Knowledge

Bacterial recombination

Source đź“ť

134:
homologous chromosomes. The paternal and maternal paired chromosomes will align in order for the DNA sequences to undergo the process of crossing over. Transformation involves the uptake of exogenous DNA from the encircling environment. DNA fragments from a degraded bacterium will transfer into the surrounding, competent bacterium resulting in an exchange of DNA from the recipient. Transduction is associated with viral-mediated vectors transferring DNA material from one bacterium to another within the genome. Bacterial DNA is placed into the bacteriophage genome via bacterial transduction. In bacterial conjugation, DNA is transferred via cell-to-cell communication. Cell-to-cell communication may involve plasmids that allow for the transfer of DNA into another neighboring cell. The neighboring cells absorb the F-plasmid (fertility plasmid: inherited material that is present in the chromosome). The recipient and donor cell come into contact during a F-plasmid transfer. The cells undergo horizontal gene transfer in which the genetic material is transferred.
150:. involves the base pairs of the homologous DNA strands to continuously be interchanged at a Holliday junction. This results in the formation of two DNA duplexes. The RecBCD pathway undergoes helicase activity by unzipping the DNA duplex and stops when the nucleotide sequence reaches 5′-GCTGGTGG-3′. This nucleotide sequence is known as the Chi site. RecBCD enzymes will change after the nucleotide sequence reaches the Chi site. The RecF pathway repairs the degradation of the DNA strands. 125:, first discovered by the observation of mosaic genes at loci encoding antibiotic resistance. The discovery of homologous recombination has made an impact on the understanding of bacterial evolution. The importance of evolution in bacterial recombination is its adaptivity. For example, bacterial recombination has been shown to promote the transfer of multi drug resistance genes via homologous recombination that goes beyond levels purely obtained by mutation. 121:. Bacteria reproduces asexually, where daughter cells are clones of the parent. This clonal nature leads to random mutations that occur during DNA replication that potentially helps bacteria evolve. It was originally thought that only accumulated mutations helped bacteria evolve. In contrast, bacteria also import genes in a process called 133:
Bacterial recombination undergoes various different processes. The processes include: transformation, transduction, conjugation and homologous recombination. Homologous recombination relies on cDNA transferring genetic material. Complementary DNA sequences transport genetic material in the identical
843: 98:
capability provided by recombination during transformation facilitates survival of the infecting bacterial pathogen. Bacterial transformation is carried out by numerous interacting bacterial
142:
The RecBCD pathway in homologous recombination repairs the double-strand breaks in DNA that has degraded in bacteria. Base pairs attached to the DNA strands go through an exchange at a
61:, individuals that carry not only the genes they inherited from their parent cells but also the genes introduced to their genomes by conjugation, transduction, and/or transformation. 540:
Touchon, Marie; Perrin, Amandine; Sousa, Jorge André Moura de; Vangchhia, Belinda; Burn, Samantha; O’Brien, Claire L.; Denamur, Erick; Gordon, David; Rocha, Eduardo PC (2020-06-12).
113:
in bacteria was previously viewed as a result of mutation or genetic drift. Today, genetic exchange, or gene transfer is viewed as a major driving force in the evolution of
816: 648:"Bacteria are different: Observations, interpretations, speculations, and opinions about the mechanisms of adaptive evolution in prokaryotes" 1029: 795: 343:"Evolution of bacterial recombinase A (recA) in eukaryotes explained by addition of genomic data of key microbial lineages" 241: 270: 212: 187: 80: 34:
transfer from one organism called donor to another organism as recipient. This process occurs in three main ways:
715:"Bacterial recombination promotes the evolution of multi-drug-resistance in functionally diverse populations" 713:
Perron, Gabriel G.; Lee, Alexander E. G.; Wang, Yun; Huang, Wei E.; Barraclough, Timothy G. (2012-04-22).
870:"Plasmid Transfer by Conjugation in Gram-Negative Bacteria: From the Cellular to the Community Level" 91: 38: 324: 1024: 868:
Virolle, Chloé; Goldlust, Kelly; Djermoun, Sarah; Bigot, Sarah; Lesterlin, Christian (2020-10-22).
122: 84: 64: 44: 159: 58: 50: 23: 90:
The ability to undergo natural transformation is present in at least 67 bacterial species.
965: 659: 542:"Phylogenetic background and habitat drive the genetic diversification of Escherichia coli" 286: 57:
The final result of conjugation, transduction, and/or transformation is the production of
8: 969: 663: 927: 904: 869: 771: 747: 714: 628: 576: 541: 517: 484: 367: 342: 259: 230: 1001: 996: 983: 953: 909: 891: 791: 752: 734: 695: 690: 677: 647: 632: 620: 581: 563: 522: 504: 460: 416: 372: 266: 237: 208: 183: 143: 787: 991: 973: 899: 881: 783: 742: 726: 685: 667: 612: 600: 571: 553: 512: 496: 450: 406: 362: 354: 147: 118: 775: 558: 455: 438: 411: 394: 770:
Julin, Douglas A. (2017), Wells, Robert D.; Bond, Judith S.; Klinman, Judith;
500: 1018: 987: 895: 738: 681: 567: 508: 305: 53:, the transfer of DNA from one bacterium to another via cell-to-cell contact. 672: 978: 913: 756: 730: 699: 624: 585: 526: 464: 420: 376: 358: 99: 1005: 886: 182:. Institut za genetiÄŤko inĹľenjerstvo i biotehnologiju (INGEB) Sarajevo. 114: 95: 76: 395:"Natural genetic transformation: prevalence, mechanisms and function" 177: 616: 68: 27: 341:
Hofstatter PG, Tice AK, Kang S, Brown MW, Lahr DJ (October 2016).
94:
is common among pathogenic bacterial species. In some cases, the
117:. This driving force has been widely studied in organisms like 41:, the uptake of exogenous DNA from the surrounding environment. 261:
Glossary of genetics and cytogenetics: Classical and molecular
178:
Bajrović K, Jevrić-Čaušević A, Hadžiselimović R, eds. (2005).
867: 539: 72: 392: 203:
Alberts B, Johnson A, Lewis J, Raff M, Roberts K (2002).
31: 436: 128: 776:"Recombination: Mechanisms, Pathways, and Applications" 719:
Proceedings of the Royal Society B: Biological Sciences
393:
Johnsborg O, Eldholm V, HĂĄvarstein LS (December 2007).
340: 202: 47:, the virus-mediated transfer of DNA between bacteria. 838: 836: 437:
Bernstein H, Bernstein C, Michod RE (January 2018).
954:"The kinetics of spontaneous DNA branch migration" 833: 780:Molecular Life Sciences: An Encyclopedic Reference 712: 646:Levin, Bruce R.; Bergstrom, Carl T. (2000-06-20). 483:Didelot, Xavier; Maiden, Martin C.J. (July 2010). 258: 229: 146:. In the second step of bacterial recombination, 1016: 485:"Impact of recombination on bacterial evolution" 432: 430: 336: 334: 75:type of recombinase. These recombinases promote 958:Proceedings of the National Academy of Sciences 652:Proceedings of the National Academy of Sciences 388: 386: 227: 645: 180:Uvod u genetiÄŤko inĹľenjerstvo i biotehnologiju 16:Type of bacterial reproduction by DNA transfer 951: 482: 427: 331: 236:. New York, Oxford: Oxford University Press. 383: 844:"7.11A: Generalized Recombination and RecA" 256: 265:. Heidelberg - New York: Springer-Verlag. 995: 977: 952:Panyutin, I. G.; Hsieh, P. (1994-03-15). 903: 885: 782:, New York, NY: Springer, pp. 1–28, 746: 689: 671: 575: 557: 516: 454: 410: 366: 322: 817:"Genetic Recombination: Transformation" 598: 303: 171: 1017: 196: 769: 478: 476: 474: 138:Mechanisms for double-stranded breaks 129:Mechanisms of bacterial recombination 601:"How clonal are bacteria over time?" 1030:Modification of genetic information 306:"Genetic Recombination in Bacteria" 221: 13: 471: 14: 1041: 443:Infection, Genetics and Evolution 250: 207:(4th ed.). Garland Science. 599:Shapiro, B. Jesse (2016-03-24). 347:Proceedings. Biological Sciences 228:King RC, Stransfield WD (1998). 945: 920: 861: 809: 788:10.1007/978-1-4614-6436-5_366-1 763: 706: 639: 592: 533: 304:Kimball JW (10 February 2017). 316: 297: 279: 1: 323:Hiremath DS (16 April 2013). 205:Molecular Biology of the Cell 165: 71:is ordinarily catalyzed by a 559:10.1371/journal.pgen.1008866 456:10.1016/j.meegid.2017.10.024 439:"Sex in microbial pathogens" 412:10.1016/j.resmic.2007.09.004 257:Rieger RM, Green MM (1976). 105: 7: 153: 10: 1046: 772:Masters, Bettie Sue Siler 501:10.1016/j.tim.2010.04.002 325:"Bacterial recombination" 399:Research in Microbiology 123:homologous recombination 85:homologous recombination 928:"Bacterial Conjugation" 673:10.1073/pnas.97.13.6981 310:Kimball's Biology Pages 20:Bacterial recombination 979:10.1073/pnas.91.6.2021 731:10.1098/rspb.2011.1933 489:Trends in Microbiology 359:10.1098/rspb.2016.1453 232:Dictionary of genetics 92:Natural transformation 887:10.3390/genes11111239 160:Genetic recombination 24:genetic recombination 59:genetic recombinants 970:1994PNAS...91.2021P 725:(1733): 1477–1484. 664:2000PNAS...97.6981L 932:Biology Dictionary 848:Biology LibreTexts 821:faculty.ccbcmd.edu 797:978-1-4614-6436-5 658:(13): 6981–6985. 291:TheFreeDictionary 144:Holliday junction 30:characterized by 1037: 1010: 1009: 999: 981: 964:(6): 2021–2025. 949: 943: 942: 940: 939: 924: 918: 917: 907: 889: 865: 859: 858: 856: 855: 840: 831: 830: 828: 827: 813: 807: 806: 805: 804: 767: 761: 760: 750: 710: 704: 703: 693: 675: 643: 637: 636: 596: 590: 589: 579: 561: 537: 531: 530: 520: 480: 469: 468: 458: 434: 425: 424: 414: 390: 381: 380: 370: 338: 329: 328: 320: 314: 313: 301: 295: 294: 283: 277: 276: 264: 254: 248: 247: 235: 225: 219: 218: 200: 194: 193: 175: 148:branch migration 1045: 1044: 1040: 1039: 1038: 1036: 1035: 1034: 1025:Gene expression 1015: 1014: 1013: 950: 946: 937: 935: 926: 925: 921: 866: 862: 853: 851: 842: 841: 834: 825: 823: 815: 814: 810: 802: 800: 798: 768: 764: 711: 707: 644: 640: 597: 593: 552:(6): e1008866. 538: 534: 481: 472: 435: 428: 391: 384: 339: 332: 321: 317: 302: 298: 287:"Recombination" 285: 284: 280: 273: 255: 251: 244: 226: 222: 215: 201: 197: 190: 176: 172: 168: 156: 131: 108: 17: 12: 11: 5: 1043: 1033: 1032: 1027: 1012: 1011: 944: 934:. May 18, 2017 919: 860: 832: 808: 796: 762: 705: 638: 617:10.1101/036780 591: 532: 495:(7): 315–322. 470: 426: 405:(10): 767–78. 382: 330: 315: 296: 278: 271: 249: 243:0-19-50944-1-7 242: 220: 213: 195: 188: 169: 167: 164: 163: 162: 155: 152: 130: 127: 107: 104: 55: 54: 48: 42: 39:Transformation 15: 9: 6: 4: 3: 2: 1042: 1031: 1028: 1026: 1023: 1022: 1020: 1007: 1003: 998: 993: 989: 985: 980: 975: 971: 967: 963: 959: 955: 948: 933: 929: 923: 915: 911: 906: 901: 897: 893: 888: 883: 879: 875: 871: 864: 849: 845: 839: 837: 822: 818: 812: 799: 793: 789: 785: 781: 777: 773: 766: 758: 754: 749: 744: 740: 736: 732: 728: 724: 720: 716: 709: 701: 697: 692: 687: 683: 679: 674: 669: 665: 661: 657: 653: 649: 642: 634: 630: 626: 622: 618: 614: 610: 606: 602: 595: 587: 583: 578: 573: 569: 565: 560: 555: 551: 547: 546:PLOS Genetics 543: 536: 528: 524: 519: 514: 510: 506: 502: 498: 494: 490: 486: 479: 477: 475: 466: 462: 457: 452: 448: 444: 440: 433: 431: 422: 418: 413: 408: 404: 400: 396: 389: 387: 378: 374: 369: 364: 360: 356: 352: 348: 344: 337: 335: 326: 319: 311: 307: 300: 292: 288: 282: 274: 272:3-540-07668-9 268: 263: 262: 253: 245: 239: 234: 233: 224: 216: 214:0-8153-4072-9 210: 206: 199: 191: 189:9958-9344-1-8 185: 181: 174: 170: 161: 158: 157: 151: 149: 145: 140: 139: 135: 126: 124: 120: 116: 112: 103: 101: 100:gene products 97: 93: 88: 86: 82: 78: 74: 70: 66: 65:Recombination 62: 60: 52: 49: 46: 43: 40: 37: 36: 35: 33: 29: 25: 22:is a type of 21: 961: 957: 947: 936:. Retrieved 931: 922: 880:(11): 1239. 877: 873: 863: 852:. Retrieved 850:. 2017-05-17 847: 824:. Retrieved 820: 811: 801:, retrieved 779: 765: 722: 718: 708: 655: 651: 641: 608: 604: 594: 549: 545: 535: 492: 488: 446: 442: 402: 398: 350: 346: 318: 309: 299: 290: 281: 260: 252: 231: 223: 204: 198: 179: 173: 141: 137: 136: 132: 110: 109: 89: 63: 56: 45:Transduction 19: 18: 611:: 116–123. 115:prokaryotes 81:DNA damages 51:Conjugation 1019:Categories 938:2021-04-21 854:2021-04-21 826:2021-04-21 803:2021-04-21 166:References 96:DNA repair 988:0027-8424 896:2073-4425 739:0962-8452 682:0027-8424 633:196619031 568:1553-7404 509:0966-842X 111:Evolution 106:Evolution 914:33105635 774:(eds.), 757:22048956 700:10860960 625:27057964 586:32530914 527:20452218 465:29111273 449:: 8–25. 421:17997281 377:27708147 353:(1840). 154:See also 69:bacteria 28:bacteria 1006:8134343 966:Bibcode 905:7690428 748:3282345 660:Bibcode 605:bioRxiv 577:7314097 518:3985120 368:5069510 119:E. coli 1004:  994:  986:  912:  902:  894:  794:  755:  745:  737:  698:  688:  680:  631:  623:  584:  574:  566:  525:  515:  507:  463:  419:  375:  365:  269:  240:  211:  186:  77:repair 997:43301 874:Genes 691:34373 629:S2CID 1002:PMID 984:ISSN 910:PMID 892:ISSN 792:ISBN 753:PMID 735:ISSN 696:PMID 678:ISSN 621:PMID 582:PMID 564:ISSN 523:PMID 505:ISSN 461:PMID 417:PMID 373:PMID 267:ISBN 238:ISBN 209:ISBN 184:ISBN 73:RecA 992:PMC 974:doi 900:PMC 882:doi 784:doi 743:PMC 727:doi 723:279 686:PMC 668:doi 613:doi 572:PMC 554:doi 513:PMC 497:doi 451:doi 407:doi 403:158 363:PMC 355:doi 351:283 83:by 79:of 67:in 32:DNA 26:in 1021:: 1000:. 990:. 982:. 972:. 962:91 960:. 956:. 930:. 908:. 898:. 890:. 878:11 876:. 872:. 846:. 835:^ 819:. 790:, 778:, 751:. 741:. 733:. 721:. 717:. 694:. 684:. 676:. 666:. 656:97 654:. 650:. 627:. 619:. 609:31 607:. 603:. 580:. 570:. 562:. 550:16 548:. 544:. 521:. 511:. 503:. 493:18 491:. 487:. 473:^ 459:. 447:57 445:. 441:. 429:^ 415:. 401:. 397:. 385:^ 371:. 361:. 349:. 345:. 333:^ 308:. 289:. 102:. 87:. 1008:. 976:: 968:: 941:. 916:. 884:: 857:. 829:. 786:: 759:. 729:: 702:. 670:: 662:: 635:. 615:: 588:. 556:: 529:. 499:: 467:. 453:: 423:. 409:: 379:. 357:: 327:. 312:. 293:. 275:. 246:. 217:. 192:.

Index

genetic recombination
bacteria
DNA
Transformation
Transduction
Conjugation
genetic recombinants
Recombination
bacteria
RecA
repair
DNA damages
homologous recombination
Natural transformation
DNA repair
gene products
prokaryotes
E. coli
homologous recombination
Holliday junction
branch migration
Genetic recombination
ISBN
9958-9344-1-8
ISBN
0-8153-4072-9
Dictionary of genetics
ISBN
0-19-50944-1-7
Glossary of genetics and cytogenetics: Classical and molecular

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑