Knowledge

Biocatalysis

Source đź“ť

246: 392: 257:, result in a mixture of R and S enantiomers. This mixture can be purified by (I) acylating the amine using an anhydride and then (II) selectively deacylating only the L enantiomer using hog kidney acylase. These enzymes are typically extremely selective for one enantiomer leading to very large differences in rate, allowing for selective deacylation. Finally the two products are now separable by classical techniques, such as 27: 265: 65:, has made the production of modified or non-natural enzymes possible. This has enabled the development of enzymes that can catalyze novel small molecule transformations that may be difficult or impossible using classical synthetic organic chemistry. Utilizing natural or modified enzymes to perform 488:
Bioenzymes are also bio catalyst. They are prepared by fermentation of organic waste, jaggery and water in ratio 3:1:10 for three months. It increases the soil microbe population and speeds up composting and decomposition and so is included in catalyts. It heals the soil. It is one of the best best
479:
Using an external PC has some downsides. For example, external PCs typically complicate reaction design because the PC may react with both the bound and unbound substrate. If a reaction occurs between the unbound substrate and the PC, enantioselectivity is lost and other side reactions may occur.
275:. Such reactions must therefore be terminated before equilibrium is reached. If it is possible to perform such resolutions under conditions where the two substrate- enantiomers are racemizing continuously, all substrate may in theory be converted into enantiopure product. This is called 171:, other sensitive functionalities, which would normally react to a certain extent under chemical catalysis, survive. As a result, biocatalytic reactions tend to be "cleaner" and laborious purification of product(s) from impurities emerging through side-reactions can largely be omitted. 119:
Since biocatalysis deals with enzymes and microorganisms, it is historically classified separately from "homogeneous catalysis" and "heterogeneous catalysis". However, mechanistically speaking, biocatalysis is simply a special case of heterogeneous catalysis.
467:
The second category of photoredox enabled biocatalytic reactions use an external photocatalyst (PC). Many types of PCs with a large range of redox potentials can be utilized, allowing for greater tunability of reactive compared to using a cofactor.
96:
The employment of enzymes and whole cells have been important for many industries for centuries. The most obvious uses have been in the food and drink businesses where the production of wine, beer, cheese etc. is dependent on the effects of the
1030:
Li, Zhining; Wang, Zexu; Meng, Ge; Lu, Hong; Huang, Zedu; Chen, Fener (April 2018). "Identification of an Ene Reductase from Yeast Kluyveromyces Marxianus and Application in the Asymmetric Synthesis of ( R )-Profen Esters".
286:, a non-chiral unit becomes chiral in such a way that the different possible stereoisomers are formed in different quantities. The chirality is introduced into the substrate by influence of enzyme, which is chiral. 448:) reagents. Although these species are capable of HAT without irradiation, their redox potentials are enhance by nearly 2.0 V upon visible light irradiation. When paired with their respective enzymes (typically 302: 1182:
Biegasiewicz, Kyle F.; Cooper, Simon J.; Emmanuel, Megan A.; Miller, David C.; Hyster, Todd K. (July 2018). "Catalytic promiscuity enabled by photoredox catalysis in nicotinamide-dependent oxidoreductases".
412:
intermediates. These radical intermediates are achiral thus racemic mixtures of product are obtained when no external chiral environment is provided. Enzymes can provide this chiral environment within the
1117:
Biegasiewicz, Kyle F.; Cooper, Simon J.; Gao, Xin; Oblinsky, Daniel G.; Kim, Ji Hye; Garfinkle, Samuel E.; Joyce, Leo A.; Sandoval, Braddock A.; Scholes, Gregory D.; Hyster, Todd K. (2019-06-21).
1058:
Emmanuel, Megan A.; Greenberg, Norman R.; Oblinsky, Daniel G.; Hyster, Todd K. (December 14, 2016). "Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light".
987:
Sandoval, Braddock A.; Meichan, Andrew J.; Hyster, Todd K. (2017-08-23). "Enantioselective Hydrogen Atom Transfer: Discovery of Catalytic Promiscuity in Flavin-Dependent 'Ene'-Reductases".
203:
These reasons, and especially the latter, are the major reasons why synthetic chemists have become interested in biocatalysis. This interest in turn is mainly due to the need to synthesize
157:
and directed evolution, enzymes can be modified to enable non-natural reactivity. Modifications may also allow for a broader substrate range, enhance reaction rate or catalyst turnover.
242:
than for the other reactant stereoisomer. The stereochemical mixture has now been transformed into a mixture of two different compounds, making them separable by normal methodology.
181:: Due to their complex three-dimensional structure, enzymes may distinguish between functional groups which are chemically situated in different regions of the substrate molecule. 253:
Biocatalyzed kinetic resolution is utilized extensively in the purification of racemic mixtures of synthetic amino acids. Many popular amino acid synthesis routes, such as the
1497: 146:-Enzymes selected for chemoenzymatic synthesis can be immobilized on a solid support. These immobilized enzymes demonstrate improved stability and re-usability. 417:
and stabilize a particular conformation and favoring formation of one, enantiopure product. Photoredox enabled biocatalysis reactions fall into two categories:
195:
catalysts. As a consequence, any type of chirality present in the substrate molecule is "recognized" upon the formation of the enzyme-substrate complex. Thus a
1502: 843:
Dunsmore, Colin J.; Carr, Reuben; Fleming, Toni; Turner, Nicholas J. (2006). "A Chemo-Enzymatic Route to Enantiomerically Pure Cyclic Tertiary Amines".
271:
The maximum yield in such kinetic resolutions is 50%, since a yield of more than 50% means that some of wrong isomer also has reacted, giving a lower
645:
Jayasinghe, Leonard Y.; Smallridge, Andrew J.; Trewhella, Maurie A. (1993). "The yeast mediated reduction of ethyl acetoacetate in petroleum ether".
755: 238:
of a racemic mixture, the presence of a chiral object (the enzyme) converts one of the stereoisomers of the reactant into its product at a greater
131:-Most enzymes typically function under mild or biological conditions, which minimizes problems of undesired side-reactions such as decomposition, 759: 1363: 408:
has been applied to biocatalysis, enabling unique, previously inaccessible transformations. Photoredox chemistry relies upon light to generate
19:
This article is about natural catalysts used to perform chemical transformations. For large biological molecule that acts as a catalyst, see
30:
Three dimensional structure of an enzyme. Biocatalysis utilizes these biological macromolecules to catalyze small molecule transformations.
437: 391: 384:. In this way the S-enantiomer will continuously be consumed by the enzyme while the R-enantiomer accumulates. It is even possible to 199:
substrate may be transformed into an optically active product and both enantiomers of a racemic substrate may react at different rates.
54: 452:) This phenomenon has been utilized by chemists to develop enantioselective reduction methodologies. For example medium sized 1326: 731: 245: 808:
Svedendahl, Maria; Hult, Karl; Berglund, Per (December 2005). "Fast Carbon-Carbon Bond Formation by a Promiscuous Lipase".
160:-Enzymes exhibit extreme selectivity towards their substrates. Typically enzymes display three major types of selectivity: 472:, and external PC, was utilized in tandem with an oxidoreductase to enantioselectively deacylate medium sized alpha-acyl- 1356: 681: 604: 706: 629: 1535: 541:
Kim, Jinhyun; Lee, Sahng Ha; Tieves, Florian; Paul, Caroline E.; Hollmann, Frank; Park, Chan Beum (5 July 2019). "
104:
More than one hundred years ago, biocatalysis was employed to do chemical transformations on non-natural man-made
1242:
Kim, Jinhyun; Lee, Sahng Ha; Tieves, Florian; Paul, Caroline E.; Hollmann, Frank; Park, Chan Beum (5 July 2019).
1520: 1349: 310: 254: 1530: 1316: 1321: 1336: 1602: 1373: 880:"Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis" 1492: 154: 108:, with the last 30 years seeing a substantial increase in the application of biocatalysis to produce 1418: 445: 301: 223:
The use of biocatalysis to obtain enantiopure compounds can be divided into two different methods:
89:
predates recorded history. The oldest records of brewing are about 6000 years old and refer to the
422: 113: 433: 140: 1556: 1470: 1387: 592: 192: 1566: 1551: 1402: 1255: 1192: 1130: 1067: 405: 313:
is another example of a biocatalytic reaction. In one study a specially designed mutant of
178: 8: 1464: 1341: 940:"Biocatalytic hydrogen atom transfer: an invigorating approach to free-radical reactions" 461: 409: 272: 208: 150: 1259: 1196: 1134: 1071: 85:
Biocatalysis underpins some of the oldest chemical transformations known to humans, for
1607: 1525: 1423: 1276: 1243: 1224: 1159: 1118: 1099: 964: 939: 912: 879: 749: 572: 554: 525: 500: 457: 235: 184: 62: 658: 456:
can be synthesized in the chiral environment of an ene-reductase through a reductive,
1512: 1281: 1216: 1208: 1164: 1146: 1103: 1091: 1083: 1012: 1004: 969: 917: 899: 860: 825: 790: 782: 737: 727: 702: 677: 625: 600: 542: 530: 351: 347: 291: 66: 50: 1228: 842: 1597: 1561: 1487: 1397: 1271: 1263: 1200: 1154: 1138: 1075: 1040: 996: 959: 951: 907: 891: 852: 817: 773:
Shviadas, V. Iu; Galaev, I. Iu; Galstian, N. A.; Berezin, I. V. (August 1980). "".
654: 644: 520: 512: 320: 315: 174: 168: 164: 128:-Enzymes are environmentally benign, being completely degraded in the environment. 105: 1332:
Institute of Technical Biocatalysis at the Hamburg University of Technology (TUHH)
1571: 1459: 1439: 1413: 671: 567: 385: 1119:"Photoexcitation of flavoenzymes enables a stereoselective radical cyclization" 955: 878:
Prier, Christopher K.; Rankic, Danica A.; MacMillan, David W. C. (2013-07-10).
373: 258: 98: 58: 1204: 1591: 1454: 1212: 1150: 1087: 1008: 903: 786: 741: 328: 239: 132: 109: 1311: 1142: 45:) chemical reactions. In biocatalytic processes, natural catalysts, such as 1449: 1392: 1285: 1267: 1220: 1168: 1095: 1044: 1016: 973: 921: 864: 829: 534: 441: 212: 196: 136: 20: 794: 1000: 469: 414: 204: 1331: 1079: 1444: 264: 188: 895: 856: 821: 516: 449: 42: 672:
Liese, Andreas; Seelbach, Karsten; Wandrey, Christian, eds. (2006).
335: 324: 1317:
Center for Biocatalysis and Bioprocessing - The University of Iowa
938:
Nakano, Yuji; Biegasiewicz, Kyle F; Hyster, Todd K (April 2019).
807: 366: 86: 1181: 1057: 473: 453: 370: 295: 167:: Since the purpose of an enzyme is to act on a single type of 61:
are employed for this task. Modern biotechnology, specifically
46: 26: 1116: 772: 359: 355: 287: 90: 1302:
Austrian Centre of Industrial Biotechnology official website
16:
Use of natural catalysts to perform chemical transformations
38: 1371: 595:. In Adlercreutz, Patrick; Straathof, Adrie J. J. (eds.). 73:; the reactions performed by the enzyme are classified as 1306: 501:"Frontiers and opportunities in chemoenzymatic synthesis" 123: 937: 1301: 1244:"Nicotinamide adenine dinucleotide as a photocatalyst" 599:(2nd ed.). Taylor & Francis. pp. 18–59. 489:
organic liquid fertilizer. It is diluted with water.
395:
Scheme 3. Enantiomerically pure cyclic tertiary amines
350:
procedure involving a monoamine oxidase isolated from
1322:
TU Delft - Biocatalysis & Organic Chemistry (BOC)
986: 877: 676:(2nd ed.). John Wiley & Sons. p. 556. 543:
Nicotinamide adenine dinucleotide as a photocatalyst
1307:
The Centre of Excellence for Biocatalysis - CoEBio3
721: 399: 1503:Ultraviolet–visible spectroscopy of stereoisomers 41:(biological) systems or their parts to speed up ( 1589: 1241: 331:at 20 Â°C in absence of additional solvent. 498: 464:terminated by enantioselective HAT from NADPH. 1312:The University of Exeter - Biocatalysis Centre 319:was found to be an effective catalyst for the 143:, which often plague traditional methodology. 1357: 1029: 754:: CS1 maint: multiple names: authors list ( 263: 1327:KTH Stockholm - Biocatalysis Research Group 444:) can operate as single electron transfer ( 187:: Since almost all enzymes are made from L- 53:. Both enzymes that have been more or less 1364: 1350: 758:) CS1 maint: numeric names: authors list ( 699:Catalysis: Concepts and green applications 696: 290:is a biocatalyst for the enantioselective 218: 1275: 1158: 963: 911: 590: 524: 57:and enzymes still residing inside living 989:Journal of the American Chemical Society 845:Journal of the American Chemical Society 810:Journal of the American Chemical Society 207:compounds as chiral building blocks for 25: 622:Biotransformations in Organic Chemistry 432:Certain common hydrogen atom transfer ( 334:Another study demonstrates how racemic 227:Kinetic resolution of a racemic mixture 1590: 124:Advantages of chemoenzymatic synthesis 49:, perform chemical transformations on 1345: 933: 931: 619: 483: 944:Current Opinion in Chemical Biology 13: 1033:Asian Journal of Organic Chemistry 928: 499:Mortison, JD; Sherman, DH (2010). 492: 390: 376:couple which can reduce the imine 354:which is able to oxidize only the 300: 244: 14: 1619: 1498:NMR spectroscopy of stereoisomers 1295: 726:(8th ed.). Boston: Pearson. 284:biocatalyzed asymmetric synthesis 230:Biocatalyzed asymmetric synthesis 1536:Diastereomeric recrystallization 593:"Reactions Catalyzed by Enzymes" 338:(mixture of S and R-enantiomers 1235: 1175: 1110: 1051: 1023: 980: 871: 400:Photoredox enabled biocatalysis 836: 801: 766: 715: 690: 665: 638: 613: 584: 1: 674:Industrial Biotransformations 659:10.1016/S0040-4039(00)79272-0 578: 1531:Chiral column chromatography 591:Anthonsen, Thorlief (2000). 249:Scheme 1. Kinetic resolution 149:-Through the development of 7: 775:Biokhimiia (Moscow, Russia) 722:Wade, L. G., 1947- (2013). 561: 10: 1624: 1493:Chiral derivatizing agents 1374:enantioselective synthesis 956:10.1016/j.cbpa.2018.09.001 624:(6th ed.). Springer. 555:doi:10.1126/sciadv.aax0501 346:) can be deracemized in a 80: 18: 1544: 1511: 1480: 1432: 1380: 1205:10.1038/s41557-018-0059-y 697:Rothenberg, Gadi (2008). 311:Baeyer–Villiger oxidation 305:Scheme 2. Yeast reduction 155:site-directed mutagenesis 1419:Supramolecular chirality 75:chemoenzymatic reactions 71:chemoenzymatic synthesis 1143:10.1126/science.aaw1143 219:Asymmetric biocatalysis 114:pharmaceutical industry 1268:10.1126/sciadv.aax0501 1045:10.1002/ajoc.201800059 428:External photocatalyst 396: 306: 268: 250: 31: 1557:Chiral pool synthesis 1471:Diastereomeric excess 394: 304: 267: 248: 112:, especially for the 37:refers to the use of 29: 1567:Asymmetric catalysis 1552:Asymmetric induction 1001:10.1021/jacs.7b05468 620:Faber, Kurt (2011). 597:Applied Biocatalysis 406:photoredox catalysis 358:S-enantiomer to the 209:Pharmaceutical drugs 179:diastereoselectivity 1465:Enantiomeric excess 1337:Biocascades Project 1260:2019SciA....5..501K 1197:2018NatCh..10..770B 1135:2019Sci...364.1166B 1129:(6446): 1166–1169. 1080:10.1038/nature20569 1072:2016Natur.540..414E 995:(33): 11313–11316. 816:(51): 17988–17989. 647:Tetrahedron Letters 462:radical cyclization 273:enantiomeric excess 151:protein engineering 1562:Chiral auxiliaries 1526:Kinetic resolution 1424:Inherent chirality 1409:-symmetric ligands 573:Industrial enzymes 421:Internal coenzyme/ 397: 388:pure S to pure R. 380:back to the amine 316:Candida antarctica 307: 277:dynamic resolution 269: 255:Strecker Synthesis 251: 236:kinetic resolution 185:Enantioselectivity 63:directed evolution 32: 1603:Organic chemistry 1585: 1584: 1521:Recrystallization 1513:Chiral resolution 1066:(7633): 414–417. 896:10.1021/cr300503r 857:10.1021/ja058536d 822:10.1021/ja056660r 733:978-0-321-76841-4 724:Organic chemistry 653:(24): 3949–3950. 517:10.1021/jo101124n 484:Agricultural uses 365:and involving an 352:Aspergillus niger 106:organic compounds 67:organic synthesis 51:organic compounds 1615: 1488:Optical rotation 1433:Chiral molecules 1398:Planar chirality 1366: 1359: 1352: 1343: 1342: 1290: 1289: 1279: 1248:Science Advances 1239: 1233: 1232: 1185:Nature Chemistry 1179: 1173: 1172: 1162: 1114: 1108: 1107: 1055: 1049: 1048: 1027: 1021: 1020: 984: 978: 977: 967: 935: 926: 925: 915: 890:(7): 5322–5363. 884:Chemical Reviews 875: 869: 868: 851:(7): 2224–2225. 840: 834: 833: 805: 799: 798: 781:(8): 1361–1364. 770: 764: 763: 753: 745: 719: 713: 712: 694: 688: 687: 669: 663: 662: 642: 636: 635: 617: 611: 610: 588: 547:Science Advances 538: 528: 321:Michael addition 175:Regioselectivity 169:functional group 165:Chemoselectivity 1623: 1622: 1618: 1617: 1616: 1614: 1613: 1612: 1588: 1587: 1586: 1581: 1572:Organocatalysis 1540: 1507: 1476: 1460:Racemic mixture 1428: 1414:Axial chirality 1408: 1381:Chirality types 1376: 1370: 1298: 1293: 1254:(7): eaax0501. 1240: 1236: 1180: 1176: 1115: 1111: 1056: 1052: 1028: 1024: 985: 981: 936: 929: 876: 872: 841: 837: 806: 802: 771: 767: 747: 746: 734: 720: 716: 709: 695: 691: 684: 670: 666: 643: 639: 632: 618: 614: 607: 589: 585: 581: 568:List of enzymes 564: 553:(7): eaax0501. 511:(21): 7041–51. 495: 493:Further reading 486: 458:baldwin favored 402: 221: 153:, specifically 126: 83: 24: 17: 12: 11: 5: 1621: 1611: 1610: 1605: 1600: 1583: 1582: 1580: 1579: 1574: 1569: 1564: 1559: 1554: 1548: 1546: 1542: 1541: 1539: 1538: 1533: 1528: 1523: 1517: 1515: 1509: 1508: 1506: 1505: 1500: 1495: 1490: 1484: 1482: 1478: 1477: 1475: 1474: 1468: 1462: 1457: 1452: 1447: 1442: 1436: 1434: 1430: 1429: 1427: 1426: 1421: 1416: 1411: 1406: 1400: 1395: 1390: 1384: 1382: 1378: 1377: 1369: 1368: 1361: 1354: 1346: 1340: 1339: 1334: 1329: 1324: 1319: 1314: 1309: 1304: 1297: 1296:External links 1294: 1292: 1291: 1234: 1191:(7): 770–775. 1174: 1109: 1050: 1039:(4): 763–769. 1022: 979: 927: 870: 835: 800: 765: 732: 714: 707: 689: 683:978-3527310012 682: 664: 637: 630: 612: 606:978-9058230249 605: 582: 580: 577: 576: 575: 570: 563: 560: 559: 558: 539: 494: 491: 485: 482: 450:ene-reductases 430: 429: 426: 401: 398: 259:chromatography 232: 231: 228: 220: 217: 201: 200: 191:, enzymes are 182: 172: 125: 122: 110:fine chemicals 99:microorganisms 82: 79: 15: 9: 6: 4: 3: 2: 1620: 1609: 1606: 1604: 1601: 1599: 1596: 1595: 1593: 1578: 1575: 1573: 1570: 1568: 1565: 1563: 1560: 1558: 1555: 1553: 1550: 1549: 1547: 1543: 1537: 1534: 1532: 1529: 1527: 1524: 1522: 1519: 1518: 1516: 1514: 1510: 1504: 1501: 1499: 1496: 1494: 1491: 1489: 1486: 1485: 1483: 1479: 1472: 1469: 1466: 1463: 1461: 1458: 1456: 1455:Meso compound 1453: 1451: 1448: 1446: 1443: 1441: 1438: 1437: 1435: 1431: 1425: 1422: 1420: 1417: 1415: 1412: 1410: 1405: 1401: 1399: 1396: 1394: 1391: 1389: 1386: 1385: 1383: 1379: 1375: 1367: 1362: 1360: 1355: 1353: 1348: 1347: 1344: 1338: 1335: 1333: 1330: 1328: 1325: 1323: 1320: 1318: 1315: 1313: 1310: 1308: 1305: 1303: 1300: 1299: 1287: 1283: 1278: 1273: 1269: 1265: 1261: 1257: 1253: 1249: 1245: 1238: 1230: 1226: 1222: 1218: 1214: 1210: 1206: 1202: 1198: 1194: 1190: 1186: 1178: 1170: 1166: 1161: 1156: 1152: 1148: 1144: 1140: 1136: 1132: 1128: 1124: 1120: 1113: 1105: 1101: 1097: 1093: 1089: 1085: 1081: 1077: 1073: 1069: 1065: 1061: 1054: 1046: 1042: 1038: 1034: 1026: 1018: 1014: 1010: 1006: 1002: 998: 994: 990: 983: 975: 971: 966: 961: 957: 953: 949: 945: 941: 934: 932: 923: 919: 914: 909: 905: 901: 897: 893: 889: 885: 881: 874: 866: 862: 858: 854: 850: 846: 839: 831: 827: 823: 819: 815: 811: 804: 796: 792: 788: 784: 780: 776: 769: 761: 757: 751: 743: 739: 735: 729: 725: 718: 710: 708:9783527318247 704: 700: 693: 685: 679: 675: 668: 660: 656: 652: 648: 641: 633: 631:9783642173936 627: 623: 616: 608: 602: 598: 594: 587: 583: 574: 571: 569: 566: 565: 556: 552: 548: 544: 540: 536: 532: 527: 522: 518: 514: 510: 506: 502: 497: 496: 490: 481: 477: 475: 471: 465: 463: 459: 455: 451: 447: 443: 439: 436:) cofactors ( 435: 427: 425:photocatalyst 424: 420: 419: 418: 416: 411: 407: 393: 389: 387: 383: 379: 375: 372: 368: 364: 361: 357: 353: 349: 345: 341: 337: 332: 330: 329:acetylacetone 326: 322: 318: 317: 312: 303: 299: 297: 293: 289: 285: 280: 278: 274: 266: 262: 260: 256: 247: 243: 241: 240:reaction rate 237: 229: 226: 225: 224: 216: 214: 213:agrochemicals 210: 206: 198: 194: 190: 186: 183: 180: 176: 173: 170: 166: 163: 162: 161: 158: 156: 152: 147: 144: 142: 141:rearrangement 138: 134: 133:isomerization 129: 121: 117: 115: 111: 107: 102: 100: 94: 92: 88: 78: 76: 72: 68: 64: 60: 56: 52: 48: 44: 40: 36: 28: 22: 1577:Biocatalysis 1576: 1450:Diastereomer 1440:Stereoisomer 1403: 1393:Stereocenter 1372:Concepts in 1251: 1247: 1237: 1188: 1184: 1177: 1126: 1122: 1112: 1063: 1059: 1053: 1036: 1032: 1025: 992: 988: 982: 947: 943: 887: 883: 873: 848: 844: 838: 813: 809: 803: 778: 774: 768: 723: 717: 698: 692: 673: 667: 650: 646: 640: 621: 615: 596: 586: 550: 546: 508: 504: 487: 478: 466: 431: 410:free radical 403: 386:stereoinvert 381: 377: 362: 343: 339: 333: 314: 308: 283: 281: 276: 270: 252: 233: 222: 202: 159: 148: 145: 137:racemization 130: 127: 118: 103: 95: 84: 74: 70: 35:Biocatalysis 34: 33: 21:Biocatalysts 470:Rose bengal 415:active site 205:enantiopure 189:amino acids 1592:Categories 1445:Enantiomer 579:References 505:J Org Chem 404:Recently, 69:is termed 1608:Catalysis 1545:Reactions 1388:Chirality 1213:1755-4330 1151:0036-8075 1104:205252473 1088:1476-4687 1009:0002-7863 950:: 16–24. 904:0009-2665 787:0320-9725 750:cite book 742:752068109 701:. Wiley. 292:reduction 197:prochiral 91:Sumerians 1481:Analysis 1286:31334353 1229:48360817 1221:29892028 1169:31221855 1096:27974767 1017:28780870 974:30269010 922:23509883 865:16478171 830:16366534 562:See also 535:20882949 423:cofactor 374:reducing 344:scheme 3 336:nicotine 325:acrolein 55:isolated 43:catalyze 1598:Enzymes 1277:6641943 1256:Bibcode 1193:Bibcode 1160:7028431 1131:Bibcode 1123:Science 1068:Bibcode 965:6437003 913:4028850 795:7236787 526:2966535 474:ketones 454:lactams 367:ammonia 348:one-pot 296:ketones 87:brewing 81:History 47:enzymes 1284:  1274:  1227:  1219:  1211:  1167:  1157:  1149:  1102:  1094:  1086:  1060:Nature 1015:  1007:  972:  962:  920:  910:  902:  863:  828:  793:  785:  740:  730:  705:  680:  628:  603:  533:  523:  442:Flavin 371:borane 193:chiral 39:living 1225:S2CID 1100:S2CID 438:NADPH 360:imine 356:amine 327:with 288:Yeast 59:cells 1473:(de) 1467:(ee) 1282:PMID 1217:PMID 1209:ISSN 1165:PMID 1147:ISSN 1092:PMID 1084:ISSN 1013:PMID 1005:ISSN 970:PMID 918:PMID 900:ISSN 861:PMID 826:PMID 791:PMID 783:ISSN 760:link 756:link 738:OCLC 728:ISBN 703:ISBN 678:ISBN 626:ISBN 601:ISBN 531:PMID 440:and 309:The 211:and 177:and 139:and 1272:PMC 1264:doi 1201:doi 1155:PMC 1139:doi 1127:364 1076:doi 1064:540 1041:doi 997:doi 993:139 960:PMC 952:doi 908:PMC 892:doi 888:113 853:doi 849:128 818:doi 814:127 655:doi 545:". 521:PMC 513:doi 446:SET 434:HAT 342:in 323:of 294:of 282:In 234:In 1594:: 1280:. 1270:. 1262:. 1250:. 1246:. 1223:. 1215:. 1207:. 1199:. 1189:10 1187:. 1163:. 1153:. 1145:. 1137:. 1125:. 1121:. 1098:. 1090:. 1082:. 1074:. 1062:. 1035:. 1011:. 1003:. 991:. 968:. 958:. 948:49 946:. 942:. 930:^ 916:. 906:. 898:. 886:. 882:. 859:. 847:. 824:. 812:. 789:. 779:45 777:. 752:}} 748:{{ 736:. 651:34 649:. 549:. 529:. 519:. 509:75 507:. 503:. 476:. 460:, 298:. 279:. 261:. 215:. 135:, 116:. 101:. 93:. 77:. 1407:2 1404:C 1365:e 1358:t 1351:v 1288:. 1266:: 1258:: 1252:5 1231:. 1203:: 1195:: 1171:. 1141:: 1133:: 1106:. 1078:: 1070:: 1047:. 1043:: 1037:7 1019:. 999:: 976:. 954:: 924:. 894:: 867:. 855:: 832:. 820:: 797:. 762:) 744:. 711:. 686:. 661:. 657:: 634:. 609:. 557:. 551:5 537:. 515:: 382:1 378:2 369:– 363:2 340:1 23:.

Index

Biocatalysts

living
catalyze
enzymes
organic compounds
isolated
cells
directed evolution
organic synthesis
brewing
Sumerians
microorganisms
organic compounds
fine chemicals
pharmaceutical industry
isomerization
racemization
rearrangement
protein engineering
site-directed mutagenesis
Chemoselectivity
functional group
Regioselectivity
diastereoselectivity
Enantioselectivity
amino acids
chiral
prochiral
enantiopure

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑