Knowledge

Mass flow rate

Source 📝

387: 504: 702: 1240: 1284:
as time-dependent and then applying the derivative product rule. A correct description of such an object requires the application of Newton's second law to the entire, constant-mass system consisting of both the object and its ejected mass.
341: 411: 722:- ignoring the area spanned by the holes in the filter/membrane. The spaces would be cross-sectional areas. For liquids passing through a pipe, the area is the cross-section of the pipe, at the section considered. The 607: 1123: 374:
crossing the boundary for some time duration, not the initial amount of mass at the boundary minus the final amount at the boundary, since the change in mass flowing through the area would be zero for
1148: 1031: 801: 872: 1336: 249: 908: 761: 120: 934: 539: 202: 65: 710:
required to calculate the mass flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface, e.g. for substances passing through a
1356: 1050: 1033:
These results are equivalent to the equation containing the dot product. Sometimes these equations are used to define the mass flow rate.
390:
Illustration of volume flow rate. Mass flow rate can be calculated by multiplying the volume flow rate by the mass density of the fluid,
966: 600:
The above equation is only true for a flat, plane area. In general, including cases where the area is curved, the equation becomes a
499:{\displaystyle {\dot {m}}=\rho \cdot {\dot {V}}=\rho \cdot \mathbf {v} \cdot \mathbf {A} =\mathbf {j} _{\text{m}}\cdot \mathbf {A} ,} 370:
quantity, the mass flow rate (the time derivative of mass) is also a scalar quantity. The change in mass is the amount that flows
697:{\displaystyle {\dot {m}}=\iint _{A}\rho \mathbf {v} \cdot d\mathbf {A} =\iint _{A}\mathbf {j} _{\text{m}}\cdot d\mathbf {A} .} 1521: 1442: 1408: 1291: 1036:
Considering flow through porous media, a special quantity, superficial mass flow rate, can be introduced. It is related with
766: 1610: 1496: 824: 1235:{\displaystyle \rho _{1}\mathbf {v} _{1}\cdot \mathbf {A} _{1}=\rho _{2}\mathbf {v} _{2}\cdot \mathbf {A} _{2}.} 1655: 1482:
Lindeburg M. R. Chemical Engineering Reference Manual for the PE Exam. – Professional Publications (CA), 2013.
910:
and the velocity of mass elements. The amount passing through the cross-section is reduced by the factor
884: 737: 88: 940:
increases less mass passes through. All mass which passes in tangential directions to the area, that is
81: 1532:
derive a general expression for Newton's second law for variable mass systems by treating the mass in
1126: 576: 913: 1645: 1640: 1413: 515: 178: 41: 1491:
Essential Principles of Physics, P. M. Whelan, M. J. Hodgeson, 2nd Edition, 1978, John Murray,
1249: 1248:, such as a rocket ejecting spent fuel. Often, descriptions of such objects erroneously invoke 336:{\displaystyle {\dot {m}}=\lim _{\Delta t\to 0}{\frac {\Delta m}{\Delta t}}={\frac {dm}{dt}},} 1455: 394:. The volume flow rate is calculated by multiplying the flow velocity of the mass elements, 1418: 1388: 1245: 1037: 546: 359: 20: 8: 1378: 1138: 815: 715: 243: 148: 1469: 1437:
Fluid Mechanics, M. Potter, D. C. Wiggart, Schaum's Outlines, McGraw Hill (USA), 2008,
1341: 1616: 1606: 1517: 1492: 1438: 726:
is a combination of the magnitude of the area through which the mass passes through,
719: 172: 1244:
In elementary classical mechanics, mass flow rate is encountered when dealing with
601: 367: 1393: 363: 1383: 215: 1129:
or mass transfer coefficient calculation for fixed and fluidized bed systems.
1650: 1634: 1403: 1142: 941: 566: 1620: 711: 168: 144: 1288:
Mass flow rate can be used to calculate the energy flow rate of a fluid:
952:
the area, so the mass passing through the area is zero. This occurs when
807: 731: 723: 718:, the real surface is the (generally curved) surface area of the filter, 579: 375: 219: 164: 132: 386: 1398: 1362: 592: 227: 1366: 152: 556: 128: 71: 156: 1118:{\displaystyle {\dot {m}}_{s}=v_{s}\cdot \rho ={\dot {m}}/A} 239:. In this article, the (more intuitive) definition is used. 707: 140: 1589:
having parts among which there is an interchange of mass.
814:
the cross-section is the amount normal to the area, i.e.
160: 1456:"Mass Flow Rate Fluids Flow Equation - Engineers Edge" 1344: 1294: 1151: 1053: 969: 916: 887: 827: 769: 740: 610: 518: 414: 252: 181: 91: 44: 1350: 1330: 1234: 1117: 1025: 928: 902: 866: 795: 755: 696: 533: 498: 335: 196: 114: 59: 1026:{\displaystyle {\dot {m}}=\rho vA\cos(\pi /2)=0.} 894: 796:{\displaystyle \mathbf {A} =A\mathbf {\hat {n}} } 787: 747: 16:Mass of a substance which passes per unit of time 1632: 269: 1511: 867:{\displaystyle {\dot {m}}=\rho vA\cos \theta ,} 1603:Thermodynamics : an engineering approach 1601:Çengel, Yunus A.; Boles, Michael A. (2002). 1600: 1507: 1505: 210:, pronounced "m-dot"), although sometimes 406:Mass flow rate can also be calculated by 385: 381: 1502: 1331:{\displaystyle {\dot {E}}={\dot {m}}e,} 1633: 398:, by the cross-sectional vector area, 105: 102: 98: 94: 1605:(4th ed.). Boston: McGraw-Hill. 1409:Standard cubic centimetres per minute 1358:is the unit mass energy of a system. 881:is the angle between the unit normal 810:is as follows. The only mass flowing 225:Sometimes, mass flow rate is termed 1516:. Vol. 1. Wiley. p. 199. 1047:, with the following relationship: 903:{\displaystyle \mathbf {\hat {n}} } 818:to the unit normal. This amount is 756:{\displaystyle \mathbf {\hat {n}} } 237:Schaum's Outline of Fluid Mechanics 115:{\displaystyle {\mathsf {MT^{-1}}}} 13: 298: 290: 273: 14: 1667: 1581:to analyze variable mass systems 1361:Energy flow rate has SI units of 242:Mass flow rate is defined by the 1528:It is important to note that we 1219: 1204: 1179: 1164: 891: 784: 771: 744: 687: 670: 651: 640: 489: 475: 466: 458: 347:through a surface per unit time 143:of a substance which passes per 1594: 1587:entire system of constant mass 1485: 1476: 1462: 1448: 1431: 1137:In the elementary form of the 1014: 1000: 279: 1: 1424: 1125:The quantity can be used in 929:{\displaystyle \cos \theta } 7: 1372: 10: 1674: 1512:Halliday; Resnick (1977). 1272:by treating both the mass 534:{\displaystyle {\dot {V}}} 197:{\displaystyle {\dot {m}}} 60:{\displaystyle {\dot {m}}} 18: 80: 70: 33: 28: 1246:objects of variable mass 1132: 1127:particle Reynolds number 175:. The common symbol is 19:Not to be confused with 1414:Thermal mass flow meter 343:i.e., the flow of mass 1352: 1332: 1236: 1119: 1027: 930: 904: 868: 797: 757: 698: 535: 500: 403: 337: 198: 116: 61: 1656:Mechanical quantities 1585:if we apply it to an 1353: 1333: 1237: 1120: 1028: 931: 905: 869: 798: 758: 699: 569:of the mass elements, 536: 501: 389: 382:Alternative equations 338: 199: 117: 62: 1419:Volumetric flow rate 1389:Mass flow controller 1342: 1292: 1149: 1051: 1038:superficial velocity 967: 944:to the unit normal, 914: 885: 825: 767: 738: 734:normal to the area, 608: 516: 412: 250: 179: 89: 42: 21:Volumetric flow rate 1379:Continuity equation 1250:Newton's second law 1139:continuity equation 806:The reason for the 354:The overdot on the 1348: 1328: 1232: 1115: 1023: 926: 900: 864: 793: 763:. The relation is 753: 694: 531: 496: 404: 366:. Since mass is a 333: 286: 235:, see for example 194: 173:US customary units 112: 57: 1523:978-0-471-03710-1 1443:978-0-07-148781-8 1351:{\displaystyle e} 1319: 1304: 1278:and the velocity 1104: 1064: 979: 897: 837: 790: 750: 677: 620: 528: 482: 445: 424: 360:Newton's notation 328: 305: 268: 262: 191: 125: 124: 54: 1663: 1625: 1624: 1598: 1592: 1591: 1509: 1500: 1489: 1483: 1480: 1474: 1473: 1470:"Mass Flow Rate" 1466: 1460: 1459: 1452: 1446: 1435: 1357: 1355: 1354: 1349: 1337: 1335: 1334: 1329: 1321: 1320: 1312: 1306: 1305: 1297: 1283: 1277: 1271: 1241: 1239: 1238: 1233: 1228: 1227: 1222: 1213: 1212: 1207: 1201: 1200: 1188: 1187: 1182: 1173: 1172: 1167: 1161: 1160: 1124: 1122: 1121: 1116: 1111: 1106: 1105: 1097: 1085: 1084: 1072: 1071: 1066: 1065: 1057: 1032: 1030: 1029: 1024: 1010: 981: 980: 972: 962: 935: 933: 932: 927: 909: 907: 906: 901: 899: 898: 890: 873: 871: 870: 865: 839: 838: 830: 802: 800: 799: 794: 792: 791: 783: 774: 762: 760: 759: 754: 752: 751: 743: 703: 701: 700: 695: 690: 679: 678: 675: 673: 667: 666: 654: 643: 635: 634: 622: 621: 613: 602:surface integral 547:volume flow rate 540: 538: 537: 532: 530: 529: 521: 505: 503: 502: 497: 492: 484: 483: 480: 478: 469: 461: 447: 446: 438: 426: 425: 417: 357: 350: 346: 342: 340: 339: 334: 329: 327: 319: 311: 306: 304: 296: 288: 285: 264: 263: 255: 203: 201: 200: 195: 193: 192: 184: 121: 119: 118: 113: 111: 110: 109: 108: 66: 64: 63: 58: 56: 55: 47: 26: 25: 1673: 1672: 1666: 1665: 1664: 1662: 1661: 1660: 1631: 1630: 1629: 1628: 1613: 1599: 1595: 1524: 1510: 1503: 1490: 1486: 1481: 1477: 1468: 1467: 1463: 1454: 1453: 1449: 1436: 1432: 1427: 1394:Mass flow meter 1375: 1343: 1340: 1339: 1311: 1310: 1296: 1295: 1293: 1290: 1289: 1279: 1273: 1252: 1223: 1218: 1217: 1208: 1203: 1202: 1196: 1192: 1183: 1178: 1177: 1168: 1163: 1162: 1156: 1152: 1150: 1147: 1146: 1135: 1107: 1096: 1095: 1080: 1076: 1067: 1056: 1055: 1054: 1052: 1049: 1048: 1045: 1006: 971: 970: 968: 965: 964: 953: 915: 912: 911: 889: 888: 886: 883: 882: 829: 828: 826: 823: 822: 782: 781: 770: 768: 765: 764: 742: 741: 739: 736: 735: 720:macroscopically 686: 674: 669: 668: 662: 658: 650: 639: 630: 626: 612: 611: 609: 606: 605: 598: 590: 577:cross-sectional 520: 519: 517: 514: 513: 488: 479: 474: 473: 465: 457: 437: 436: 416: 415: 413: 410: 409: 384: 364:time derivative 355: 348: 344: 320: 312: 310: 297: 289: 287: 272: 254: 253: 251: 248: 247: 183: 182: 180: 177: 176: 101: 97: 93: 92: 90: 87: 86: 46: 45: 43: 40: 39: 36: 24: 17: 12: 11: 5: 1671: 1670: 1659: 1658: 1653: 1648: 1646:Temporal rates 1643: 1641:Fluid dynamics 1627: 1626: 1611: 1593: 1522: 1501: 1484: 1475: 1461: 1447: 1429: 1428: 1426: 1423: 1422: 1421: 1416: 1411: 1406: 1401: 1396: 1391: 1386: 1384:Fluid dynamics 1381: 1374: 1371: 1365:per second or 1347: 1327: 1324: 1318: 1315: 1309: 1303: 1300: 1231: 1226: 1221: 1216: 1211: 1206: 1199: 1195: 1191: 1186: 1181: 1176: 1171: 1166: 1159: 1155: 1134: 1131: 1114: 1110: 1103: 1100: 1094: 1091: 1088: 1083: 1079: 1075: 1070: 1063: 1060: 1043: 1022: 1019: 1016: 1013: 1009: 1005: 1002: 999: 996: 993: 990: 987: 984: 978: 975: 948:actually pass 925: 922: 919: 896: 893: 875: 874: 863: 860: 857: 854: 851: 848: 845: 842: 836: 833: 789: 786: 780: 777: 773: 749: 746: 693: 689: 685: 682: 672: 665: 661: 657: 653: 649: 646: 642: 638: 633: 629: 625: 619: 616: 597: 596: 588: 583: 570: 560: 550: 527: 524: 510: 495: 491: 487: 477: 472: 468: 464: 460: 456: 453: 450: 444: 441: 435: 432: 429: 423: 420: 383: 380: 332: 326: 323: 318: 315: 309: 303: 300: 295: 292: 284: 281: 278: 275: 271: 267: 261: 258: 190: 187: 171:per second in 167:per second or 137:mass flow rate 123: 122: 107: 104: 100: 96: 84: 78: 77: 74: 68: 67: 53: 50: 37: 35:Common symbols 34: 31: 30: 29:Mass Flow rate 15: 9: 6: 4: 3: 2: 1669: 1668: 1657: 1654: 1652: 1649: 1647: 1644: 1642: 1639: 1638: 1636: 1622: 1618: 1614: 1612:0-07-238332-1 1608: 1604: 1597: 1590: 1588: 1584: 1580: 1576: 1573: 1569: 1565: 1561: 1557: 1554: 1550: 1546: 1542: 1539: 1535: 1531: 1525: 1519: 1515: 1508: 1506: 1498: 1497:0-7195-3382-1 1494: 1488: 1479: 1471: 1465: 1457: 1451: 1444: 1440: 1434: 1430: 1420: 1417: 1415: 1412: 1410: 1407: 1405: 1404:Orifice plate 1402: 1400: 1397: 1395: 1392: 1390: 1387: 1385: 1382: 1380: 1377: 1376: 1370: 1368: 1364: 1359: 1345: 1325: 1322: 1316: 1313: 1307: 1301: 1298: 1286: 1282: 1276: 1270: 1266: 1263: 1259: 1255: 1251: 1247: 1242: 1229: 1224: 1214: 1209: 1197: 1193: 1189: 1184: 1174: 1169: 1157: 1153: 1144: 1143:hydrodynamics 1141:for mass, in 1140: 1130: 1128: 1112: 1108: 1101: 1098: 1092: 1089: 1086: 1081: 1077: 1073: 1068: 1061: 1058: 1046: 1039: 1034: 1020: 1017: 1011: 1007: 1003: 997: 994: 991: 988: 985: 982: 976: 973: 960: 956: 951: 947: 943: 942:perpendicular 939: 923: 920: 917: 880: 861: 858: 855: 852: 849: 846: 843: 840: 834: 831: 821: 820: 819: 817: 813: 809: 804: 778: 775: 733: 729: 725: 721: 717: 713: 709: 704: 691: 683: 680: 663: 659: 655: 647: 644: 636: 631: 627: 623: 617: 614: 603: 594: 587: 584: 581: 578: 574: 571: 568: 567:flow velocity 564: 561: 559:of the fluid, 558: 554: 551: 548: 544: 525: 522: 512: 511: 509: 506: 493: 485: 470: 462: 454: 451: 448: 442: 439: 433: 430: 427: 421: 418: 407: 401: 397: 393: 388: 379: 377: 373: 369: 365: 361: 352: 330: 324: 321: 316: 313: 307: 301: 293: 282: 276: 265: 259: 256: 245: 240: 238: 234: 230: 229: 223: 221: 217: 213: 209: 208: 188: 185: 174: 170: 166: 162: 158: 154: 150: 146: 142: 138: 134: 130: 85: 83: 79: 75: 73: 69: 51: 48: 38: 32: 27: 22: 1602: 1596: 1586: 1582: 1578: 1574: 1571: 1567: 1563: 1559: 1555: 1552: 1548: 1544: 1540: 1537: 1533: 1529: 1527: 1513: 1487: 1478: 1464: 1450: 1433: 1360: 1287: 1280: 1274: 1268: 1264: 1261: 1257: 1253: 1243: 1136: 1041: 1035: 958: 954: 949: 945: 937: 878: 876: 811: 805: 727: 705: 599: 585: 572: 562: 552: 542: 507: 408: 405: 399: 395: 391: 371: 353: 241: 236: 233:mass current 232: 226: 224: 211: 206: 205: 145:unit of time 136: 126: 72:SI unit 808:dot product 732:unit vector 724:vector area 580:vector area 376:steady flow 222:) is used. 163:units, and 133:engineering 1635:Categories 1425:References 218:lowercase 1399:Mass flux 1363:kilojoule 1317:˙ 1302:˙ 1215:⋅ 1194:ρ 1175:⋅ 1154:ρ 1102:˙ 1090:ρ 1087:⋅ 1062:˙ 1004:π 998:⁡ 986:ρ 977:˙ 924:θ 921:⁡ 895:^ 859:θ 856:⁡ 844:ρ 835:˙ 788:^ 748:^ 681:⋅ 660:∬ 645:⋅ 637:ρ 628:∬ 618:˙ 593:mass flux 582:/surface, 526:˙ 486:⋅ 463:⋅ 455:⋅ 452:ρ 443:˙ 434:⋅ 431:ρ 422:˙ 299:Δ 291:Δ 280:→ 274:Δ 260:˙ 228:mass flux 189:˙ 103:− 82:Dimension 52:˙ 1621:45791449 1560:variable 1373:See also 1367:kilowatt 816:parallel 730:, and a 716:membrane 153:kilogram 1558:) as a 1514:Physics 950:through 946:doesn't 812:through 557:density 555:= mass 147:. Its 139:is the 129:physics 1619:  1609:  1562:. We 1530:cannot 1520:  1495:  1441:  1338:where 877:where 712:filter 508:where 368:scalar 362:for a 157:second 1133:Usage 936:, as 714:or a 372:after 244:limit 216:Greek 169:pound 1651:Mass 1617:OCLC 1607:ISBN 1583:only 1566:use 1518:ISBN 1493:ISBN 1439:ISBN 708:area 706:The 165:slug 155:per 149:unit 141:mass 131:and 76:kg/s 1564:can 995:cos 918:cos 853:cos 541:or 358:is 270:lim 231:or 159:in 151:is 127:In 1637:: 1615:. 1579:dt 1570:= 1547:= 1545:dt 1536:= 1526:. 1504:^ 1369:. 1269:dt 1267:)/ 1256:= 1145:: 1040:, 1021:0. 963:: 961:/2 957:= 803:. 604:: 591:= 575:= 565:= 545:= 378:. 351:. 246:: 220:mu 161:SI 135:, 1623:. 1577:/ 1575:P 1572:d 1568:F 1556:v 1553:M 1551:( 1549:d 1543:/ 1541:P 1538:d 1534:F 1499:. 1472:. 1458:. 1445:. 1346:e 1326:, 1323:e 1314:m 1308:= 1299:E 1281:v 1275:m 1265:v 1262:m 1260:( 1258:d 1254:F 1230:. 1225:2 1220:A 1210:2 1205:v 1198:2 1190:= 1185:1 1180:A 1170:1 1165:v 1158:1 1113:A 1109:/ 1099:m 1093:= 1082:s 1078:v 1074:= 1069:s 1059:m 1044:s 1042:v 1018:= 1015:) 1012:2 1008:/ 1001:( 992:A 989:v 983:= 974:m 959:π 955:θ 938:θ 892:n 879:θ 862:, 850:A 847:v 841:= 832:m 785:n 779:A 776:= 772:A 745:n 728:A 692:. 688:A 684:d 676:m 671:j 664:A 656:= 652:A 648:d 641:v 632:A 624:= 615:m 595:. 589:m 586:j 573:A 563:v 553:ρ 549:, 543:Q 523:V 494:, 490:A 481:m 476:j 471:= 467:A 459:v 449:= 440:V 428:= 419:m 402:. 400:A 396:v 392:ρ 356:m 349:t 345:m 331:, 325:t 322:d 317:m 314:d 308:= 302:t 294:m 283:0 277:t 266:= 257:m 214:( 212:μ 207:ṁ 204:( 186:m 106:1 99:T 95:M 49:m 23:.

Index

Volumetric flow rate
SI unit
Dimension
physics
engineering
mass
unit of time
unit
kilogram
second
SI
slug
pound
US customary units
Greek
mu
mass flux
limit
Newton's notation
time derivative
scalar
steady flow

volume flow rate
density
flow velocity
cross-sectional
vector area
mass flux
surface integral

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.