Knowledge

Adiabatic electron transfer

Source đź“ť

729:, it forms the basis of all modern computational approaches to modeling electron transfer. Its essential feature is that electron transfer can never be regarded as an “instantaneous transition”; instead, the electron is partially transferred at all molecular geometries, with the extent of the transfer being a critical quantum descriptor of all thermal, tunneling, and spectroscopic processes. It also leads seamlessly to understanding electron-transfer transition-state spectroscopy pioneered by 1144:. In that work, he also derived the standard expression for the solvent contribution to the reorganization energy, making the theory more applicable to practical problems. Use of this solvation description (instead of the form that Hush originally proposed) in approaches spanning the adiabatic and non-adiabatic limits is often termed “Marcus-Hush Theory”. These and other contributions, including the widespread demonstration of the usefulness of Eqn. (3), led to the award of the 277: 105: 78: 777:
is of central importance. In the very strong coupling limit when Eqn. (2) is satisfied, intrinsically quantum molecules like the Creutz-Taube ion result. Most intervalence spectroscopy occurs in the weak-coupling limit described by Eqn. (1), however. In both natural photosynthesis and in artificial
95:
apart, either through collisions, covalent bonding, location in a material, protein or polymer structure, etc. A and D have different chemical environments. Each polarizes their surrounding condensed media. Electron-transfer theories describe the influence of a variety of parameters on the rate of
1073:
This approach is widely applicable to long-range ground-state intramolecular electron transfer, electron transfer in biology, and electron transfer in conducting materials. It also typically controls the rate of charge separation in the excited-state photochemical application described in Figure 2
100:
occur by this mechanism. Adiabatic electron-transfer theory stresses that intricately coupled to such charge transfer is the ability of any D-A system to absorb or emit light. Hence fundamental understanding of any electrochemical process demands simultaneous understanding of the optical processes
85:
that may be found in many forms in both condensed phases and the gas phase. Internal structure, external structure, or chance collisions provide interconnection between the species. Upon electron transfer, the structure of the local chemical environments involving D and A change, as does the
1067: 720:
approach to charge-transfer and indeed general chemical reactions applied by Hush using parabolic potential-energy surfaces. Hush himself has carried out many theoretical and experimental studies of mixed valence complexes and long range electron transfer in biological systems. Hush's
873:
at which charge transfer occurs- the coupling typically decreases exponentially with distance. When electron transfer occurs during collisions of the D and A species, the coupling is typically large and the “adiabatic” limit applies in which rate constants are given by
193:
Figure 2 sketches what happens if light is absorbed by just one of the chemical species, taken to be the charge donor. This produces an excited state of the donor. As the donor and acceptor are close to each other and surrounding matter, they experience a coupling
108:
Fig. 2. When the donor species absorbs light energy, it goes into a high-energy excited state, generating significant changes to its local chemical environment and the polarization of its external environment. These environments facilitate coupling
650:
is not small: charge is not localized on just one chemical species but is shared quantum mechanically between two Ru centers, presenting classically forbidden half-integral valence states. that the critical requirement for this phenomenon is
903: 365:
Adiabatic electron-transfer is also relevant to the area of solar energy harvesting. Here, light absorption directly leads to charge separation D-A. Hush's theory for this process considers the donor-acceptor coupling
591: 90:
Figure 1 sketches the basic elements of adiabatic electron-transfer theory. Two chemical species (ions, molecules, polymers, protein cofactors, etc.) labelled D (for “donor”) and A (for “acceptor”) become a distance
1262: 280:
Fig. 3. Light energy is absorbed by the donor and acceptor, initiating intervalence charge transfer to directly convert solar energy into electrical energy as D-A. In the weak-coupling limit, the coupling
2180:
Reimers, J. R.; McKemmish, L.; McKenzie, R. H.; Hush, N. S. (2015). "A unified diabatic description for electron transfer reactions, isomerization reactions, proton transfer reactions, and aromaticity".
710: 1316:
Warman, J. M.; Haas, M. P. d.; Paddon-Row, M. N.; Cotsaris, E.; Hush, N. S.; Oevering, H.; Verhoeven, J. W. (1986). "Light-induced giant dipoles in simple model compounds for photosynthesis".
503: 1483:
Nelsen, S. F.; Weaver, M. N.; Luo, Y.; Lockard, J. V.; Zink, J. I. (2006). "Use of the neighboring orbital model for analysis of electronic coupling in Class III intervalence compounds".
139:
between the donor and acceptor, which drives photochemical charge separation with a rate given by Eqn. (3) in the weak-coupling limit. This rate is also dependent on the energy
817: 775: 416:
required to rearrange the atoms from their initial geometry to the preferred local geometry and environment polarization of the charge-separated state, and the energy change
1142: 1446:"Intervalence (Charge-Resonance) Transitions in Organic Mixed-Valence Systems. Through-Space versus Through-Bond Electron Transfer between Bridged Aromatic (Redox) Centers" 444: 359: 252: 187: 1106: 837: 414: 329: 157: 867: 648: 394: 309: 222: 137: 1158:. In particular, this reconnects adiabatic electron-transfer theory with its roots in proton-transfer theory and hydrogen-atom transfer, leading back to 1518:
Rosokha, S. V.; Kochi, J. K. (2008). "Fresh Look at Electron-Transfer Mechanisms via the Donor/Acceptor Bindings in the Critical Encounter Complex".
159:
required to rearrange the atoms to the preferred local geometry and environment polarization of the charge-separated state D-A and the energy change
1062:{\displaystyle k={\frac {2\pi V_{DA}^{2}}{\hbar (4\pi \lambda k_{\beta }T)^{1/2}}}\exp {\frac {-(\Delta G_{0}+\lambda )^{2}}{4\lambda k_{\beta }T}}} 515: 885:
In the weak-coupling (“non-adiabatic”) limit, the activation energy for electron transfer is given by the expression derived independently by
1885:
Cave, R. J.; Newton, M. D. (1996). "Generalization of the Mulliken-Hush treatment for the calculation of electron transfer matrix elements".
882:
is externally constrained and so the coupling set at low or high values. In these situations, weak-coupling scenarios often become critical.
612:, which codifies types of mixed valence compounds. An iconic system for understanding Inner sphere electron transfer is the mixed-valence 1179:
Piechota, Eric J.; Meyer, Gerald J. (2019). "Introduction to Electron Transfer: Theoretical Foundations and Pedagogical Examples".
51:. Adiabatic electron-transfer can occur by either optical or thermal mechanisms. Electron transfer during a collision between an 1967:"Application of the Method of Generating Function to Radiative and Non-Radiative Transitions of a Trapped Electron in a Crystal" 257:
producing charged species. In this way, solar energy is captured and converted to electrical energy. This process is typical of
1823: 1692: 1920:
Reimers, J. R.; Hush, N. S. (2017). "Relating transition-state spectroscopy to standard chemical spectroscopic processes".
657: 1795: 1409:
German, E. D. (1979). "Intramolecular intervalence charge transfer in bimolecular mixed-valence complexes of metals".
1570: 1246: 449: 1145: 2025:
Levich, V. G.; Dogonadze, R. R. (1959). "Theory of rediationless electron transitions between ions in solution".
2114:
Efrima, S.; Bixon, M. (1976). "Vibrational effects in outer-sphere electron-transfer reactions in polar media".
609: 269:
solar-energy capture devices. The inverse of this process is also used to make organic light-emitting diodes (
1711:
Hush, N. S. (1953). "Quantum-mechanical discussion of the gas phase formation of quinonedimethide monomers".
1637:
Hush, N. S. (1975). "Inequivalent XPS binding energies in symmetrical delocalized mixed-valence complexes".
1360: 2262: 602: 897:
then determined the electron-tunneling probability to express the rate constant for thermal reactions as
2257: 2006:
Levich, V. G.; Dogonadze, R. R. (1960). "Adiabatic theory for electron-transfer processes in solution".
1152: 878:. In biological applications, however, as well as some organic conductors and other device materials, 781: 739: 266: 1111: 839:
through use of large molecules like chlorophylls, pentacenes, and conjugated polymers. The coupling
721:
quantum-electronic adiabatic approach to electron transfer was unique; directly connecting with the
613: 60: 1588:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
419: 334: 227: 162: 81:
Fig. 1. Electron transfer occurs between donor (D) and acceptor (A) species separated by distance
875: 505:), Hush showed that the rate of light absorption (and hence charge separation) is given from the 1289:
Hush, N. S. (1961). "Adiabatic theory of outer sphere electron-transfer reactions in solution".
1083: 822: 399: 314: 142: 1155: 506: 2095: 2045: 842: 623: 369: 284: 197: 112: 2190: 2123: 2060: 1978: 1929: 1894: 1760: 1720: 1646: 1595: 1492: 1418: 1375: 1325: 1188: 8: 1586:
Day, P.; Hush, N. S.; Clark, R. J. H. (2008). "Mixed valence: origins and developments".
36: 2194: 2127: 2064: 1982: 1933: 1898: 1764: 1724: 1650: 1599: 1496: 1422: 1379: 1329: 1315: 1192: 2076: 1867: 1619: 1341: 1231:
Intervalence-transfer absorption. II. Theoretical considerations and spectroscopic data
1204: 726: 262: 32: 2237: 1562: 1557:. Advances in Inorganic Chemistry and Radiochemistry. Vol. 10. pp. 247–422. 2206: 2179: 2166: 2135: 1906: 1859: 1819: 1791: 1688: 1658: 1611: 1566: 1535: 1465: 1430: 1391: 1242: 1208: 1077: 722: 44: 2080: 1871: 2233: 2198: 2162: 2131: 2068: 1986: 1945: 1937: 1902: 1851: 1768: 1728: 1680: 1679:. World Scientific Series in 20th Century Chemistry. Vol. 74. pp. 32–60. 1654: 1623: 1603: 1558: 1527: 1504: 1500: 1457: 1445: 1443: 1426: 1383: 1345: 1333: 1298: 1234: 1196: 97: 889:
and Toyozawa and by Hush. Using adiabatic electron-transfer theory, in this limit
254:
is favorable, this coupling facilitates primary charge separation to produce D-A ,
74:
is often credited with formulation of the theory of adiabatic electron-transfer.
1941: 1387: 894: 890: 52: 1200: 361:
control the rate of light absorption (and hence charge separation) via Eqn. (1).
2046:"On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer. 1" 1732: 1684: 1482: 258: 56: 1855: 1238: 2251: 598: 48: 2224:
Horiuti, J.; Polanyi, M. (2003). "Outlines of a theory of proton transfer".
1361:"Adiabatic Electron Transfer: Comparison of Modified Theory with Experiment" 2210: 1842:
Devault, D. (1980). "Quantum mechanical tunnelling in biological systems".
1615: 1607: 1539: 1469: 1358: 1159: 730: 717: 40: 1863: 1395: 586:{\displaystyle k\propto {\frac {V_{DA}^{2}R^{2}}{\lambda +\Delta G_{0}}}.} 1816:
Electron Transfer in Chemistry and Biology: An introduction to the theory
1302: 1950: 1675:
London, F. (1932). "On the theory of non-adiabatic chemical reactions".
255: 2202: 1991: 1966: 886: 2072: 1772: 1531: 1461: 1337: 71: 20: 2150: 1785: 617: 1444:
Sun, D. L.; Rosokha, S. V.; Lindeman, S. V.; Kochi, J. K. (2003).
1233:. Progress in Inorganic Chemistry. Vol. 8. pp. 391–444. 616:, wherein otherwise equivalent Ru(III) and Ru(II) are linked by a 276: 104: 77: 1585: 446:
associated with charge separation. In the weak-coupling limit (
2155:
Biochimica et Biophysica Acta (BBA) - Reviews on Bioenergetics
1751:
Hush, N. S. (1958). "Adiabatic rate processes at electrodes".
2024: 2005: 28: 270: 86:
polarization these species induce on any surrounding media.
1517: 1151:
Adiabatic electron-transfer theory is also widely applied
1919: 1080:
showed that the activation energy in Eqn. (3) reduces to
1884: 1813: 1359:
Nelsen, S. F.; Ismagilov, R. F.; Trieber, D. A. (1997).
2148: 47:
electron-transfers proceed without making or breaking
1114: 1086: 906: 845: 825: 784: 742: 660: 626: 518: 452: 422: 402: 372: 337: 317: 287: 230: 200: 165: 145: 115: 1964: 705:{\displaystyle {\frac {2|J_{DA}|}{\lambda }}\geq 1.} 608:
Adiabatic electron transfer is also relevant to the
2113: 1555:
Mixed Valence Chemistry-A Survey and Classification
1552: 1136: 1100: 1061: 861: 831: 811: 769: 704: 642: 585: 497: 438: 408: 388: 353: 323: 303: 246: 216: 181: 151: 131: 736:In adiabatic electron-transfer theory, the ratio 2249: 1786:Kornyshev, A. A.; Tosi, M.; Ulstrup, J. (1997). 16:Chemical reaction mechanism for redox reactions 2223: 869:can be controlled by controlling the distance 716:Adiabatic electron-transfer theory stems from 2151:"Electron transfers in chemistry and biology" 2043: 1408: 1178: 498:{\displaystyle 4V_{DA}^{2}/\lambda ^{2}\ll 1} 2097:Electron transfer and single molecule events 2018: 1999: 1788:Electron and Ion Transfer in Condensed Media 1841: 1750: 1710: 1636: 2226:Journal of Molecular Catalysis A: Chemical 2093: 2087: 1674: 1990: 1949: 603:intervalence charge transfer spectroscopy 1450:Journal of the American Chemical Society 1309: 1108:in the case of symmetric reactions with 275: 103: 76: 2173: 1809: 1807: 601:absorbes light, creating the field of 2250: 1837: 1835: 1746: 1744: 1742: 1706: 1704: 1670: 1668: 1476: 1284: 1282: 1280: 1162:theory of general chemical reactions. 1779: 1579: 1437: 1224: 1222: 1220: 1218: 59:occurs adiabatically on a continuous 2217: 2142: 2107: 2037: 1958: 1913: 1878: 1804: 1739: 1546: 1511: 1352: 1288: 1228: 35:is ubiquitous in nature in both the 2183:Physical Chemistry Chemical Physics 1832: 1814:Kuznetsov, A.; Ulstrup, J. (1998). 1701: 1665: 1630: 1291:Transactions of the Faraday Society 1277: 1215: 13: 1402: 1115: 1006: 564: 423: 338: 231: 189:associated with charge separation. 166: 14: 2274: 2149:Marcus, R. A.; Sutin, N. (1985). 812:{\displaystyle 2V_{DA}/\lambda } 770:{\displaystyle 2V_{DA}/\lambda } 2053:The Journal of Chemical Physics 1971:Progress of Theoretical Physics 1965:Kubo, R.; Toyozawa, Y. (1955). 1844:Quarterly Reviews of Biophysics 1790:. Singapore: World Scientific. 1753:The Journal of Chemical Physics 610:Robin-Day classification system 1553:Robin, M. B.; Day, P. (1967). 1505:10.1016/j.chemphys.2006.01.023 1255: 1172: 1137:{\displaystyle \Delta G_{0}=0} 1026: 1003: 971: 945: 778:solar-energy capture devices, 686: 668: 1: 2238:10.1016/s1381-1169(03)00034-7 1563:10.1016/S0065-2792(08)60179-X 1520:Accounts of Chemical Research 1181:Journal of Chemical Education 1165: 1146:1992 Nobel Prize in Chemistry 331:, and the free energy change 101:that the system can undergo. 2167:10.1016/0304-4173(85)90014-x 2136:10.1016/0301-0104(76)87014-0 1942:10.1016/j.cplett.2017.04.070 1907:10.1016/0009-2614(95)01310-5 1659:10.1016/0301-0104(75)87049-2 1431:10.1016/0009-2614(79)80516-3 1388:10.1126/science.278.5339.846 439:{\displaystyle \Delta G_{0}} 354:{\displaystyle \Delta G_{0}} 247:{\displaystyle \Delta G_{0}} 224:. If the free energy change 182:{\displaystyle \Delta G_{0}} 7: 1201:10.1021/acs.jchemed.9b00489 819:is maximized by minimizing 29:oxidation-reduction process 25:adiabatic electron-transfer 10: 2279: 2103:. Paris: Eolss Publishers. 1733:10.1002/pol.1953.120110401 1713:Journal of Polymer Science 1685:10.1142/9789812795762_0003 1101:{\displaystyle \lambda /4} 597:This theory explained how 66: 1856:10.1017/S003358350000175X 1239:10.1002/9780470166093.ch7 267:artificial photosynthesis 98:electrochemical reactions 1922:Chemical Physics Letters 1887:Chemical Physics Letters 1411:Chemical Physics Letters 832:{\displaystyle \lambda } 409:{\displaystyle \lambda } 324:{\displaystyle \lambda } 311:, reorganization energy 152:{\displaystyle \lambda } 61:potential energy surface 2027:Proc. Akad. Naukl. SSSR 2008:Proc. Akad. Naukl. SSSR 876:transition state theory 96:electron-transfer. All 2044:Marcus, R. A. (1956). 1608:10.1098/rsta.2007.2135 1138: 1102: 1074:and related problems. 1063: 863: 862:{\displaystyle V_{DA}} 833: 813: 771: 706: 644: 643:{\displaystyle V_{DA}} 587: 499: 440: 410: 390: 389:{\displaystyle V_{DA}} 362: 355: 325: 305: 304:{\displaystyle V_{DA}} 259:natural photosynthesis 248: 218: 217:{\displaystyle V_{DA}} 190: 183: 153: 133: 132:{\displaystyle V_{DA}} 87: 1818:. Chichester: Wiley. 1156:Molecular Electronics 1139: 1103: 1064: 864: 834: 814: 772: 707: 645: 588: 500: 441: 411: 391: 356: 326: 306: 279: 249: 219: 184: 154: 134: 107: 80: 1303:10.1039/TF9615700557 1229:Hush, N. S. (1967). 1112: 1084: 904: 843: 823: 782: 740: 658: 624: 516: 450: 420: 400: 370: 335: 315: 285: 263:organic photovoltaic 228: 198: 163: 143: 113: 2263:Reaction mechanisms 2195:2015PCCP...1724598R 2189:(38): 24598–24617. 2128:1976CP.....13..447E 2065:1956JChPh..24..966M 1983:1955PThPh..13..160K 1934:2017CPL...683..467R 1899:1996CPL...249...15C 1765:1958JChPh..28..962H 1725:1953JPoSc..11..289H 1651:1975CP.....10..361H 1600:2008RSPTA.366....5D 1497:2006CP....324..195N 1456:(51): 15950–15963. 1423:1979CPL....64..295G 1380:1997Sci...278..846N 1330:1986Natur.320..615W 1193:2019JChEd..96.2450P 939: 545: 473: 2258:Physical chemistry 2203:10.1039/C5CP02236C 1992:10.1143/PTP.13.160 1134: 1098: 1059: 922: 859: 829: 809: 767: 702: 640: 583: 528: 495: 456: 436: 406: 386: 363: 351: 321: 301: 261:as well as modern 244: 214: 191: 179: 149: 129: 88: 2073:10.1063/1.1742723 1825:978-0-471-96749-1 1773:10.1063/1.1744305 1694:978-981-02-2771-5 1677:Quantum Chemistry 1532:10.1021/ar700256a 1462:10.1021/ja037867s 1374:(5339): 846–849. 1324:(6063): 615–616. 1263:"Fellows Details" 1187:(11): 2450–2466. 1057: 989: 723:Quantum Chemistry 694: 578: 507:Einstein equation 2270: 2242: 2241: 2232:(1–2): 185–197. 2221: 2215: 2214: 2177: 2171: 2170: 2146: 2140: 2139: 2116:Chemical Physics 2111: 2105: 2104: 2102: 2091: 2085: 2084: 2050: 2041: 2035: 2034: 2022: 2016: 2015: 2003: 1997: 1996: 1994: 1962: 1956: 1955: 1953: 1917: 1911: 1910: 1882: 1876: 1875: 1839: 1830: 1829: 1811: 1802: 1801: 1783: 1777: 1776: 1748: 1737: 1736: 1708: 1699: 1698: 1672: 1663: 1662: 1645:(2–3): 361–366. 1639:Chemical Physics 1634: 1628: 1627: 1583: 1577: 1576: 1550: 1544: 1543: 1515: 1509: 1508: 1485:Chemical Physics 1480: 1474: 1473: 1441: 1435: 1434: 1406: 1400: 1399: 1365: 1356: 1350: 1349: 1338:10.1038/320615a0 1313: 1307: 1306: 1286: 1275: 1274: 1272: 1270: 1259: 1253: 1252: 1226: 1213: 1212: 1176: 1143: 1141: 1140: 1135: 1127: 1126: 1107: 1105: 1104: 1099: 1094: 1068: 1066: 1065: 1060: 1058: 1056: 1052: 1051: 1035: 1034: 1033: 1018: 1017: 998: 990: 988: 987: 986: 982: 966: 965: 940: 938: 933: 914: 868: 866: 865: 860: 858: 857: 838: 836: 835: 830: 818: 816: 815: 810: 805: 800: 799: 776: 774: 773: 768: 763: 758: 757: 711: 709: 708: 703: 695: 690: 689: 684: 683: 671: 662: 649: 647: 646: 641: 639: 638: 614:Creutz-Taube ion 592: 590: 589: 584: 579: 577: 576: 575: 556: 555: 554: 544: 539: 526: 504: 502: 501: 496: 488: 487: 478: 472: 467: 445: 443: 442: 437: 435: 434: 415: 413: 412: 407: 395: 393: 392: 387: 385: 384: 360: 358: 357: 352: 350: 349: 330: 328: 327: 322: 310: 308: 307: 302: 300: 299: 253: 251: 250: 245: 243: 242: 223: 221: 220: 215: 213: 212: 188: 186: 185: 180: 178: 177: 158: 156: 155: 150: 138: 136: 135: 130: 128: 127: 2278: 2277: 2273: 2272: 2271: 2269: 2268: 2267: 2248: 2247: 2246: 2245: 2222: 2218: 2178: 2174: 2147: 2143: 2112: 2108: 2100: 2094:Schmickler, W. 2092: 2088: 2048: 2042: 2038: 2023: 2019: 2004: 2000: 1963: 1959: 1918: 1914: 1883: 1879: 1840: 1833: 1826: 1812: 1805: 1798: 1784: 1780: 1749: 1740: 1709: 1702: 1695: 1673: 1666: 1635: 1631: 1584: 1580: 1573: 1551: 1547: 1516: 1512: 1481: 1477: 1442: 1438: 1407: 1403: 1363: 1357: 1353: 1314: 1310: 1287: 1278: 1268: 1266: 1265:. Royal Society 1261: 1260: 1256: 1249: 1227: 1216: 1177: 1173: 1168: 1122: 1118: 1113: 1110: 1109: 1090: 1085: 1082: 1081: 1047: 1043: 1036: 1029: 1025: 1013: 1009: 999: 997: 978: 974: 970: 961: 957: 941: 934: 926: 915: 913: 905: 902: 901: 850: 846: 844: 841: 840: 824: 821: 820: 801: 792: 788: 783: 780: 779: 759: 750: 746: 741: 738: 737: 685: 676: 672: 667: 663: 661: 659: 656: 655: 631: 627: 625: 622: 621: 620:. The coupling 571: 567: 557: 550: 546: 540: 532: 527: 525: 517: 514: 513: 483: 479: 474: 468: 460: 451: 448: 447: 430: 426: 421: 418: 417: 401: 398: 397: 377: 373: 371: 368: 367: 345: 341: 336: 333: 332: 316: 313: 312: 292: 288: 286: 283: 282: 238: 234: 229: 226: 225: 205: 201: 199: 196: 195: 173: 169: 164: 161: 160: 144: 141: 140: 120: 116: 114: 111: 110: 69: 17: 12: 11: 5: 2276: 2266: 2265: 2260: 2244: 2243: 2216: 2172: 2161:(3): 265–322. 2141: 2122:(4): 447–460. 2106: 2086: 2059:(5): 966–978. 2036: 2017: 1998: 1977:(2): 160–182. 1957: 1912: 1893:(1–2): 15–19. 1877: 1850:(4): 387–564. 1831: 1824: 1803: 1797:978-9810229290 1796: 1778: 1759:(5): 962–972. 1738: 1719:(4): 289–298. 1700: 1693: 1664: 1629: 1594:(1862): 5–14. 1578: 1571: 1545: 1526:(5): 641–653. 1510: 1491:(1): 195–201. 1475: 1436: 1417:(2): 295–298. 1401: 1351: 1308: 1276: 1254: 1247: 1214: 1170: 1169: 1167: 1164: 1133: 1130: 1125: 1121: 1117: 1097: 1093: 1089: 1071: 1070: 1055: 1050: 1046: 1042: 1039: 1032: 1028: 1024: 1021: 1016: 1012: 1008: 1005: 1002: 996: 993: 985: 981: 977: 973: 969: 964: 960: 956: 953: 950: 947: 944: 937: 932: 929: 925: 921: 918: 912: 909: 856: 853: 849: 828: 808: 804: 798: 795: 791: 787: 766: 762: 756: 753: 749: 745: 714: 713: 701: 698: 693: 688: 682: 679: 675: 670: 666: 637: 634: 630: 595: 594: 582: 574: 570: 566: 563: 560: 553: 549: 543: 538: 535: 531: 524: 521: 494: 491: 486: 482: 477: 471: 466: 463: 459: 455: 433: 429: 425: 405: 383: 380: 376: 348: 344: 340: 320: 298: 295: 291: 241: 237: 233: 211: 208: 204: 176: 172: 168: 148: 126: 123: 119: 68: 65: 49:chemical bonds 15: 9: 6: 4: 3: 2: 2275: 2264: 2261: 2259: 2256: 2255: 2253: 2239: 2235: 2231: 2227: 2220: 2212: 2208: 2204: 2200: 2196: 2192: 2188: 2184: 2176: 2168: 2164: 2160: 2156: 2152: 2145: 2137: 2133: 2129: 2125: 2121: 2117: 2110: 2099: 2098: 2090: 2082: 2078: 2074: 2070: 2066: 2062: 2058: 2054: 2047: 2040: 2032: 2028: 2021: 2013: 2009: 2002: 1993: 1988: 1984: 1980: 1976: 1972: 1968: 1961: 1952: 1947: 1943: 1939: 1935: 1931: 1927: 1923: 1916: 1908: 1904: 1900: 1896: 1892: 1888: 1881: 1873: 1869: 1865: 1861: 1857: 1853: 1849: 1845: 1838: 1836: 1827: 1821: 1817: 1810: 1808: 1799: 1793: 1789: 1782: 1774: 1770: 1766: 1762: 1758: 1754: 1747: 1745: 1743: 1734: 1730: 1726: 1722: 1718: 1714: 1707: 1705: 1696: 1690: 1686: 1682: 1678: 1671: 1669: 1660: 1656: 1652: 1648: 1644: 1640: 1633: 1625: 1621: 1617: 1613: 1609: 1605: 1601: 1597: 1593: 1589: 1582: 1574: 1572:9780120236107 1568: 1564: 1560: 1556: 1549: 1541: 1537: 1533: 1529: 1525: 1521: 1514: 1506: 1502: 1498: 1494: 1490: 1486: 1479: 1471: 1467: 1463: 1459: 1455: 1451: 1447: 1440: 1432: 1428: 1424: 1420: 1416: 1412: 1405: 1397: 1393: 1389: 1385: 1381: 1377: 1373: 1369: 1362: 1355: 1347: 1343: 1339: 1335: 1331: 1327: 1323: 1319: 1312: 1304: 1300: 1296: 1292: 1285: 1283: 1281: 1264: 1258: 1250: 1248:9780470166093 1244: 1240: 1236: 1232: 1225: 1223: 1221: 1219: 1210: 1206: 1202: 1198: 1194: 1190: 1186: 1182: 1175: 1171: 1163: 1161: 1157: 1153: 1149: 1147: 1131: 1128: 1123: 1119: 1095: 1091: 1087: 1079: 1075: 1053: 1048: 1044: 1040: 1037: 1030: 1022: 1019: 1014: 1010: 1000: 994: 991: 983: 979: 975: 967: 962: 958: 954: 951: 948: 942: 935: 930: 927: 923: 919: 916: 910: 907: 900: 899: 898: 896: 892: 888: 883: 881: 877: 872: 854: 851: 847: 826: 806: 802: 796: 793: 789: 785: 764: 760: 754: 751: 747: 743: 734: 732: 728: 724: 719: 699: 696: 691: 680: 677: 673: 664: 654: 653: 652: 635: 632: 628: 619: 615: 611: 606: 604: 600: 599:Prussian blue 580: 572: 568: 561: 558: 551: 547: 541: 536: 533: 529: 522: 519: 512: 511: 510: 508: 492: 489: 484: 480: 475: 469: 464: 461: 457: 453: 431: 427: 403: 396:, the energy 381: 378: 374: 346: 342: 318: 296: 293: 289: 278: 274: 272: 268: 264: 260: 256: 239: 235: 209: 206: 202: 174: 170: 146: 124: 121: 117: 106: 102: 99: 94: 84: 79: 75: 73: 64: 62: 58: 54: 50: 46: 42: 38: 34: 30: 27:is a type of 26: 22: 2229: 2225: 2219: 2186: 2182: 2175: 2158: 2154: 2144: 2119: 2115: 2109: 2096: 2089: 2056: 2052: 2039: 2030: 2026: 2020: 2011: 2007: 2001: 1974: 1970: 1960: 1951:10453/125251 1925: 1921: 1915: 1890: 1886: 1880: 1847: 1843: 1815: 1787: 1781: 1756: 1752: 1716: 1712: 1676: 1642: 1638: 1632: 1591: 1587: 1581: 1554: 1548: 1523: 1519: 1513: 1488: 1484: 1478: 1453: 1449: 1439: 1414: 1410: 1404: 1371: 1367: 1354: 1321: 1317: 1311: 1294: 1290: 1269:18 September 1267:. Retrieved 1257: 1230: 1184: 1180: 1174: 1150: 1076: 1072: 884: 879: 870: 735: 725:concepts of 715: 607: 596: 364: 192: 92: 89: 82: 70: 24: 18: 1928:: 467–477. 1148:to Marcus. 2252:Categories 1166:References 41:biological 1209:208754569 1116:Δ 1088:λ 1049:β 1041:λ 1023:λ 1007:Δ 1001:− 995:⁡ 963:β 955:λ 952:π 943:ℏ 920:π 895:Dogonadze 827:λ 807:λ 765:λ 697:≥ 692:λ 565:Δ 559:λ 523:∝ 490:≪ 481:λ 424:Δ 404:λ 339:Δ 319:λ 232:Δ 167:Δ 147:λ 72:Noel Hush 57:reductant 45:Adiabatic 43:spheres. 37:inorganic 33:mechanism 21:chemistry 2211:26193994 2081:16579694 1872:26771752 1616:17827130 1540:18380446 1470:14677987 1160:London's 727:Mulliken 718:London's 618:pyrazine 2191:Bibcode 2124:Bibcode 2061:Bibcode 1979:Bibcode 1930:Bibcode 1895:Bibcode 1864:7015406 1761:Bibcode 1721:Bibcode 1647:Bibcode 1624:5912503 1596:Bibcode 1493:Bibcode 1419:Bibcode 1396:9346480 1376:Bibcode 1368:Science 1346:4346663 1326:Bibcode 1297:: 577. 1189:Bibcode 1069:. … (3) 67:History 53:oxidant 31:. The 2209:  2079:  2014:: 591. 1870:  1862:  1822:  1794:  1691:  1622:  1614:  1569:  1538:  1468:  1394:  1344:  1318:Nature 1245:  1207:  1078:Marcus 891:Levich 731:Zewail 55:and a 2101:(PDF) 2077:S2CID 2049:(PDF) 1868:S2CID 1620:S2CID 1364:(PDF) 1342:S2CID 1205:S2CID 712:… (2) 593:… (1) 271:OLEDs 2207:PMID 2033:: 9. 1860:PMID 1820:ISBN 1792:ISBN 1689:ISBN 1612:PMID 1567:ISBN 1536:PMID 1466:PMID 1392:PMID 1271:2015 1243:ISBN 893:and 887:Kubo 265:and 39:and 2234:doi 2230:199 2199:doi 2163:doi 2159:811 2132:doi 2069:doi 2012:133 1987:doi 1946:hdl 1938:doi 1926:683 1903:doi 1891:249 1852:doi 1769:doi 1729:doi 1681:doi 1655:doi 1604:doi 1592:366 1559:doi 1528:doi 1501:doi 1489:324 1458:doi 1454:125 1427:doi 1384:doi 1372:278 1334:doi 1322:320 1299:doi 1235:doi 1197:doi 1154:in 992:exp 509:by 273:). 19:In 2254:: 2228:. 2205:. 2197:. 2187:17 2185:. 2157:. 2153:. 2130:. 2120:13 2118:. 2075:. 2067:. 2057:24 2055:. 2051:. 2031:29 2029:. 2010:. 1985:. 1975:13 1973:. 1969:. 1944:. 1936:. 1924:. 1901:. 1889:. 1866:. 1858:. 1848:13 1846:. 1834:^ 1806:^ 1767:. 1757:28 1755:. 1741:^ 1727:. 1717:11 1715:. 1703:^ 1687:. 1667:^ 1653:. 1643:10 1641:. 1618:. 1610:. 1602:. 1590:. 1565:. 1534:. 1524:41 1522:. 1499:. 1487:. 1464:. 1452:. 1448:. 1425:. 1415:64 1413:. 1390:. 1382:. 1370:. 1366:. 1340:. 1332:. 1320:. 1295:57 1293:. 1279:^ 1241:. 1217:^ 1203:. 1195:. 1185:96 1183:. 733:. 700:1. 605:. 63:. 23:, 2240:. 2236:: 2213:. 2201:: 2193:: 2169:. 2165:: 2138:. 2134:: 2126:: 2083:. 2071:: 2063:: 1995:. 1989:: 1981:: 1954:. 1948:: 1940:: 1932:: 1909:. 1905:: 1897:: 1874:. 1854:: 1828:. 1800:. 1775:. 1771:: 1763:: 1735:. 1731:: 1723:: 1697:. 1683:: 1661:. 1657:: 1649:: 1626:. 1606:: 1598:: 1575:. 1561:: 1542:. 1530:: 1507:. 1503:: 1495:: 1472:. 1460:: 1433:. 1429:: 1421:: 1398:. 1386:: 1378:: 1348:. 1336:: 1328:: 1305:. 1301:: 1273:. 1251:. 1237:: 1211:. 1199:: 1191:: 1132:0 1129:= 1124:0 1120:G 1096:4 1092:/ 1054:T 1045:k 1038:4 1031:2 1027:) 1020:+ 1015:0 1011:G 1004:( 984:2 980:/ 976:1 972:) 968:T 959:k 949:4 946:( 936:2 931:A 928:D 924:V 917:2 911:= 908:k 880:R 871:R 855:A 852:D 848:V 803:/ 797:A 794:D 790:V 786:2 761:/ 755:A 752:D 748:V 744:2 687:| 681:A 678:D 674:J 669:| 665:2 636:A 633:D 629:V 581:. 573:0 569:G 562:+ 552:2 548:R 542:2 537:A 534:D 530:V 520:k 493:1 485:2 476:/ 470:2 465:A 462:D 458:V 454:4 432:0 428:G 382:A 379:D 375:V 347:0 343:G 297:A 294:D 290:V 240:0 236:G 210:A 207:D 203:V 175:0 171:G 125:A 122:D 118:V 93:R 83:R

Index

chemistry
oxidation-reduction process
mechanism
inorganic
biological
Adiabatic
chemical bonds
oxidant
reductant
potential energy surface
Noel Hush

electrochemical reactions


natural photosynthesis
organic photovoltaic
artificial photosynthesis
OLEDs

Einstein equation
Prussian blue
intervalence charge transfer spectroscopy
Robin-Day classification system
Creutz-Taube ion
pyrazine
London's
Quantum Chemistry
Mulliken
Zewail

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑