Knowledge

Absolute electrode potential

Source 📝

876:
the choice of ambient temperature and standard states, and is the result of the near-cancellation of certain terms in the expressions. For example, if a standard state of one atmosphere ideal gas is chosen for the electron gas then the cancellation of terms occurs at a temperature of 296 K, and the two definitions give an equal numerical result. At 298.15 K a near-cancellation of terms would apply and the two approaches would produce nearly the same numerical values. However, there is no fundamental significance to this near agreement because it depends on arbitrary choices, such as temperature and definitions of standard states.
768: 322:
Rockwood's approach to absolute-electrode thermodynamics is easily expendable to other thermodynamic functions. For example, the absolute half-cell entropy has been defined as the entropy of the absolute half-cell process defined above. An alternative definition of the absolute half-cell entropy has
875:
of the electron gas. The numerical value for the absolute potential of the standard hydrogen electrode one would calculate under the Rockwood definition is sometimes fortuitously close to the value one would obtain under the Trasatti definition. This near-agreement in the numerical value depends on
214:
A different definition for the absolute electrode potential (also known as absolute half-cell potential and single electrode potential) has also been discussed in the literature. In this approach, one first defines an isothermal absolute single-electrode process (or absolute half-cell process.) For
314:
In this approach, all three species taking part in the reaction, including the electron, must be placed in thermodynamically well-defined states. All species, including the electron, are at the same temperature, and appropriate standard states for all species, including the electron, must be fully
870:
The types of physical measurements required under the Rockwood definition are similar to those required under the Trasatti definition, but they are used in a different way, e.g. in Rockwood's approach they are used to calculate the equilibrium
586: 180: 472: 925:
Sergio Trasatti, "The Absolute Electrode Potential: an Explanatory Note (Recommendations 1986)", International Union of Pure and Applied Chemistry, Pure & AppL Chem., Vol. 58, No. 7, pp. 955–66, 1986.
374:
This approach differs from the approach described by Rockwood in the treatment of the electron, i.e. whether it is placed in the gas phase or the metal. The electron can also be in another state, that of a
851: 555: 46:
According to a more specific definition presented by Trasatti, the absolute electrode potential is the difference in electronic energy between a point inside the metal (
514: 763:{\displaystyle E^{\ominus }{\rm {(H^{+}/H_{2})(abs)}}=\phi ^{\rm {Hg}}+\Delta _{S}^{\rm {Hg}}\psi _{\sigma =0}^{\ominus }-E_{\sigma =0}^{\rm {Hg}}{\rm {(SHE)}}} 573:
For practical purposes, the value of the absolute electrode potential of the standard hydrogen electrode is best determined with the utility of data for an
79: 1042:
Fang, Zheng; Wang, Shaofen; Zhang, Zhenghua; Qiu, Guanzhou (2008). "The electrochemical Peltier heat of the standard hydrogen electrode reaction".
323:
recently been published by Fang et al. who define it as the entropy of the following reaction (using the hydrogen electrode as an example):
397: 319:
for the absolute electrode process. To express this in volts one divides the Gibbs free energy by the negative of Faraday's constant.
779: 1100: 391:
The basis for determination of the absolute electrode potential under the Trasatti definition is given by the equation:
895: 65:
is typically used for reference potential. The absolute potential of the SHE is 4.44 ± 0.02 
525: 215:
example, in the case of a generic metal being oxidized to form a solution-phase ion, the process would be
62: 38:
measured with respect to a universal reference system (without any additional metal–solution interface).
1095: 885: 940:
Rockwood, Alan L. (January 1, 1986). "Absolute half-cell thermodynamics: Electrode potential".
927: 492: 1076: 1000: 949: 863: 8: 31: 1004: 953: 281: 175:{\displaystyle E_{\rm {(abs)}}^{M}=E_{\rm {(SHE)}}^{M}+(4.44\pm 0.02)\ {\mathrm {V} }} 1059: 1024: 1016: 973: 965: 890: 577: 380: 376: 316: 1051: 1008: 957: 23: 210:(SHE) denotes the electrode potential relative to the standard hydrogen electrode. 574: 558: 872: 1055: 1089: 1063: 1020: 1012: 969: 517: 961: 1028: 977: 311:
Other types of absolute electrode reactions would be defined analogously.
55: 47: 914: 61:
This potential is difficult to determine accurately. For this reason, a
58:
in which the electrode is submerged (an electron at rest in vacuum).
51: 254: 229: 991:
Rockwood, Alan L. (August 1, 1987). "Absolute half-cell entropy".
467:{\displaystyle E^{M}{\rm {(abs)}}=\phi ^{M}+\Delta _{S}^{M}\psi } 315:
defined. The absolute electrode potential is then defined as the
35: 27: 928:
http://www.iupac.org/publications/pac/1986/pdf/5807x0955.pdf
853:
is the absolute standard potential of the hydrogen electrode
70: 196: 66: 487:
is the absolute potential of the electrode made of metal M
846:{\displaystyle E^{\ominus }{\rm {(H^{+}/H_{2})(abs)}}} 782: 589: 528: 495: 400: 82: 257:electrode, the absolute half-cell process would be 845: 762: 549: 508: 466: 174: 999:(3). American Physical Society (APS): 1525–1526. 1087: 1041: 948:(1). American Physical Society (APS): 554–559. 915:IUPAC Gold Book – absolute electrode potential 73:. Therefore, for any electrode at 25 °C: 990: 939: 16:Electrode potential in electrochemistry 1088: 204:denotes the electrode made of metal M 550:{\displaystyle \Delta _{S}^{M}\psi } 207:(abs) denotes the absolute potential 13: 835: 832: 829: 814: 799: 752: 749: 746: 735: 732: 685: 682: 672: 662: 659: 642: 639: 636: 621: 606: 530: 447: 422: 419: 416: 167: 130: 127: 124: 98: 95: 92: 14: 1112: 386: 1070: 1035: 984: 933: 919: 908: 838: 826: 823: 795: 755: 743: 645: 633: 630: 602: 425: 413: 159: 147: 133: 121: 101: 89: 1: 901: 862:denotes the condition of the 41: 896:Standard electrode potential 383:and B. Damaskin and others. 20:Absolute electrode potential 7: 1050:(1–2). Elsevier BV: 40–44. 879: 379:in solution, as studied by 63:standard hydrogen electrode 10: 1117: 1101:Electrochemical potentials 1056:10.1016/j.tca.2008.04.002 886:Electrochemical potential 559:contact (Volta) potential 509:{\displaystyle \phi ^{M}} 1013:10.1103/physreva.36.1525 561:difference at the metal( 54:and a point outside the 962:10.1103/physreva.33.554 847: 764: 551: 510: 468: 192:is electrode potential 176: 1077:J. Electroanal. Chem. 848: 765: 552: 511: 469: 177: 1079:, 79 (1977), 259-266 864:point of zero charge 780: 587: 526: 493: 398: 80: 1005:1987PhRvA..36.1525R 954:1986PhRvA..33..554R 740: 711: 690: 575:ideally-polarizable 543: 460: 143: 111: 32:electrode potential 30:definition, is the 1044:Thermochimica Acta 843: 760: 715: 691: 671: 547: 529: 506: 464: 446: 172: 115: 83: 26:, according to an 993:Physical Review A 942:Physical Review A 891:Galvani potential 866:at the interface. 381:Alexander Frumkin 377:solvated electron 317:Gibbs free energy 164: 1108: 1096:Electrochemistry 1080: 1074: 1068: 1067: 1039: 1033: 1032: 988: 982: 981: 937: 931: 923: 917: 912: 861: 852: 850: 849: 844: 842: 841: 822: 821: 812: 807: 806: 792: 791: 769: 767: 766: 761: 759: 758: 739: 738: 729: 710: 705: 689: 688: 679: 667: 666: 665: 649: 648: 629: 628: 619: 614: 613: 599: 598: 580:(Hg) electrode: 556: 554: 553: 548: 542: 537: 516:is the electron 515: 513: 512: 507: 505: 504: 486: 473: 471: 470: 465: 459: 454: 442: 441: 429: 428: 410: 409: 367: 366: 365: 358: 357: 341: 339: 338: 335: 332: 304: 303: 302: 295: 294: 275: 273: 272: 269: 266: 246: 244: 243: 236: 235: 191: 181: 179: 178: 173: 171: 170: 162: 142: 137: 136: 110: 105: 104: 24:electrochemistry 1116: 1115: 1111: 1110: 1109: 1107: 1106: 1105: 1086: 1085: 1084: 1083: 1075: 1071: 1040: 1036: 989: 985: 938: 934: 924: 920: 913: 909: 904: 882: 873:vapour pressure 856: 817: 813: 808: 802: 798: 794: 793: 787: 783: 781: 778: 777: 742: 741: 731: 730: 719: 706: 695: 681: 680: 675: 658: 657: 653: 624: 620: 615: 609: 605: 601: 600: 594: 590: 588: 585: 584: 538: 533: 527: 524: 523: 500: 496: 494: 491: 490: 481: 455: 450: 437: 433: 412: 411: 405: 401: 399: 396: 395: 389: 370: 364: 362: 361: 360: 356: 354: 353: 352: 351: 349: 345: 336: 333: 330: 329: 327: 307: 301: 299: 298: 297: 293: 291: 290: 289: 288: 286: 279: 270: 267: 264: 263: 261: 249: 242: 240: 239: 238: 234: 232: 231: 230: 228: 226: 222: 189: 166: 165: 138: 120: 119: 106: 88: 87: 81: 78: 77: 44: 17: 12: 11: 5: 1114: 1104: 1103: 1098: 1082: 1081: 1069: 1034: 983: 932: 918: 906: 905: 903: 900: 899: 898: 893: 888: 881: 878: 868: 867: 854: 840: 837: 834: 831: 828: 825: 820: 816: 811: 805: 801: 797: 790: 786: 771: 770: 757: 754: 751: 748: 745: 737: 734: 728: 725: 722: 718: 714: 709: 704: 701: 698: 694: 687: 684: 678: 674: 670: 664: 661: 656: 652: 647: 644: 641: 638: 635: 632: 627: 623: 618: 612: 608: 604: 597: 593: 571: 570: 546: 541: 536: 532: 521: 503: 499: 488: 475: 474: 463: 458: 453: 449: 445: 440: 436: 432: 427: 424: 421: 418: 415: 408: 404: 388: 385: 372: 371: 368: 363: 355: 347: 343: 309: 308: 305: 300: 292: 284: 277: 251: 250: 247: 241: 233: 224: 220: 212: 211: 208: 205: 199: 195:V is the unit 193: 183: 182: 169: 161: 158: 155: 152: 149: 146: 141: 135: 132: 129: 126: 123: 118: 114: 109: 103: 100: 97: 94: 91: 86: 43: 40: 15: 9: 6: 4: 3: 2: 1113: 1102: 1099: 1097: 1094: 1093: 1091: 1078: 1073: 1065: 1061: 1057: 1053: 1049: 1045: 1038: 1030: 1026: 1022: 1018: 1014: 1010: 1006: 1002: 998: 994: 987: 979: 975: 971: 967: 963: 959: 955: 951: 947: 943: 936: 929: 922: 916: 911: 907: 897: 894: 892: 889: 887: 884: 883: 877: 874: 865: 859: 855: 818: 809: 803: 788: 784: 776: 775: 774: 726: 723: 720: 716: 712: 707: 702: 699: 696: 692: 676: 668: 654: 650: 625: 616: 610: 595: 591: 583: 582: 581: 579: 576: 568: 564: 560: 544: 539: 534: 522: 519: 518:work function 501: 497: 489: 484: 480: 479: 478: 461: 456: 451: 443: 438: 434: 430: 406: 402: 394: 393: 392: 387:Determination 384: 382: 378: 326: 325: 324: 320: 318: 312: 283: 260: 259: 258: 256: 245: 218: 217: 216: 209: 206: 203: 200: 198: 194: 188: 187: 186: 156: 153: 150: 144: 139: 116: 112: 107: 84: 76: 75: 74: 72: 68: 64: 59: 57: 53: 49: 39: 37: 33: 29: 25: 21: 1072: 1047: 1043: 1037: 996: 992: 986: 945: 941: 935: 921: 910: 869: 857: 772: 572: 569:) interface. 566: 562: 482: 476: 390: 373: 321: 313: 310: 252: 213: 201: 184: 60: 45: 19: 18: 565:)–solution( 69:at 25  56:electrolyte 48:Fermi level 1090:Categories 902:References 520:of metal M 348:(solution) 285:(solution) 225:(solution) 42:Definition 1064:0040-6031 1021:0556-2791 970:0556-2791 789:⊖ 721:σ 713:− 708:⊖ 697:σ 693:ψ 673:Δ 655:ϕ 596:⊖ 545:ψ 531:Δ 498:ϕ 462:ψ 448:Δ 435:ϕ 154:± 52:electrode 880:See also 255:hydrogen 253:For the 50:) of an 1029:9899031 1001:Bibcode 978:9896642 950:Bibcode 773:where: 578:mercury 557:is the 477:where: 369:(metal) 344:2 (gas) 340:⁠ 328:⁠ 278:2 (gas) 274:⁠ 262:⁠ 221:(metal) 185:where: 1062:  1027:  1019:  976:  968:  163:  930:(pdf) 485:(abs) 306:(gas) 248:(gas) 36:metal 34:of a 28:IUPAC 22:, in 1060:ISSN 1025:PMID 1017:ISSN 974:PMID 966:ISSN 197:volt 157:0.02 151:4.44 1052:doi 1048:473 1009:doi 958:doi 860:= 0 346:→ H 223:→ M 1092:: 1058:. 1046:. 1023:. 1015:. 1007:. 997:36 995:. 972:. 964:. 956:. 946:33 944:. 350:+ 287:+ 280:→ 227:+ 71:°C 1066:. 1054:: 1031:. 1011:: 1003:: 980:. 960:: 952:: 858:σ 839:) 836:s 833:b 830:a 827:( 824:) 819:2 815:H 810:/ 804:+ 800:H 796:( 785:E 756:) 753:E 750:H 747:S 744:( 736:g 733:H 727:0 724:= 717:E 703:0 700:= 686:g 683:H 677:S 669:+ 663:g 660:H 651:= 646:) 643:s 640:b 637:a 634:( 631:) 626:2 622:H 617:/ 611:+ 607:H 603:( 592:E 567:S 563:M 540:M 535:S 502:M 483:E 457:M 452:S 444:+ 439:M 431:= 426:) 423:s 420:b 417:a 414:( 407:M 403:E 359:e 342:H 337:2 334:/ 331:1 296:e 282:H 276:H 271:2 268:/ 265:1 237:e 219:M 202:M 190:E 168:V 160:) 148:( 145:+ 140:M 134:) 131:E 128:H 125:S 122:( 117:E 113:= 108:M 102:) 99:s 96:b 93:a 90:( 85:E 67:V

Index

electrochemistry
IUPAC
electrode potential
metal
Fermi level
electrode
electrolyte
standard hydrogen electrode
V
°C
volt

e

hydrogen
H
Gibbs free energy
solvated electron
Alexander Frumkin
work function
contact (Volta) potential
ideally-polarizable
mercury
point of zero charge
vapour pressure
Electrochemical potential
Galvani potential
Standard electrode potential
IUPAC Gold Book – absolute electrode potential
http://www.iupac.org/publications/pac/1986/pdf/5807x0955.pdf
Bibcode
1986PhRvA..33..554R

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.