to provide fine details regarding the internal composition of graphene; SEM is used to examine the surface and topography.
2282:
Murakami, Katsuhisa; Tanaka, Shunsuke; Hirukawa, Ayaka; Hiyama, Takaki; Kuwajima, Tomoya; Kano, Emi; Takeguchi, Masaki; Fujita, Jun-ichi (2015). "Direct synthesis of large area graphene on insulating substrate by gallium vapor-assisted chemical vapor deposition".
1699:
Cruz, A.; Stassen, I.; Krishtab, M.; Marcoen, K.; Stassin, T.; Rodríguez-Hermida, S.; Teyssandier, J.; Pletincx, S.; Verbeke, R.; Rubio-Giménez, V.; Tatay, S.; Martí-Gastaldo, C.; Meersschaut, J.; Vereecken, P. M.; De Feyter, S.; Hauffman, T.; Ameloot, R. (2019).
1100:
Standard quartz tubing and chambers are used in CVD of graphene. Quartz is chosen because it has a very high melting point and is chemically inert. In other words, quartz does not interfere with any physical or chemical reactions regardless of the conditions.
440:
confer wear-resistance. Polymerization by CVD, perhaps the most versatile of all applications, allows for super-thin coatings which possess some very desirable qualities, such as lubricity, hydrophobicity and weather-resistance to name a few. The CVD of
403:
Photo-initiated CVD (PICVD) – This process uses UV light to stimulate chemical reactions. It is similar to plasma processing, given that plasmas are strong emitters of UV radiation. Under certain conditions, PICVD can be operated at or near atmospheric
1082:
On the other hand, temperatures used range from 800 to 1050 °C. High temperatures translate to an increase of the rate of reaction. Caution has to be exercised as high temperatures do pose higher danger levels in addition to greater energy costs.
392:
Rapid thermal CVD (RTCVD) – This CVD process uses heating lamps or other methods to rapidly heat the wafer substrate. Heating only the substrate rather than the gas or chamber walls helps reduce unwanted gas-phase reactions that can lead to
1078:
Most systems use LPCVD with pressures ranging from 1 to 1500 Pa. However, some still use APCVD. Low pressures are used more commonly as they help prevent unwanted reactions and produce more uniform thickness of deposition on the substrate.
1752: 445:, a class of crystalline nanoporous materials, has recently been demonstrated. Recently scaled up as an integrated cleanroom process depositing large-area substrates, the applications for these films are anticipated in gas sensing and 947:
when deposited onto silicon. Mo, Ta and Ti are deposited by LPCVD, from their pentachlorides. Nickel, molybdenum, and tungsten can be deposited at low temperatures from their carbonyl precursors. In general, for an arbitrary metal
2045:
Liu, Zhuchen; Tu, Zhiqiang; Li, Yongfeng; Yang, Fan; Han, Shuang; Yang, Wang; Zhang, Liqiang; Wang, Gang; Xu, Chunming (2014-05-01). "Synthesis of three-dimensional graphene from petroleum asphalt by chemical vapor deposition".
1244:
can be grown. Some polycrystalline diamond grains are surrounded by thin, non-diamond carbon, while others are not. These different factors affect the diamond's hardness, smoothness, conductivity, optical properties and more.
732:
can also precipitate from the flowing glass on cooling; these crystals are not readily etched in the standard reactive plasmas used to pattern oxides, and will result in circuit defects in integrated circuit manufacturing.
331:
Remote plasma-enhanced CVD (RPECVD) – Similar to PECVD except that the wafer substrate is not directly in the plasma discharge region. Removing the wafer from the plasma region allows processing temperatures down to room
449:. CVD techniques are advantageous for membrane coatings as well, such as those in desalination or water treatment, as these coatings can be sufficiently uniform (conformal) and thin that they do not clog membrane pores. 1091:
Hydrogen gas and inert gases such as argon are flowed into the system. These gases act as a carrier, enhancing surface reaction and improving reaction rate, thereby increasing deposition of graphene onto the substrate.
284:
Aerosol assisted CVD (AACVD) – CVD in which the precursors are transported to the substrate by means of a liquid/gas aerosol, which can be generated ultrasonically. This technique is suitable for use with non-volatile
300:
Cold wall CVD – CVD in which only the substrate is directly heated either by induction or by passing current through the substrate itself or a heater in contact with the substrate. The chamber walls are at room
2126:
Wei, Dacheng; Lu, Yunhao; Han, Cheng; Niu, Tianchao; Chen, Wei; Wee, Andrew Thye Shen (2013-10-31). "Critical Crystal Growth of Graphene on Dielectric Substrates at Low Temperature for Electronic Devices".
736:
Besides these intentional impurities, CVD oxide may contain byproducts of the deposition. TEOS produces a relatively pure oxide, whereas silane introduces hydrogen impurities, and dichlorosilane introduces
419:
CVD is commonly used to deposit conformal films and augment substrate surfaces in ways that more traditional surface modification techniques are not capable of. CVD is extremely useful in the process of
2438:
Kim, Sang-Min; Kim, Jae-Hyun; Kim, Kwang-Seop; Hwangbo, Yun; Yoon, Jong-Hyuk; Lee, Eun-Kyu; Ryu, Jaechul; Lee, Hak-Joo; Cho, Seungmin (2014). "Synthesis of CVD-graphene on rapidly heated copper foils".
1200:
In each case the diamond growth must be carefully done to achieve the necessary adhesion onto the substrate. Diamond's very high scratch resistance and thermal conductivity, combined with a lower
1050:
The most popular carbon source that is used to produce graphene is methane gas. One of the less popular choices is petroleum asphalt, notable for being inexpensive but more difficult to work with.
693:
from the oxide into adjacent layers (most notably silicon) and dope them. Oxides containing 5–15% impurities by mass are often used for this purpose. In addition, silicon dioxide alloyed with
525:-based solution. The hydrogen reduces the growth rate, but the temperature is raised to 850 or even 1050 °C to compensate. Polysilicon may be grown directly with doping, if gases such as 980:
the decomposition of metal carbonyls is often violently precipitated by moisture or air, where oxygen reacts with the metal precursor to form metal or metal oxide along with carbon dioxide.
1751:
Servi, Amelia T.; Guillen-Burrieza, Elena; Warsinger, David M.; Livernois, William; Notarangelo, Katie; Kharraz, Jehad; Lienhard V, John H.; Arafat, Hassan A.; Gleason, Karen K. (2017).
1223:
CVD growth allows one to control the properties of the diamond produced. In the area of diamond growth, the word "diamond" is used as a description of any material primarily made up of
662:
is sensitive to high temperature. Silane deposits between 300 and 500 °C, dichlorosilane at around 900 °C, and TEOS between 650 and 750 °C, resulting in a layer of
1109:
Raman spectroscopy, X-ray spectroscopy, transmission electron microscopy (TEM), and scanning electron microscopy (SEM) are used to examine and characterize the graphene samples.
2390:
Zhang, CanKun; Lin, WeiYi; Zhao, ZhiJuan; Zhuang, PingPing; Zhan, LinJie; Zhou, YingHui; Cai, WeiWei (2015-09-05). "CVD synthesis of nitrogen-doped graphene using urea".
1316: 241:
Low-pressure CVD (LPCVD) – CVD at sub-atmospheric pressures. Reduced pressures tend to reduce unwanted gas-phase reactions and improve film uniformity across the wafer.
1042:
Many variations of CVD can be utilized to synthesize graphene. Although many advancements have been made, the processes listed below are not commercially viable yet.
1514:
Gleason, Karen K.; Kenneth K.S. Lau; Jeffrey A. Caulfield (2000). "Structure and Morphology of Fluorocarbon Films Grown by Hot Filament Chemical Vapor Deposition".
2073:
Park, Hye Jin; Meyer, Jannik; Roth, Siegmar; Skákalová, Viera (Spring 2010). "Growth and properties of few-layer graphene prepared by chemical vapor deposition".
1396:
Shareef, I. A.; Rubloff, G. W.; Anderle, M.; Gill, W. N.; Cotte, J.; Kim, D. H. (1995-07-01). "Subatmospheric chemical vapor deposition ozone/TEOS process for SiO
753:
Silicon nitride is often used as an insulator and chemical barrier in manufacturing ICs. The following two reactions deposit silicon nitride from the gas phase:
1195:
The growth of diamond directly on a substrate allows the addition of many of diamond's important qualities to other materials. Since diamond has the highest
745:(Si-OH) in the glass. Infrared spectroscopy and mechanical strain as a function of temperature are valuable diagnostic tools for diagnosing such problems. 545:
Silicon dioxide (usually called simply "oxide" in the semiconductor industry) may be deposited by several different processes. Common source gases include
361:(CCVD) – Combustion Chemical Vapor Deposition or flame pyrolysis is an open-atmosphere, flame-based technique for depositing high-quality thin films and 338:(LEPECVD) - CVD employing a high density, low energy plasma to obtain epitaxial deposition of semiconductor materials at high rates and low temperatures. 1458:
Tavares, Jason; Swanson, E.J.; Coulombe, S. (2008). "Plasma Synthesis of Coated Metal Nanoparticles with Surface Properties Tailored for Dispersion".
1820: 297:
Hot wall CVD – CVD in which the chamber is heated by an external power source and the substrate is heated by radiation from the heated chamber walls.
2180:"Graphene: Two-Stage Metal-Catalyst-Free Growth of High-Quality Polycrystalline Graphene Films on Silicon Nitride Substrates (Adv. Mater. 7/2013)" 3428: 1550: 1286: 1487:"Hot wire CVD of heterogeneous and polycrystalline silicon semiconducting thin films for application in thin film transistors and solar cells" 862:
These films have much less tensile stress, but worse electrical properties (resistivity 10 to 10 Ω·cm, and dielectric strength 1 to 5 MV/cm).
3312: 908:, can be deposited by CVD. As of 2010, commercially cost-effective CVD for copper did not exist, although volatile sources exist, such as Cu( 372: 1075:
Physical conditions such as surrounding pressure, temperature, carrier gas, and chamber material play a big role in production of graphene.
1497: 674:. Any of these reactions may be used in LPCVD, but the silane reaction is also done in APCVD. CVD oxide invariably has lower quality than 289:
in classical CVD. This technique is suitable for use on liquid or solid precursors. High growth rates can be reached using this technique.
2826: 968:
whereas the carbonyl decomposition reaction can happen spontaneously under thermal treatment or acoustic cavitation and is as follows:
17: 1650:
Stassen, I; Styles, M; Grenci, G; Van Gorp, H; Vanderlinden, W; De Feyter, S; Falcaro, P; De Vos, D; Vereecken, P; Ameloot, R (2015).
3443: 369:
absorption rates at the substrate and higher temperatures necessary for decomposition of precursors to free radicals at the filament.
316: 52: 231:
CVD is practiced in a variety of formats. These processes generally differ in the means by which chemical reactions are initiated.
2864: 1321: 2626:
Sun Lee, Woong; Yu, Jin (2005). "Comparative study of thermally conductive fillers in underfill for the electronic components".
2178:
Chen, Jianyi; Guo, Yunlong; Wen, Yugeng; Huang, Liping; Xue, Yunzhou; Geng, Dechao; Wu, Bin; Luo, Birong; Yu, Gui (2013-02-14).
382: 2236:
Patel, Rajen B.; Yu, Chi; Chou, Tsengming; Iqbal, Zafar (2014). "Novel synthesis route to graphene using iron nanoparticles".
1402:
Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena
2786: 2767: 2748: 1904: 1879: 1607:
Gleason, Karen; Ayse Asatekin; Miles C. Barr; Samaan H. Baxamusa; Kenneth K.S. Lau; Wyatt Tenhaeff; Jingjing Xu (May 2010).
513:
This reaction is usually performed in LPCVD systems, with either pure silane feedstock, or a solution of silane with 70–80%
358: 1968:
Maruyama, Toshiro (1994). "Electrochromic Properties of Niobium Oxide Thin Films Prepared by Chemical Vapor Deposition".
31: 2591:
Costello, M; Tossell, D; Reece, D; Brierley, C; Savage, J (1994). "Diamond protective coatings for optical components".
3413: 1837: 2020: 1702:"Integrated Cleanroom Process for the Vapor-Phase Deposition of Large-Area Zeolitic Imidazolate Framework Thin Films" 1551:"Photo-Initiated Chemical Vapour Deposition as a Scalable Particle Functionalization Technology (A Practical Review)" 1301: 517:. Temperatures between 600 and 650 °C and pressures between 25 and 150 Pa yield a growth rate between 10 and 20 1220:
would make it a nearly ideal non-stick coating for cookware if large substrate areas could be coated economically.
1201: 1067:
paves the way for synthesizing high-quality graphene for device applications while avoiding the transfer process.
3337: 3133: 407: 870:
Tungsten CVD, used for forming conductive contacts, vias, and plugs on a semiconductor device, is achieved from
689:"). This may have two purposes. During further process steps that occur at high temperature, the impurities may 1154: 2492:"Nucleation and growth of single layer graphene on electrodeposited Cu by cold wall chemical vapor deposition" 1944: 3453: 3433: 3249: 3226: 2700:
Krauss, A (2001). "Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices".
1116:
Sometimes, atomic force microscopy (AFM) is used to measure local properties such as friction and magnetism.
70:
method used to produce high-quality, and high-performance, solid materials. The process is often used in the
3082: 1343: 1261:
of CdTe and HgTe, this material can be prepared from the dimethyl derivatives of the respective elements.
3418: 2857: 537:
are added to the CVD chamber. Diborane increases the growth rate, but arsine and phosphine decrease it.
3463: 3448: 3438: 203: 3153: 2804:
Liu T., Raabe D. and Zaefferer S. (2008). "A 3D tomographic EBSD analysis of a CVD diamond thin film"
3034: 2924: 2814: 1753:"The effects of iCVD film thickness and conformality on the permeability and wetting of MD membranes" 1445:
Crystec Technology Trading GmbH, Plasma Enhanced Chemical Vapor Deposition – Technology and Equipment
1254: 3382: 3014: 1233: 925: 260: 1228:
that can be considered diamond can be made. Single-crystal diamond can be made containing various
808:
Silicon nitride deposited by LPCVD contains up to 8% hydrogen. It also experiences strong tensile
424:
at depositing extremely thin layers of material. A variety of applications for such films exist.
3377: 3244: 3118: 1224: 1213: 1209: 909: 574: 468: 442: 432:(ICs) and photovoltaic devices. Amorphous polysilicon is used in photovoltaic devices. Certain 421: 2545:
Das, Shantanu; Drucker, Jeff (28 May 2018). "Pre-coalescence scaling of graphene island sizes".
1486: 2850: 1706: 1169: 686: 97: 86: 71: 2320:"Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride" 3186: 2994: 871: 1920: 3342: 3216: 3128: 2964: 2954: 2709: 2674: 2635: 2600: 2554: 2503: 2448: 2399: 2341: 2292: 2245: 2191: 2136: 1977: 1744: 1665: 1409: 1196: 921: 694: 352: 3254: 728:
concentrations interacts with ambient moisture to produce phosphoric acid. Crystals of BPO
658:
The choice of source gas depends on the thermal stability of the substrate; for instance,
183: 8: 3362: 3289: 3284: 3206: 3181: 3148: 3009: 1281: 987: 667: 171: 82: 2795:
Okada K. (2007). "Plasma-enhanced chemical vapor deposition of nanocrystalline diamond"
2713: 2678: 2639: 2604: 2558: 2507: 2452: 2403: 2345: 2296: 2249: 2195: 2140: 1981: 1669: 1413: 816:
and dielectric strength than most insulators commonly available in microfabrication (10
446: 3269: 3191: 2939: 2929: 2570: 2527: 2472: 2415: 2362: 2331: 2319: 2261: 2108: 2082: 1793: 1733: 1531: 1364: 1311: 429: 394: 143: 2721: 1625: 1608: 3423: 3347: 3317: 3274: 3211: 3196: 3108: 2999: 2782: 2763: 2744: 2662: 2612: 2574: 2519: 2464: 2419: 2367: 2265: 2209: 2160: 2152: 2100: 2016: 1900: 1875: 1852:
Proceedings of the Third World Congress of Chemical Engineering, Tokyo, p. 290 (1986)
1833: 1785: 1737: 1681: 1651: 1484: 1425: 1368: 1306: 1160: 678:, but thermal oxidation can only be used in the earliest stages of IC manufacturing. 675: 307: 253: 159: 151: 93: 67: 2531: 2112: 2005:
Atomic Layer Deposition of High Permittivity Oxides: Film Growth and In Situ Studies
1535: 1485:
Schropp, R.E.I.; B. Stannowski; A.M. Brockhoff; P.A.T.T. van Veenendaal; J.K. Rath.
1344:"Controlled physical properties and growth mechanism of manganese silicide nanorods" 666:(LTO). However, silane produces a lower-quality oxide than the other methods (lower 3138: 3123: 2893: 2717: 2682: 2643: 2608: 2562: 2511: 2476: 2456: 2407: 2357: 2349: 2300: 2253: 2199: 2144: 2092: 2055: 2008: 1985: 1867: 1825: 1797: 1775: 1767: 1723: 1715: 1673: 1656: 1630: 1620: 1606: 1591: 1565: 1523: 1467: 1417: 1356: 1276: 983: 809: 690: 425: 320: 179: 107: 2805: 2686: 2647: 1719: 1360: 1137: 3458: 3332: 3327: 3176: 3072: 3049: 3044: 3029: 3024: 3019: 2979: 2949: 2830: 2096: 2059: 1771: 1569: 1257:
is of continuing interest for detection of infrared radiation. Consisting of an
472: 463: 375:(HPCVD) – This process involves both chemical decomposition of precursor gas and 155: 139: 135: 131: 115: 48: 2796: 3294: 3264: 3259: 2823: 2515: 1271: 917: 671: 554: 147: 111: 104:
are also produced, which are removed by gas flow through the reaction chamber.
44: 41: 2411: 100:
on the substrate surface to produce the desired deposit. Frequently, volatile
89: 3407: 3201: 3158: 3064: 3039: 2934: 2213: 2156: 2104: 1829: 1789: 1595: 1429: 1217: 1165: 991: 566: 362: 245: 244:
Ultrahigh vacuum CVD (UHVCVD) – CVD at very low pressure, typically below 10
3004: 3367: 3322: 3279: 2969: 2944: 2898: 2523: 2468: 2371: 2204: 2179: 2164: 2148: 1701: 1685: 1513: 1471: 1185: 1177: 1145: 386: 376: 347:) – Deposits successive layers of different substances to produce layered, 325: 167: 110:
processes widely use CVD to deposit materials in various forms, including:
1864:
Nanostructures and Nanomaterials -- Synthesis, Properties and Applications
3392: 3357: 3077: 2959: 2257: 1780: 1652:"Chemical vapour deposition of zeolitic imidazolate framework thin films" 1296: 1291: 813: 812:, which may crack films thicker than 200 nm. However, it has higher 1635: 1063:
catalysts require another step to remove them from the sample material.
3387: 3352: 3221: 2989: 2984: 2842: 2460: 2353: 2012: 1750: 1728: 1382: 1241: 932: 101: 2566: 2304: 1989: 1527: 1677: 1443: 1421: 1237: 1181: 659: 526: 518: 259:
Sub-atmospheric CVD (SACVD) – CVD at sub-atmospheric pressures. Uses
119: 75: 2813:
Wild, Christoph (2008). "CVD Diamond Properties and Useful Formula"
3372: 3143: 2919: 2914: 2491: 2336: 1383:"Low Pressure Chemical Vapor Deposition – Technology and Equipment" 944: 940: 936: 738: 534: 522: 514: 452: 175: 163: 2087: 3092: 1945:"Chemical Vapour Deposition - an overview | ScienceDirect Topics" 1871: 1149:
Colorless gem cut from diamond grown by chemical vapor deposition
437: 433: 348: 335: 267:
to fill high aspect ratio Si structures with silicon dioxide (SiO
127: 123: 1457: 252:). Note that in other fields, a lower division between high and 215: 3168: 2974: 1229: 905: 550: 546: 530: 480: 238:
Atmospheric pressure CVD (APCVD) – CVD at atmospheric pressure.
223: 3087: 3054: 2888: 2873: 1258: 1205: 827:
Another two reactions may be used in plasma to deposit SiNH:
724: 682: 344: 264: 2590: 2281: 1649: 1317:
List of metal-organic chemical vapour deposition precursors
1173: 821: 249: 37: 1698: 1395: 817: 1548: 2824:
Chemical vapor deposition of dielectric and metal films
986:
layers can be produced by the thermal decomposition of
2072: 943:, nickel is widely used. These metals can form useful 2663:"Single crystal diamond for electronic applications" 336:
Low-energy plasma-enhanced chemical vapor deposition
2743:(2nd ed.). Upper Saddle River: Prentice Hall. 2389: 2318:Tang, Shujie; Wang, Haomin; Wang, Huishan (2015). 1342: 1155:Synthetic diamond § Chemical vapor deposition 952:, the chloride deposition reaction is as follows: 1609:"Designing polymer surfaces via vapor deposition" 281:Classified by physical characteristics of vapor: 3405: 2776: 2437: 2392:Science China Physics, Mechanics & Astronomy 2235: 453:Commercially important materials prepared by CVD 2177: 2739:Jaeger, Richard C. (2002). "Film Deposition". 1821:Ullmann's Encyclopedia of Industrial Chemistry 1588:Ullmann's Encyclopedia of Industrial Chemistry 1287:Electrostatic spray assisted vapour deposition 3313:Conservation and restoration of glass objects 2858: 2760:Thin-Film Deposition: Principles and Practice 1897:Semiconductor devices: physics and technology 1141:Free-standing single-crystal CVD diamond disc 2317: 2002: 1866:. World Scientific Publishing. p. 248. 1818:Simmler, W. "Silicon Compounds, Inorganic". 2741:Introduction to Microelectronic Fabrication 2125: 2044: 277:Most modern CVD is either LPCVD or UHVCVD. 219:Hot-wall thermal CVD (batch operation type) 2865: 2851: 2544: 2489: 521:per minute. An alternative process uses a 2806:Sci. Technol. Adv. Mater. 9 (2008) 035013 2625: 2361: 2335: 2203: 2086: 1894: 1779: 1727: 1634: 1624: 1549:Dorval Dion, C.A.; Tavares, J.R. (2013). 681:Oxide may also be grown with impurities ( 373:Hybrid physical-chemical vapor deposition 294:Classified by type of substrate heating: 53:plasma-enhanced chemical vapor deposition 2872: 2586: 2584: 1967: 1855: 1144: 1136: 222: 214: 36: 2779:Principles of Chemical Vapor Deposition 1861: 1817: 1811: 1322:List of synthetic diamond manufacturers 1236:consisting of grain sizes from several 878:), which may be deposited in two ways: 385:(MOCVD) – This CVD process is based on 14: 3429:Glass coating and surface modification 3406: 2738: 2699: 2660: 2654: 1970:Journal of the Electrochemical Society 1123: 383:Metalorganic chemical vapor deposition 85:(substrate) is exposed to one or more 2846: 2757: 2693: 2619: 2581: 2490:Das, Shantanu; Drucker, Jeff (2017). 2433: 2431: 2429: 2385: 2383: 2381: 2277: 2275: 2231: 2229: 2227: 2225: 2223: 2040: 2038: 2036: 2034: 2032: 1340: 313:Microwave plasma-assisted CVD (MPCVD) 27:Method used to apply surface coatings 904:Other metals, notably aluminium and 670:, for instance), and it deposits non 359:Combustion chemical vapor deposition 235:Classified by operating conditions: 916:. Copper is typically deposited by 32:Chemical Vapor Deposition (journal) 24: 2731: 2426: 2378: 2272: 2220: 2029: 2007:(Thesis). University of Helsinki. 1862:Cao, Guozhong; Wang, Ying (2011). 1385:. Crystec Technology Trading GmbH. 920:. Aluminium can be deposited from 748: 540: 487:), using the following reactions: 25: 3475: 1302:Metalorganic vapour phase epitaxy 589:). The reactions are as follows: 3444:Semiconductor device fabrication 2797:Sci. Technol. Adv. Mater. 8, 624 1807:from the original on 2018-07-23. 1503:from the original on 2005-02-15. 1248: 1202:coefficient of thermal expansion 1164:occurs under low pressure (1–27 47:(violet) enhances the growth of 30:For the scientific journal, see 3383:Radioactive waste vitrification 3338:Glass fiber reinforced concrete 2838:Division of ASM International). 2538: 2483: 2311: 2171: 2119: 2066: 1996: 1961: 1937: 1913: 1888: 1846: 1692: 1643: 1600: 1494:Materials Physics and Mechanics 1349:Journal of Alloys and Compounds 408:Laser chemical vapor deposition 1576: 1542: 1507: 1478: 1451: 1436: 1389: 1375: 1341:Sadri, Rad (15 January 2021). 1334: 1105:Methods of analysis of results 457: 197:who intended to differentiate 13: 1: 3250:Chemically strengthened glass 2722:10.1016/S0925-9635(01)00385-5 2702:Diamond and Related Materials 2687:10.1016/j.diamond.2003.10.017 2667:Diamond and Related Materials 2648:10.1016/j.diamond.2005.05.008 2628:Diamond and Related Materials 2593:Diamond and Related Materials 2238:Journal of Materials Research 1720:10.1021/acs.chemmater.9b03435 1626:10.1016/S1369-7021(10)70081-X 1460:Plasma Processes and Polymers 1361:10.1016/j.jallcom.2020.156693 1328: 1159:CVD can be used to produce a 51:in a laboratory-scale PECVD ( 3083:Glass-ceramic-to-metal seals 2613:10.1016/0925-9635(94)90108-2 2097:10.1016/j.carbon.2009.11.030 2060:10.1016/j.matlet.2014.02.077 1899:. Wiley-India. p. 384. 1772:10.1016/j.memsci.2016.10.008 1570:10.1016/j.powtec.2013.02.024 319:(PECVD) – CVD that utilizes 7: 1760:Journal of Membrane Science 1264: 1037: 994:according to the equation: 126:. These materials include: 10: 3480: 2547:Journal of Applied Physics 1152: 1132: 461: 328:surface functionalization. 204:physical vapour deposition 191:chemical vapour deposition 29: 18:Chemical vapour deposition 3414:Chemical vapor deposition 3303: 3235: 3167: 3114:Chemical vapor deposition 3101: 3063: 3035:Ultra low expansion glass 2925:Borophosphosilicate glass 2907: 2881: 2777:Dobkin and Zuraw (2003). 2412:10.1007/s11433-015-5717-0 1255:mercury cadmium telluride 1212:close to that of Teflon ( 926:organoaluminium compounds 865: 400:Vapor-phase epitaxy (VPE) 306:Plasma methods (see also 60:Chemical vapor deposition 3353:Glass-reinforced plastic 3015:Sodium hexametaphosphate 2822:Hess, Dennis W. (1988). 2516:10.1088/1361-6528/aa593b 1830:10.1002/14356007.a24_001 1596:10.1002/14356007.a26_681 443:metal-organic frameworks 261:tetraethyl orthosilicate 210: 3245:Anti-reflective coating 3119:Glass batch calculation 3000:Photochromic lens glass 2815:CVD Diamond Booklet PDF 2285:Applied Physics Letters 1824:. Weinheim: Wiley-VCH. 1590:, Wiley-VCH, Weinheim. 1586:(2000) "Thin Films" in 1234:Polycrystalline diamond 1214:polytetrafluoroethylene 1210:coefficient of friction 575:tetraethylorthosilicate 469:Polycrystalline silicon 422:atomic layer deposition 414: 256:is common, often 10 Pa. 2758:Smith, Donald (1995). 2205:10.1002/adma.201370040 2149:10.1002/ange.201306086 1921:"ALTUS Product Family" 1707:Chemistry of Materials 1516:Chemistry of Materials 1472:10.1002/ppap.200800074 1150: 1142: 664:low- temperature oxide 228: 220: 193:was coined in 1960 by 72:semiconductor industry 56: 3378:Prince Rupert's drops 3227:Transparent materials 3187:Gradient-index optics 2995:Phosphosilicate glass 2324:Nature Communications 2003:Rahtu, Antti (2002). 1949:www.sciencedirect.com 1148: 1140: 872:tungsten hexafluoride 226: 218: 40: 3454:Thin film deposition 3434:Industrial processes 3343:Glass ionomer cement 3217:Photosensitive glass 3144:Liquidus temperature 2965:Fluorosilicate glass 2800:free-download review 2258:10.1557/jmr.2014.165 1197:thermal conductivity 924:(TIBAL) and related 922:triisobutylaluminium 824:/cm, respectively). 695:phosphorus pentoxide 353:Atomic layer epitaxy 195:John M. Blocher, Jr. 81:In typical CVD, the 3363:Glass-to-metal seal 3285:Self-cleaning glass 3207:Optical lens design 2714:2001DRM....10.1952K 2679:2004DRM....13..320I 2640:2005DRM....14.1647S 2605:1994DRM.....3.1137C 2559:2018JAP...123t5306D 2508:2017Nanot..28j5601D 2453:2014Nanos...6.4728K 2404:2015SCPMA..58.7801Z 2346:2015NatCo...6.6499T 2297:2015ApPhL.106i3112M 2250:2014JMatR..29.1522P 2196:2013AdM....25..938C 2141:2013AngCh.12514371W 2135:(52): 14371–14376. 1982:1994JElS..141.2868M 1670:2016NatMa..15..304S 1414:1995JVSTB..13.1888S 1282:Carbonyl metallurgy 1124:Graphene nanoribbon 1071:Physical conditions 988:niobium(V) ethoxide 668:dielectric strength 430:integrated circuits 317:Plasma-enhanced CVD 227:Plasma assisted CVD 3419:Chemical processes 3348:Glass microspheres 3270:Hydrogen darkening 3192:Hydrogen darkening 2940:Chalcogenide glass 2930:Borosilicate glass 2829:2013-08-01 at the 2661:Isberg, J (2004). 2461:10.1039/c3nr06434d 2354:10.1038/ncomms7499 2184:Advanced Materials 1895:Sze, S.M. (2008). 1496:. pp. 73–82. 1312:Lisa McElwee-White 1151: 1143: 471:is deposited from 379:of a solid source. 343:Atomic-layer CVD ( 229: 221: 184:high-κ dielectrics 57: 3464:Forming processes 3449:Synthetic diamond 3439:Plasma processing 3401: 3400: 3318:Glass-coated wire 3290:sol–gel technique 3275:Insulated glazing 3212:Photochromic lens 3197:Optical amplifier 3149:sol–gel technique 2788:978-1-4020-1248-8 2769:978-0-07-058502-7 2750:978-0-201-44494-0 2708:(11): 1952–1961. 2634:(10): 1647–1653. 2567:10.1063/1.5021341 2305:10.1063/1.4914114 2244:(14): 1522–1527. 2129:Angewandte Chemie 2048:Materials Letters 1990:10.1149/1.2059247 1976:(10): 2868–2871. 1906:978-81-265-1681-0 1881:978-981-4322-50-8 1714:(22): 9462–9471. 1558:Powder Technology 1528:10.1021/cm000499w 1400:trench filling". 1307:Virtual metrology 1161:synthetic diamond 990:with the loss of 447:low-κ dielectrics 308:Plasma processing 254:ultra-high vacuum 68:vacuum deposition 16:(Redirected from 3471: 3139:Ion implantation 2894:Glass transition 2867: 2860: 2853: 2844: 2843: 2792: 2773: 2762:. MacGraw-Hill. 2754: 2726: 2725: 2697: 2691: 2690: 2658: 2652: 2651: 2623: 2617: 2616: 2599:(8): 1137–1141. 2588: 2579: 2578: 2542: 2536: 2535: 2487: 2481: 2480: 2435: 2424: 2423: 2387: 2376: 2375: 2365: 2339: 2315: 2309: 2308: 2279: 2270: 2269: 2233: 2218: 2217: 2207: 2175: 2169: 2168: 2123: 2117: 2116: 2090: 2081:(4): 1088–1094. 2070: 2064: 2063: 2042: 2027: 2026: 2000: 1994: 1993: 1965: 1959: 1958: 1956: 1955: 1941: 1935: 1934: 1932: 1931: 1917: 1911: 1910: 1892: 1886: 1885: 1859: 1853: 1850: 1844: 1843: 1815: 1809: 1808: 1806: 1783: 1757: 1748: 1742: 1741: 1731: 1696: 1690: 1689: 1678:10.1038/nmat4509 1657:Nature Materials 1647: 1641: 1640: 1638: 1628: 1604: 1598: 1580: 1574: 1573: 1555: 1546: 1540: 1539: 1511: 1505: 1504: 1502: 1491: 1482: 1476: 1475: 1455: 1449: 1448: 1440: 1434: 1433: 1422:10.1116/1.587830 1408:(4): 1888–1892. 1393: 1387: 1386: 1379: 1373: 1372: 1346: 1338: 1277:Bubbler cylinder 1096:Chamber material 984:Niobium(V) oxide 428:is used in some 426:Gallium arsenide 180:titanium nitride 108:Microfabrication 49:carbon nanotubes 21: 3479: 3478: 3474: 3473: 3472: 3470: 3469: 3468: 3404: 3403: 3402: 3397: 3333:Glass electrode 3328:Glass databases 3305: 3299: 3237: 3231: 3163: 3097: 3073:Bioactive glass 3059: 3045:Vitreous enamel 3030:Thoriated glass 3025:Tellurite glass 3010:Soda–lime glass 2980:Gold ruby glass 2950:Cranberry glass 2903: 2877: 2871: 2841: 2831:Wayback Machine 2789: 2770: 2751: 2734: 2732:Further reading 2729: 2698: 2694: 2659: 2655: 2624: 2620: 2589: 2582: 2543: 2539: 2488: 2484: 2436: 2427: 2388: 2379: 2316: 2312: 2280: 2273: 2234: 2221: 2176: 2172: 2124: 2120: 2071: 2067: 2043: 2030: 2023: 2001: 1997: 1966: 1962: 1953: 1951: 1943: 1942: 1938: 1929: 1927: 1919: 1918: 1914: 1907: 1893: 1889: 1882: 1860: 1856: 1851: 1847: 1840: 1816: 1812: 1804: 1755: 1749: 1745: 1697: 1693: 1648: 1644: 1613:Materials Today 1605: 1601: 1581: 1577: 1553: 1547: 1543: 1512: 1508: 1500: 1489: 1483: 1479: 1456: 1452: 1442: 1441: 1437: 1399: 1394: 1390: 1381: 1380: 1376: 1339: 1335: 1331: 1326: 1267: 1251: 1157: 1135: 1126: 1058:Use of catalyst 1040: 1033: 1029: 1025: 1021: 1017: 1013: 1009: 1005: 1001: 975: 963: 959: 915: 899: 895: 889: 885: 877: 868: 858: 854: 850: 842: 838: 834: 804: 800: 796: 792: 788: 784: 776: 772: 768: 764: 760: 751: 749:Silicon nitride 731: 720: 716: 712: 708: 704: 653: 649: 645: 641: 632: 628: 624: 620: 616: 608: 604: 600: 596: 588: 584: 580: 572: 564: 560: 543: 541:Silicon dioxide 509: 505: 498: 494: 486: 478: 473:trichlorosilane 466: 464:Siemens process 460: 455: 417: 270: 213: 116:polycrystalline 112:monocrystalline 35: 28: 23: 22: 15: 12: 11: 5: 3477: 3467: 3466: 3461: 3456: 3451: 3446: 3441: 3436: 3431: 3426: 3421: 3416: 3399: 3398: 3396: 3395: 3390: 3385: 3380: 3375: 3370: 3365: 3360: 3355: 3350: 3345: 3340: 3335: 3330: 3325: 3320: 3315: 3309: 3307: 3301: 3300: 3298: 3297: 3295:Tempered glass 3292: 3287: 3282: 3277: 3272: 3267: 3265:DNA microarray 3262: 3260:Dealkalization 3257: 3252: 3247: 3241: 3239: 3233: 3232: 3230: 3229: 3224: 3219: 3214: 3209: 3204: 3199: 3194: 3189: 3184: 3179: 3173: 3171: 3165: 3164: 3162: 3161: 3156: 3151: 3146: 3141: 3136: 3134:Glass modeling 3131: 3126: 3121: 3116: 3111: 3105: 3103: 3099: 3098: 3096: 3095: 3090: 3085: 3080: 3075: 3069: 3067: 3065:Glass-ceramics 3061: 3060: 3058: 3057: 3052: 3047: 3042: 3037: 3032: 3027: 3022: 3017: 3012: 3007: 3005:Silicate glass 3002: 2997: 2992: 2987: 2982: 2977: 2972: 2967: 2962: 2957: 2952: 2947: 2942: 2937: 2932: 2927: 2922: 2917: 2911: 2909: 2905: 2904: 2902: 2901: 2896: 2891: 2885: 2883: 2879: 2878: 2876:science topics 2870: 2869: 2862: 2855: 2847: 2840: 2839: 2820: 2811: 2802: 2793: 2787: 2774: 2768: 2755: 2749: 2735: 2733: 2730: 2728: 2727: 2692: 2673:(2): 320–324. 2653: 2618: 2580: 2553:(20): 205306. 2537: 2502:(10): 105601. 2496:Nanotechnology 2482: 2447:(9): 4728–34. 2425: 2398:(10): 107801. 2377: 2310: 2271: 2219: 2190:(7): 992–997. 2170: 2118: 2065: 2028: 2021: 1995: 1960: 1936: 1912: 1905: 1887: 1880: 1854: 1845: 1839:978-3527306732 1838: 1810: 1743: 1691: 1642: 1599: 1575: 1541: 1506: 1477: 1450: 1435: 1397: 1388: 1374: 1332: 1330: 1327: 1325: 1324: 1319: 1314: 1309: 1304: 1299: 1294: 1289: 1284: 1279: 1274: 1272:Apollo Diamond 1268: 1266: 1263: 1253:Commercially, 1250: 1247: 1186:arc discharges 1168:; 0.145–3.926 1134: 1131: 1125: 1122: 1107: 1106: 1098: 1097: 1089: 1088: 1073: 1072: 1060: 1059: 1048: 1047: 1039: 1036: 1035: 1034: 1031: 1027: 1023: 1019: 1015: 1011: 1007: 1003: 999: 978: 977: 973: 966: 965: 964:→ 2 M + 10 HCl 961: 957: 918:electroplating 913: 902: 901: 897: 893: 890: 887: 883: 875: 867: 864: 860: 859: 856: 852: 848: 844: 843: 840: 839:→ 2 SiNH + 3 H 836: 832: 806: 805: 802: 798: 794: 790: 786: 782: 778: 777: 774: 770: 766: 762: 758: 750: 747: 729: 722: 721: 718: 714: 710: 706: 702: 656: 655: 651: 647: 643: 639: 635: 634: 630: 626: 622: 618: 614: 610: 609: 606: 602: 598: 594: 586: 582: 578: 570: 562: 558: 555:dichlorosilane 542: 539: 511: 510: 507: 503: 500: 496: 492: 484: 476: 459: 456: 454: 451: 416: 413: 412: 411: 405: 401: 398: 390: 380: 370: 366: 356: 341: 340: 339: 333: 329: 314: 304: 303: 302: 298: 292: 291: 290: 286: 275: 274: 273: 272: 268: 257: 242: 239: 212: 209: 26: 9: 6: 4: 3: 2: 3476: 3465: 3462: 3460: 3457: 3455: 3452: 3450: 3447: 3445: 3442: 3440: 3437: 3435: 3432: 3430: 3427: 3425: 3422: 3420: 3417: 3415: 3412: 3411: 3409: 3394: 3391: 3389: 3386: 3384: 3381: 3379: 3376: 3374: 3371: 3369: 3366: 3364: 3361: 3359: 3356: 3354: 3351: 3349: 3346: 3344: 3341: 3339: 3336: 3334: 3331: 3329: 3326: 3324: 3321: 3319: 3316: 3314: 3311: 3310: 3308: 3302: 3296: 3293: 3291: 3288: 3286: 3283: 3281: 3278: 3276: 3273: 3271: 3268: 3266: 3263: 3261: 3258: 3256: 3253: 3251: 3248: 3246: 3243: 3242: 3240: 3234: 3228: 3225: 3223: 3220: 3218: 3215: 3213: 3210: 3208: 3205: 3203: 3202:Optical fiber 3200: 3198: 3195: 3193: 3190: 3188: 3185: 3183: 3180: 3178: 3175: 3174: 3172: 3170: 3166: 3160: 3159:Vitrification 3157: 3155: 3152: 3150: 3147: 3145: 3142: 3140: 3137: 3135: 3132: 3130: 3129:Glass melting 3127: 3125: 3124:Glass forming 3122: 3120: 3117: 3115: 3112: 3110: 3107: 3106: 3104: 3100: 3094: 3091: 3089: 3086: 3084: 3081: 3079: 3076: 3074: 3071: 3070: 3068: 3066: 3062: 3056: 3053: 3051: 3048: 3046: 3043: 3041: 3040:Uranium glass 3038: 3036: 3033: 3031: 3028: 3026: 3023: 3021: 3020:Soluble glass 3018: 3016: 3013: 3011: 3008: 3006: 3003: 3001: 2998: 2996: 2993: 2991: 2988: 2986: 2983: 2981: 2978: 2976: 2973: 2971: 2968: 2966: 2963: 2961: 2958: 2956: 2953: 2951: 2948: 2946: 2943: 2941: 2938: 2936: 2935:Ceramic glaze 2933: 2931: 2928: 2926: 2923: 2921: 2918: 2916: 2913: 2912: 2910: 2906: 2900: 2897: 2895: 2892: 2890: 2887: 2886: 2884: 2880: 2875: 2868: 2863: 2861: 2856: 2854: 2849: 2848: 2845: 2836: 2835:Free-download 2832: 2828: 2825: 2821: 2819: 2818:free-download 2816: 2812: 2810: 2809:free-download 2807: 2803: 2801: 2798: 2794: 2790: 2784: 2780: 2775: 2771: 2765: 2761: 2756: 2752: 2746: 2742: 2737: 2736: 2723: 2719: 2715: 2711: 2707: 2703: 2696: 2688: 2684: 2680: 2676: 2672: 2668: 2664: 2657: 2649: 2645: 2641: 2637: 2633: 2629: 2622: 2614: 2610: 2606: 2602: 2598: 2594: 2587: 2585: 2576: 2572: 2568: 2564: 2560: 2556: 2552: 2548: 2541: 2533: 2529: 2525: 2521: 2517: 2513: 2509: 2505: 2501: 2497: 2493: 2486: 2478: 2474: 2470: 2466: 2462: 2458: 2454: 2450: 2446: 2442: 2434: 2432: 2430: 2421: 2417: 2413: 2409: 2405: 2401: 2397: 2393: 2386: 2384: 2382: 2373: 2369: 2364: 2359: 2355: 2351: 2347: 2343: 2338: 2333: 2329: 2325: 2321: 2314: 2306: 2302: 2298: 2294: 2291:(9): 093112. 2290: 2286: 2278: 2276: 2267: 2263: 2259: 2255: 2251: 2247: 2243: 2239: 2232: 2230: 2228: 2226: 2224: 2215: 2211: 2206: 2201: 2197: 2193: 2189: 2185: 2181: 2174: 2166: 2162: 2158: 2154: 2150: 2146: 2142: 2138: 2134: 2130: 2122: 2114: 2110: 2106: 2102: 2098: 2094: 2089: 2084: 2080: 2076: 2069: 2061: 2057: 2053: 2049: 2041: 2039: 2037: 2035: 2033: 2024: 2022:952-10-0646-3 2018: 2014: 2010: 2006: 1999: 1991: 1987: 1983: 1979: 1975: 1971: 1964: 1950: 1946: 1940: 1926: 1922: 1916: 1908: 1902: 1898: 1891: 1883: 1877: 1873: 1869: 1865: 1858: 1849: 1841: 1835: 1831: 1827: 1823: 1822: 1814: 1803: 1799: 1795: 1791: 1787: 1782: 1781:1721.1/108260 1777: 1773: 1769: 1765: 1761: 1754: 1747: 1739: 1735: 1730: 1725: 1721: 1717: 1713: 1709: 1708: 1703: 1695: 1687: 1683: 1679: 1675: 1671: 1667: 1664:(3): 304–10. 1663: 1659: 1658: 1653: 1646: 1637: 1632: 1627: 1622: 1618: 1614: 1610: 1603: 1597: 1593: 1589: 1585: 1579: 1571: 1567: 1563: 1559: 1552: 1545: 1537: 1533: 1529: 1525: 1521: 1517: 1510: 1499: 1495: 1488: 1481: 1473: 1469: 1465: 1461: 1454: 1447: 1446: 1439: 1431: 1427: 1423: 1419: 1415: 1411: 1407: 1403: 1392: 1384: 1378: 1370: 1366: 1362: 1358: 1354: 1350: 1345: 1337: 1333: 1323: 1320: 1318: 1315: 1313: 1310: 1308: 1305: 1303: 1300: 1298: 1295: 1293: 1290: 1288: 1285: 1283: 1280: 1278: 1275: 1273: 1270: 1269: 1262: 1260: 1256: 1249:Chalcogenides 1246: 1243: 1239: 1235: 1231: 1226: 1221: 1219: 1218:lipophilicity 1216:) and strong 1215: 1211: 1207: 1203: 1198: 1193: 1189: 1187: 1183: 1179: 1175: 1171: 1167: 1162: 1156: 1147: 1139: 1130: 1121: 1117: 1114: 1110: 1104: 1103: 1102: 1095: 1094: 1093: 1086: 1085: 1084: 1080: 1076: 1070: 1069: 1068: 1064: 1057: 1056: 1055: 1051: 1046:Carbon source 1045: 1044: 1043: 997: 996: 995: 993: 992:diethyl ether 989: 985: 981: 971: 970: 969: 955: 954: 953: 951: 946: 942: 938: 934: 929: 927: 923: 919: 911: 907: 891: 881: 880: 879: 873: 863: 846: 845: 830: 829: 828: 825: 823: 819: 815: 811: 801:+ 6 HCl + 6 H 780: 779: 756: 755: 754: 746: 742: 740: 734: 726: 700: 699: 698: 696: 692: 688: 684: 679: 677: 676:thermal oxide 673: 669: 665: 661: 637: 636: 612: 611: 592: 591: 590: 576: 568: 567:nitrous oxide 556: 552: 548: 538: 536: 532: 528: 524: 520: 516: 501: 490: 489: 488: 482: 474: 470: 465: 450: 448: 444: 439: 435: 431: 427: 423: 409: 406: 402: 399: 396: 391: 388: 384: 381: 378: 374: 371: 367: 364: 363:nanomaterials 360: 357: 354: 350: 346: 342: 337: 334: 330: 327: 322: 318: 315: 312: 311: 309: 305: 299: 296: 295: 293: 287: 283: 282: 280: 279: 278: 266: 262: 258: 255: 251: 247: 243: 240: 237: 236: 234: 233: 232: 225: 217: 208: 206: 205: 200: 196: 192: 187: 185: 181: 177: 173: 169: 168:fluorocarbons 165: 161: 157: 153: 149: 145: 141: 137: 133: 129: 125: 121: 117: 113: 109: 105: 103: 99: 95: 91: 88: 84: 79: 77: 73: 69: 65: 61: 54: 50: 46: 43: 39: 33: 19: 3368:Porous glass 3323:Safety glass 3280:Porous glass 3238:modification 3113: 3050:Wood's glass 2970:Fused quartz 2945:Cobalt glass 2899:Supercooling 2834: 2817: 2808: 2799: 2778: 2759: 2740: 2705: 2701: 2695: 2670: 2666: 2656: 2631: 2627: 2621: 2596: 2592: 2550: 2546: 2540: 2499: 2495: 2485: 2444: 2440: 2395: 2391: 2327: 2323: 2313: 2288: 2284: 2241: 2237: 2187: 2183: 2173: 2132: 2128: 2121: 2078: 2074: 2068: 2051: 2047: 2004: 1998: 1973: 1969: 1963: 1952:. Retrieved 1948: 1939: 1928:. Retrieved 1925:Lam Research 1924: 1915: 1896: 1890: 1872:10.1142/7885 1863: 1857: 1848: 1819: 1813: 1763: 1759: 1746: 1711: 1705: 1694: 1661: 1655: 1645: 1636:1721.1/88187 1619:(5): 26–33. 1616: 1612: 1602: 1587: 1583: 1582:Wahl, Georg 1578: 1561: 1557: 1544: 1522:(10): 3032. 1519: 1515: 1509: 1493: 1480: 1463: 1459: 1453: 1444: 1438: 1405: 1401: 1391: 1377: 1352: 1348: 1336: 1252: 1222: 1194: 1190: 1178:hot filament 1158: 1127: 1118: 1115: 1111: 1108: 1099: 1090: 1081: 1077: 1074: 1065: 1061: 1052: 1049: 1041: 982: 979: 967: 949: 930: 903: 869: 861: 855:→ SiNH + 3 H 826: 820:·cm and 10 M 807: 752: 743: 735: 723: 680: 663: 657: 654:+ byproducts 577:(TEOS; Si(OC 544: 512: 467: 418: 387:metalorganic 377:vaporization 332:temperature. 326:nanoparticle 301:temperature. 276: 230: 202: 198: 194: 190: 188: 182:and various 106: 80: 63: 59: 58: 3393:Glass fiber 3358:Glass cloth 3102:Preparation 3078:CorningWare 2960:Flint glass 2955:Crown glass 2908:Formulation 2054:: 285–288. 2013:10138/21065 1766:: 470–479. 1729:10550/74201 1564:: 484–491. 1297:Ion plating 1292:Element Six 1242:micrometers 1240:to several 1184:power, and 1087:Carrier gas 814:resistivity 672:conformally 458:Polysilicon 389:precursors. 351:films. See 349:crystalline 285:precursors. 263:(TEOS) and 248:(≈ 10 146:), carbon ( 102:by-products 74:to produce 55:) apparatus 3408:Categories 3388:Windshield 3222:Refraction 3182:Dispersion 2990:Milk glass 2985:Lead glass 2781:. Kluwer. 2337:1503.02806 1954:2022-10-20 1930:2021-04-21 1466:(8): 759. 1355:: 156693. 1329:References 1238:nanometers 1225:sp3-bonded 1172:; 7.5–203 1153:See also: 976:→ M + n CO 933:molybdenum 900:→ W + 6 HF 506:→ Si + 2 H 462:See also: 397:formation. 152:nanofibers 144:oxynitride 90:precursors 76:thin films 3255:Corrosion 3154:Viscosity 3109:Annealing 2575:126154018 2441:Nanoscale 2420:101408264 2266:137786071 2214:0935-9648 2157:0044-8249 2105:0008-6223 2088:0910.5841 1790:0376-7388 1738:208737085 1430:1071-1023 1369:224922987 1208:glass, a 1182:microwave 945:silicides 886:→ W + 3 F 660:aluminium 527:phosphine 495:→ Si + Cl 404:pressure. 189:The term 172:filaments 156:nanotubes 124:epitaxial 120:amorphous 98:decompose 3424:Coatings 3373:Pre-preg 3177:Achromat 2920:Bioglass 2915:AgInSbTe 2827:Archived 2532:13407439 2524:28084218 2469:24658264 2372:25757864 2330:: 6499. 2165:24173776 2113:15891662 1802:Archived 1686:26657328 1536:96618488 1498:Archived 1265:See also 1038:Graphene 941:titanium 937:tantalum 931:CVD for 739:chlorine 683:alloying 535:diborane 523:hydrogen 515:nitrogen 438:nitrides 434:carbides 395:particle 199:chemical 176:tungsten 164:graphene 92:, which 87:volatile 3304:Diverse 3236:Surface 3093:Zerodur 2710:Bibcode 2675:Bibcode 2636:Bibcode 2601:Bibcode 2555:Bibcode 2504:Bibcode 2477:5241809 2449:Bibcode 2400:Bibcode 2363:4382696 2342:Bibcode 2293:Bibcode 2246:Bibcode 2192:Bibcode 2137:Bibcode 1978:Bibcode 1798:4225384 1666:Bibcode 1410:Bibcode 1230:dopants 1133:Diamond 998:2 Nb(OC 725:Glasses 691:diffuse 633:+ 2 HCl 625:O → SiO 573:O), or 207:(PVD). 160:diamond 140:nitride 136:carbide 132:dioxide 128:silicon 96:and/or 66:) is a 3459:Vacuum 3306:topics 3169:Optics 2975:GeSbTe 2882:Basics 2785:  2766:  2747:  2573:  2530:  2522:  2475:  2467:  2418:  2370:  2360:  2264:  2212:  2163:  2155:  2111:  2103:  2075:Carbon 2019:  1903:  1878:  1836:  1796:  1788:  1736:  1684:  1584:et al. 1534:  1428:  1367:  906:copper 866:Metals 810:stress 789:+ 4 NH 781:3 SiCl 773:+ 12 H 761:+ 4 NH 687:doping 565:) and 551:oxygen 547:silane 531:arsine 499:+ HCl 481:silane 475:(SiHCl 321:plasma 122:, and 45:plasma 3088:Macor 3055:ZBLAN 2889:Glass 2874:Glass 2571:S2CID 2528:S2CID 2473:S2CID 2416:S2CID 2332:arXiv 2262:S2CID 2109:S2CID 2083:arXiv 1805:(PDF) 1794:S2CID 1756:(PDF) 1734:S2CID 1554:(PDF) 1532:S2CID 1501:(PDF) 1490:(PDF) 1365:S2CID 1259:alloy 1206:Pyrex 1204:than 1018:+ 5 C 972:M(CO) 960:+ 5 H 956:2 MCl 896:+ 3 H 831:2 SiH 757:3 SiH 717:+ 6 H 709:→ 2 P 705:+ 5 O 650:→ SiO 638:Si(OC 629:+ 2 N 621:+ 2 N 605:+ 2 H 601:→ SiO 557:(SiCl 491:SiHCl 479:) or 345:ALCVD 265:ozone 211:Types 201:from 148:fiber 94:react 83:wafer 2783:ISBN 2764:ISBN 2745:ISBN 2520:PMID 2465:PMID 2368:PMID 2210:ISSN 2161:PMID 2153:ISSN 2101:ISSN 2017:ISBN 1901:ISBN 1876:ISBN 1834:ISBN 1786:ISSN 1682:PMID 1426:ISSN 1174:Torr 1010:→ Nb 910:hfac 851:+ NH 793:→ Si 765:→ Si 701:4 PH 685:or " 613:SiCl 549:and 483:(SiH 436:and 415:Uses 250:torr 162:and 2718:doi 2683:doi 2644:doi 2609:doi 2563:doi 2551:123 2512:doi 2457:doi 2408:doi 2358:PMC 2350:doi 2301:doi 2289:106 2254:doi 2200:doi 2145:doi 2133:125 2093:doi 2056:doi 2052:122 2009:hdl 1986:doi 1974:141 1868:doi 1826:doi 1776:hdl 1768:doi 1764:523 1724:hdl 1716:doi 1674:doi 1631:hdl 1621:doi 1592:doi 1566:doi 1562:239 1524:doi 1468:doi 1418:doi 1357:doi 1353:851 1170:psi 1166:kPa 874:(WF 847:SiH 835:+ N 597:+ O 593:SiH 533:or 502:SiH 310:): 166:), 64:CVD 3410:: 2833:. 2716:. 2706:10 2704:. 2681:. 2671:13 2669:. 2665:. 2642:. 2632:14 2630:. 2607:. 2595:. 2583:^ 2569:. 2561:. 2549:. 2526:. 2518:. 2510:. 2500:28 2498:. 2494:. 2471:. 2463:. 2455:. 2443:. 2428:^ 2414:. 2406:. 2396:58 2394:. 2380:^ 2366:. 2356:. 2348:. 2340:. 2326:. 2322:. 2299:. 2287:. 2274:^ 2260:. 2252:. 2242:29 2240:. 2222:^ 2208:. 2198:. 2188:25 2186:. 2182:. 2159:. 2151:. 2143:. 2131:. 2107:. 2099:. 2091:. 2079:48 2077:. 2050:. 2031:^ 2015:. 1984:. 1972:. 1947:. 1923:. 1874:. 1832:. 1800:. 1792:. 1784:. 1774:. 1762:. 1758:. 1732:. 1722:. 1712:31 1710:. 1704:. 1680:. 1672:. 1662:15 1660:. 1654:. 1629:. 1617:13 1615:. 1611:. 1560:. 1556:. 1530:. 1520:12 1518:. 1492:. 1462:. 1424:. 1416:. 1406:13 1404:. 1363:. 1351:. 1347:. 1232:. 1180:, 1026:OC 939:, 935:, 928:. 892:WF 882:WF 741:. 569:(N 553:, 529:, 519:nm 271:). 246:Pa 186:. 178:, 174:, 170:, 158:, 154:, 150:, 142:, 138:, 134:, 118:, 114:, 78:. 42:DC 2866:e 2859:t 2852:v 2791:. 2772:. 2753:. 2724:. 2720:: 2712:: 2689:. 2685:: 2677:: 2650:. 2646:: 2638:: 2615:. 2611:: 2603:: 2597:3 2577:. 2565:: 2557:: 2534:. 2514:: 2506:: 2479:. 2459:: 2451:: 2445:6 2422:. 2410:: 2402:: 2374:. 2352:: 2344:: 2334:: 2328:6 2307:. 2303:: 2295:: 2268:. 2256:: 2248:: 2216:. 2202:: 2194:: 2167:. 2147:: 2139:: 2115:. 2095:: 2085:: 2062:. 2058:: 2025:. 2011:: 1992:. 1988:: 1980:: 1957:. 1933:. 1909:. 1884:. 1870:: 1842:. 1828:: 1778:: 1770:: 1740:. 1726:: 1718:: 1688:. 1676:: 1668:: 1639:. 1633:: 1623:: 1594:: 1572:. 1568:: 1538:. 1526:: 1474:. 1470:: 1464:5 1432:. 1420:: 1412:: 1398:2 1371:. 1359:: 1032:5 1030:H 1028:2 1024:5 1022:H 1020:2 1016:5 1014:O 1012:2 1008:5 1006:) 1004:5 1002:H 1000:2 974:n 962:2 958:5 950:M 914:2 912:) 898:2 894:6 888:2 884:6 876:6 857:2 853:3 849:4 841:2 837:2 833:4 822:V 818:Ω 803:2 799:4 797:N 795:3 791:3 787:2 785:H 783:2 775:2 771:4 769:N 767:3 763:3 759:4 730:4 719:2 715:5 713:O 711:2 707:2 703:3 652:2 648:4 646:) 644:5 642:H 640:2 631:2 627:2 623:2 619:2 617:H 615:2 607:2 603:2 599:2 595:4 587:4 585:) 583:5 581:H 579:2 571:2 563:2 561:H 559:2 508:2 504:4 497:2 493:3 485:4 477:3 365:. 355:. 269:2 130:( 62:( 34:. 20:)

Index

Chemical vapour deposition
Chemical Vapor Deposition (journal)

DC
plasma
carbon nanotubes
plasma-enhanced chemical vapor deposition
vacuum deposition
semiconductor industry
thin films
wafer
volatile
precursors
react
decompose
by-products
Microfabrication
monocrystalline
polycrystalline
amorphous
epitaxial
silicon
dioxide
carbide
nitride
oxynitride
fiber
nanofibers
nanotubes
diamond

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.