Knowledge

80-meter band

Source 📝

235: 153:
effective radiated power to have a decided advantage in being heard by long-distance receiving stations. With very high transmitting antennas or large vertically polarized arrays and full legal power, reliable worldwide communications occurs over nighttime paths. Good receiving antennas have far more modest requirements to reliably get signals from worldwide sources.
216:: Since short antennas have very low radiation resistance, the lion's share of their fed power is lost to heat, and their efficiency is typically below 10%, with roughly 90% of the power input lost to wire and ground resistance. Additionally, the large inductance of the loading coil creates an antenna system with an extremely narrow bandwidth (very high 104:) and goes up to 4.0 MHz (74.9 m wavelength). The upper part of the band, mostly used for voice, is often referred to as 75 meters, since in Region 2, the wavelengths in that section are between 80–75 meters (adjacent to or overlapping a shortwave broadcast band called by the same name: "75 m"). 568:
voice ("phone"), to occupy frequencies on the low end of 80 meters. Most intrusions of this type are from fishing vessels and their marker buoys; although most of those vessels are from SE Asia and South American ports, some band intrusions are committed by fishing vessels based in ports in
148:
significantly affects the 80 meter band by absorbing signals. During the daylight hours, a station in middle or high latitudes using 100 watts and a simple dipole antenna can expect a maximum communication range of 200 miles (320 km), extending to a few thousand miles or more at night.
112:
80 meters can be plagued with noise: The same ionospheric refraction that makes long-distance shortwave propagation possible also traps terrestrial noise under the ionosphere, preventing it from dissipating into space, which quiets down radio bands at higher frequencies, above ~20 MHz. The
83:
from the late afternoon through the night time hours. At night, 80 m is usually reliable for short- to medium-distance contacts, with average distances ranging from local contacts within 200 miles / 300 km out to a distance of 1,000 miles / 1,600 km or more at night – even
301:
sometimes appears on the band during nighttime hours in midwinter, which can be as much as 300 miles / 500 km, rendering communication with closer stations impossible. This is not generally a problem at middle or equatorial latitudes, or for large parts of the year anywhere, but it does
348:
to amateurs in the Americas, and 3.5–3.8 MHz or 3.5–3.9 MHz to amateurs in other parts of the world. However, amateurs outside the Americas must share this useful piece of spectrum with other users, usually on a joint primary basis. As a result, authorities in the affected parts of the
642:
transmitted at a nominal 3.999 MHz will certainly modulate across the 4.0 MHz band edge and are against licensing regulations, a few very narrow-band data modes – like CW – can be used, as long as the power of the emissions beyond the band edge that get past the transmitting system's
187:
of that height, which is still a formidable construction project for an amateur. Erecting such large antennas and ensuring the antennas radiate significant power at low angles are two of the challenges facing amateurs wishing to communicate over long distances. Amateurs interested in regional
152:
Global coverage can be routinely achieved at high latitudes during the late fall and winter, by stations using modest power and common antennas. The higher background noise on 80 meters, especially when combined with higher ionospheric absorption, causes transmitting stations with higher
604:
power-level meters have better dynamic range, hence more acute signal detection, than all but the best spectrum analyzers, and are excellent for detecting out-of-band emissions when used properly. While some operators reporting out-of-band emissions might have used a wide receiver bandwidth,
203:
Mobile radio operation with portable antennas is still possible, but the relatively short length of practical mobile antennas compared to a quarter-wave antenna – usually under 10 feet (3.0 meters) vs. around 65 feet (20 meters) tall – results in the need to compensate with a large
629:
generally are not useful for measuring bandwidth, either on-air or off-air. Wide detection bandwidth, slow sweep rates, and common, loud, local ambient noise all mask the presumably weak emissions that survive a transmitter's internal filtering. Although voice ("phone") modes like
117:
and cumulative regional sources of human-made static. The urban and suburban 80 m noise floor is typically set by the amount of noise generated locally, from electrical machinery and household electronics, and is generally 10–20 dB stronger than typical rural noise.
161:
Antennas for 3.5 MHz are large: For example, a quarter-wave vertical sized to resonate at 3.6 MHz is approximately 65 feet (20 meters) high; for reasonable antenna efficiency, even a reduced-size antenna needs to be a large fraction
78:
persists until nightfall, 80 meters is usually only good for local communications during the day, and hardly ever good for communications over intercontinental distances during daylight hours. But it is the most popular band for regional
613:
bandwidth, so the perceived bandwidth seems wider than it actually is: Any measurement of out-of-band emissions using a receiver should be made with it set to a significantly narrower bandwidth than the transmitter's – for example, a narrow
309:
During spring and summer (year-round in the tropics), lightning from distant storms creates significantly higher background noise levels, often becoming an insurmountable obstacle to maintaining normal communications. Nearby
265:
The 80 meter band was made available to amateurs in the United States by the Third National Radio Convention in 1924. The band was allocated on a worldwide basis by the International Radiotelegraph Convention in 1927.
589:
transceivers have third- and fifth-order products of significant level, typically only 30–35 dB below PEP for third order intermodulation. This means any operation above 3.998 MHz even
786:. International Radiotelegraph Convention (in French and English). Washington, DC: London, UK: His Majesty's Stationery Office (published 1928). 4 October – 27 November 1927. Archived from 196:
on this band. Horizontally polarized antennas closer than a quarter-wave to earth produce predominantly high-angle radiation, which is useful for short-distance propagation modes, such as
585:. But depending on quality and condition of radio, audio characteristics, and proper adjustments the bulk of emissions on lower sideband will typically occupy 3.9970–3.9997 MHz. All 596:
It is a common misconception that operating a transmitter set at 3.9997 MHz is not legal, since emissions extend beyond the 4.000 MHz band edge; this is true for some forms of
137:
between amateurs within a range of 500 miles / 800 km. During contests the band is filled with activity beginning before sunset and continuing all through the night.
208:
to bring the antenna to resonance. However a large coil looses power through resistive heating of its wire, and that wire resistance is always high enough to compete for
121:
On 80 meters, nearly all areas of the world are subject to weather-induced noise from regionally local thunderstorms, and combined distant lightning strikes from
1663:
All allocations are subject to variation by country. For simplicity, only common allocations found internationally are listed. See a band's article for specifics.
314:
activity during the summer months can make the band completely unusable, even for local communications. In the winter months during the peak years of the
659:. When it is night on both ends of the transmission path some broadcasters in Asia and Europe can be heard in North America between 3.9–4.0  222:), which can be good for reducing received noise, but makes changing frequency a challenge, since one must retune the loading coil's inductance. 778: 812: 1063: 998: 968: 200:. Nonetheless, occasional favorable propagation conditions make substantial distances still possible with modest-height antennas. 1676: 1666: 851: 337: 577:
For Canadian and U.S. Amateurs with infeasibly perfect transmitters, the highest usable frequency in the 80 m band for
719:
In Australia the upper 3.776–3.800 MHz band segment is a DX window, only allowed for amateurs with advanced licenses.
1072: 331: 710:, a few nations allocate different sub-bands of 3.5–3.8 MHz, 3.5–3.9 MHz, or 3.5–4.0 MHz for amateur use. 1041: 1710: 884: 855: 40: 880: 600:, but not all, and is challenging to measure accurately. In general, high quality receivers or frequency-selective 291: 1056: 197: 564:) primarily used for long-distance communications. It is common for illegal marine operations, generally using 55: 3). The upper portion of the band, which is usually used for phone (voice), is sometimes referred to as 910: 1733: 548:
As is common for many other wide amateur bands, the lower edge of 80 meters is predominantly used for
134: 1018: 760: 1646: 1639: 994: 964: 938: 1049: 917: 686:
signal is strong enough, its noise may mask weak amateur signals. Most DRM signals occupy 9 or 10 
667:
receiver this produces a tone in the received audio when the station is broadcasting with conventional
652: 631: 578: 80: 823: 787: 246: 1556: 819: 290:
paths must be largely, although not entirely, in darkness. At times, there is pronounced dark-side
275: 1706: 934: 683: 672: 990: 282:
anywhere on the planet, the main propagation barrier to long-distance communication is heavy
1480: 1404: 676: 668: 639: 635: 213: 960: 8: 1598: 1543: 1316: 549: 1071: 1467: 1453: 1433: 1410: 113:
80 m rural noise floor is mostly determined by noise produced by distant tropical
125:
thunderstorms that perpetually supply world-wide a continuous source of radio static.
1626: 1612: 1576: 1562: 1529: 1505: 1486: 682:
can blank out the carrier tone, but the audio signal often can still be heard. If a
294:, which is most useful on polar routes, away from equatorial thunderstorm activity. 1127: 615: 311: 287: 1683:, but many individual administrations have commonly adopted this allocation under 1385: 1114: 780:
International Radiotelegraph Convention and General and Supplementary Regulations
741: 664: 601: 590: 586: 553: 349:
world restrict amateur allocations between 3.7 MHz and the top of the band.
303: 209: 60: 1165: 1147: 1133: 622: 565: 189: 51: 1); and 3.5–3.9 MHz in south and east Asia and the eastern Pacific ( 1727: 1654:
Some administrations have authorized spectrum for amateur use in this region;
1303: 1275: 1261: 1247: 1233: 1209: 1195: 1108: 315: 32: 1685: 1366: 1346: 1322: 679: 656: 593:(LSB) comes with some risk of illegal emissions, even with good equipment. 205: 193: 114: 47: 2); generally 3.5–3.8 MHz in Europe, Africa, and northern Asia ( 302:
occasionally limit local wintertime traffic on the band in areas such as
888: 234: 1289: 1101: 1096: 1091: 707: 626: 597: 141: 101: 67: 52: 48: 44: 63:
between 3.9–4.0 MHz used by a number of national radio services.
1670: 655:
band overlaps the upper edge of the 80 m ham band allocation in
298: 28: 728:
In Korea the 3.520–3.525 MHz sub-band is for digital messaging.
1026: 217: 122: 767:. Third National Radio Conference. 6–10 October 1924. p. 15. 283: 145: 84:
worldwide – depending on atmospheric and ionospheric conditions.
75: 59:; however, in Europe, "75 m" is used to name an overlapping 1656:
others have declined to regulate frequencies above 300 GHz.
319: 322:
effects can also render the band useless for hours at a time.
675:(DRM). Setting an SSB receiver to the exact frequency of the 1699:. These allocations may only apply to a group of countries. 920:(JARL). 25 September 2023 – via jarl.org / jarl.or.jp. 188:
communication can use low wire antennas, such as horizontal
278:
for long-distance communication seldom dips below 3.5 
687: 660: 582: 561: 557: 386: 345: 341: 279: 97: 71: 36: 306:, the northern tier of the United States and Canada. 875: 873: 846: 844: 1073:International amateur radio frequency allocations 1725: 671:, or white noise if the station is transmitting 953: 929: 927: 870: 841: 107: 1057: 983: 286:absorption during the daytime, ensuring that 212:power against the antenna's meager effective 1359: 924: 156: 128: 1064: 1050: 805: 646: 903: 753: 325: 96:"80 meter" band begins at 3.5  887:Region 3 (IARU-R3). Archived from 771: 765:Recommendations for Regulation of Radio 133:The 80 meter band is favoured for 1726: 643:filtering remain insignificantly low. 1667:World Administrative Radio Conference 1045: 971:from the original on 7 September 2005 338:International Telecommunication Union 761:"Frequency or wave band allocations" 581:voice ("phone") would be 3.999  229: 822:(RAC). 11 July 2008. Archived from 332:Amateur radio frequency allocations 13: 1665:HF allocation created at the 1979 1001:from the original on 3 August 2005 572: 543: 297:At higher latitudes, a noticeable 192:, inverted vee dipole antennas or 14: 1745: 1691:This includes a currently active 1669:. These are commonly called the " 885:International Amateur Radio Union 856:International Amateur Radio Union 352:Some allocations are as follows: 1446: 1438: 1398: 1390: 916:(Report). Toshima-ku Tokyo, JP: 621:Inexpensive spectrum analyzers, 233: 1009:– via ARRLWeb (arrl.org). 979:– via ARRLWeb (arrl.org). 722: 609:bandwidth expands the measured 198:near vertical incidence skywave 66:Because high absorption in the 1697:Table of Frequency Allocations 1681:Table of Frequency Allocations 713: 700: 269: 1: 1675:This is not mentioned in the 881:"IARU Region 3 Bandplan" 837:– via RAC Web (rac.ca). 747: 340:allocated the whole 500  693: 108:Natural and human-made noise 39:in North and South America ( 16:Amateur radio frequency band 7: 995:American Radio Relay League 965:American Radio Relay League 939:Korean Amateur Radio League 852:IARU Region 1 Bandplan 735: 525:United States    87: 10: 1750: 918:Japan Amateur Radio League 556:), with the lower 10  329: 225: 1704: 1661: 1652: 1631: 1617: 1603: 1589: 1567: 1555: 1548: 1534: 1496: 1479: 1472: 1458: 1420: 1403: 1376: 1336: 1315: 1308: 1294: 1280: 1266: 1252: 1238: 1200: 1164: 1157: 1138: 1126: 1119: 1079: 993:(Report). Newington, CT: 963:(Report). Newington, CT: 492:3.500–3.550, 3.790–3.800 479:3.745–3.770, 3.791–3.805 477:3.662–3.687, 3.702–3.716, 475:3.500–3.580, 3.599–3.612, 462:3.500–3.700, 3.890–3.900 423:3.500–3.700, 3.776–3.800 408:3.500–3.750, 3.790–3.800 157:Cumbersome large antennas 129:Daytime and nighttime use 1711:Electromagnetic spectrum 899:– via iaru-r3.org. 866:– via iaru-r1.org. 820:Radio Amateurs of Canada 276:maximum usable frequency 61:shortwave broadcast band 27:band is a span of radio 1695:mentioned in the ITU's 949:– via karl.or.kr. 858:Region 1 (IARU-R1) 813:"RAC MF / HF Band Plan" 651:The European 75 m 81:communications networks 35:use, from 3.5–4.0  673:Digital Radio Mondiale 647:Broadcast interference 206:inductive loading coil 1426:(420.000–450.000 MHz) 937:(Report). Seoul, KR: 326:Frequency allocations 292:gray-line propagation 1029:on 24 September 2005 669:amplitude modulation 640:frequency modulation 569:the USA and Canada. 214:radiation resistance 1734:Amateur radio bands 1693:footnote allocation 1633:241.000–250.000 GHz 1619:134.000–141.000 GHz 1605:122.250–123.000 GHz 1443:902.000–928.000 MHz 1422:430.000–440.000 MHz 1417:430.000–440.000 MHz 1395:220.000–225.000 MHz 1378:144.000–148.000 MHz 1373:144.000–146.000 MHz 1333:(50.000–54.000 MHz) 829:on 27 November 2010 653:shortwave broadcast 1686:"Article 4.4" 344:from 3.5–4.0  312:convective weather 245:. You can help by 1721: 1720: 1716: 1715: 1591:76.000–81.500 GHz 1569:47.000–47.200 GHz 1550:24.000–24.250 GHz 1536:10.000–10.500 GHz 1355:70.000–70.500 MHz 1338:50.000–54.000 MHz 1329:50.000–52.000 MHz 1310:28.000–29.700 MHz 1296:24.890–24.990 MHz 1282:21.000–21.450 MHz 1268:18.068–18.168 MHz 1254:14.000–14.350 MHz 1240:10.100–10.150 MHz 1202:5.3515–5.3665 MHz 537: 536: 263: 262: 1741: 1689: 1634: 1620: 1606: 1592: 1587: 1570: 1551: 1537: 1523: 1518: 1513: 1499: 1494: 1475: 1461: 1444: 1427: 1423: 1418: 1396: 1379: 1374: 1356: 1339: 1334: 1330: 1311: 1297: 1283: 1269: 1255: 1241: 1227: 1222: 1217: 1203: 1189: 1184: 1179: 1160: 1155: 1141: 1122: 1082: 1081: 1066: 1059: 1052: 1043: 1042: 1038: 1036: 1034: 1025:. Archived from 1011: 1010: 1008: 1006: 987: 981: 980: 978: 976: 961:US Amateur Bands 957: 951: 950: 948: 946: 931: 922: 921: 915: 907: 901: 900: 898: 896: 877: 868: 867: 865: 863: 848: 839: 838: 836: 834: 828: 817: 809: 803: 802: 800: 798: 792: 785: 775: 769: 768: 757: 729: 726: 720: 717: 711: 704: 550:radio telegraphy 359: 358: 258: 255: 237: 230: 220: 186: 184: 183: 182: 180: 179: 176: 173: 1749: 1748: 1744: 1743: 1742: 1740: 1739: 1738: 1724: 1723: 1722: 1717: 1690: 1684: 1674: 1664: 1655: 1632: 1618: 1604: 1590: 1582: 1568: 1549: 1535: 1522:5.650–5.850 GHz 1521: 1517:5.650–5.925 GHz 1516: 1512:5.650–5.850 GHz 1511: 1498:3.300–3.500 GHz 1497: 1493:3.400–3.475 GHz 1492: 1474:2.300–2.450 GHz 1473: 1460:1.240–1.300 GHz 1459: 1442: 1425: 1424: 1421: 1416: 1394: 1377: 1372: 1354: 1337: 1332: 1331: 1328: 1309: 1295: 1281: 1267: 1253: 1239: 1226:7.000–7.200 MHz 1225: 1221:7.000–7.300 MHz 1220: 1216:7.000–7.200 MHz 1215: 1201: 1188:3.500–3.900 MHz 1187: 1183:3.500–4.000 MHz 1182: 1178:3.500–3.800 MHz 1177: 1159:1.800–2.000 MHz 1158: 1154:1.810–1.850 MHz 1153: 1139: 1121:135.7–137.8 kHz 1120: 1075: 1070: 1040: 1032: 1030: 1019:"Ham Radio QRP" 1017: 1014: 1004: 1002: 991:ARRL Band Plans 989: 988: 984: 974: 972: 959: 958: 954: 944: 942: 933: 932: 925: 913: 909: 908: 904: 894: 892: 891:on 22 July 2011 879: 878: 871: 861: 859: 850: 849: 842: 832: 830: 826: 815: 811: 810: 806: 796: 794: 793:on 8 March 2014 790: 783: 777: 776: 772: 759: 758: 754: 750: 742:Shortwave bands 738: 733: 732: 727: 723: 718: 714: 705: 701: 696: 649: 632:upper side band 623:spectrum scopes 579:lower side band 575: 573:Upper band edge 560:(3.5–3.51  546: 544:Lower band edge 478: 476: 417: 402: 384: 375: 365: 334: 328: 304:Northern Europe 272: 259: 253: 250: 243:needs expansion 228: 218: 177: 174: 171: 170: 168: 167: 165: 163: 159: 131: 110: 90: 17: 12: 11: 5: 1747: 1737: 1736: 1719: 1718: 1714: 1713: 1707:Radio spectrum 1702: 1701: 1659: 1658: 1651: 1642: 1636: 1635: 1630: 1622: 1621: 1616: 1608: 1607: 1602: 1594: 1593: 1588: 1580: 1572: 1571: 1566: 1559: 1553: 1552: 1547: 1539: 1538: 1533: 1525: 1524: 1519: 1514: 1509: 1501: 1500: 1495: 1490: 1483: 1477: 1476: 1471: 1463: 1462: 1457: 1449: 1448: 1445: 1440: 1437: 1429: 1428: 1419: 1414: 1407: 1401: 1400: 1397: 1392: 1389: 1381: 1380: 1375: 1370: 1362: 1361: 1358: 1351: 1341: 1340: 1335: 1326: 1319: 1313: 1312: 1307: 1299: 1298: 1293: 1285: 1284: 1279: 1271: 1270: 1265: 1257: 1256: 1251: 1243: 1242: 1237: 1229: 1228: 1223: 1218: 1213: 1205: 1204: 1199: 1191: 1190: 1185: 1180: 1175: 1168: 1162: 1161: 1156: 1151: 1143: 1142: 1137: 1130: 1124: 1123: 1118: 1111: 1105: 1104: 1099: 1094: 1089: 1086: 1080: 1077: 1076: 1069: 1068: 1061: 1054: 1046: 1015: 1013: 1012: 982: 952: 923: 911:JARL Band Plan 902: 869: 840: 818:. Ottawa, ON: 804: 770: 751: 749: 746: 745: 744: 737: 734: 731: 730: 721: 712: 698: 697: 695: 692: 690:of bandwidth. 648: 645: 591:lower sideband 574: 571: 545: 542: 541: 540: 539: 538: 535: 534: 532: 529: 526: 522: 521: 519: 516: 513: 509: 508: 506: 503: 500: 496: 495: 493: 490: 487: 483: 482: 480: 473: 470: 466: 465: 463: 460: 457: 453: 452: 450: 447: 444: 440: 439: 437: 434: 431: 427: 426: 424: 421: 418: 413: 412: 409: 406: 403: 398: 397: 390: 379: 370: 327: 324: 271: 268: 261: 260: 240: 238: 227: 224: 158: 155: 130: 127: 109: 106: 89: 86: 57:75 meters 31:allocated for 15: 9: 6: 4: 3: 2: 1746: 1735: 1732: 1731: 1729: 1712: 1708: 1703: 1700: 1698: 1694: 1687: 1682: 1678: 1672: 1668: 1660: 1657: 1650: 1649: 1648: 1643: 1641: 1638: 1637: 1629: 1628: 1624: 1623: 1615: 1614: 1610: 1609: 1601: 1600: 1596: 1595: 1585: 1581: 1579: 1578: 1574: 1573: 1565: 1564: 1560: 1558: 1554: 1546: 1545: 1541: 1540: 1532: 1531: 1527: 1526: 1520: 1515: 1510: 1508: 1507: 1503: 1502: 1491: 1489: 1488: 1484: 1482: 1478: 1470: 1469: 1465: 1464: 1456: 1455: 1451: 1450: 1441: 1436: 1435: 1431: 1430: 1415: 1413: 1412: 1408: 1406: 1402: 1393: 1388: 1387: 1383: 1382: 1371: 1369: 1368: 1364: 1363: 1357: 1352: 1350: 1349: 1348: 1343: 1342: 1327: 1325: 1324: 1320: 1318: 1314: 1306: 1305: 1301: 1300: 1292: 1291: 1287: 1286: 1278: 1277: 1273: 1272: 1264: 1263: 1259: 1258: 1250: 1249: 1245: 1244: 1236: 1235: 1231: 1230: 1224: 1219: 1214: 1212: 1211: 1207: 1206: 1198: 1197: 1193: 1192: 1186: 1181: 1176: 1174: 1173: 1169: 1167: 1163: 1152: 1150: 1149: 1145: 1144: 1136: 1135: 1131: 1129: 1125: 1117: 1116: 1112: 1110: 1107: 1106: 1103: 1100: 1098: 1095: 1093: 1090: 1087: 1084: 1083: 1078: 1074: 1067: 1062: 1060: 1055: 1053: 1048: 1047: 1044: 1039: 1028: 1024: 1020: 1000: 996: 992: 986: 970: 966: 962: 956: 940: 936: 935:KARL Bandplan 930: 928: 919: 912: 906: 890: 886: 882: 876: 874: 857: 853: 847: 845: 825: 821: 814: 808: 789: 782: 781: 774: 766: 762: 756: 752: 743: 740: 739: 725: 716: 709: 703: 699: 691: 689: 685: 681: 678: 674: 670: 666: 662: 658: 654: 644: 641: 637: 633: 628: 624: 619: 617: 612: 608: 603: 599: 594: 592: 588: 584: 580: 570: 567: 563: 559: 555: 551: 533: 530: 527: 524: 523: 520: 517: 514: 511: 510: 507: 504: 501: 498: 497: 494: 491: 488: 485: 484: 481: 474: 471: 468: 467: 464: 461: 458: 455: 454: 451: 448: 445: 442: 441: 438: 435: 432: 429: 428: 425: 422: 419: 415: 414: 410: 407: 404: 400: 399: 396:   395: 391: 388: 383: 380: 378: 374: 371: 369: 364: 361: 360: 357: 356: 355: 354: 353: 350: 347: 343: 339: 333: 323: 321: 317: 316:sunspot cycle 313: 307: 305: 300: 295: 293: 289: 285: 281: 277: 267: 257: 248: 244: 241:This section 239: 236: 232: 231: 223: 221: 215: 211: 207: 201: 199: 195: 194:loop antennas 191: 154: 150: 147: 143: 138: 136: 126: 124: 119: 116: 115:thunderstorms 105: 103: 100:(85.7 m 99: 95: 85: 82: 77: 73: 69: 64: 62: 58: 54: 50: 46: 42: 38: 34: 30: 26: 22: 21:80 meter 1696: 1692: 1680: 1662: 1653: 1645: 1644: 1625: 1611: 1597: 1586:– 81.500 GHz 1583: 1575: 1561: 1542: 1528: 1504: 1485: 1466: 1452: 1432: 1409: 1384: 1365: 1353: 1345: 1344: 1321: 1302: 1288: 1274: 1260: 1246: 1232: 1208: 1194: 1171: 1170: 1146: 1132: 1113: 1102:ITU Region 3 1097:ITU Region 2 1092:ITU Region 1 1031:. Retrieved 1027:the original 1022: 1016: 1003:. Retrieved 985: 973:. Retrieved 955: 943:. Retrieved 905: 893:. Retrieved 889:the original 860:. Retrieved 831:. Retrieved 824:the original 807: 795:. Retrieved 788:the original 779: 773: 764: 755: 724: 715: 702: 657:the Americas 650: 620: 610: 606: 595: 576: 547: 531:3.500–4.000 518:3.500–3.800 505:3.500–3.900 499:New Zealand 449:3.500–3.800 436:3.500–4.000 393: 392:   381: 376: 372: 367: 362: 351: 335: 308: 296: 273: 264: 254:January 2012 251: 247:adding to it 242: 202: 160: 151: 146:D layer 139: 132: 120: 111: 93: 91: 76:D layer 65: 56: 25:3.5 MHz 24: 20: 18: 1140:472–479 kHz 797:25 December 627:panadaptors 611:transmitter 270:Propagation 74:-activated 29:frequencies 1705:See also: 1671:WARC bands 1584:75.500 GHz 945:January 5, 862:January 5, 854:(Report). 748:References 708:ITU Region 598:modulation 382:Allocation 330:See also: 142:ionosphere 102:wavelength 68:ionosphere 45:ITU Region 1172:80 / 75 m 975:August 3, 895:5 January 833:1 October 694:Footnotes 636:amplitude 416:Australia 401:Argentina 299:skip zone 1728:Category 1033:3 August 1023:ac6v.com 1005:3 August 999:Archived 969:Archived 736:See also 706:In each 663:. On an 607:receiver 552:(called 135:ragchews 123:tropical 88:Overview 680:carrier 512:Russia 443:Europe 430:Canada 363:Country 320:auroral 284:D-layer 274:As the 226:History 190:dipoles 181:⁠ 169:⁠ 94:nominal 33:amateur 1647:Sub-mm 1599:2.5 mm 1544:1.2 cm 1386:1.25 m 1115:2200 m 1085:Range 941:(KARL) 625:, and 618:mode. 486:Korea 469:Japan 456:India 377:Region 53:Region 49:Region 1468:13 cm 1454:23 cm 1434:33 cm 1411:70 cm 1148:160 m 1134:630 m 1088:Band 914:(PDF) 827:(PDF) 816:(PDF) 791:(PDF) 784:(PDF) 638:, or 1627:1 mm 1613:2 mm 1577:4 mm 1563:6 mm 1530:3 cm 1506:5 cm 1487:9 cm 1304:10 m 1290:12 m 1276:15 m 1262:17 m 1248:20 m 1234:30 m 1210:40 m 1196:60 m 1035:2005 1007:2005 977:2005 947:2017 897:2010 864:2010 835:2010 799:2023 616:"CW" 554:"CW" 394:Refs 385:(in 368:Area 336:The 140:The 92:The 43:and 41:IARU 19:The 1679:'s 1677:ITU 1640:THF 1557:EHF 1481:SHF 1405:UHF 1367:2 m 1347:4 m 1323:6 m 1317:VHF 688:kHz 684:DRM 665:SSB 661:MHz 587:SSB 583:MHz 566:USB 562:MHz 558:kHz 387:MHz 373:ITU 366:or 346:MHz 342:kHz 280:MHz 249:. 144:'s 98:MHz 72:Sun 70:'s 37:MHz 23:or 1730:: 1709:, 1673:". 1447:— 1439:— 1399:— 1391:— 1360:— 1166:HF 1128:MF 1109:LF 1021:. 997:. 967:. 926:^ 883:. 872:^ 843:^ 763:. 677:AM 634:, 602:RF 528:2 515:1 502:3 489:3 472:3 459:3 446:1 433:2 420:3 411:— 405:2 318:, 288:DX 210:RF 178:3 172:2 166:≳ 1688:. 1065:e 1058:t 1051:v 1037:. 801:. 389:) 256:) 252:( 219:Q 185:) 175:/ 164:(

Index

frequencies
amateur
MHz
IARU
ITU Region
Region
Region
shortwave broadcast band
ionosphere
Sun
D layer
communications networks
MHz
wavelength
thunderstorms
tropical
ragchews
ionosphere
D layer
dipoles
loop antennas
near vertical incidence skywave
inductive loading coil
RF
radiation resistance
Q

adding to it
maximum usable frequency
MHz

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.