Knowledge

Crabtree effect

Source 📝

101:
Ethanol formation in Crabtree-positive yeasts under strictly aerobic conditions was firstly thought to be caused by the inability of these organisms to increase the rate of respiration above a certain value. This critical value, above which alcoholic fermentation occurs, is dependent on the strain
113:
in aerobic conditions, glucose concentrations below 150 mg/L did not result in ethanol production. Above this value, ethanol was formed with rates increasing up to a glucose concentration of 1000 mg/L. Thus, above 150 mg/L glucose the organism exhibited a Crabtree effect.
89:
and therefore decreases oxygen consumption. The phenomenon is believed to have evolved as a competition mechanism (due to the antiseptic nature of ethanol) around the time when the first fruits on Earth fell from the trees. The Crabtree effect works by repressing
102:
and the culture conditions. More recent evidences demonstrated that the occurrence of alcoholic fermentation might not be primarily due to a limited respiratory capacity, but could be caused by a limit in the cellular
468:
Verduyn, C., Zomerdijk, T.P.L., van Dijken, J.P. et al. Continuous measurement of ethanol production by aerobic yeast suspensions with an enzyme electrode. Appl Microbiol Biotechnol 19, 181–185 (1984).
455:
Verduyn, C., Zomerdijk, T.P.L., van Dijken, J.P. et al. Continuous measurement of ethanol production by aerobic yeast suspensions with an enzyme electrode. Appl Microbiol Biotechnol 19, 181–185 (1984).
328:
van Dijken and Scheffers, 1986 J.P. van Dijken, W.A. Scheffers; Redox balances in the metabolism of sugars by yeasts; FEMS Microbiol. Lett., 32 (3) (1986), pp. 199-224;
117:
It was the study of tumor cells that led to the discovery of the Crabtree effect. Tumor cells have a similar metabolism, the
17: 535:"The Warburg and Crabtree effects: On the origin of cancer cell energy metabolism and of yeast glucose repression" 630: 343:"Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae" 26:, named after the English biochemist Herbert Grace Crabtree, describes the phenomenon whereby the yeast, 126: 118: 82: 86: 28: 74: 399: 354: 95: 91: 8: 56: 358: 604: 579: 510: 483: 438: 224: 199: 172: 147: 375: 342: 609: 556: 515: 442: 430: 422: 380: 311: 270: 229: 177: 73:(the breakdown of glucose) which results in the production of appreciable amounts of 599: 591: 546: 505: 495: 414: 370: 362: 301: 260: 219: 211: 167: 159: 366: 551: 534: 78: 329: 198:
Thomson JM, Gaucher EA, Burgan MF, De Kee DW, Li T, Aris JP, Benner SA (2005).
418: 306: 289: 265: 248: 624: 500: 426: 60: 46: 613: 560: 519: 434: 233: 181: 103: 384: 315: 274: 400:"An upper limit on Gibbs energy dissipation governs cellular metabolism" 122: 70: 595: 398:
Heinemann, Matthias; Leupold, Simeon; Niebel, Bastian (January 2019).
341:
Postma, E; Verduyn, C; Scheffers, WA; Van Dijken, JP (February 1989).
163: 470: 457: 41: 215: 580:"The carbohydrate metabolism of certain pathological overgrowths" 37: 33: 340: 533:
Diaz-Ruiz, Rodrigo; Rigoulet, Michel; Devin, Anne (June 2011).
44:, the usual process occurring aerobically in most yeasts e.g. 290:"The Crabtree Effect and its Relation to the Petite Mutation" 200:"Resurrecting ancestral alcohol dehydrogenases from yeast" 197: 69:
genera. Increasing concentrations of glucose accelerates
148:"Observations on the carbohydrate metabolism of tumours" 50:
spp. This phenomenon is observed in most species of the
532: 397: 40:
concentrations rather than producing biomass via the
484:"An evolutionary perspective on the Crabtree effect" 539:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
249:"The Crabtree Effect: A Regulatory System in Yeast" 36:(alcohol) in aerobic conditions at high external 622: 481: 330:https://doi.org/10.1016/0378-1097(86)90291-0 577: 603: 550: 509: 499: 374: 305: 264: 223: 171: 287: 246: 145: 623: 347:Applied and Environmental Microbiology 98:pathway, dependent on the substrate. 193: 191: 13: 571: 488:Frontiers in Molecular Biosciences 471:https://doi.org/10.1007/BF00256451 458:https://doi.org/10.1007/BF00256451 14: 642: 288:De Deken, R. H. (1 August 1966). 240: 188: 18:Evolution of aerobic fermentation 526: 482:Pfeiffer, T; Morley, A (2014). 475: 294:Journal of General Microbiology 462: 449: 391: 334: 322: 281: 139: 85:done by the TCA cycle via the 42:tricarboxylic acid (TCA) cycle 1: 367:10.1128/AEM.55.2.468-477.1989 132: 552:10.1016/j.bbabio.2010.08.010 7: 81:. This reduces the need of 10: 647: 63:, Torulopsis, Nematospora, 15: 419:10.1038/s42255-018-0006-7 307:10.1099/00221287-44-2-157 266:10.1099/00221287-44-2-149 127:oxidative phosphorylation 83:oxidative phosphorylation 501:10.3389/fmolb.2014.00017 247:De Deken, R. H. (1966). 87:electron transport chain 77:through substrate-level 29:Saccharomyces cerevisiae 152:The Biochemical Journal 121:, in which they favor 631:Biochemical reactions 146:Crabtree, HG (1929). 578:Crabtree HG (1928). 359:1989ApEnM..55..468P 57:Schizosaccharomyces 106:dissipation rate. 596:10.1042/bj0221289 407:Nature Metabolism 253:J. Gen. Microbiol 164:10.1042/bj0230536 638: 617: 607: 565: 564: 554: 530: 524: 523: 513: 503: 479: 473: 466: 460: 453: 447: 446: 404: 395: 389: 388: 378: 338: 332: 326: 320: 319: 309: 285: 279: 278: 268: 244: 238: 237: 227: 195: 186: 185: 175: 143: 59:, Debaryomyces, 646: 645: 641: 640: 639: 637: 636: 635: 621: 620: 574: 572:Further reading 569: 568: 531: 527: 480: 476: 467: 463: 454: 450: 402: 396: 392: 339: 335: 327: 323: 286: 282: 245: 241: 196: 189: 144: 140: 135: 79:phosphorylation 24:Crabtree effect 20: 12: 11: 5: 644: 634: 633: 619: 618: 590:(5): 1289–98. 573: 570: 567: 566: 545:(6): 568–576. 525: 474: 461: 448: 413:(1): 125–132. 390: 333: 321: 300:(2): 157–165. 280: 239: 216:10.1038/ng1553 210:(6): 630–635. 187: 137: 136: 134: 131: 119:Warburg effect 9: 6: 4: 3: 2: 643: 632: 629: 628: 626: 615: 611: 606: 601: 597: 593: 589: 585: 581: 576: 575: 562: 558: 553: 548: 544: 540: 536: 529: 521: 517: 512: 507: 502: 497: 493: 489: 485: 478: 472: 465: 459: 452: 444: 440: 436: 432: 428: 424: 420: 416: 412: 408: 401: 394: 386: 382: 377: 372: 368: 364: 360: 356: 353:(2): 468–77. 352: 348: 344: 337: 331: 325: 317: 313: 308: 303: 299: 295: 291: 284: 276: 272: 267: 262: 259:(2): 149–56. 258: 254: 250: 243: 235: 231: 226: 221: 217: 213: 209: 205: 201: 194: 192: 183: 179: 174: 169: 165: 161: 158:(3): 536–45. 157: 153: 149: 142: 138: 130: 128: 124: 120: 115: 112: 111:S. cerevisiae 107: 105: 99: 97: 93: 88: 84: 80: 76: 72: 68: 64: 62: 61:Brettanomyces 58: 53: 52:Saccharomyces 49: 48: 47:Kluyveromyces 43: 39: 35: 31: 30: 25: 19: 587: 583: 542: 538: 528: 491: 487: 477: 464: 451: 410: 406: 393: 350: 346: 336: 324: 297: 293: 283: 256: 252: 242: 207: 203: 155: 151: 141: 116: 110: 108: 104:Gibbs energy 100: 96:fermentation 66: 55: 51: 45: 27: 23: 21: 92:respiration 32:, produces 584:Biochem. J 204:Nat. Genet 133:References 123:glycolysis 71:glycolysis 16:See also: 443:104433703 427:2522-5812 129:pathway. 125:over the 625:Category 614:16744142 561:20804724 520:25988158 435:32694810 234:15864308 182:16744238 67:Nadsonia 605:1252256 511:4429655 385:2566299 355:Bibcode 316:5969498 275:5969497 225:3618678 173:1254097 94:by the 38:glucose 34:ethanol 612:  602:  559:  518:  508:  494:: 17. 441:  433:  425:  383:  376:184133 373:  314:  273:  232:  222:  180:  170:  439:S2CID 403:(PDF) 610:PMID 557:PMID 543:1807 516:PMID 431:PMID 423:ISSN 381:PMID 312:PMID 271:PMID 230:PMID 178:PMID 109:For 65:and 22:The 600:PMC 592:doi 547:doi 506:PMC 496:doi 415:doi 371:PMC 363:doi 302:doi 261:doi 220:PMC 212:doi 168:PMC 160:doi 75:ATP 627:: 608:. 598:. 588:22 586:. 582:. 555:. 541:. 537:. 514:. 504:. 490:. 486:. 437:. 429:. 421:. 409:. 405:. 379:. 369:. 361:. 351:55 349:. 345:. 310:. 298:44 296:. 292:. 269:. 257:44 255:. 251:. 228:. 218:. 208:37 206:. 202:. 190:^ 176:. 166:. 156:23 154:. 150:. 54:, 616:. 594:: 563:. 549:: 522:. 498:: 492:1 445:. 417:: 411:1 387:. 365:: 357:: 318:. 304:: 277:. 263:: 236:. 214:: 184:. 162::

Index

Evolution of aerobic fermentation
Saccharomyces cerevisiae
ethanol
glucose
tricarboxylic acid (TCA) cycle
Kluyveromyces
Schizosaccharomyces
Brettanomyces
glycolysis
ATP
phosphorylation
oxidative phosphorylation
electron transport chain
respiration
fermentation
Gibbs energy
Warburg effect
glycolysis
oxidative phosphorylation
"Observations on the carbohydrate metabolism of tumours"
doi
10.1042/bj0230536
PMC
1254097
PMID
16744238


"Resurrecting ancestral alcohol dehydrogenases from yeast"
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.