Knowledge

Chalcogenide glass

Source 📝

332:
melted by exposure to a brief, intense pulse of heat. Subsequent rapid cooling then sends the melted region back through the glass transition. Conversely, a lower-intensity heat pulse of longer duration will crystallize an amorphous region. Attempts to induce the glassy–crystal transformation of chalcogenides by electrical means form the basis of phase-change random-access memory (PC-RAM). This technology has been developed to near commercial use by
156: 417:
of both electrons and ions participate in electromigration—widely studied as a degradation mechanism of the electrical conductors used in modern integrated circuits. Thus, a unified approach to the study of chalcogenides, assessing the collective roles of atoms, ions and electrons, may prove essential for both device performance and reliability.
416:
The electronic applications of chalcogenide glasses have been an active topic of research throughout the second half of the 20th century and beyond. For example, the migration of dissolved ions is required in the electrolytic case, but could limit the performance of a phase-change device. Diffusion
370:
Although the electronic structural transitions relevant to both optical discs and PC-RAM were featured strongly, contributions from ions were not considered—even though amorphous chalcogenides can have significant ionic conductivities. At Euromat 2005 it was shown that ionic transport can also be
331:
was found to exhibit sharp, reversible transitions in electrical resistance above a threshold voltage. If current is allowed to persist in the non-crystalline material, it heats up and changes to crystalline form. This is equivalent to information being written on it. A crystalline region may be
139:. A most recent and extremely comprehensive university study of more than 265 different ChG elemental compositions, representing 40 different elemental families now shows that the vast majority of chalcogenide glasses are more accurately defined as being predominantly bonded by the weaker 336:. For write operations, an electric current supplies the heat pulse. The read process is performed at sub-threshold voltages by utilizing the relatively large difference in electrical resistance between the glassy and crystalline states. Examples of such phase change materials are 556:
San-Román-Alerigi, Damián P.; Anjum, Dalaver H.; Zhang, Yaping; Yang, Xiaoming; Benslimane, Ahmed; Ng, Tien K.; Alsunaidi, Mohammad; Ooi, Boon S. (2013). "Electron irradiation induced reduction of the permittivity in chalcogenide glass (AsS) thin film".
119:
Not all chalcogenide compositions exist in glassy form, though it is possible to find materials with which these non-glass-forming compositions can be alloyed in order to form a glass. An example of this is gallium sulphide-based glasses.
204:
Some chalcogenide materials experience thermally driven amorphous-to-crystalline phase changes. This makes them useful for encoding binary information on thin films of chalcogenides and forms the basis of rewritable optical discs and
607: 77:) are strong glass-formers and possess glasses within large concentration regions. Glass-forming abilities decrease with increasing molar weight of constituent elements; i.e., S > Se > Te. 448:
R.A. Loretz, T.J. Loretz and K.A. Richardson, "Predictive method to assess chalcogenide glass properties: bonding, density and the impact on glass properties," Opt Mater. Express, 12:5, (2022),
827:
Vezzoli, G.C.; Walsh, P.J.; Doremus, L.W. (1975). "Threshold switching and the on-state in non-crystalline chalcogenide semiconductors: An interpretation of threshold-switching research".
116:
Most stable binary chalcogenide glasses are compounds of a chalcogen and a group 14 or 15 element and may be formed in a wide range of atomic ratios. Ternary glasses are also known.
144: 885:
Frumar, M.; Frumarova, B.; Wagner, T. (2011). "4.07: Amorphous and Glassy Semiconducting Chalcogenides". In Pallab Bhattacharya; Roberto Fornari; Hiroshi Kamimura (eds.).
347:
In addition to memory applications, mechanical property contrast between amorphous and crystalline phases is an emerging concept of frequency tuning in resonant
201:
ions. Some chalcogenide glasses exhibit several non-linear optical effects such as photon-induced refraction, and electron-induced permittivity modification
147:. They are not exclusively bonded by these weaker vdW forces, and do exhibit varying percentages of covalency, based upon their specific chemical makeup. 1381: 371:
useful for data storage in a solid chalcogenide electrolyte. At the nanoscale, this electrolyte consists of crystalline metallic islands of
272: 268: 264: 260: 256: 933: 902: 875: 799:
Adler, D.; Shur, M.S.; Silver, M.; Ovshinsky, S.R. (1980). "Threshold switching in chalcogenide‐glass thin films".
1406: 1202: 163:(CD). Amorphous chalcogenide materials form the basis of re-writable CD and DVD solid-state memory technology. 1318: 1295: 348: 1151: 194: 292:
Electrical switching in chalcogenide semiconductors emerged in the 1960s, when the amorphous chalcogenide
243:, sometimes with a layer of a crystallization promoting film. Other less commonly used such materials are 926: 108:
state, thereby changing their optical and electrical properties and allowing the storage of information.
1487: 1482: 513:
Tanaka, K.; Shimakawa, K. (2009). "Chalcogenide glasses in Japan: A review on photoinduced phenomena".
125: 1222: 124:
on its own is not a known glass former; however, with sodium or lanthanum sulphides it forms a glass,
1182: 1103: 993: 97: 1451: 1083: 179: 434:
Flemings, M.C.; Ilschner, B.; Kramer, E.J.; Mahajan, S.; Jurgen Buschow, K.H.; Cahn, R.W. (2001).
363:
properties of chalcogenide glasses were revealed in 1955 by B.T. Kolomiets and N.A. Gorunova from
1446: 1313: 1187: 1492: 919: 136: 100:
glass-formers: by controlling heating and annealing (cooling), they can be switched between an
764:
Ovshinsky, S.R. (1968). "Reversible Electrical Switching Phenomena in Disordered Structures".
225:. In optical discs, the phase change layer is usually sandwiched between dielectric layers of 1255: 1063: 121: 74: 1411: 1285: 1197: 1033: 1023: 836: 808: 773: 738: 695: 634: 522: 477: 140: 1323: 62:. Chalcogenide materials behave rather differently from oxides, in particular their lower 8: 1431: 1358: 1353: 1275: 1250: 1217: 1078: 210: 175:, with the main advantage being that these materials transmit across a wide range of the 93: 840: 812: 777: 742: 699: 638: 526: 481: 1338: 1260: 998: 894: 711: 663: 622: 584: 566: 538: 389: 252: 198: 70: 1416: 1386: 1343: 1280: 1265: 1177: 1068: 898: 871: 848: 715: 668: 650: 542: 495: 248: 588: 1207: 1192: 962: 890: 844: 816: 781: 746: 703: 658: 642: 576: 530: 485: 285:
memory technology achieves throughput and write durability 1,000 times higher than
214: 1401: 1396: 1245: 1141: 1118: 1113: 1098: 1093: 1088: 1048: 1018: 372: 364: 231: 131:
Up until recently, chalcogenide glasses (ChGs) were believed to be predominantly
101: 785: 602: 1363: 1333: 1328: 646: 621:
Ali, Utku Emre; Modi, Gaurav; Agarwal, Ritesh; Bhaskaran, Harish (2022-03-18).
623:"Real-time nanomechanical property modulation as a framework for tunable NEMS" 1476: 1270: 1227: 1133: 1108: 1003: 750: 707: 654: 360: 172: 168: 59: 1073: 185:
The physical properties of chalcogenide glasses (high refractive index, low
1436: 1391: 1348: 1038: 1013: 967: 672: 534: 499: 286: 226: 206: 89: 1461: 1426: 1146: 1028: 333: 105: 1456: 1421: 1290: 1058: 1053: 911: 189:
energy, high nonlinearity) also make them ideal for incorporation into
132: 580: 868:
Optical nonlinearities in chalcogenide glasses and their applications
820: 490: 465: 449: 282: 69:
The classical chalcogenide glasses (mainly sulfur-based ones such as
47: 35: 1441: 1212: 988: 983: 341: 222: 176: 167:
Uses include infrared detectors, mouldable infrared optics such as
81: 63: 55: 43: 571: 1161: 66:
contribute to very dissimilar optical and electrical properties.
1237: 1043: 555: 337: 218: 190: 186: 155: 85: 51: 39: 16:
Glass containing one or more of sulfur, selenium and tellurium
1156: 1123: 957: 942: 433: 278: 160: 31: 244: 58:
is also a chalcogen but is not used because of its strong
729:
Kolomiets, B. T. (1964). "Vitreous Semiconductors (II)".
605:, "Multi-layered optical disc", issued 2003-01-28 798: 686:
Kolomiets, B. T. (1964). "Vitreous Semiconductors (I)".
620: 463: 884: 388:) dispersed in an amorphous semiconducting matrix of 197:, and other active devices especially if doped with 143:
of atomic physics and more accurately classified as
826: 466:"Materials science: Changing face of the chameleon" 887:Comprehensive Semiconductor Science and Technology 865: 436:Encyclopedia of Materials: Science and Technology 1474: 512: 1382:Conservation and restoration of glass objects 927: 889:. Vol. 4. Elsevier. pp. 206–261. 934: 920: 763: 728: 722: 685: 662: 570: 489: 459: 457: 941: 679: 154: 1475: 454: 915: 464:Greer, A. Lindsay; Mathur, N (2005). 281:claims that its chalcogenide-based 135:bonded materials and classified as 13: 895:10.1016/B978-0-44-453153-7.00122-X 859: 450:https://doi.org/10.1364/OME.455523 14: 1504: 866:Zakery, A.; S.R. Elliott (2007). 829:Journal of Non-Crystalline Solids 1452:Radioactive waste vitrification 1407:Glass fiber reinforced concrete 792: 757: 150: 80:Chalcogenide compounds such as 614: 595: 549: 506: 442: 427: 1: 1319:Chemically strengthened glass 420: 349:nanoelectromechanical systems 1152:Glass-ceramic-to-metal seals 849:10.1016/0022-3093(75)90138-6 195:photonic integrated circuits 145:van der Waals network solids 111: 7: 786:10.1103/PhysRevLett.21.1450 354: 207:non-volatile memory devices 10: 1509: 801:Journal of Applied Physics 647:10.1038/s41467-022-29117-7 126:gallium lanthanum sulphide 1372: 1304: 1236: 1183:Chemical vapor deposition 1170: 1132: 1104:Ultra low expansion glass 994:Borophosphosilicate glass 976: 950: 1422:Glass-reinforced plastic 1084:Sodium hexametaphosphate 751:10.1002/pssb.19640070302 708:10.1002/pssb.19640070202 180:electromagnetic spectrum 1314:Anti-reflective coating 1188:Glass batch calculation 1069:Photochromic lens glass 731:Physica Status Solidi B 688:Physica Status Solidi B 137:covalent network solids 88:are used in rewritable 34:containing one or more 870:. New York: Springer. 535:10.1002/pssb.200982002 164: 1447:Prince Rupert's drops 1296:Transparent materials 1256:Gradient-index optics 1064:Phosphosilicate glass 627:Nature Communications 515:Phys. Status Solidi B 158: 122:Gallium(III) sulphide 1412:Glass ionomer cement 1286:Photosensitive glass 1213:Liquidus temperature 1034:Fluorosilicate glass 141:van der Waals forces 1432:Glass-to-metal seal 1354:Self-cleaning glass 1276:Optical lens design 841:1975JNCS...18..333V 813:1980JAP....51.3289A 778:1968PhRvL..21.1450O 743:1964PSSBR...7..713K 700:1964PSSBR...7..359K 639:2022NatCo..13.1464A 527:2009PSSBR.246.1744T 482:2005Natur.437.1246G 213:. Examples of such 94:phase-change memory 1417:Glass microspheres 1339:Hydrogen darkening 1261:Hydrogen darkening 1009:Chalcogenide glass 999:Borosilicate glass 390:germanium selenide 199:rare-earth element 165: 96:devices. They are 20:Chalcogenide glass 1488:Optical materials 1483:Non-oxide glasses 1470: 1469: 1387:Glass-coated wire 1359:sol–gel technique 1344:Insulated glazing 1281:Photochromic lens 1266:Optical amplifier 1218:sol–gel technique 581:10.1063/1.4789602 193:, planar optics, 22:(pronounced hard 1500: 1208:Ion implantation 963:Glass transition 936: 929: 922: 913: 912: 908: 881: 853: 852: 824: 821:10.1063/1.328036 807:(6): 3289–3309. 796: 790: 789: 761: 755: 754: 726: 720: 719: 683: 677: 676: 666: 618: 612: 611: 610: 606: 599: 593: 592: 574: 553: 547: 546: 510: 504: 503: 493: 491:10.1038/4371246a 476:(7063): 1246–7. 461: 452: 446: 440: 439: 431: 412: 411: 410: 402: 401: 387: 385: 384: 330: 329: 328: 320: 319: 311: 310: 302: 301: 242: 240: 239: 50:, but excluding 1508: 1507: 1503: 1502: 1501: 1499: 1498: 1497: 1473: 1472: 1471: 1466: 1402:Glass electrode 1397:Glass databases 1374: 1368: 1306: 1300: 1232: 1166: 1142:Bioactive glass 1128: 1114:Vitreous enamel 1099:Thoriated glass 1094:Tellurite glass 1079:Soda–lime glass 1049:Gold ruby glass 1019:Cranberry glass 972: 946: 940: 905: 878: 862: 860:Further reading 857: 856: 825: 797: 793: 766:Phys. Rev. Lett 762: 758: 727: 723: 684: 680: 619: 615: 608: 601: 600: 596: 554: 550: 511: 507: 462: 455: 447: 443: 432: 428: 423: 409: 406: 405: 404: 400: 397: 396: 395: 393: 383: 380: 379: 378: 376: 373:silver selenide 365:Ioffe Institute 357: 327: 324: 323: 322: 318: 315: 314: 313: 309: 306: 305: 304: 300: 297: 296: 295: 293: 238: 235: 234: 233: 230: 171:, and infrared 153: 114: 104:(glassy) and a 17: 12: 11: 5: 1506: 1496: 1495: 1490: 1485: 1468: 1467: 1465: 1464: 1459: 1454: 1449: 1444: 1439: 1434: 1429: 1424: 1419: 1414: 1409: 1404: 1399: 1394: 1389: 1384: 1378: 1376: 1370: 1369: 1367: 1366: 1364:Tempered glass 1361: 1356: 1351: 1346: 1341: 1336: 1334:DNA microarray 1331: 1329:Dealkalization 1326: 1321: 1316: 1310: 1308: 1302: 1301: 1299: 1298: 1293: 1288: 1283: 1278: 1273: 1268: 1263: 1258: 1253: 1248: 1242: 1240: 1234: 1233: 1231: 1230: 1225: 1220: 1215: 1210: 1205: 1203:Glass modeling 1200: 1195: 1190: 1185: 1180: 1174: 1172: 1168: 1167: 1165: 1164: 1159: 1154: 1149: 1144: 1138: 1136: 1134:Glass-ceramics 1130: 1129: 1127: 1126: 1121: 1116: 1111: 1106: 1101: 1096: 1091: 1086: 1081: 1076: 1074:Silicate glass 1071: 1066: 1061: 1056: 1051: 1046: 1041: 1036: 1031: 1026: 1021: 1016: 1011: 1006: 1001: 996: 991: 986: 980: 978: 974: 973: 971: 970: 965: 960: 954: 952: 948: 947: 945:science topics 939: 938: 931: 924: 916: 910: 909: 903: 882: 876: 861: 858: 855: 854: 835:(3): 333–373. 791: 772:(20): 1450–3. 756: 737:(3): 713–731. 721: 694:(2): 359–372. 678: 613: 594: 548: 521:(8): 1744–57. 505: 453: 441: 425: 424: 422: 419: 407: 398: 381: 361:semiconducting 356: 353: 325: 316: 307: 298: 236: 217:materials are 173:optical fibers 152: 149: 113: 110: 15: 9: 6: 4: 3: 2: 1505: 1494: 1493:Chalcogenides 1491: 1489: 1486: 1484: 1481: 1480: 1478: 1463: 1460: 1458: 1455: 1453: 1450: 1448: 1445: 1443: 1440: 1438: 1435: 1433: 1430: 1428: 1425: 1423: 1420: 1418: 1415: 1413: 1410: 1408: 1405: 1403: 1400: 1398: 1395: 1393: 1390: 1388: 1385: 1383: 1380: 1379: 1377: 1371: 1365: 1362: 1360: 1357: 1355: 1352: 1350: 1347: 1345: 1342: 1340: 1337: 1335: 1332: 1330: 1327: 1325: 1322: 1320: 1317: 1315: 1312: 1311: 1309: 1303: 1297: 1294: 1292: 1289: 1287: 1284: 1282: 1279: 1277: 1274: 1272: 1271:Optical fiber 1269: 1267: 1264: 1262: 1259: 1257: 1254: 1252: 1249: 1247: 1244: 1243: 1241: 1239: 1235: 1229: 1228:Vitrification 1226: 1224: 1221: 1219: 1216: 1214: 1211: 1209: 1206: 1204: 1201: 1199: 1198:Glass melting 1196: 1194: 1193:Glass forming 1191: 1189: 1186: 1184: 1181: 1179: 1176: 1175: 1173: 1169: 1163: 1160: 1158: 1155: 1153: 1150: 1148: 1145: 1143: 1140: 1139: 1137: 1135: 1131: 1125: 1122: 1120: 1117: 1115: 1112: 1110: 1109:Uranium glass 1107: 1105: 1102: 1100: 1097: 1095: 1092: 1090: 1089:Soluble glass 1087: 1085: 1082: 1080: 1077: 1075: 1072: 1070: 1067: 1065: 1062: 1060: 1057: 1055: 1052: 1050: 1047: 1045: 1042: 1040: 1037: 1035: 1032: 1030: 1027: 1025: 1022: 1020: 1017: 1015: 1012: 1010: 1007: 1005: 1004:Ceramic glaze 1002: 1000: 997: 995: 992: 990: 987: 985: 982: 981: 979: 975: 969: 966: 964: 961: 959: 956: 955: 953: 949: 944: 937: 932: 930: 925: 923: 918: 917: 914: 906: 904:9780444531537 900: 896: 892: 888: 883: 879: 877:9783540710660 873: 869: 864: 863: 850: 846: 842: 838: 834: 830: 822: 818: 814: 810: 806: 802: 795: 787: 783: 779: 775: 771: 767: 760: 752: 748: 744: 740: 736: 732: 725: 717: 713: 709: 705: 701: 697: 693: 689: 682: 674: 670: 665: 660: 656: 652: 648: 644: 640: 636: 632: 628: 624: 617: 604: 598: 590: 586: 582: 578: 573: 568: 564: 560: 559:J. Appl. Phys 552: 544: 540: 536: 532: 528: 524: 520: 516: 509: 501: 497: 492: 487: 483: 479: 475: 471: 467: 460: 458: 451: 445: 437: 430: 426: 418: 414: 391: 374: 368: 366: 362: 352: 350: 345: 343: 339: 335: 290: 288: 284: 280: 276: 274: 270: 266: 262: 258: 254: 250: 246: 241: 228: 224: 220: 216: 212: 208: 202: 200: 196: 192: 188: 183: 181: 178: 174: 170: 162: 157: 148: 146: 142: 138: 134: 129: 127: 123: 117: 109: 107: 103: 99: 95: 91: 90:optical disks 87: 83: 78: 76: 72: 67: 65: 61: 60:radioactivity 57: 53: 49: 45: 41: 37: 33: 29: 25: 21: 1437:Porous glass 1392:Safety glass 1349:Porous glass 1307:modification 1119:Wood's glass 1039:Fused quartz 1014:Cobalt glass 1008: 968:Supercooling 886: 867: 832: 828: 804: 800: 794: 769: 765: 759: 734: 730: 724: 691: 687: 681: 630: 626: 616: 597: 562: 558: 551: 518: 514: 508: 473: 469: 444: 435: 429: 415: 369: 358: 346: 291: 287:flash memory 277: 215:phase change 203: 184: 166: 151:Applications 130: 118: 115: 79: 68: 27: 23: 19: 18: 1462:Glass fiber 1427:Glass cloth 1171:Preparation 1147:CorningWare 1029:Flint glass 1024:Crown glass 977:Formulation 633:(1): 1464. 438:. Elsevier. 334:ECD Ovonics 106:crystalline 1477:Categories 1457:Windshield 1291:Refraction 1251:Dispersion 1059:Milk glass 1054:Lead glass 603:US 6511788 565:: 044116. 421:References 273:AgInSbSeTe 133:covalently 36:chalcogens 1324:Corrosion 1223:Viscosity 1178:Annealing 716:222432031 655:2041-1723 572:1208.4542 543:120152416 283:3D XPoint 112:Chemistry 102:amorphous 64:band gaps 48:tellurium 28:chemistry 1442:Pre-preg 1246:Achromat 989:Bioglass 984:AgInSbTe 673:35304454 589:35938832 500:16251941 367:, USSR. 355:Research 342:AgInSbTe 269:GeSbTeSe 223:AgInSbTe 209:such as 177:infrared 82:AgInSbTe 56:Polonium 44:selenium 1373:Diverse 1305:Surface 1162:Zerodur 837:Bibcode 809:Bibcode 774:Bibcode 739:Bibcode 696:Bibcode 664:8933423 635:Bibcode 523:Bibcode 478:Bibcode 128:(GLS). 98:fragile 30:) is a 1375:topics 1238:Optics 1044:GeSbTe 951:Basics 901:  874:  714:  671:  661:  653:  609:  587:  541:  498:  470:Nature 338:GeSbTe 265:GeSbSe 261:InSbTe 257:InSbSe 219:GeSbTe 191:lasers 187:phonon 169:lenses 86:GeSbTe 52:oxygen 40:sulfur 26:as in 1157:Macor 1124:ZBLAN 958:Glass 943:Glass 712:S2CID 585:S2CID 567:arXiv 539:S2CID 279:Intel 161:CD-RW 32:glass 899:ISBN 872:ISBN 669:PMID 651:ISSN 496:PMID 359:The 340:and 275:. 271:and 253:SbTe 249:SbSe 245:InSe 221:and 211:PRAM 92:and 84:and 75:Ge-S 71:As-S 46:and 891:doi 845:doi 817:doi 782:doi 747:doi 704:doi 659:PMC 643:doi 577:doi 563:113 531:doi 519:246 486:doi 474:437 413:). 232:SiO 227:ZnS 73:or 54:). 1479:: 897:. 843:. 833:18 831:. 815:. 805:51 803:. 780:. 770:21 768:. 745:. 733:. 710:. 702:. 690:. 667:. 657:. 649:. 641:. 631:13 629:. 625:. 583:. 575:. 561:. 537:. 529:. 517:. 494:. 484:. 472:. 468:. 456:^ 403:Se 394:Ge 386:Se 377:Ag 351:. 344:. 326:10 321:Ge 317:12 312:Si 308:30 303:As 299:48 294:Te 289:. 267:, 263:, 259:, 255:, 251:, 247:, 182:. 159:A 42:, 24:ch 935:e 928:t 921:v 907:. 893:: 880:. 851:. 847:: 839:: 823:. 819:: 811:: 788:. 784:: 776:: 753:. 749:: 741:: 735:7 718:. 706:: 698:: 692:7 675:. 645:: 637:: 591:. 579:: 569:: 545:. 533:: 525:: 502:. 488:: 480:: 408:3 399:2 392:( 382:2 375:( 237:2 229:- 38:(

Index

glass
chalcogens
sulfur
selenium
tellurium
oxygen
Polonium
radioactivity
band gaps
As-S
Ge-S
AgInSbTe
GeSbTe
optical disks
phase-change memory
fragile
amorphous
crystalline
Gallium(III) sulphide
gallium lanthanum sulphide
covalently
covalent network solids
van der Waals forces
van der Waals network solids

CD-RW
lenses
optical fibers
infrared
electromagnetic spectrum

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.