Knowledge

Aerobic fermentation

Source 📝

162:
produce biomass at a faster rate than the yeast. Producing a toxic compound, like ethanol, can slow the growth of bacteria, allowing the yeast to be more competitive. However, the yeast still had to use a portion of the sugar it consumes to produce ethanol. Crabtree-positive yeasts also have increased glycolytic flow, or increased uptake of glucose and conversion to pyruvate, which compensates for using a portion of the glucose to produce ethanol rather than biomass. Therefore, it is believed that the original driving force was to kill competitors. This is supported by research that determined the kinetic behavior of the ancestral ADH protein, which was found to be optimized to make ethanol, rather than consume it.
552:), the fermentation enzyme ADH is abundant, regardless of the oxygen level. In tobacco pollen, PDC is also highly expressed in this tissue and transcript levels are not influenced by oxygen concentration. Tobacco pollen, similar to Crabtree-positive yeast, perform high levels of fermentation dependent on the sugar supply, and not oxygen availability. In these tissues, respiration and alcoholic fermentation occur simultaneously with high sugar availability. Fermentation produces the toxic acetaldehyde and ethanol, that can build up in large quantities during pollen development. It has been hypothesized that acetaldehyde is a pollen factor that causes 375: 383:
water. During the domestication process, organisms shift from natural environments that are more variable and complex to simple and stable environments with a constant substrate. This often favors specialization adaptations in domesticated microbes, associated with relaxed selection for non-useful genes in alternative metabolic strategies or pathogenicity. Domestication might be partially responsible for the traits that promote aerobic fermentation in industrial species. Introgression and HGT is common in
593: 292:(Pdh). The kinetics of the enzymes are such that when pyruvate concentrations are high, due to a high rate of glycolysis, there is increased flux through Pdc and thus the fermentation pathway. The WGD is believed to have played a beneficial role in the evolution of the Crabtree effect in post-WGD species partially due to this increase in copy number of glycolysis genes. 112:(CNV) and differential expression in metabolic genes, and regulatory reprogramming. Research is still needed to fully understand the genomic basis of this complex phenomenon. Many Crabtree-positive yeast species are used for their fermentation ability in industrial processes in the production of wine, beer, sake, bread, and bioethanol. Through 556:. Cytoplasmic male sterility is a trait observed in maize, tobacco and other plants in which there is an inability to produce viable pollen. It is believed that this trait might be due to the expression of the fermentation genes, ADH and PDC, a lot earlier on in pollen development than normal and the accumulation of toxic aldehyde. 268: 320:. Adh1 is the major enzyme responsible for catalyzing the fermentation step from acetaldehyde to ethanol. Adh2 catalyzes the reverse reaction, consuming ethanol and converting it to acetaldehyde. The ancestral, or original, Adh had a similar function as Adh1 and after a duplication in this gene, Adh2 evolved a lower K 568:
parasites degrade glucose via aerobic fermentation. In this group, this phenomenon is not a pre-adaptation to/or remnant of anaerobic life, shown through their inability to survive in anaerobic conditions. It is believed that this phenomenon developed due to the capacity for a high glycolytic flux
497:
One of the hallmarks of cancer is altered metabolism or deregulating cellular energetics. Cancers cells often have reprogrammed their glucose metabolism to perform lactic acid fermentation, in the presence of oxygen, rather than send the pyruvate made through glycolysis to the mitochondria. This is
345:
is grown on glucose in aerobic conditions, respiration-related gene expression is repressed. Mitochondrial ribosomal proteins expression is only induced under environmental stress conditions, specifically low glucose availability. Genes involving mitochondrial energy generation and phosphorylation
258:
gene results in decreased ethanol production or fully respiratory metabolism. Thus, having an efficient glucose uptake system appears to be essential to ability of aerobic fermentation. There is a significant positive correlation between the number of hexose transporter genes and the efficiency of
161:
It is believed that a major driving force in the origin of aerobic fermentation was its simultaneous origin with modern fruit (~125 mya). These fruits provided an abundance of simple sugar food source for microbial communities, including both yeast and bacteria. Bacteria, at that time, were able to
152:
Crabtree-positive yeasts likely occurred in the interval between the ability to grow under anaerobic conditions, horizontal transfer of anaerobic DHODase (encoded by URA1 with bacteria), and the loss of respiratory chain Complex I. A more pronounced Crabtree effect, the second step, likely occurred
588:
cytochrome oxidase mutant) strain by removing three terminal cytochrome oxidases (cydAB, cyoABCD, and cbdAB) to reduce oxygen uptake. After 60 days of adaptive evolution on glucose media, the strain displayed a mixed phenotype. In aerobic conditions, some populations' fermentation solely produced
382:
Aerobic fermentation is essential for multiple industries, resulting in human domestication of several yeast strains. Beer and other alcoholic beverages, throughout human history, have played a significant role in society through drinking rituals, providing nutrition, medicine, and uncontaminated
506:
This phenomenon is often seen as counterintuitive, since cancer cells have higher energy demands due to the continued proliferation and respiration produces significantly more ATP than glycolysis alone (fermentation produces no additional ATP). Typically, there is an up-regulation in glucose
94:, and tumor cells. Crabtree-positive yeasts will respire when grown with very low concentrations of glucose or when grown on most other carbohydrate sources. The Crabtree effect is a regulatory system whereby respiration is repressed by fermentation, except in low sugar conditions. When 283:
reaction pathway were retained in post-WGD species, significantly higher than the overall retention rate. This has been associated with an increased ability to metabolize glucose into pyruvate, or higher rate of glycolysis. After glycolysis, pyruvate can either be further broken down by
324:
for ethanol. Adh2 is believed to have increased yeast species' tolerance for ethanol and allowed Crabtree-positive species to consume the ethanol they produced after depleting sugars. However, Adh2 and consumption of ethanol is not essential for aerobic fermentation.
507:
transporters and enzymes in the glycolysis pathway (also seen in yeast). There are many parallel aspects of aerobic fermentation in tumor cells that are also seen in Crabtree-positive yeasts. Further research into the evolution of aerobic fermentation in yeast such as
148:(ADH) encoding genes and hexose transporters. However, recent evidence has shown that aerobic fermentation originated before the WGD and evolved as a multi-step process, potentially aided by the WGD. The origin of aerobic fermentation, or the first step, in 502:
and is associated with high consumption of glucose and a high rate of glycolysis. ATP production in these cancer cells is often only through the process of glycolysis and pyruvate is broken down by the fermentation process in the cell's cytoplasm.
165:
Further evolutionary events in the development of aerobic fermentation likely increased the efficiency of this lifestyle, including increased tolerance to ethanol and the repression of the respiratory pathway. In high sugar environments,
100:
is grown below the sugar threshold and undergoes a respiration metabolism, the fermentation pathway is still fully expressed, while the respiration pathway is only expressed relative to the sugar availability. This contrasts with the
180:
to dominate in high sugar environments evolved more recently than aerobic fermentation and is dependent on the type of high-sugar environment. Other yeasts' growth is dependent on the pH and nutrients of the high-sugar environment.
153:
near the time of the WGD event. Later evolutionary events that aided in the evolution of aerobic fermentation are better understood and outlined in the section discussing the genomic basis of the Crabtree effect.
23:
is a metabolic process by which cells metabolize sugars via fermentation in the presence of oxygen and occurs through the repression of normal respiratory metabolism. Preference of aerobic fermentation over
1033:
Alfarouk, Khalid O.; Verduzco, Daniel; Rauch, Cyril; Muddathir, Abdel Khalig; Adil, H. H. Bashir; Elhassan, Gamal O.; Ibrahim, Muntaser E.; David Polo Orozco, Julian; Cardone, Rosa Angela (2014-01-01).
144:(WGD). A majority of Crabtree-positive yeasts are post-WGD yeasts. It was believed that the WGD was a mechanism for the development of the Crabtree effect in these species due to the duplication of 238:
lineage, and detects glucose via the cAMP-signaling pathway. The number of transporter genes vary significantly between yeast species and has continually increased during the evolution of the
346:
oxidation, which are involved in respiration, have the largest expression difference between aerobic fermentative yeast species and respiratory species. In a comparative analysis between
189:
The genomic basis of the Crabtree effect is still being investigated, and its evolution likely involved multiple successive molecular steps that increased the efficiency of the lifestyle.
354:, both of which evolved aerobic fermentation independently, the expression pattern of these two fermentative yeasts were more similar to each other than a respiratory yeast, 1803:
Legras, Jean-Luc; Merdinoglu, Didier; Cornuet, Jean-Marie; Karst, Francis (2007-05-01). "Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history".
1161:
Baumann, Kristin; Carnicer, Marc; Dragosits, Martin; Graf, Alexandra B; Stadlmann, Johannes; Jouhten, Paula; Maaheimo, Hannu; Gasser, Brigitte; Albiol, Joan (2010-10-22).
224:
encode for glucose sensors. The number of glucose sensor genes have remained mostly consistent through the budding yeast lineage, however glucose sensors are absent from
246:
also has a high number of transporter genes compared to its close relatives. Glucose uptake is believed to be a major rate-limiting step in glycolysis and replacing
1770:
Lin, Zhenguo; Li, Wen-Hsiung (2014-01-01). "Comparative Genomics and Evolutionary Genetics of Yeast Carbon Metabolism". In PiĆĄkur, Jure; Compagno, Concetta (eds.).
675:
PiĆĄkur, Jure; Rozpędowska, ElĆŒbieta; Polakova, Silvia; Merico, Annamaria; Compagno, Concetta (2006-04-01). "How did Saccharomyces evolve to become a good brewer?".
532:
to allow for glycolysis to continue. For most plant tissues, fermentation only occurs in anaerobic conditions, but there are a few exceptions. In the pollen of
1467:
Libkind, Diego; Hittinger, Chris Todd; Valério, Elisabete; Gonçalves, Carla; Dover, Jim; Johnston, Mark; Gonçalves, Paula; Sampaio, José Paulo (2011-08-30).
1036:"Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspective and therapeutic approach to an old cancer question" 391:
species. HGT and introgression are less common in nature than is seen during domestication pressures. For example, the important industrial yeast strain
511:
can be a useful model for understanding aerobic fermentation in tumor cells. This has a potential for better understanding cancer and cancer treatments.
569:
and the high glucose concentrations of their natural environment. The mechanism for repression of respiration in these conditions is not yet known.
108:
The evolution of aerobic fermentation likely involved multiple successive molecular steps, which included the expansion of hexose transporter genes,
2076:
Bringaud, Frédéric; RiviÚre, Loïc; Coustou, Virginie (2006-09-01). "Energy metabolism of trypanosomatids: Adaptation to available carbon sources".
1401:"The Evolution of Aerobic Fermentation in Schizosaccharomyces pombe Was Associated with Regulatory Reprogramming but not Nucleosome Reorganization" 300:
The fermentation reaction only involves two steps. Pyruvate is converted to acetaldehyde by Pdc and then acetaldehyde is converted to ethanol by
275:
After a WGD, one of the duplicated gene pair is often lost through fractionation; less than 10% of WGD gene pairs have remained in
2038:
Tadege, Million; Dupuis, Isabelle; Kuhlemeier, Cris (1999-08-01). "Ethanolic fermentation: new functions for an old pathway".
44:(ATP) in high yield, it allows proliferating cells to convert nutrients such as glucose and glutamine more efficiently into 1347:
Thomson, J Michael; Gaucher, Eric A; Burgan, Michelle F; Kee, Danny W De; Li, Tang; Aris, John P; Benner, Steven A (2005).
1104:"Yeast "Make-Accumulate-Consume" Life Strategy Evolved as a Multi-Step Process That Predates the Whole Genome Duplication" 341:
In Crabtree-negative species, respiration related genes are highly expressed in the presence of oxygen. However, when
1787: 584:
mutant strains have been bioengineered to ferment glucose under aerobic conditions. One group developed the ECOM3 (
387:
domesticated strains. Many commercial wine strains have significant portions of their DNA derived from HGT of non-
1999:"The Warburg and Crabtree effects: On the origin of cancer cell energy metabolism and of yeast glucose repression" 378:
A close up picture of ripening wine grapes. The light white "dusting" is a film that also contains wild yeasts.
242:
lineage. Most of the transporter genes have been generated by tandem duplication, rather than from the WGD.
1219:"Expansion of Hexose Transporter Genes Was Associated with the Evolution of Aerobic Fermentation in Yeasts" 553: 462: 366:. Regulatory rewiring was likely important in the evolution of aerobic fermentation in both lineages. 975:"Aerobic Fermentation of D-Glucose by an Evolved Cytochrome Oxidase-Deficient Escherichia coli Strain" 308:
genes in Crabtree-positive compared to Crabtree-negative species and no correlation between number of
499: 393: 226: 33: 105:, which is the inhibition of fermentation in the presence of oxygen and observed in most organisms. 474: 200:(HXT) are a group of proteins that are largely responsible for the uptake of glucose in yeast. In 141: 125: 96: 408:
This hybrid is commonly used in lager-brewing, which requires slow, low temperature fermentation.
120:, to better fit their environment. Strains evolved through mechanisms that include interspecific 403: 172: 417: 1469:"Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast" 855: 525: 458: 374: 289: 285: 41: 466: 301: 145: 109: 1480: 1115: 986: 731: 482: 422: 117: 8: 2127: 197: 86: 25: 1484: 1119: 990: 735: 2117: 1979: 1890: 1855: 1836: 1724: 1707: 1683: 1650: 1621: 1594: 1567: 1542: 1511: 1468: 1433: 1400: 1373: 1348: 1309: 1284: 1251: 1218: 1189: 1162: 1138: 1103: 1068: 1035: 1007: 974: 946: 894: 826: 793: 760: 719: 57: 2051: 234:
is a Crabtree-positive yeast, which developed aerobic fermentation independently from
2093: 2089: 2055: 2020: 1971: 1936: 1895: 1877: 1828: 1820: 1816: 1783: 1737: 1729: 1688: 1670: 1626: 1572: 1516: 1498: 1438: 1420: 1378: 1314: 1256: 1238: 1194: 1143: 1073: 1055: 1012: 938: 886: 878: 831: 813: 765: 747: 700: 692: 642: 1840: 950: 720:"Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation" 2085: 2047: 2010: 1983: 1963: 1926: 1885: 1867: 1812: 1775: 1719: 1678: 1662: 1616: 1606: 1562: 1554: 1506: 1488: 1428: 1412: 1368: 1360: 1304: 1296: 1246: 1230: 1184: 1174: 1163:"A multi-level study of recombinant Pichia pastoris in different oxygen conditions" 1133: 1123: 1063: 1047: 1002: 994: 928: 870: 821: 805: 755: 739: 684: 632: 129: 121: 898: 524:
Alcoholic fermentation is often used by plants in anaerobic conditions to produce
469:, which is then converted to acetic acid. Both of these processes either generate 2122: 2015: 1998: 1611: 1128: 565: 29: 1779: 933: 916: 140:
Approximately 100 million years ago (mya), within the yeast lineage there was a
1931: 1914: 1651:"Evolution of ecological dominance of yeast species in high-sugar environments" 718:
Heiden, Matthew G. Vander; Cantley, Lewis C.; Thompson, Craig B. (2009-05-22).
267: 170:
outcompetes and dominants all other yeast species, except its closest relative
102: 53: 1872: 1558: 1285:"Increased glycolytic flux as an outcome of whole-genome duplication in yeast" 874: 688: 637: 620: 72:
Aerobic fermentation evolved independently in at least three yeast lineages (
2111: 1975: 1881: 1824: 1733: 1674: 1502: 1424: 1242: 1059: 1051: 882: 817: 751: 696: 113: 74: 1954:
Warburg, Prof Otto (1925-03-01). "ĂŒber den Stoffwechsel der Carcinomzelle".
1493: 1416: 1234: 1179: 809: 743: 2097: 2059: 2024: 1940: 1899: 1832: 1692: 1630: 1576: 1543:"The genomics of microbial domestication in the fermented food environment" 1520: 1442: 1382: 1318: 1260: 1198: 1147: 1077: 1016: 835: 792:
Dashko, Sofia; Zhou, Nerve; Compagno, Concetta; PiĆĄkur, Jure (2014-09-01).
769: 704: 596:
Myc and HIF-1 regulate glucose metabolism and stimulate the Warburg effect.
454: 271:
A scheme of transformation of glucose to alcohol by alcoholic fermentation.
1741: 942: 890: 646: 998: 442: 90:). It has also been observed in plant pollen, trypanosomatids, mutated 1967: 1300: 1102:
Hagman, Arne; SÀll, Torbjörn; Compagno, Concetta; Piskur, Jure (2013).
973:
Portnoy, Vasiliy A.; HerrgÄrd, Markus J.; Palsson, Bernhard Ø. (2008).
446: 280: 49: 1666: 1854:
Yating, H; Zhenzhen, X; Wolfgang, L; Hirohide, T; Fusheng, C (2022).
478: 61: 1364: 450: 430: 208:
genes have been identified and 17 encode for glucose transporters (
37: 592: 514: 1856:"Oxidative Fermentation of Acetic Acid Bacteria and Its Products" 541: 486: 470: 438: 434: 80: 45: 1466: 674: 426: 411: 1853: 1649:
Williams, Kathryn M.; Liu, Ping; Fay, Justin C. (2015-08-01).
1032: 445:, in a process called AAB oxidative fermentation (AOF). After 794:"Why, when, and how did yeast evolve alcoholic fermentation?" 533: 529: 1802: 1160: 1997:
Diaz-Ruiz, Rodrigo; Rigoulet, Michel; Devin, Anne (2011).
1349:"Resurrecting ancestral alcohol dehydrogenases from yeast" 304:(Adh). There is no significant increase in the number of 369: 1101: 856:"Aerobic fermentation during tobacco pollen development" 791: 589:
lactate, while others performed mixed-acid fermentation.
192: 1346: 184: 2075: 2037: 1996: 1708:"The molecular genetics of hexose transport in yeasts" 972: 312:
genes and efficiency of fermentation. There are five
717: 279:
genome. A little over half of WGD gene pairs in the
135: 917:"Aerobic fermentation of glucose by trypanosomatids" 329:
and other Crabtree positive species do not have the
2003:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
621:"The Crabtree Effect: A Regulatory System in Yeast" 116:, these yeast species have evolved, often through 2109: 1283:Conant, Gavin C; Wolfe, Kenneth H (2007-01-01). 853: 67: 1774:. Springer Berlin Heidelberg. pp. 97–120. 1772:Molecular Mechanisms in Yeast Carbon Metabolism 1705: 1473:Proceedings of the National Academy of Sciences 515:Aerobic fermentation in other non-yeast species 465:. Ethanol is first oxidized to acetaldehyde by 1648: 1595:"Origin of the Yeast Whole-Genome Duplication" 461:, which in turn is oxidized to acetic acid by 40:. While aerobic fermentation does not produce 1547:Current Opinion in Genetics & Development 1540: 711: 412:Aerobic fermentation in acetic acid bacteria 295: 1706:Boles, E.; Hollenberg, C. P. (1997-08-01). 1399:Lin, Zhenguo; Li, Wen-Hsiung (2011-04-01). 1282: 1217:Lin, Zhenguo; Li, Wen-Hsiung (2011-01-01). 1915:"Hallmarks of Cancer: The Next Generation" 481:. This process is exploited in the use of 336: 262: 2014: 1930: 1889: 1871: 1723: 1682: 1620: 1610: 1566: 1541:Gibbons, John G; Rinker, David C (2015). 1510: 1492: 1432: 1372: 1308: 1250: 1188: 1178: 1137: 1127: 1067: 1006: 932: 854:Tadege, M.; Kuhlemeier, C. (1997-10-01). 825: 759: 636: 418:Acetic acid § Oxidative fermentation 216:encodes for a galactose transporter, and 618: 591: 373: 266: 1953: 1912: 914: 333:gene and consumes ethanol very poorly. 2110: 2078:Molecular and Biochemical Parasitology 2071: 2069: 1765: 1763: 1761: 1759: 1757: 1755: 1753: 1751: 1644: 1642: 1640: 1588: 1586: 1536: 1534: 1532: 1530: 1462: 1460: 1458: 1456: 1454: 1452: 1278: 1276: 1274: 1272: 1270: 370:Domestication and aerobic fermentation 1769: 1592: 1398: 1394: 1392: 1342: 1340: 1338: 1336: 1334: 1332: 1330: 1328: 1216: 1212: 1210: 1208: 670: 668: 666: 664: 662: 660: 658: 656: 193:Expansion of hexose transporter genes 1097: 1095: 1093: 1091: 1089: 1087: 1028: 1026: 968: 966: 964: 962: 960: 910: 908: 849: 847: 845: 787: 785: 783: 781: 779: 614: 612: 610: 185:Genomic basis of the Crabtree effect 2066: 1847: 1748: 1637: 1583: 1527: 1449: 1267: 132:, pseudogenization, and gene loss. 13: 1725:10.1111/j.1574-6976.1997.tb00346.x 1389: 1325: 1205: 653: 572: 564:When grown in glucose-rich media, 559: 136:Origin of Crabtree effect in yeast 14: 2139: 1913:Hanahan, Douglas (4 March 2011). 1084: 1023: 957: 905: 842: 776: 607: 156: 52:oxidation of such nutrients into 2090:10.1016/j.molbiopara.2006.03.017 1817:10.1111/j.1365-294X.2007.03266.x 473:, or shuttle electrons into the 2031: 1990: 1947: 1906: 1796: 1699: 1405:Molecular Biology and Evolution 1223:Molecular Biology and Evolution 1154: 492: 1: 2052:10.1016/S1360-1385(99)01450-8 600: 397:is an interspecies hybrid of 68:Aerobic fermentation in yeast 32:in yeast, and is part of the 2016:10.1016/j.bbabio.2010.08.010 1612:10.1371/journal.pbio.1002221 1129:10.1371/journal.pone.0068734 362:is evolutionarily closer to 254:genes with a single chimera 7: 1780:10.1007/978-3-642-55013-3_5 934:10.1096/fasebj.6.13.1397837 915:Cazzulo, Juan JosĂ© (1992). 425:(AAB) incompletely oxidize 10: 2144: 1932:10.1016/j.cell.2011.02.013 1593:Wolfe, Kenneth H. (2015). 554:cytoplasmic male sterility 463:acetaldehyde dehydrogenase 415: 1873:10.3389/fmicb.2022.879246 1860:Frontiers in Microbiology 1712:FEMS Microbiology Reviews 1559:10.1016/j.gde.2015.07.003 1289:Molecular Systems Biology 689:10.1016/j.tig.2006.02.002 638:10.1099/00221287-44-2-149 550:Nicotiana plumbaginifolia 519: 394:Saccharomyces pastorianus 296:CNV in fermentation genes 227:Schizosaccharomyces pombe 1052:10.18632/oncoscience.109 979:Appl. Environ. Microbiol 619:De Deken, R. H. (1966). 475:electron transport chain 142:whole genome duplication 126:horizontal gene transfer 97:Saccharomyces cerevisiae 48:by avoiding unnecessary 2040:Trends in Plant Science 1956:Klinische Wochenschrift 1494:10.1073/pnas.1105430108 1180:10.1186/1752-0509-4-141 875:10.1023/A:1005837112653 863:Plant Molecular Biology 810:10.1111/1567-1364.12161 744:10.1126/science.1160809 337:Differential expression 263:CNV in glycolysis genes 173:Saccharomyces paradoxus 597: 459:pyruvate decarboxylase 401:and the cold tolerant 379: 290:pyruvate dehydrogenase 286:pyruvate decarboxylase 272: 42:adenosine triphosphate 28:is referred to as the 1417:10.1093/molbev/msq324 1235:10.1093/molbev/msq184 595: 467:alcohol dehydrogenase 377: 302:alcohol dehydrogenase 270: 146:alcohol dehydrogenase 110:copy number variation 999:10.1128/AEM.00880-08 483:acetic acid bacteria 423:Acetic acid bacteria 259:ethanol production. 118:artificial selection 17:Aerobic fermentation 1485:2011PNAS..10814539L 1479:(35): 14539–14544. 1167:BMC Systems Biology 1120:2013PLoSO...868734H 991:2008ApEnM..74.7561P 798:FEMS Yeast Research 736:2009Sci...324.1029V 730:(5930): 1029–1033. 498:referred to as the 198:Hexose transporters 87:Schizosaccharomyces 58:carbon-carbon bonds 26:aerobic respiration 1968:10.1007/BF01726151 1301:10.1038/msb4100170 677:Trends in Genetics 598: 453:is broken down to 380: 273: 21:aerobic glycolysis 1811:(10): 2091–2102. 1805:Molecular Ecology 1667:10.1111/evo.12707 985:(24): 7561–7569. 625:J. Gen. Microbiol 546:Nicotiana tabacum 176:. The ability of 2135: 2102: 2101: 2073: 2064: 2063: 2035: 2029: 2028: 2018: 1994: 1988: 1987: 1951: 1945: 1944: 1934: 1910: 1904: 1903: 1893: 1875: 1851: 1845: 1844: 1800: 1794: 1793: 1767: 1746: 1745: 1727: 1703: 1697: 1696: 1686: 1661:(8): 2079–2093. 1646: 1635: 1634: 1624: 1614: 1590: 1581: 1580: 1570: 1538: 1525: 1524: 1514: 1496: 1464: 1447: 1446: 1436: 1411:(4): 1407–1413. 1396: 1387: 1386: 1376: 1344: 1323: 1322: 1312: 1280: 1265: 1264: 1254: 1214: 1203: 1202: 1192: 1182: 1158: 1152: 1151: 1141: 1131: 1099: 1082: 1081: 1071: 1030: 1021: 1020: 1010: 970: 955: 954: 936: 912: 903: 902: 860: 851: 840: 839: 829: 789: 774: 773: 763: 715: 709: 708: 672: 651: 650: 640: 616: 582:Escherichia coli 130:gene duplication 2143: 2142: 2138: 2137: 2136: 2134: 2133: 2132: 2108: 2107: 2106: 2105: 2074: 2067: 2036: 2032: 1995: 1991: 1962:(12): 534–536. 1952: 1948: 1911: 1907: 1852: 1848: 1801: 1797: 1790: 1768: 1749: 1704: 1700: 1647: 1638: 1605:(8): e1002221. 1591: 1584: 1539: 1528: 1465: 1450: 1397: 1390: 1353:Nature Genetics 1345: 1326: 1281: 1268: 1215: 1206: 1159: 1155: 1100: 1085: 1046:(12): 777–802. 1031: 1024: 971: 958: 927:(13): 3153–61. 913: 906: 858: 852: 843: 790: 777: 716: 712: 673: 654: 617: 608: 603: 578: 562: 560:Trypanosomatids 528:and regenerate 522: 517: 495: 449:, the produced 420: 414: 372: 339: 323: 298: 265: 195: 187: 159: 138: 70: 30:Crabtree effect 12: 11: 5: 2141: 2131: 2130: 2125: 2120: 2104: 2103: 2065: 2046:(8): 320–325. 2030: 2009:(6): 568–576. 1989: 1946: 1925:(5): 646–674. 1905: 1846: 1795: 1788: 1747: 1698: 1636: 1582: 1526: 1448: 1388: 1365:10.1038/ng1553 1359:(6): 630–635. 1324: 1266: 1229:(1): 131–142. 1204: 1153: 1083: 1022: 956: 904: 869:(3): 343–354. 841: 804:(6): 826–832. 775: 710: 683:(4): 183–186. 652: 631:(2): 149–156. 605: 604: 602: 599: 577: 571: 566:trypanosomatid 561: 558: 521: 518: 516: 513: 500:Warburg effect 494: 491: 413: 410: 371: 368: 338: 335: 321: 297: 294: 264: 261: 194: 191: 186: 183: 158: 157:Driving forces 155: 137: 134: 103:Pasteur effect 69: 66: 60:and promoting 54:carbon dioxide 34:Warburg effect 9: 6: 4: 3: 2: 2140: 2129: 2126: 2124: 2121: 2119: 2116: 2115: 2113: 2099: 2095: 2091: 2087: 2083: 2079: 2072: 2070: 2061: 2057: 2053: 2049: 2045: 2041: 2034: 2026: 2022: 2017: 2012: 2008: 2004: 2000: 1993: 1985: 1981: 1977: 1973: 1969: 1965: 1961: 1958:(in German). 1957: 1950: 1942: 1938: 1933: 1928: 1924: 1920: 1916: 1909: 1901: 1897: 1892: 1887: 1883: 1879: 1874: 1869: 1865: 1861: 1857: 1850: 1842: 1838: 1834: 1830: 1826: 1822: 1818: 1814: 1810: 1806: 1799: 1791: 1789:9783642550126 1785: 1781: 1777: 1773: 1766: 1764: 1762: 1760: 1758: 1756: 1754: 1752: 1743: 1739: 1735: 1731: 1726: 1721: 1718:(1): 85–111. 1717: 1713: 1709: 1702: 1694: 1690: 1685: 1680: 1676: 1672: 1668: 1664: 1660: 1656: 1652: 1645: 1643: 1641: 1632: 1628: 1623: 1618: 1613: 1608: 1604: 1600: 1596: 1589: 1587: 1578: 1574: 1569: 1564: 1560: 1556: 1552: 1548: 1544: 1537: 1535: 1533: 1531: 1522: 1518: 1513: 1508: 1504: 1500: 1495: 1490: 1486: 1482: 1478: 1474: 1470: 1463: 1461: 1459: 1457: 1455: 1453: 1444: 1440: 1435: 1430: 1426: 1422: 1418: 1414: 1410: 1406: 1402: 1395: 1393: 1384: 1380: 1375: 1370: 1366: 1362: 1358: 1354: 1350: 1343: 1341: 1339: 1337: 1335: 1333: 1331: 1329: 1320: 1316: 1311: 1306: 1302: 1298: 1294: 1290: 1286: 1279: 1277: 1275: 1273: 1271: 1262: 1258: 1253: 1248: 1244: 1240: 1236: 1232: 1228: 1224: 1220: 1213: 1211: 1209: 1200: 1196: 1191: 1186: 1181: 1176: 1172: 1168: 1164: 1157: 1149: 1145: 1140: 1135: 1130: 1125: 1121: 1117: 1114:(7): e68734. 1113: 1109: 1105: 1098: 1096: 1094: 1092: 1090: 1088: 1079: 1075: 1070: 1065: 1061: 1057: 1053: 1049: 1045: 1041: 1037: 1029: 1027: 1018: 1014: 1009: 1004: 1000: 996: 992: 988: 984: 980: 976: 969: 967: 965: 963: 961: 952: 948: 944: 940: 935: 930: 926: 922: 921:FASEB Journal 918: 911: 909: 900: 896: 892: 888: 884: 880: 876: 872: 868: 864: 857: 850: 848: 846: 837: 833: 828: 823: 819: 815: 811: 807: 803: 799: 795: 788: 786: 784: 782: 780: 771: 767: 762: 757: 753: 749: 745: 741: 737: 733: 729: 725: 721: 714: 706: 702: 698: 694: 690: 686: 682: 678: 671: 669: 667: 665: 663: 661: 659: 657: 648: 644: 639: 634: 630: 626: 622: 615: 613: 611: 606: 594: 590: 587: 583: 575: 570: 567: 557: 555: 551: 547: 543: 539: 535: 531: 527: 512: 510: 509:S. cerevisiae 504: 501: 490: 488: 484: 480: 476: 472: 468: 464: 460: 456: 452: 448: 444: 440: 436: 432: 428: 424: 419: 409: 407: 405: 400: 399:S. cerevisiae 396: 395: 390: 389:Saccharomyces 386: 385:Saccharomyces 376: 367: 365: 361: 360:S. cerevisiae 357: 353: 352:S. cerevisiae 349: 344: 343:S. cerevisiae 334: 332: 328: 319: 318:S. cerevisiae 315: 311: 307: 303: 293: 291: 287: 282: 278: 277:S. cerevisiae 269: 260: 257: 253: 249: 248:S. cerevisiae 245: 241: 240:S. cerevisiae 237: 236:Saccharomyces 233: 229: 228: 223: 219: 215: 211: 207: 203: 202:S. cerevisiae 199: 190: 182: 179: 178:S. cerevisiae 175: 174: 169: 168:S. cerevisiae 163: 154: 151: 150:Saccharomyces 147: 143: 133: 131: 127: 123: 122:hybridization 119: 115: 114:domestication 111: 106: 104: 99: 98: 93: 89: 88: 83: 82: 77: 76: 75:Saccharomyces 65: 63: 59: 56:, preserving 55: 51: 47: 43: 39: 35: 31: 27: 22: 18: 2081: 2077: 2043: 2039: 2033: 2006: 2002: 1992: 1959: 1955: 1949: 1922: 1918: 1908: 1863: 1859: 1849: 1808: 1804: 1798: 1771: 1715: 1711: 1701: 1658: 1654: 1602: 1599:PLOS Biology 1598: 1550: 1546: 1476: 1472: 1408: 1404: 1356: 1352: 1292: 1288: 1226: 1222: 1170: 1166: 1156: 1111: 1107: 1043: 1039: 982: 978: 924: 920: 866: 862: 801: 797: 727: 723: 713: 680: 676: 628: 624: 585: 581: 580:A couple of 579: 573: 563: 549: 545: 537: 523: 508: 505: 496: 455:acetaldehyde 421: 404:S. eubayanus 402: 398: 392: 388: 384: 381: 363: 359: 358:. However, 355: 351: 347: 342: 340: 330: 326: 317: 313: 309: 305: 299: 276: 274: 255: 251: 247: 243: 239: 235: 231: 225: 221: 217: 213: 209: 205: 201: 196: 188: 177: 171: 167: 164: 160: 149: 139: 107: 95: 91: 85: 79: 73: 71: 20: 16: 15: 1040:Oncoscience 493:Tumor cells 485:to produce 443:acetic acid 364:C. albicans 356:C. albicans 38:tumor cells 2128:Metabolism 2112:Categories 2084:(1): 1–9. 1173:(1): 141. 601:References 447:glycolysis 433:, usually 416:See also: 348:Sch. pombe 327:Sch. pombe 281:glycolysis 244:Sch. pombe 232:Sch. pombe 210:HXT1-HXT17 2118:Evolution 1976:0023-2173 1882:1664-302X 1825:0962-1083 1734:0168-6445 1675:1558-5646 1655:Evolution 1503:0027-8424 1425:0737-4038 1243:0737-4038 1060:2331-4737 883:0167-4412 818:1567-1364 752:0036-8075 697:0168-9525 479:ubiquinol 316:genes in 288:(Pdc) or 62:anabolism 50:catabolic 2098:16682088 2060:10431222 2025:20804724 1941:21376230 1900:35685922 1841:13157807 1833:17498234 1693:26087012 1631:26252643 1577:26338497 1521:21873232 1443:21127171 1383:15864308 1319:17667951 1261:20660490 1199:20969759 1148:23869229 1108:PLOS ONE 1078:25621294 1017:18952873 951:35191022 836:24824836 770:19460998 705:16499989 538:Zea mays 451:pyruvate 431:alcohols 1984:2034590 1891:9171043 1742:9299703 1684:4751874 1622:4529243 1568:4695309 1553:: 1–8. 1512:3167505 1481:Bibcode 1434:3058771 1374:3618678 1310:1943425 1295:: 129. 1252:3002240 1190:2987880 1139:3711898 1116:Bibcode 1069:4303887 1008:2607145 987:Bibcode 943:1397837 891:9349258 827:4262006 761:2849637 732:Bibcode 724:Science 647:5969497 586:E. coli 576:mutants 574:E. coli 542:tobacco 487:vinegar 471:NAD(P)H 439:ethanol 435:glucose 252:HXT1-17 128:(HGT), 92:E. coli 81:Dekkera 46:biomass 2123:Yeasts 2096:  2058:  2023:  1982:  1974:  1939:  1898:  1888:  1880:  1839:  1831:  1823:  1786:  1740:  1732:  1691:  1681:  1673:  1629:  1619:  1575:  1565:  1519:  1509:  1501:  1441:  1431:  1423:  1381:  1371:  1317:  1307:  1259:  1249:  1241:  1197:  1187:  1146:  1136:  1076:  1066:  1058:  1015:  1005:  949:  941:  899:534500 897:  889:  881:  834:  824:  816:  768:  758:  750:  703:  695:  645:  548:& 540:) and 520:Plants 427:sugars 1980:S2CID 1837:S2CID 947:S2CID 895:S2CID 859:(PDF) 534:maize 441:, to 204:, 20 2094:PMID 2056:PMID 2021:PMID 2007:1807 1972:ISSN 1937:PMID 1919:Cell 1896:PMID 1878:ISSN 1829:PMID 1821:ISSN 1784:ISBN 1738:PMID 1730:ISSN 1689:PMID 1671:ISSN 1627:PMID 1573:PMID 1517:PMID 1499:ISSN 1439:PMID 1421:ISSN 1379:PMID 1315:PMID 1257:PMID 1239:ISSN 1195:PMID 1144:PMID 1074:PMID 1056:ISSN 1013:PMID 939:PMID 887:PMID 879:ISSN 832:PMID 814:ISSN 766:PMID 748:ISSN 701:PMID 693:ISSN 643:PMID 477:via 437:and 429:and 350:and 331:ADH2 222:RGT2 220:and 218:SNF3 214:GAL2 2086:doi 2082:149 2048:doi 2011:doi 1964:doi 1927:doi 1923:144 1886:PMC 1868:doi 1813:doi 1776:doi 1720:doi 1679:PMC 1663:doi 1617:PMC 1607:doi 1563:PMC 1555:doi 1507:PMC 1489:doi 1477:108 1429:PMC 1413:doi 1369:PMC 1361:doi 1305:PMC 1297:doi 1247:PMC 1231:doi 1185:PMC 1175:doi 1134:PMC 1124:doi 1064:PMC 1048:doi 1003:PMC 995:doi 929:doi 871:doi 822:PMC 806:doi 756:PMC 740:doi 728:324 685:doi 633:doi 530:NAD 526:ATP 457:by 314:Adh 310:Pdc 306:Pdc 256:HXT 250:'s 230:. 212:), 206:HXT 36:in 19:or 2114:: 2092:. 2080:. 2068:^ 2054:. 2042:. 2019:. 2005:. 2001:. 1978:. 1970:. 1935:. 1921:. 1917:. 1894:. 1884:. 1876:. 1866:. 1864:13 1862:. 1858:. 1835:. 1827:. 1819:. 1809:16 1807:. 1782:. 1750:^ 1736:. 1728:. 1716:21 1714:. 1710:. 1687:. 1677:. 1669:. 1659:69 1657:. 1653:. 1639:^ 1625:. 1615:. 1603:13 1601:. 1597:. 1585:^ 1571:. 1561:. 1551:35 1549:. 1545:. 1529:^ 1515:. 1505:. 1497:. 1487:. 1475:. 1471:. 1451:^ 1437:. 1427:. 1419:. 1409:28 1407:. 1403:. 1391:^ 1377:. 1367:. 1357:37 1355:. 1351:. 1327:^ 1313:. 1303:. 1291:. 1287:. 1269:^ 1255:. 1245:. 1237:. 1227:28 1225:. 1221:. 1207:^ 1193:. 1183:. 1169:. 1165:. 1142:. 1132:. 1122:. 1110:. 1106:. 1086:^ 1072:. 1062:. 1054:. 1042:. 1038:. 1025:^ 1011:. 1001:. 993:. 983:74 981:. 977:. 959:^ 945:. 937:. 923:. 919:. 907:^ 893:. 885:. 877:. 867:35 865:. 861:. 844:^ 830:. 820:. 812:. 802:14 800:. 796:. 778:^ 764:. 754:. 746:. 738:. 726:. 722:. 699:. 691:. 681:22 679:. 655:^ 641:. 629:44 627:. 623:. 609:^ 489:. 124:, 84:, 78:, 64:. 2100:. 2088:: 2062:. 2050:: 2044:4 2027:. 2013:: 1986:. 1966:: 1960:4 1943:. 1929:: 1902:. 1870:: 1843:. 1815:: 1792:. 1778:: 1744:. 1722:: 1695:. 1665:: 1633:. 1609:: 1579:. 1557:: 1523:. 1491:: 1483:: 1445:. 1415:: 1385:. 1363:: 1321:. 1299:: 1293:3 1263:. 1233:: 1201:. 1177:: 1171:4 1150:. 1126:: 1118:: 1112:8 1080:. 1050:: 1044:1 1019:. 997:: 989:: 953:. 931:: 925:6 901:. 873:: 838:. 808:: 772:. 742:: 734:: 707:. 687:: 649:. 635:: 544:( 536:( 406:. 322:M

Index

aerobic respiration
Crabtree effect
Warburg effect
tumor cells
adenosine triphosphate
biomass
catabolic
carbon dioxide
carbon-carbon bonds
anabolism
Saccharomyces
Dekkera
Schizosaccharomyces
Saccharomyces cerevisiae
Pasteur effect
copy number variation
domestication
artificial selection
hybridization
horizontal gene transfer
gene duplication
whole genome duplication
alcohol dehydrogenase
Saccharomyces paradoxus
Hexose transporters
Schizosaccharomyces pombe

glycolysis
pyruvate decarboxylase
pyruvate dehydrogenase

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑