Knowledge

Axial compressor

Source đź“ť

3589:) at some rpm N. On decreasing the flow-rate at same rpm along the characteristic curve by partial closing of the valve, the pressure in the pipe increases which will be taken care by increase in input pressure at the compressor. Further increase in pressure till point P (surge point), compressor pressure will increase. Further moving towards left keeping rpm constant, pressure in pipe will increase but compressor pressure will decrease leading to back air-flow towards the compressor. Due to this back flow, pressure in pipe will decrease because this unequal pressure condition cannot stay for a long period of time. Though valve position is set for lower flow rate say point G but compressor will work according to normal stable operation point say E, so path E-F-P-G-E will be followed leading to breakdown of flow, hence pressure in the compressor falls further to point H( 227:
pressure. The relative kinetic head in the energy equation is a term that exists only because of the rotation of the rotor. The rotor reduces the relative kinetic head of the fluid and adds it to the absolute kinetic head of the fluid i.e., the impact of the rotor on the fluid particles increases their velocity (absolute) and thereby reduces the relative velocity between the fluid and the rotor. In short, the rotor increases the absolute velocity of the fluid and the stator converts this into pressure rise. Designing the rotor passage with a diffusing capability can produce a pressure rise in addition to its normal functioning. This produces greater pressure rise per stage which constitutes a stator and a rotor together. This is the reaction principle in
3706:, for example, recognized that a turbine which produced work by virtue of a fluid's static pressure (i.e. a reaction turbine) could have its action reversed to act as an air compressor, calling it a turbo compressor or pump. His rotor and stator blading described in one of his patents had little or no camber although in some cases the blade design was based on propeller theory. The machines, driven by steam turbines, were used for industrial purposes such as supplying air to blast furnaces. Parsons supplied the first commercial axial flow compressor for use in a lead smelter in 1901. Parsons' machines had low efficiencies, later attributed to blade stall, and were soon replaced with more efficient centrifugal compressors. 249:
and pressure surge respectively). Thus, a practical limit on the number of stages, and the overall pressure ratio, comes from the interaction of the different stages when required to work away from the design conditions. These “off-design” conditions can be mitigated to a certain extent by providing some flexibility in the compressor. This is achieved normally through the use of adjustable stators or with valves that can bleed fluid from the main flow between stages (inter-stage bleed). Modern jet engines use a series of compressors, running at different speeds; to supply air at around 40:1 pressure ratio for combustion with sufficient flexibility for all flight conditions.
2773: 245:
temperature (Tstage) to each stage must increase progressively through the compressor and the ratio (Delta T)/(Tstage) entry must decrease, thus implying a progressive reduction in stage pressure ratio through the unit. Hence the rear stage develops a significantly lower pressure ratio than the first stage. Higher stage pressure ratios are also possible if the relative velocity between fluid and rotors is supersonic, but this is achieved at the expense of efficiency and operability. Such compressors, with stage pressure ratios of over 2, are only used where minimizing the compressor size, weight or complexity is critical, such as in military jets.
2679: 3915: 194: 2516: 258: 3523: 1962: 3867: 3543:
pressure. When the compressor is operating as part of a complete gas turbine engine, as opposed to on a test rig, a higher delivery pressure at a particular speed can be caused momentarily by burning too-great a step-jump in fuel which causes a momentary blockage until the compressor increases to the speed which goes with the new fuel flow and the surging stops.
2511:{\displaystyle {\begin{aligned}R&={\frac {h_{2}-h_{1}}{h_{02}-h_{01}}}\\P&={\dot {m}}c_{p}\left(T_{2}+{\frac {V_{2}^{2}}{2c_{p}}}-\left\right)\\P&={\dot {m}}\left(h_{2}-h_{1}+\left\right)\\h_{2}-h_{1}&={\frac {V_{r1}^{2}}{2}}-{\frac {V_{r2}^{2}}{2}}\\T_{2}-T_{1}&={\frac {V_{r1}^{2}}{2c_{p}}}-{\frac {V_{r2}^{2}}{2c_{p}}}\end{aligned}}} 209:
pair of one row of rotating airfoils and the next row of stationary airfoils is called a stage. The rotating airfoils, also known as blades or rotors, accelerate the fluid in both the axial and circumferential directions. The stationary airfoils, also known as vanes or stators, convert the increased kinetic energy into static pressure through
1726: 2692:
stall or surge, would result. The parameter used the rotor speed, Helmholtz resonator frequency of the system and an "effective length" of the compressor duct. It had a critical value which predicted either rotating stall or surge where the slope of pressure ratio against flow changed from negative to positive.
3939:, resulted in increased efficiency. Further increases in efficiency may be realised by adding a third spool, but in practice the added complexity increases maintenance costs to the point of negating any economic benefit. That said, there are several three-spool engines in use, perhaps the most famous being the 3673:
In a rotor with blades moving say towards right. Let some blades receives flow at higher incidence, this blade will stop positively. It creates obstruction in the passage between the blade to its left and itself. Thus the left blade will receive the flow at higher incidence and the blade to its right
3629:
Stalling is an important phenomenon that affects the performance of the compressor. An analysis is made of rotating stall in compressors of many stages, finding conditions under which a flow distortion can occur which is steady in a traveling reference frame, even though upstream total and downstream
248:
The airfoil profiles are optimized and matched for specific velocities and turning. Although compressors can be run at other conditions with different flows, speeds, or pressure ratios, this can result in an efficiency penalty or even a partial or complete breakdown in flow (known as compressor stall
3674:
with decreased incidence. The left blade will experience more stall while the blade to its right will experience lesser stall. Towards the right stalling will decrease whereas it will increase towards its left. Movement of the rotating stall can be observed depending upon the chosen reference frame.
3654:
In a multi-stage compressor, at the high pressure stages, axial velocity is very small. Stalling value decreases with a small deviation from the design point causing stall near the hub and tip regions whose size increases with decreasing flow rates. They grow larger at very low flow rate and affect
3542:
The following explanation for surging refers to running a compressor at a constant speed on a rig and gradually reducing the exit area by closing a valve. What happens, i.e. crossing the surge line, is caused by the compressor trying to deliver air, still running at the same speed, to a higher exit
2691:
Greitzer used a Helmholtz resonator type of compression system model to predict the transient response of a compression system after a small perturbation superimposed on a steady operating condition. He found a non-dimensional parameter which predicted which mode of compressor instability, rotating
239:
The increase in pressure produced by a single stage is limited by the relative velocity between the rotor and the fluid, and the turning and diffusion capabilities of the airfoils. A typical stage in a commercial compressor will produce a pressure increase of between 15% and 60% (pressure ratios of
226:
As the fluid enters and leaves in the axial direction, the centrifugal component in the energy equation does not come into play. Here the compression is fully based on diffusing action of the passages. The diffusing action in the stator converts the absolute kinetic head of the fluid into a rise in
4025:
A map shows the performance of a compressor and allows determination of optimal operating conditions. It shows the mass flow along the horizontal axis, typically as a percentage of the design mass flow rate, or in actual units. The pressure rise is indicated on the vertical axis as a ratio between
3930:
All compressors have an optimum point relating rotational speed and pressure, with higher compressions requiring higher speeds. Early engines were designed for simplicity, and used a single large compressor spinning at a single speed. Later designs added a second turbine and divided the compressor
2707:
Axial compressors, particularly near their design point are usually amenable to analytical treatment, and a good estimate of their performance can be made before they are first run on a rig. The compressor map shows the complete running range, i.e. off-design, of the compressor from ground idle to
4029:
A surge or stall line identifies the boundary to the left of which the compressor performance rapidly degrades and identifies the maximum pressure ratio that can be achieved for a given mass flow. Contours of efficiency are drawn as well as performance lines for operation at particular rotational
3957:
As an aircraft changes speed or altitude, the pressure of the air at the inlet to the compressor will vary. In order to "tune" the compressor for these changing conditions, designs starting in the 1950s would "bleed" air out of the middle of the compressor in order to avoid trying to compress too
244:
efficiency in the region of 90–95%. To achieve different pressure ratios, axial compressors are designed with different numbers of stages and rotational speeds. As a rule of thumb we can assume that each stage in a given compressor has the same temperature rise (Delta T). Therefore, at the entry,
208:
Axial compressors consist of rotating and stationary components. A shaft drives a central drum which is retained by bearings inside of a stationary tubular casing. Between the drum and the casing are rows of airfoils, each row connected to either the drum or the casing in an alternating manner. A
1940: 3878:
In the jet engine application, the compressor faces a wide variety of operating conditions. On the ground at takeoff the inlet pressure is high, inlet speed zero, and the compressor spun at a variety of speeds as the power is applied. Once in flight the inlet pressure drops, but the inlet speed
37: 3998:
The relative motion of the blades to the fluid adds velocity or pressure or both to the fluid as it passes through the rotor. The fluid velocity is increased through the rotor, and the stator converts kinetic energy to pressure energy. Some diffusion also occurs in the rotor in most practical
3902:
if the inlet conditions change abruptly, a common problem on early engines. In some cases, if the stall occurs near the front of the engine, all of the stages from that point on will stop compressing the air. In this situation the energy required to run the compressor drops suddenly, and the
3848:
simply by adding additional stages and making the engine slightly longer. In the centrifugal-flow design the compressor itself had to be larger in diameter, which was much more difficult to fit properly into a thin and aerodynamic aircraft fuselage (although not dissimilar to the profile of
3620:
This phenomenon will cause vibrations in the whole machine and may lead to mechanical failure. That is why left portion of the curve from the surge point is called unstable region and may cause damage to the machine. So the recommended operation range is on the right side of the surge line.
71:
The energy level of the fluid increases as it flows through the compressor due to the action of the rotor blades which exert a torque on the fluid. The stationary blades slow the fluid, converting the circumferential component of flow into pressure. Compressors are typically driven by an
3509: 3630:
static pressure are constant. In the compressor, a pressure-rise hysteresis is assumed. It is a situation of separation of air flow at the aero-foil blades of the compressor. This phenomenon depending upon the blade-profile leads to reduced compression and drop in engine power.
1300: 1441: 3980:
Closing the variable stators progressively, as compressor speed falls, reduces the slope of the surge (or stall) line on the operating characteristic (or map), improving the surge margin of the installed unit. By incorporating variable stators in the first five stages,
3374: 2708:
its highest corrected rotor speed, which for a civil engine may occur at top-of-climb, or, for a military combat engine, at take-off on a cold day. Not shown is the sub-idle performance region needed for analyzing normal ground and in-flight windmill start behaviour.
876: 3973:, used blades that can be individually rotated around their axis, as opposed to the power axis of the engine. For startup they are rotated to "closed", reducing compression, and then are rotated back into the airflow as the external conditions require. The 3669:
Non-uniformity of air flow in the rotor blades may disturb local air flow in the compressor without upsetting it. The compressor continues to work normally but with reduced compression. Thus, rotating stall decreases the effectiveness of the compressor.
3903:
remaining hot air in the rear of the engine allows the turbine to speed up the whole engine dramatically. This condition, known as surging, was a major problem on early engines and often led to the turbine or compressor breaking and shedding blades.
3534:. This line is formed by joining surge points at different rpms. Unstable flow in axial compressors due to complete breakdown of the steady through flow is termed as surging. This phenomenon affects the performance of compressor and is undesirable. 3710:
produced "reversed turbine" compressors, driven by gas turbines, with blading derived from aerodynamic research which were more efficient than centrifugal types when pumping large flow rates of 40,000 cu.ft. per minute at pressures up to 45 p.s.i.
1583: 3958:
much air in the final stages. This was also used to help start the engine, allowing it to be spun up without compressing much air by bleeding off as much as possible. Bleed systems were already commonly used anyway, to provide airflow into the
1126: 2668: 91:, particularly in relation to their size and cross-section. They do, however, require several rows of airfoils to achieve a large pressure rise, making them complex and expensive relative to other designs (e.g. centrifugal compressors). 993: 1572: 1737: 3882:
There is simply no "perfect" compressor for this wide range of operating conditions. Fixed geometry compressors, like those used on early jet engines, are limited to a design pressure ratio of about 4 or 5:1. As with any
3843:
As Griffith had originally noted in 1929, the large frontal size of the centrifugal compressor caused it to have higher drag than the narrower axial-flow type. Additionally the axial-flow design could improve its
2974: 3853:
already in widespread use). On the other hand, centrifugal-flow designs remained much less complex (the major reason they "won" in the race to flying examples) and therefore have a role in places where size and
213:
and redirect the flow direction of the fluid to prepare it for the rotor blades of the next stage. The cross-sectional area between rotor drum and casing is reduced in the flow direction to maintain an optimum
3063: 2894: 2822:
The performance of a compressor is defined according to its design. But in actual practice, the operating point of the compressor deviates from the design- point which is known as off-design operation.
1137: 3400: 1311: 3772:
Real work on axial-flow engines started in the late 1930s, in several efforts that all started at about the same time. In England, Hayne Constant reached an agreement with the steam turbine company
3769:. Griffith had seen Whittle's work in 1929 and dismissed it, noting a mathematical error, and going on to claim that the frontal size of the engine would make it useless on a high-speed aircraft. 3259: 3125: 720: 3405: 3278: 1967: 3730:
instead of the flat blades would increase efficiency to the point where a practical jet engine was a real possibility. He concluded the paper with a basic diagram of such an engine, which
3166: 4405: 3587: 1721:{\displaystyle {\frac {(p_{02})_{\text{actual}}}{p_{01}}}=\left(1+{\frac {\eta _{\text{stage}}\delta (T_{0})_{\text{isentropic}}}{T_{01}}}\right)^{\frac {\gamma }{\gamma -1}}\,} 3273: 4038:
Operating efficiency is highest close to the stall line. If the downstream pressure is increased beyond the maximum possible the compressor will stall and become unstable.
3194: 64:-based compressor in which the gas or working fluid principally flows parallel to the axis of rotation, or axially. This differs from other rotating compressors such as 1004: 643: 612: 579: 548: 515: 484: 392: 333: 3615: 2816: 2795: 2755: 2734: 688: 451: 423: 361: 302: 3780:
effort based on the Griffith design in 1938. In 1940, after the successful run of Whittle's centrifugal-flow design, their effort was re-designed as a pure jet, the
708: 3879:
increases (due to the forward motion of the aircraft) to recover some of this pressure, and the compressor tends to run at a single speed for long periods of time.
2527: 3655:
the entire blade height. Delivery pressure significantly drops with large stalling which can lead to flow reversal. The stage efficiency drops with higher losses.
666: 4017:
engines have fans that operate at Mach 1.7 or more, and require significant containment and noise suppression structures to reduce blade loss damage and noise.
3722:
published a seminal paper in 1926, noting that the reason for the poor performance was that existing compressors used flat blades and were essentially "flying
888: 3617:). This increase and decrease of pressure in pipe will occur repeatedly in pipe and compressor following the cycle E-F-P-G-H-E also known as the surge cycle. 4398: 2704:, also known as a characteristic, by plotting pressure ratio and efficiency against corrected mass flow at different values of corrected compressor speed. 1935:{\displaystyle {\frac {(p_{02})_{\text{actual}}}{p_{01}}}=\left(1+{\frac {\eta _{\text{stage}}U}{T_{01}c_{p}}}\left\right)^{\frac {\gamma }{\gamma -1}}\,} 1455: 3926:
represent the rotational speed of the low- and high-pressure compressors respectively. Both are presented on the indicator as a percentage of design rpm.
102:, high speed ship engines, and small scale power stations. They are also used in industrial applications such as large volume air separation plants, 4391: 3651:
Negative stall is negligible compared to the positive stall because flow separation is least likely to occur on the pressure side of the blade.
4372:
Wilson, David Gordon and Theodosios Korakianitis. 'The Design of High-Efficiency Turbomachinery and Turbines,' 2nd edn, Prentice Hall, 1998.
3745:
measurement, little work appears to have started as a direct result of his paper. The only obvious effort was a test-bed compressor built by
3784:. In Germany, von Ohain had produced several working centrifugal engines, some of which had flown including the world's first jet aircraft ( 2913: 68:, axi-centrifugal compressors and mixed-flow compressors where the fluid flow will include a "radial component" through the compressor. 4784: 2994: 2831: 4002:
The increase in velocity of the fluid is primarily in the tangential direction (swirl) and the stator removes this angular momentum.
3714:
Because early axial compressors were not efficient enough a number of papers in the early 1920s claimed that a practical axial-flow
4162:
Greitzer, E. M. (1 April 1976). "Surge and Rotating Stall in Axial Flow Compressors—Part I: Theoretical Compression System Model".
1295:{\displaystyle P={\dot {m}}U\left(V_{f2}\tan \alpha _{2}-V_{f1}\tan \alpha _{1}\right)={\dot {m}}c_{p}\left(T_{02}-T_{01}\right)\,} 3504:{\displaystyle {\begin{aligned}\psi &=1-J(\phi )\,\\\psi &=1-\phi \left({\frac {1-\psi '}{\phi '}}\right)\,\end{aligned}}} 4774: 1436:{\displaystyle \delta (T_{0})_{\text{isentropic}}={\frac {U}{c_{p}}}\left(V_{f2}\tan \alpha _{2}-V_{f1}\tan \alpha _{1}\right)\,} 4747: 3906:
For all of these reasons, axial compressors on modern jet engines are considerably more complex than those on earlier designs.
4111: 871:{\displaystyle F={\dot {m}}\left(V_{w2}-V_{w1}\right)={\dot {m}}\left(V_{f2}\tan \alpha _{2}-V_{f1}\tan \alpha _{1}\right)\,} 17: 4258: 3693:
These forced vibrations may match with the natural frequency of the blades causing resonance and hence failure of the blade.
4334: 3202: 3071: 4779: 3836:
also entered the race in 1942, their project proving to be the only successful one of the US efforts, later becoming the
4377: 4366: 4355: 4344: 4149: 3982: 3833: 3530:
In the plot of pressure-flow rate the line separating graph between two regions- unstable and stable is known as the
2760:
Stage pressure ratio against flow rate is lower than for a no-loss stage as shown. Losses are due to blade friction,
114:. Due to high performance, high reliability and flexible operation during the flight envelope, they are also used in 3977:
was the first major example of a variable stator design, and today it is a common feature of most military engines.
4647: 4237: 4312: 4526: 4350:
Kerrebrock, Jack L. 'Aircraft Engines and Gas Turbines,' 2nd edn, Cambridge, Massachusetts: The MIT Press, 1992.
4298: 4696: 3130: 231:. If 50% of the pressure rise in a stage is obtained at the rotor section, it is said to have a 50% reaction. 4884: 4339:
Hill, Philip and Carl Peterson. 'Mechanics and Thermodynamics of Propulsion,' 2nd edn, Prentice Hall, 1991.
4189: 4313:"The Nuclear-Powered Jet Engine, Ceramic Turbines and Other Gems from the History of Flight | GE News" 3750: 2772: 269:
states that the sum of the moments of external forces acting on a fluid which is temporarily occupying the
3369:{\displaystyle {\begin{aligned}\psi '&=1-J(\phi ')\,\\J&={\frac {1-\psi '}{\phi '}}\end{aligned}}} 4732: 3895:, so there is very strong financial need to improve the compressor stages beyond these sorts of ratios. 3549: 2678: 4727: 4503: 4144:
Perry, R.H. and Green, D.W. (Eds.) (2007). Perry's Chemical Engineers' Handbook (8th ed.). McGraw Hill.
4361:
Rangwalla, Abdulla. S. 'Turbo-Machinery Dynamics: Design and Operation,' New York: McGraw-Hill: 2005.
3702:
From an energy exchange point of view axial compressors are reversed turbines. Steam-turbine designer
4060: 4329:
Treager, Irwin E. 'Aircraft Gas Turbine Engine Technology' 3rd edn, McGraw-Hill Book Company, 1995,
4910: 4804: 4722: 4582: 3703: 3171: 1121:{\displaystyle P={\dot {m}}\left(h_{02}-h_{01}\right)={\dot {m}}c_{p}\left(T_{02}-T_{01}\right)\,} 83:
Axial flow compressors produce a continuous flow of compressed gas, and have the benefits of high
4676: 4463: 4284:
The Engineer magazine May 27, 1938 Supplement The Development Of Blowers And Compressors p.xxxiii
3985:
has developed a ten-stage axial compressor capable of operating at a 23:1 design pressure ratio.
198: 4652: 4622: 4617: 4541: 4458: 4054: 4006: 3962:
stage where it was used to cool the turbine blades, as well as provide pressurized air for the
3762: 65: 2663:{\displaystyle R={\frac {V_{r1}^{2}-V_{r2}^{2}}{V_{r1}^{2}-V_{r2}^{2}+V_{1}^{2}-V_{2}^{2}}}\,} 617: 586: 553: 522: 489: 458: 366: 307: 4889: 4657: 4627: 4607: 3707: 3592: 3526:
Various points on the performance curve depending upon the flow rates and pressure difference
2800: 2779: 2739: 2718: 673: 428: 400: 338: 279: 693: 4874: 4837: 4789: 4551: 3974: 3825: 3813: 3805: 3773: 3719: 1948:, The pressure difference between the entry and exit of the rotor blade is called reaction 8: 4042: 3936: 3871: 988:{\displaystyle P={\dot {m}}U\left(V_{f2}\tan \alpha _{2}-V_{f1}\tan \alpha _{1}\right)\,} 650: 4383: 4009:
rise. For a given geometry the temperature rise depends on the square of the tangential
4742: 4691: 3789: 2682:
Reasons stating difference in ideal and actual performance curve in an axial compressor
4210:
McDougall, NM; Cumpsty, NA; Hynes, TP (2012). "Stall inception in axial compressors".
4769: 4561: 4373: 4362: 4351: 4340: 4330: 4145: 4107: 3940: 3892: 3845: 3723: 2776:
Off design characteristics curve of an axial compressor. Stage loading coefficient (
1567:{\displaystyle p_{2}-p_{1}=p_{1}\left(\left^{\frac {\gamma }{\gamma -1}}-1\right)\,} 4869: 4662: 4632: 4602: 4219: 4171: 4066: 3963: 3914: 3899: 3837: 3817: 3742: 3664: 266: 31: 4827: 4521: 4449: 4418: 4072: 3888: 3715: 2761: 201: 111: 273:
is equal to the net change of angular momentum flux through the control volume.
4434: 3931:
into low-pressure and high-pressure sections, the latter spinning faster. This
3850: 3785: 3758: 3746: 2701: 270: 193: 88: 73: 57: 53: 4904: 4794: 4592: 4566: 4498: 3781: 3754: 3738: 2712: 228: 118: 103: 41: 261:
Velocity triangle of the swirling fluid entering and exiting the rotor blade
4848: 4822: 4812: 4642: 4597: 3821: 3809: 3766: 95: 257: 4717: 4712: 4531: 4429: 4421: 4010: 3884: 3855: 3820:
were awarded contracts in 1941 to develop axial-flow engines, the former
3514:
for positive values of J, slope of the curve is negative and vice versa.
3127:
doesn't change for a wide range of operating points till stalling. Also
215: 99: 40:
An animated simulation of an axial compressor. The static blades are the
3522: 4488: 4414: 4057: â€“ Sub-class of dynamic axisymmetric work-absorbing turbomachinery 3687: 645:
are the blade-relative velocities at the inlet and outlet respectively.
241: 174: 84: 4281: 4223: 4175: 2711:
The performance of a single compressor stage may be shown by plotting
4879: 4737: 4587: 4546: 4483: 4078: 3952: 3777: 3731: 2969:{\displaystyle \tan \alpha _{2}={\frac {1}{\phi }}-\tan \beta _{2}\,} 882:
Power consumed by an ideal moving blade, P is given by the equation:
210: 158: 115: 107: 4853: 4612: 4556: 4478: 4473: 4454: 4014: 3804:), which used axial-flow designs in the world's first jet fighter ( 3793: 1949: 517:
are the axial flow velocities at the inlet and outlet respectively.
36: 4468: 3959: 3829: 3828:
also started their own project to develop a turboprop, which the
3801: 3727: 3638: 3058:{\displaystyle \psi =1-\phi (\tan \beta _{2}+\tan \alpha _{1})\,} 453:
are the absolute velocities at the inlet and outlet respectively.
121:, as fuel pumps and in other critical high volume applications. 61: 4131: 3866: 3168:
because of minor change in air angle at rotor and stator, where
2889:{\displaystyle \psi =\phi (\tan \alpha _{2}-\tan \alpha _{1})\,} 4637: 4493: 4069: â€“ Fan that induces gas flow mostly parallel to the shaft 4063: â€“ Brief description of components needed for jet engines 581:
are the swirl velocities at the inlet and outlet respectively.
4817: 4209: 77: 3737:
Although Griffith was well known due to his earlier work on
3732:
included a second turbine that was used to power a propeller
4190:"Practical considerations when designing the engine cycle" 4045:
of the system, taking the downstream plenum into account.
3993: 4413: 3797: 4075: â€“ Type of pump consisting of a propeller in a pipe 3647:
Flow separation occur on the pressure side of the blade.
714:
Rate of change of momentum, F is given by the equation:
276:
The swirling fluid enters the control volume at radius,
3718:
would be impossible to construct. Things changed after
3690:
in the blades due to passage through stall compartment.
3761:, were based on the more robust and better understood 1952:. The change in pressure energy is calculated through 94:
Axial compressors are integral to the design of large
3595: 3552: 3403: 3276: 3254:{\displaystyle J=\tan \beta _{2}+\tan \alpha _{3})\,} 3205: 3174: 3133: 3074: 2997: 2916: 2834: 2803: 2782: 2742: 2721: 2530: 1965: 1740: 1586: 1458: 1314: 1140: 1007: 891: 723: 696: 676: 653: 620: 589: 556: 525: 492: 461: 431: 403: 369: 341: 310: 282: 4125: 4123: 3120:{\displaystyle (\tan \beta _{2}+\tan \alpha _{1})\,} 4785:Engine-indicating and crew-alerting system (EICAS) 3609: 3581: 3503: 3368: 3253: 3188: 3160: 3119: 3057: 2968: 2888: 2810: 2789: 2749: 2728: 2662: 2510: 1934: 1720: 1566: 1435: 1294: 1120: 987: 870: 702: 682: 660: 637: 606: 573: 542: 509: 478: 445: 417: 386: 355: 327: 296: 4818:Full Authority Digital Engine/Electronics (FADEC) 4164:Journal of Engineering for Gas Turbines and Power 4120: 3943:, used on a wide variety of commercial aircraft. 4902: 252: 4775:Electronic centralised aircraft monitor (ECAM) 4106:. Tata McGraw Hill Education Private Limited. 3946: 2673: 998:Change in enthalpy of fluid in moving blades: 4399: 3870:Low-pressure axial compressor scheme of the 3753:. Other early jet efforts, notably those of 3788:), but development efforts had moved on to 2700:Axial compressor performance is shown on a 2695: 218:axial velocity as the fluid is compressed. 27:Machine for continuous flow gas compression 4780:Electronic flight instrument system (EFIS) 4406: 4392: 4295:Pilot's Handbook of Aeronautical Knowledge 4041:Typically the instability will be at the 3861: 3683:This reduces efficiency of the compressor 3606: 3578: 3496: 3436: 3319: 3250: 3185: 3161:{\displaystyle \alpha _{1}=\alpha _{3}\,} 3157: 3116: 3054: 2965: 2885: 2807: 2786: 2746: 2725: 2659: 1931: 1717: 1563: 1432: 1291: 1117: 984: 867: 657: 634: 603: 570: 539: 506: 475: 442: 414: 383: 352: 324: 293: 4277: 4275: 4161: 4033: 3913: 3865: 3521: 2771: 2764:, unsteady flow and vane-blade spacing. 2677: 256: 192: 35: 4097: 4095: 3994:Energy exchange between rotor and fluid 3546:Suppose the initial operating point D ( 2767: 14: 4903: 240:1.15–1.6) at design conditions with a 4387: 4272: 4101: 4026:inlet and exit stagnation pressures. 3918:A dual-spool axial-flow compressor. N 2736:) as a function of flow coefficient ( 1447:Isentropic compression in rotor blade 4287: 4129: 4092: 4081: â€“ Pump driven by a gas turbine 3776:(Metrovick) in 1937, starting their 3658: 3267: 3265:Representing design values with (') 2907: 2825: 668:is the linear velocity of the blade. 4282:https://gracesguide.co.uk/Main_Page 2797:) as function of flow coefficient ( 24: 4238:"Turbo Compresser and Pump Patent" 4020: 3582:{\displaystyle {\dot {m}},P_{D}\,} 25: 4922: 3983:General Electric Aircraft Engines 4648:Thrust specific fuel consumption 3898:Additionally the compressor may 3388:for off-design operations (from 2686: 4323: 4305: 4299:Federal Aviation Administration 4245:patentimages.storage.googleapis 4005:The pressure rise results in a 3988: 3832:eventually contracted in 1943. 4697:Propeller speed reduction unit 4251: 4230: 4203: 4182: 4155: 4138: 4104:Turbines, Compressors and Fans 3812:). In the United States, both 3749:, Griffith's colleague at the 3697: 3537: 3433: 3427: 3316: 3305: 3247: 3113: 3075: 3051: 3013: 2882: 2844: 1758: 1744: 1671: 1657: 1604: 1590: 1332: 1318: 188: 13: 1: 4085: 3966:systems inside the aircraft. 3726:". He showed that the use of 3637:Flow separation occur on the 3189:{\displaystyle \alpha _{3}\,} 253:Kinetics and energy equations 4301:. 2016-08-24. pp. 7–23. 4132:"2.0 Axial Flow Compressors" 3969:A more advanced design, the 3751:Royal Aircraft Establishment 690:is the guide vane angle and 363:, with tangential velocity, 304:, with tangential velocity, 7: 4608:Engine pressure ratio (EPR) 4048: 3947:Bleed air, variable stators 3891:is strongly related to the 3624: 3390: 2674:Performance characteristics 10: 4927: 4875:Auxiliary power unit (APU) 4504:Rotating detonation engine 4013:of the rotor row. Current 3950: 3824:, the latter a turboprop. 3677: 3662: 3517: 2988:from equation (1) and (2) 221: 110:cracking air, and propane 29: 4862: 4836: 4803: 4760: 4705: 4684: 4675: 4575: 4512: 4442: 4428: 4212:Journal of Turbomachinery 4061:Components of jet engines 3935:design, pioneered on the 3909: 3765:which was widely used in 3196:is diffuser blade angle. 234: 4583:Aircraft engine starting 3704:Charles Algernon Parsons 2696:Steady-state performance 878:(from velocity triangle) 638:{\displaystyle V_{r2}\,} 607:{\displaystyle V_{r1}\,} 574:{\displaystyle V_{w2}\,} 543:{\displaystyle V_{w1}\,} 510:{\displaystyle V_{f2}\,} 479:{\displaystyle V_{f1}\,} 387:{\displaystyle V_{w2}\,} 335:, and leaves at radius, 328:{\displaystyle V_{w1}\,} 199:Pratt & Whitney TF30 133:Pressure ratio per stage 4464:Pulse detonation engine 3610:{\displaystyle P_{H}\,} 2811:{\displaystyle \phi \,} 2790:{\displaystyle \psi \,} 2750:{\displaystyle \phi \,} 2729:{\displaystyle \psi \,} 683:{\displaystyle \alpha } 446:{\displaystyle V_{2}\,} 418:{\displaystyle V_{1}\,} 356:{\displaystyle r_{2}\,} 297:{\displaystyle r_{1}\,} 4653:Thrust to weight ratio 4623:Overall pressure ratio 4618:Jet engine performance 4542:Centrifugal compressor 4459:Gluhareff Pressure Jet 4055:Centrifugal compressor 4007:stagnation temperature 3927: 3875: 3862:Axial-flow jet engines 3858:are not so important. 3763:centrifugal compressor 3708:Brown Boveri & Cie 3611: 3583: 3527: 3505: 3370: 3255: 3190: 3162: 3121: 3059: 2970: 2890: 2819: 2812: 2791: 2751: 2730: 2683: 2664: 2512: 1936: 1722: 1568: 1437: 1296: 1122: 989: 872: 704: 703:{\displaystyle \beta } 684: 662: 639: 608: 575: 544: 511: 480: 447: 419: 388: 357: 329: 298: 262: 205: 66:centrifugal compressor 56:that can continuously 45: 4890:Ice protection system 4658:Variable cycle engine 4628:Propulsive efficiency 4034:Compression stability 3917: 3869: 3612: 3584: 3525: 3506: 3371: 3256: 3191: 3163: 3122: 3060: 2971: 2891: 2813: 2792: 2775: 2752: 2731: 2681: 2665: 2513: 1937: 1723: 1569: 1438: 1297: 1123: 990: 873: 705: 685: 663: 640: 609: 576: 545: 512: 481: 448: 420: 389: 358: 330: 299: 260: 196: 136:Efficiency per stage 39: 30:Further information: 18:Axial-flow compressor 4790:Flight data recorder 4552:Constant speed drive 4532:Afterburner (reheat) 4266:webserver.dmt.upm.es 4259:"NASA-SP36_extracto" 4102:Yahya, S.M. (2011). 3975:General Electric J79 3806:Messerschmitt Me 262 3774:Metropolitan-Vickers 3593: 3550: 3401: 3274: 3203: 3172: 3131: 3072: 2995: 2914: 2832: 2801: 2780: 2768:Off-design operation 2740: 2719: 2528: 1963: 1738: 1584: 1456: 1312: 1138: 1005: 889: 721: 694: 674: 651: 618: 587: 554: 523: 490: 459: 429: 401: 367: 339: 308: 280: 197:The compressor in a 60:. It is a rotating, 4130:Meherwan, P.Boyce. 4043:Helmholtz frequency 2655: 2637: 2619: 2598: 2578: 2557: 2486: 2446: 2387: 2359: 2290: 2265: 2159: 2104: 710:is the blade angle. 661:{\displaystyle U\,} 127:Typical application 4692:Propeller governor 3928: 3876: 3808:) and jet bomber ( 3641:side of the blade. 3607: 3579: 3528: 3501: 3499: 3366: 3364: 3251: 3186: 3158: 3117: 3055: 2966: 2886: 2820: 2808: 2787: 2747: 2726: 2684: 2660: 2641: 2623: 2602: 2581: 2561: 2540: 2508: 2506: 2469: 2429: 2370: 2342: 2276: 2251: 2145: 2090: 1954:degree of reaction 1946:Degree of Reaction 1932: 1718: 1564: 1433: 1292: 1118: 985: 868: 700: 680: 658: 635: 604: 571: 540: 507: 476: 443: 415: 384: 353: 325: 294: 267:moment of momentum 263: 206: 80:or a gas turbine. 46: 4898: 4897: 4770:Annunciator panel 4756: 4755: 4671: 4670: 4562:Propelling nozzle 4224:10.1115/1.2927406 4176:10.1115/1.3446138 4113:978-0-07-070702-3 3941:Rolls-Royce RB211 3893:compression ratio 3846:compression ratio 3659:Rotating stalling 3644:Negative stalling 3634:Positive stalling 3562: 3490: 3386: 3385: 3360: 2986: 2985: 2944: 2906: 2905: 2657: 2502: 2462: 2391: 2363: 2294: 2269: 2210: 2175: 2120: 2057: 2032: 1928: 1834: 1805: 1778: 1764: 1714: 1691: 1677: 1651: 1624: 1610: 1549: 1527: 1359: 1338: 1245: 1156: 1071: 1023: 907: 793: 739: 186: 185: 16:(Redirected from 4918: 4885:Hydraulic system 4880:Bleed air system 4870:Air-start system 4733:Counter-rotating 4682: 4681: 4663:Windmill restart 4633:Specific impulse 4603:Compressor stall 4537:Axial compressor 4440: 4439: 4408: 4401: 4394: 4385: 4384: 4335:978-0-02-8018287 4317: 4316: 4309: 4303: 4302: 4291: 4285: 4279: 4270: 4269: 4263: 4255: 4249: 4248: 4242: 4234: 4228: 4227: 4207: 4201: 4200: 4197:www.sto.nato.int 4194: 4186: 4180: 4179: 4159: 4153: 4142: 4136: 4135: 4127: 4118: 4117: 4099: 4067:Axial fan design 3964:air conditioning 3818:General Electric 3665:Compressor stall 3616: 3614: 3613: 3608: 3605: 3604: 3588: 3586: 3585: 3580: 3577: 3576: 3564: 3563: 3555: 3510: 3508: 3507: 3502: 3500: 3495: 3491: 3489: 3481: 3480: 3465: 3375: 3373: 3372: 3367: 3365: 3361: 3359: 3351: 3350: 3335: 3315: 3288: 3268: 3260: 3258: 3257: 3252: 3246: 3245: 3227: 3226: 3195: 3193: 3192: 3187: 3184: 3183: 3167: 3165: 3164: 3159: 3156: 3155: 3143: 3142: 3126: 3124: 3123: 3118: 3112: 3111: 3093: 3092: 3064: 3062: 3061: 3056: 3050: 3049: 3031: 3030: 2975: 2973: 2972: 2967: 2964: 2963: 2945: 2937: 2932: 2931: 2908: 2895: 2893: 2892: 2887: 2881: 2880: 2862: 2861: 2826: 2817: 2815: 2814: 2809: 2796: 2794: 2793: 2788: 2756: 2754: 2753: 2748: 2735: 2733: 2732: 2727: 2669: 2667: 2666: 2661: 2658: 2656: 2654: 2649: 2636: 2631: 2618: 2613: 2597: 2592: 2579: 2577: 2572: 2556: 2551: 2538: 2517: 2515: 2514: 2509: 2507: 2503: 2501: 2500: 2499: 2485: 2480: 2468: 2463: 2461: 2460: 2459: 2445: 2440: 2428: 2419: 2418: 2406: 2405: 2392: 2386: 2381: 2369: 2364: 2358: 2353: 2341: 2332: 2331: 2319: 2318: 2305: 2301: 2300: 2296: 2295: 2289: 2284: 2275: 2270: 2264: 2259: 2250: 2240: 2239: 2227: 2226: 2212: 2211: 2203: 2186: 2182: 2181: 2177: 2176: 2174: 2173: 2172: 2158: 2153: 2144: 2139: 2138: 2121: 2119: 2118: 2117: 2103: 2098: 2089: 2084: 2083: 2069: 2068: 2059: 2058: 2050: 2033: 2031: 2030: 2029: 2017: 2016: 2006: 2005: 2004: 1992: 1991: 1981: 1941: 1939: 1938: 1933: 1930: 1929: 1927: 1913: 1911: 1907: 1906: 1902: 1901: 1900: 1885: 1884: 1869: 1868: 1853: 1852: 1835: 1833: 1832: 1831: 1822: 1821: 1811: 1807: 1806: 1803: 1796: 1779: 1777: 1776: 1767: 1766: 1765: 1762: 1756: 1755: 1742: 1727: 1725: 1724: 1719: 1716: 1715: 1713: 1699: 1697: 1693: 1692: 1690: 1689: 1680: 1679: 1678: 1675: 1669: 1668: 1653: 1652: 1649: 1642: 1625: 1623: 1622: 1613: 1612: 1611: 1608: 1602: 1601: 1588: 1573: 1571: 1570: 1565: 1562: 1558: 1551: 1550: 1548: 1534: 1532: 1528: 1526: 1525: 1516: 1515: 1506: 1494: 1493: 1481: 1480: 1468: 1467: 1442: 1440: 1439: 1434: 1431: 1427: 1426: 1425: 1410: 1409: 1394: 1393: 1378: 1377: 1360: 1358: 1357: 1345: 1340: 1339: 1336: 1330: 1329: 1301: 1299: 1298: 1293: 1290: 1286: 1285: 1284: 1272: 1271: 1257: 1256: 1247: 1246: 1238: 1232: 1228: 1227: 1226: 1211: 1210: 1195: 1194: 1179: 1178: 1158: 1157: 1149: 1127: 1125: 1124: 1119: 1116: 1112: 1111: 1110: 1098: 1097: 1083: 1082: 1073: 1072: 1064: 1058: 1054: 1053: 1052: 1040: 1039: 1025: 1024: 1016: 994: 992: 991: 986: 983: 979: 978: 977: 962: 961: 946: 945: 930: 929: 909: 908: 900: 877: 875: 874: 869: 866: 862: 861: 860: 845: 844: 829: 828: 813: 812: 795: 794: 786: 780: 776: 775: 774: 759: 758: 741: 740: 732: 709: 707: 706: 701: 689: 687: 686: 681: 667: 665: 664: 659: 644: 642: 641: 636: 633: 632: 613: 611: 610: 605: 602: 601: 580: 578: 577: 572: 569: 568: 549: 547: 546: 541: 538: 537: 516: 514: 513: 508: 505: 504: 485: 483: 482: 477: 474: 473: 452: 450: 449: 444: 441: 440: 424: 422: 421: 416: 413: 412: 393: 391: 390: 385: 382: 381: 362: 360: 359: 354: 351: 350: 334: 332: 331: 326: 323: 322: 303: 301: 300: 295: 292: 291: 124: 123: 58:pressurize gases 50:axial compressor 32:Axial fan design 21: 4926: 4925: 4921: 4920: 4919: 4917: 4916: 4915: 4911:Gas compressors 4901: 4900: 4899: 4894: 4858: 4841: 4832: 4828:Thrust reversal 4805:Engine controls 4799: 4762: 4752: 4728:Contra-rotating 4701: 4667: 4571: 4522:Accessory drive 4514: 4508: 4450:Air turborocket 4432: 4424: 4412: 4326: 4321: 4320: 4311: 4310: 4306: 4293: 4292: 4288: 4280: 4273: 4261: 4257: 4256: 4252: 4240: 4236: 4235: 4231: 4208: 4204: 4192: 4188: 4187: 4183: 4160: 4156: 4143: 4139: 4128: 4121: 4114: 4100: 4093: 4088: 4073:Axial-flow pump 4051: 4036: 4023: 4021:Compressor maps 3996: 3991: 3971:variable stator 3955: 3949: 3937:Bristol Olympus 3925: 3921: 3912: 3889:fuel efficiency 3864: 3716:turbojet engine 3700: 3680: 3667: 3661: 3627: 3600: 3596: 3594: 3591: 3590: 3572: 3568: 3554: 3553: 3551: 3548: 3547: 3540: 3520: 3498: 3497: 3482: 3473: 3466: 3464: 3460: 3444: 3438: 3437: 3411: 3404: 3402: 3399: 3398: 3363: 3362: 3352: 3343: 3336: 3334: 3327: 3321: 3320: 3308: 3289: 3281: 3277: 3275: 3272: 3271: 3241: 3237: 3222: 3218: 3204: 3201: 3200: 3179: 3175: 3173: 3170: 3169: 3151: 3147: 3138: 3134: 3132: 3129: 3128: 3107: 3103: 3088: 3084: 3073: 3070: 3069: 3045: 3041: 3026: 3022: 2996: 2993: 2992: 2959: 2955: 2936: 2927: 2923: 2915: 2912: 2911: 2876: 2872: 2857: 2853: 2833: 2830: 2829: 2802: 2799: 2798: 2781: 2778: 2777: 2770: 2762:flow separation 2741: 2738: 2737: 2720: 2717: 2716: 2698: 2689: 2676: 2650: 2645: 2632: 2627: 2614: 2606: 2593: 2585: 2580: 2573: 2565: 2552: 2544: 2539: 2537: 2529: 2526: 2525: 2505: 2504: 2495: 2491: 2487: 2481: 2473: 2467: 2455: 2451: 2447: 2441: 2433: 2427: 2420: 2414: 2410: 2401: 2397: 2394: 2393: 2382: 2374: 2368: 2354: 2346: 2340: 2333: 2327: 2323: 2314: 2310: 2307: 2306: 2285: 2280: 2274: 2260: 2255: 2249: 2248: 2244: 2235: 2231: 2222: 2218: 2217: 2213: 2202: 2201: 2194: 2188: 2187: 2168: 2164: 2160: 2154: 2149: 2143: 2134: 2130: 2129: 2125: 2113: 2109: 2105: 2099: 2094: 2088: 2079: 2075: 2074: 2070: 2064: 2060: 2049: 2048: 2041: 2035: 2034: 2025: 2021: 2012: 2008: 2007: 2000: 1996: 1987: 1983: 1982: 1980: 1973: 1966: 1964: 1961: 1960: 1917: 1912: 1896: 1892: 1877: 1873: 1864: 1860: 1845: 1841: 1840: 1836: 1827: 1823: 1817: 1813: 1812: 1802: 1798: 1797: 1795: 1788: 1784: 1783: 1772: 1768: 1761: 1757: 1751: 1747: 1743: 1741: 1739: 1736: 1735: 1703: 1698: 1685: 1681: 1674: 1670: 1664: 1660: 1648: 1644: 1643: 1641: 1634: 1630: 1629: 1618: 1614: 1607: 1603: 1597: 1593: 1589: 1587: 1585: 1582: 1581: 1538: 1533: 1521: 1517: 1511: 1507: 1505: 1501: 1500: 1499: 1495: 1489: 1485: 1476: 1472: 1463: 1459: 1457: 1454: 1453: 1421: 1417: 1402: 1398: 1389: 1385: 1370: 1366: 1365: 1361: 1353: 1349: 1344: 1335: 1331: 1325: 1321: 1313: 1310: 1309: 1305:which implies, 1280: 1276: 1267: 1263: 1262: 1258: 1252: 1248: 1237: 1236: 1222: 1218: 1203: 1199: 1190: 1186: 1171: 1167: 1166: 1162: 1148: 1147: 1139: 1136: 1135: 1106: 1102: 1093: 1089: 1088: 1084: 1078: 1074: 1063: 1062: 1048: 1044: 1035: 1031: 1030: 1026: 1015: 1014: 1006: 1003: 1002: 973: 969: 954: 950: 941: 937: 922: 918: 917: 913: 899: 898: 890: 887: 886: 856: 852: 837: 833: 824: 820: 805: 801: 800: 796: 785: 784: 767: 763: 751: 747: 746: 742: 731: 730: 722: 719: 718: 695: 692: 691: 675: 672: 671: 652: 649: 648: 625: 621: 619: 616: 615: 594: 590: 588: 585: 584: 561: 557: 555: 552: 551: 530: 526: 524: 521: 520: 497: 493: 491: 488: 487: 466: 462: 460: 457: 456: 436: 432: 430: 427: 426: 408: 404: 402: 399: 398: 374: 370: 368: 365: 364: 346: 342: 340: 337: 336: 315: 311: 309: 306: 305: 287: 283: 281: 278: 277: 255: 237: 224: 202:turbofan engine 191: 112:dehydrogenation 34: 28: 23: 22: 15: 12: 11: 5: 4924: 4914: 4913: 4896: 4895: 4893: 4892: 4887: 4882: 4877: 4872: 4866: 4864: 4860: 4859: 4857: 4856: 4851: 4845: 4843: 4834: 4833: 4831: 4830: 4825: 4820: 4815: 4809: 4807: 4801: 4800: 4798: 4797: 4792: 4787: 4782: 4777: 4772: 4766: 4764: 4758: 4757: 4754: 4753: 4751: 4750: 4748:Variable-pitch 4745: 4740: 4735: 4730: 4725: 4723:Constant-speed 4720: 4715: 4709: 4707: 4703: 4702: 4700: 4699: 4694: 4688: 4686: 4679: 4673: 4672: 4669: 4668: 4666: 4665: 4660: 4655: 4650: 4645: 4640: 4635: 4630: 4625: 4620: 4615: 4610: 4605: 4600: 4595: 4590: 4585: 4579: 4577: 4573: 4572: 4570: 4569: 4564: 4559: 4554: 4549: 4544: 4539: 4534: 4529: 4524: 4518: 4516: 4510: 4509: 4507: 4506: 4501: 4496: 4491: 4486: 4481: 4476: 4471: 4466: 4461: 4452: 4446: 4444: 4437: 4435:jet propulsion 4426: 4425: 4411: 4410: 4403: 4396: 4388: 4382: 4381: 4370: 4359: 4348: 4337: 4325: 4322: 4319: 4318: 4304: 4286: 4271: 4250: 4229: 4218:(1): 116–123. 4202: 4181: 4170:(2): 190–198. 4154: 4137: 4119: 4112: 4090: 4089: 4087: 4084: 4083: 4082: 4076: 4070: 4064: 4058: 4050: 4047: 4035: 4032: 4022: 4019: 3995: 3992: 3990: 3987: 3948: 3945: 3923: 3919: 3911: 3908: 3863: 3860: 3851:radial engines 3759:Hans von Ohain 3747:Hayne Constant 3720:A. A. Griffith 3699: 3696: 3695: 3694: 3691: 3684: 3679: 3676: 3660: 3657: 3649: 3648: 3645: 3642: 3635: 3626: 3623: 3603: 3599: 3575: 3571: 3567: 3561: 3558: 3539: 3536: 3519: 3516: 3512: 3511: 3494: 3488: 3485: 3479: 3476: 3472: 3469: 3463: 3459: 3456: 3453: 3450: 3447: 3445: 3443: 3440: 3439: 3435: 3432: 3429: 3426: 3423: 3420: 3417: 3414: 3412: 3410: 3407: 3406: 3384: 3383: 3378: 3376: 3358: 3355: 3349: 3346: 3342: 3339: 3333: 3330: 3328: 3326: 3323: 3322: 3318: 3314: 3311: 3307: 3304: 3301: 3298: 3295: 3292: 3290: 3287: 3284: 3280: 3279: 3263: 3262: 3249: 3244: 3240: 3236: 3233: 3230: 3225: 3221: 3217: 3214: 3211: 3208: 3182: 3178: 3154: 3150: 3146: 3141: 3137: 3115: 3110: 3106: 3102: 3099: 3096: 3091: 3087: 3083: 3080: 3077: 3066: 3065: 3053: 3048: 3044: 3040: 3037: 3034: 3029: 3025: 3021: 3018: 3015: 3012: 3009: 3006: 3003: 3000: 2984: 2983: 2978: 2976: 2962: 2958: 2954: 2951: 2948: 2943: 2940: 2935: 2930: 2926: 2922: 2919: 2904: 2903: 2898: 2896: 2884: 2879: 2875: 2871: 2868: 2865: 2860: 2856: 2852: 2849: 2846: 2843: 2840: 2837: 2806: 2785: 2769: 2766: 2745: 2724: 2702:compressor map 2697: 2694: 2688: 2685: 2675: 2672: 2671: 2670: 2653: 2648: 2644: 2640: 2635: 2630: 2626: 2622: 2617: 2612: 2609: 2605: 2601: 2596: 2591: 2588: 2584: 2576: 2571: 2568: 2564: 2560: 2555: 2550: 2547: 2543: 2536: 2533: 2519: 2518: 2498: 2494: 2490: 2484: 2479: 2476: 2472: 2466: 2458: 2454: 2450: 2444: 2439: 2436: 2432: 2426: 2423: 2421: 2417: 2413: 2409: 2404: 2400: 2396: 2395: 2390: 2385: 2380: 2377: 2373: 2367: 2362: 2357: 2352: 2349: 2345: 2339: 2336: 2334: 2330: 2326: 2322: 2317: 2313: 2309: 2308: 2304: 2299: 2293: 2288: 2283: 2279: 2273: 2268: 2263: 2258: 2254: 2247: 2243: 2238: 2234: 2230: 2225: 2221: 2216: 2209: 2206: 2200: 2197: 2195: 2193: 2190: 2189: 2185: 2180: 2171: 2167: 2163: 2157: 2152: 2148: 2142: 2137: 2133: 2128: 2124: 2116: 2112: 2108: 2102: 2097: 2093: 2087: 2082: 2078: 2073: 2067: 2063: 2056: 2053: 2047: 2044: 2042: 2040: 2037: 2036: 2028: 2024: 2020: 2015: 2011: 2003: 1999: 1995: 1990: 1986: 1979: 1976: 1974: 1972: 1969: 1968: 1943: 1942: 1926: 1923: 1920: 1916: 1910: 1905: 1899: 1895: 1891: 1888: 1883: 1880: 1876: 1872: 1867: 1863: 1859: 1856: 1851: 1848: 1844: 1839: 1830: 1826: 1820: 1816: 1810: 1801: 1794: 1791: 1787: 1782: 1775: 1771: 1760: 1754: 1750: 1746: 1731:which implies 1729: 1728: 1712: 1709: 1706: 1702: 1696: 1688: 1684: 1673: 1667: 1663: 1659: 1656: 1647: 1640: 1637: 1633: 1628: 1621: 1617: 1606: 1600: 1596: 1592: 1575: 1574: 1561: 1557: 1554: 1547: 1544: 1541: 1537: 1531: 1524: 1520: 1514: 1510: 1504: 1498: 1492: 1488: 1484: 1479: 1475: 1471: 1466: 1462: 1444: 1443: 1430: 1424: 1420: 1416: 1413: 1408: 1405: 1401: 1397: 1392: 1388: 1384: 1381: 1376: 1373: 1369: 1364: 1356: 1352: 1348: 1343: 1334: 1328: 1324: 1320: 1317: 1303: 1302: 1289: 1283: 1279: 1275: 1270: 1266: 1261: 1255: 1251: 1244: 1241: 1235: 1231: 1225: 1221: 1217: 1214: 1209: 1206: 1202: 1198: 1193: 1189: 1185: 1182: 1177: 1174: 1170: 1165: 1161: 1155: 1152: 1146: 1143: 1129: 1128: 1115: 1109: 1105: 1101: 1096: 1092: 1087: 1081: 1077: 1070: 1067: 1061: 1057: 1051: 1047: 1043: 1038: 1034: 1029: 1022: 1019: 1013: 1010: 996: 995: 982: 976: 972: 968: 965: 960: 957: 953: 949: 944: 940: 936: 933: 928: 925: 921: 916: 912: 906: 903: 897: 894: 880: 879: 865: 859: 855: 851: 848: 843: 840: 836: 832: 827: 823: 819: 816: 811: 808: 804: 799: 792: 789: 783: 779: 773: 770: 766: 762: 757: 754: 750: 745: 738: 735: 729: 726: 712: 711: 699: 679: 669: 656: 646: 631: 628: 624: 600: 597: 593: 582: 567: 564: 560: 536: 533: 529: 518: 503: 500: 496: 472: 469: 465: 454: 439: 435: 411: 407: 380: 377: 373: 349: 345: 321: 318: 314: 290: 286: 271:control volume 254: 251: 236: 233: 223: 220: 190: 187: 184: 183: 180: 177: 172: 168: 167: 164: 161: 156: 152: 151: 148: 145: 142: 138: 137: 134: 131: 128: 119:rocket engines 89:mass flow rate 74:electric motor 54:gas compressor 26: 9: 6: 4: 3: 2: 4923: 4912: 4909: 4908: 4906: 4891: 4888: 4886: 4883: 4881: 4878: 4876: 4873: 4871: 4868: 4867: 4865: 4863:Other systems 4861: 4855: 4852: 4850: 4847: 4846: 4844: 4840:and induction 4839: 4835: 4829: 4826: 4824: 4821: 4819: 4816: 4814: 4811: 4810: 4808: 4806: 4802: 4796: 4795:Glass cockpit 4793: 4791: 4788: 4786: 4783: 4781: 4778: 4776: 4773: 4771: 4768: 4767: 4765: 4759: 4749: 4746: 4744: 4741: 4739: 4736: 4734: 4731: 4729: 4726: 4724: 4721: 4719: 4716: 4714: 4711: 4710: 4708: 4704: 4698: 4695: 4693: 4690: 4689: 4687: 4683: 4680: 4678: 4674: 4664: 4661: 4659: 4656: 4654: 4651: 4649: 4646: 4644: 4641: 4639: 4636: 4634: 4631: 4629: 4626: 4624: 4621: 4619: 4616: 4614: 4611: 4609: 4606: 4604: 4601: 4599: 4596: 4594: 4593:Brayton cycle 4591: 4589: 4586: 4584: 4581: 4580: 4578: 4574: 4568: 4567:Turbine blade 4565: 4563: 4560: 4558: 4555: 4553: 4550: 4548: 4545: 4543: 4540: 4538: 4535: 4533: 4530: 4528: 4525: 4523: 4520: 4519: 4517: 4511: 4505: 4502: 4500: 4497: 4495: 4492: 4490: 4487: 4485: 4482: 4480: 4477: 4475: 4472: 4470: 4467: 4465: 4462: 4460: 4456: 4453: 4451: 4448: 4447: 4445: 4441: 4438: 4436: 4431: 4427: 4423: 4420: 4416: 4409: 4404: 4402: 4397: 4395: 4390: 4389: 4386: 4379: 4378:0-13-312000-7 4375: 4371: 4368: 4367:0-07-145369-5 4364: 4360: 4357: 4356:0-262-11162-4 4353: 4349: 4346: 4345:0-201-14659-2 4342: 4338: 4336: 4332: 4328: 4327: 4314: 4308: 4300: 4296: 4290: 4283: 4278: 4276: 4267: 4260: 4254: 4246: 4239: 4233: 4225: 4221: 4217: 4213: 4206: 4198: 4191: 4185: 4177: 4173: 4169: 4165: 4158: 4151: 4150:0-07-142294-3 4147: 4141: 4133: 4126: 4124: 4115: 4109: 4105: 4098: 4096: 4091: 4080: 4077: 4074: 4071: 4068: 4065: 4062: 4059: 4056: 4053: 4052: 4046: 4044: 4039: 4031: 4027: 4018: 4016: 4012: 4008: 4003: 4000: 3986: 3984: 3978: 3976: 3972: 3967: 3965: 3961: 3954: 3944: 3942: 3938: 3934: 3916: 3907: 3904: 3901: 3896: 3894: 3890: 3886: 3880: 3873: 3872:Olympus BOl.1 3868: 3859: 3857: 3852: 3847: 3841: 3839: 3835: 3831: 3827: 3823: 3819: 3815: 3811: 3807: 3803: 3799: 3795: 3791: 3787: 3783: 3782:Metrovick F.2 3779: 3775: 3770: 3768: 3767:superchargers 3764: 3760: 3756: 3755:Frank Whittle 3752: 3748: 3744: 3740: 3739:metal fatigue 3735: 3733: 3729: 3725: 3721: 3717: 3712: 3709: 3705: 3692: 3689: 3685: 3682: 3681: 3675: 3671: 3666: 3656: 3652: 3646: 3643: 3640: 3636: 3633: 3632: 3631: 3622: 3618: 3601: 3597: 3573: 3569: 3565: 3559: 3556: 3544: 3535: 3533: 3524: 3515: 3492: 3486: 3483: 3477: 3474: 3470: 3467: 3461: 3457: 3454: 3451: 3448: 3446: 3441: 3430: 3424: 3421: 3418: 3415: 3413: 3408: 3397: 3396: 3395: 3393: 3392: 3382: 3379: 3377: 3356: 3353: 3347: 3344: 3340: 3337: 3331: 3329: 3324: 3312: 3309: 3302: 3299: 3296: 3293: 3291: 3285: 3282: 3270: 3269: 3266: 3242: 3238: 3234: 3231: 3228: 3223: 3219: 3215: 3212: 3209: 3206: 3199: 3198: 3197: 3180: 3176: 3152: 3148: 3144: 3139: 3135: 3108: 3104: 3100: 3097: 3094: 3089: 3085: 3081: 3078: 3068:The value of 3046: 3042: 3038: 3035: 3032: 3027: 3023: 3019: 3016: 3010: 3007: 3004: 3001: 2998: 2991: 2990: 2989: 2982: 2979: 2977: 2960: 2956: 2952: 2949: 2946: 2941: 2938: 2933: 2928: 2924: 2920: 2917: 2910: 2909: 2902: 2899: 2897: 2877: 2873: 2869: 2866: 2863: 2858: 2854: 2850: 2847: 2841: 2838: 2835: 2828: 2827: 2824: 2804: 2783: 2774: 2765: 2763: 2758: 2743: 2722: 2715:coefficient ( 2714: 2713:stage loading 2709: 2705: 2703: 2693: 2687:Instabilities 2680: 2651: 2646: 2642: 2638: 2633: 2628: 2624: 2620: 2615: 2610: 2607: 2603: 2599: 2594: 2589: 2586: 2582: 2574: 2569: 2566: 2562: 2558: 2553: 2548: 2545: 2541: 2534: 2531: 2524: 2523: 2522: 2496: 2492: 2488: 2482: 2477: 2474: 2470: 2464: 2456: 2452: 2448: 2442: 2437: 2434: 2430: 2424: 2422: 2415: 2411: 2407: 2402: 2398: 2388: 2383: 2378: 2375: 2371: 2365: 2360: 2355: 2350: 2347: 2343: 2337: 2335: 2328: 2324: 2320: 2315: 2311: 2302: 2297: 2291: 2286: 2281: 2277: 2271: 2266: 2261: 2256: 2252: 2245: 2241: 2236: 2232: 2228: 2223: 2219: 2214: 2207: 2204: 2198: 2196: 2191: 2183: 2178: 2169: 2165: 2161: 2155: 2150: 2146: 2140: 2135: 2131: 2126: 2122: 2114: 2110: 2106: 2100: 2095: 2091: 2085: 2080: 2076: 2071: 2065: 2061: 2054: 2051: 2045: 2043: 2038: 2026: 2022: 2018: 2013: 2009: 2001: 1997: 1993: 1988: 1984: 1977: 1975: 1970: 1959: 1958: 1957: 1955: 1951: 1947: 1924: 1921: 1918: 1914: 1908: 1903: 1897: 1893: 1889: 1886: 1881: 1878: 1874: 1870: 1865: 1861: 1857: 1854: 1849: 1846: 1842: 1837: 1828: 1824: 1818: 1814: 1808: 1799: 1792: 1789: 1785: 1780: 1773: 1769: 1752: 1748: 1734: 1733: 1732: 1710: 1707: 1704: 1700: 1694: 1686: 1682: 1665: 1661: 1654: 1645: 1638: 1635: 1631: 1626: 1619: 1615: 1598: 1594: 1580: 1579: 1578: 1559: 1555: 1552: 1545: 1542: 1539: 1535: 1529: 1522: 1518: 1512: 1508: 1502: 1496: 1490: 1486: 1482: 1477: 1473: 1469: 1464: 1460: 1452: 1451: 1450: 1448: 1428: 1422: 1418: 1414: 1411: 1406: 1403: 1399: 1395: 1390: 1386: 1382: 1379: 1374: 1371: 1367: 1362: 1354: 1350: 1346: 1341: 1326: 1322: 1315: 1308: 1307: 1306: 1287: 1281: 1277: 1273: 1268: 1264: 1259: 1253: 1249: 1242: 1239: 1233: 1229: 1223: 1219: 1215: 1212: 1207: 1204: 1200: 1196: 1191: 1187: 1183: 1180: 1175: 1172: 1168: 1163: 1159: 1153: 1150: 1144: 1141: 1134: 1133: 1132: 1113: 1107: 1103: 1099: 1094: 1090: 1085: 1079: 1075: 1068: 1065: 1059: 1055: 1049: 1045: 1041: 1036: 1032: 1027: 1020: 1017: 1011: 1008: 1001: 1000: 999: 980: 974: 970: 966: 963: 958: 955: 951: 947: 942: 938: 934: 931: 926: 923: 919: 914: 910: 904: 901: 895: 892: 885: 884: 883: 863: 857: 853: 849: 846: 841: 838: 834: 830: 825: 821: 817: 814: 809: 806: 802: 797: 790: 787: 781: 777: 771: 768: 764: 760: 755: 752: 748: 743: 736: 733: 727: 724: 717: 716: 715: 697: 677: 670: 654: 647: 629: 626: 622: 598: 595: 591: 583: 565: 562: 558: 534: 531: 527: 519: 501: 498: 494: 470: 467: 463: 455: 437: 433: 409: 405: 397: 396: 395: 378: 375: 371: 347: 343: 319: 316: 312: 288: 284: 274: 272: 268: 259: 250: 246: 243: 232: 230: 229:turbomachines 219: 217: 212: 203: 200: 195: 181: 178: 176: 173: 170: 169: 165: 162: 160: 157: 154: 153: 149: 146: 143: 140: 139: 135: 132: 129: 126: 125: 122: 120: 117: 113: 109: 105: 104:blast furnace 101: 97: 92: 90: 86: 81: 79: 75: 69: 67: 63: 59: 55: 51: 43: 38: 33: 19: 4849:Flame holder 4823:Thrust lever 4813:Autothrottle 4643:Thrust lapse 4598:Bypass ratio 4536: 4430:Gas turbines 4422:gas turbines 4324:Bibliography 4307: 4294: 4289: 4265: 4253: 4244: 4232: 4215: 4211: 4205: 4196: 4184: 4167: 4163: 4157: 4140: 4103: 4040: 4037: 4028: 4024: 4004: 4001: 3997: 3989:Design notes 3979: 3970: 3968: 3956: 3932: 3929: 3905: 3897: 3881: 3877: 3856:streamlining 3842: 3834:Westinghouse 3810:Arado Ar 234 3771: 3736: 3713: 3701: 3672: 3668: 3653: 3650: 3628: 3619: 3545: 3541: 3531: 3529: 3513: 3389: 3387: 3380: 3264: 3067: 2987: 2980: 2900: 2821: 2759: 2710: 2706: 2699: 2690: 2520: 1953: 1945: 1944: 1730: 1576: 1446: 1445: 1304: 1130: 997: 881: 713: 275: 264: 247: 238: 225: 207: 130:Type of flow 96:gas turbines 93: 82: 70: 49: 47: 4763:instruments 4718:Blade pitch 4713:Autofeather 4415:Jet engines 4011:Mach number 3885:heat engine 3698:Development 3538:Surge cycle 3261:is constant 2521:Therefore, 1577:Therefore, 1131:Therefore, 265:The law of 216:Mach number 189:Description 106:air, fluid 100:jet engines 4706:Principles 4685:Components 4677:Propellers 4576:Principles 4527:Air intake 4515:components 4513:Mechanical 4489:Turboshaft 4086:References 3951:See also: 3822:a pure jet 3688:vibrations 3663:See also: 3532:surge line 1676:isentropic 1337:isentropic 242:polytropic 175:Supersonic 141:Industrial 87:and large 85:efficiency 4738:Proprotor 4588:Bleed air 4547:Combustor 4484:Turboprop 4079:Turbopump 3999:designs. 3953:Bleed air 3933:two-spool 3874:turbojet. 3778:turboprop 3560:˙ 3484:ϕ 3475:ψ 3471:− 3458:ϕ 3455:− 3442:ψ 3431:ϕ 3422:− 3409:ψ 3354:ϕ 3345:ψ 3341:− 3310:ϕ 3300:− 3283:ψ 3239:α 3235:⁡ 3220:β 3216:⁡ 3177:α 3149:α 3136:α 3105:α 3101:⁡ 3086:β 3082:⁡ 3043:α 3039:⁡ 3024:β 3020:⁡ 3011:ϕ 3008:− 2999:ψ 2957:β 2953:⁡ 2947:− 2942:ϕ 2925:α 2921:⁡ 2874:α 2870:⁡ 2864:− 2855:α 2851:⁡ 2842:ϕ 2836:ψ 2805:ϕ 2784:ψ 2744:ϕ 2723:ψ 2639:− 2600:− 2559:− 2465:− 2408:− 2366:− 2321:− 2272:− 2229:− 2208:˙ 2123:− 2055:˙ 2019:− 1994:− 1922:− 1919:γ 1915:γ 1894:α 1890:⁡ 1871:− 1862:α 1858:⁡ 1800:η 1708:− 1705:γ 1701:γ 1655:δ 1646:η 1553:− 1543:− 1540:γ 1536:γ 1470:− 1419:α 1415:⁡ 1396:− 1387:α 1383:⁡ 1316:δ 1274:− 1243:˙ 1220:α 1216:⁡ 1197:− 1188:α 1184:⁡ 1154:˙ 1100:− 1069:˙ 1042:− 1021:˙ 971:α 967:⁡ 948:− 939:α 935:⁡ 905:˙ 854:α 850:⁡ 831:− 822:α 818:⁡ 791:˙ 761:− 737:˙ 698:β 678:α 211:diffusion 159:Transonic 155:Aerospace 116:aerospace 108:catalytic 4905:Category 4854:Jet fuel 4743:Scimitar 4613:Flameout 4557:Impeller 4479:Turbojet 4474:Turbofan 4455:Pulsejet 4419:aircraft 4049:See also 4030:speeds. 4015:turbofan 3826:Northrop 3814:Lockheed 3794:Jumo 004 3728:airfoils 3625:Stalling 3487:′ 3478:′ 3357:′ 3348:′ 3313:′ 3286:′ 1950:pressure 171:Research 163:1.15–1.6 147:1.05–1.2 144:Subsonic 98:such as 4842:systems 4469:Propfan 3960:turbine 3830:US Navy 3802:BMW 003 3790:Junkers 3724:stalled 3686:Forced 3678:Effects 3639:suction 3518:Surging 222:Working 182:75–85% 179:1.8–2.2 166:80–85% 150:88–92% 62:airfoil 42:stators 4761:Engine 4638:Thrust 4499:Rocket 4494:Ramjet 4376:  4365:  4354:  4343:  4333:  4148:  4110:  3910:Spools 3796:) and 3786:He 178 3743:stress 1763:actual 1609:actual 235:Design 4443:Types 4262:(PDF) 4241:(PDF) 4193:(PDF) 3922:and N 3900:stall 3391:eq. 3 1804:stage 1650:stage 78:steam 76:or a 52:is a 4838:Fuel 4433:and 4417:and 4374:ISBN 4363:ISBN 4352:ISBN 4341:ISBN 4331:ISBN 4146:ISBN 4108:ISBN 3816:and 3757:and 3741:and 614:and 550:and 486:and 425:and 4220:doi 4216:112 4172:doi 3838:J30 3798:BMW 3394:): 3381:(3) 3232:tan 3213:tan 3098:tan 3079:tan 3036:tan 3017:tan 2981:(2) 2950:tan 2918:tan 2901:(1) 2867:tan 2848:tan 1887:tan 1855:tan 1412:tan 1380:tan 1213:tan 1181:tan 964:tan 932:tan 847:tan 815:tan 48:An 4907:: 4297:. 4274:^ 4264:. 4243:. 4214:. 4195:. 4168:98 4166:. 4122:^ 4094:^ 3887:, 3840:. 3734:. 2757:) 2027:01 2014:02 1956:. 1819:01 1774:01 1753:02 1687:01 1620:01 1599:02 1449:, 1282:01 1269:02 1108:01 1095:02 1050:01 1037:02 394:. 4457:/ 4407:e 4400:t 4393:v 4380:. 4369:. 4358:. 4347:. 4315:. 4268:. 4247:. 4226:. 4222:: 4199:. 4178:. 4174:: 4152:. 4134:. 4116:. 3924:2 3920:1 3800:( 3792:( 3602:H 3598:P 3574:D 3570:P 3566:, 3557:m 3493:) 3468:1 3462:( 3452:1 3449:= 3434:) 3428:( 3425:J 3419:1 3416:= 3338:1 3332:= 3325:J 3317:) 3306:( 3303:J 3297:1 3294:= 3248:) 3243:3 3229:+ 3224:2 3210:= 3207:J 3181:3 3153:3 3145:= 3140:1 3114:) 3109:1 3095:+ 3090:2 3076:( 3052:) 3047:1 3033:+ 3028:2 3014:( 3005:1 3002:= 2961:2 2939:1 2934:= 2929:2 2883:) 2878:1 2859:2 2845:( 2839:= 2818:) 2652:2 2647:2 2643:V 2634:2 2629:1 2625:V 2621:+ 2616:2 2611:2 2608:r 2604:V 2595:2 2590:1 2587:r 2583:V 2575:2 2570:2 2567:r 2563:V 2554:2 2549:1 2546:r 2542:V 2535:= 2532:R 2497:p 2493:c 2489:2 2483:2 2478:2 2475:r 2471:V 2457:p 2453:c 2449:2 2443:2 2438:1 2435:r 2431:V 2425:= 2416:1 2412:T 2403:2 2399:T 2389:2 2384:2 2379:2 2376:r 2372:V 2361:2 2356:2 2351:1 2348:r 2344:V 2338:= 2329:1 2325:h 2316:2 2312:h 2303:) 2298:] 2292:2 2287:2 2282:1 2278:V 2267:2 2262:2 2257:2 2253:V 2246:[ 2242:+ 2237:1 2233:h 2224:2 2220:h 2215:( 2205:m 2199:= 2192:P 2184:) 2179:] 2170:p 2166:c 2162:2 2156:2 2151:1 2147:V 2141:+ 2136:1 2132:T 2127:[ 2115:p 2111:c 2107:2 2101:2 2096:2 2092:V 2086:+ 2081:2 2077:T 2072:( 2066:p 2062:c 2052:m 2046:= 2039:P 2023:h 2010:h 2002:1 1998:h 1989:2 1985:h 1978:= 1971:R 1925:1 1909:) 1904:] 1898:1 1882:1 1879:f 1875:V 1866:2 1850:2 1847:f 1843:V 1838:[ 1829:p 1825:c 1815:T 1809:U 1793:+ 1790:1 1786:( 1781:= 1770:p 1759:) 1749:p 1745:( 1711:1 1695:) 1683:T 1672:) 1666:0 1662:T 1658:( 1639:+ 1636:1 1632:( 1627:= 1616:p 1605:) 1595:p 1591:( 1560:) 1556:1 1546:1 1530:] 1523:1 1519:T 1513:2 1509:T 1503:[ 1497:( 1491:1 1487:p 1483:= 1478:1 1474:p 1465:2 1461:p 1429:) 1423:1 1407:1 1404:f 1400:V 1391:2 1375:2 1372:f 1368:V 1363:( 1355:p 1351:c 1347:U 1342:= 1333:) 1327:0 1323:T 1319:( 1288:) 1278:T 1265:T 1260:( 1254:p 1250:c 1240:m 1234:= 1230:) 1224:1 1208:1 1205:f 1201:V 1192:2 1176:2 1173:f 1169:V 1164:( 1160:U 1151:m 1145:= 1142:P 1114:) 1104:T 1091:T 1086:( 1080:p 1076:c 1066:m 1060:= 1056:) 1046:h 1033:h 1028:( 1018:m 1012:= 1009:P 981:) 975:1 959:1 956:f 952:V 943:2 927:2 924:f 920:V 915:( 911:U 902:m 896:= 893:P 864:) 858:1 842:1 839:f 835:V 826:2 810:2 807:f 803:V 798:( 788:m 782:= 778:) 772:1 769:w 765:V 756:2 753:w 749:V 744:( 734:m 728:= 725:F 655:U 630:2 627:r 623:V 599:1 596:r 592:V 566:2 563:w 559:V 535:1 532:w 528:V 502:2 499:f 495:V 471:1 468:f 464:V 438:2 434:V 410:1 406:V 379:2 376:w 372:V 348:2 344:r 320:1 317:w 313:V 289:1 285:r 204:. 44:. 20:)

Index

Axial-flow compressor
Axial fan design

stators
gas compressor
pressurize gases
airfoil
centrifugal compressor
electric motor
steam
efficiency
mass flow rate
gas turbines
jet engines
blast furnace
catalytic
dehydrogenation
aerospace
rocket engines
Transonic
Supersonic

Pratt & Whitney TF30
turbofan engine
diffusion
Mach number
turbomachines
polytropic

moment of momentum

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑